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Abstract 

Intelligent Transportations Systems (ITS) have become an integral part of every 

modern car since they provide advanced assistance in driving conditions. According 

to a study [1], 90% of rear-end collisions can be avoided if the driver is notified one 

second earlier. For this reason, in this thesis we focus on the problem of tracking 

the front vehicle through an on-board camera module and estimating its distance. 

We include a literature review on technologies that are currently being employed for 

distance estimation and we point out advantages and disadvantages. Additionally, 

we design a novel algorithm for vehicle tracking and distance estimation based on 

the licence plates that are, according to the law, in a visible place at the rear of each 

vehicle. The algorithm detects the plates based on their rectangular shape and 

colour variation and calculates the distance based on the standardized dimensions 

enforced by each country. Moreover, we use a low power ARM processor and a low 

cost 640x480 webcam to test its performance. Tracking the front vehicle works for 

distances of up to 9.6 meters from the camera, has an error of approximately 5% of 

the estimated distance and the ARM processor can process at least 20 frames per 

second in a video sequence. The results make it ideal for real time applications but 

also allow the possibility of increasing the image resolution in order to achieve longer 

distances during tracking and still being able to perform in real time. 

 

 

 

Keywords: Intelligent Transportation Systems, Advanced Driving Assistance 

Systems, Vehicle Tracking, Distance Estimation, License Plates Detection, Real 
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Chapter 1 

Introduction 

Traffic accidents can have tragic outcomes such as injuries, permanent damage or 

even death. Most of them happen because of sudden distractions, inattention to the 

road and inability to sustain consciousness due to fatigue or influence of certain 

substances. To prevent accidents from happening as much as possible every effort 

is being made and many automotive companies and research groups turn their 

attention to developing intelligent transportation systems and advanced driving 

assistance systems. This thesis’ target is the development of a system that can be 

used for tracking the leading vehicle and measuring its distance from the host 

vehicle by processing the input of an on-board camera module. Such 

implementation can be used as an integrated solution for vehicles that provide 

applications as automatic stopping, warning systems and even autonomous driving, 

all based on front vehicle proximity. 

There are two major categories we can divide systems that use computer vision for 

vehicle safety: 

➢ Stereo vision based systems. 

➢ Monocular vision based systems. 

Stereo vision based systems use epipolar geometry principles to combine two 

views, but because of the complexity of the algorithms, these systems usually 

require large storage space, high computational ability and are sensitive to noise 

and light [2]. On the contrary, monocular vision based systems do not need the 

recourses to combine views which is why they are generally more convenient and 

low cost and are more suited for the field of vehicle safety. Monocular vision based 

algorithms usually aim in detecting certain features (e.g. edges, shadows, 

symmetry) and translate that into conditions that occur while driving. For example, 

when a camera detects a symmetric shadow ahead, it could mean that there is a 

leading vehicle on the road. Other monocular vision based algorithms rely on the 

use of machine learning. These algorithms, that usually employ neural networks, 
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require more computational ability and therefore, it is more difficult for them to meet 

the time requirements of real time applications [2]. 

1.1 Problem Statement 

According to the traffic law, depending on the speed of the vehicle, there is a 

minimum distance that every driver should keep from the leading vehicle. If for any 

reason a vehicle suddenly stops, following drivers should have enough space to 

slow down and immobilize their vehicles without endangering their lives. However, 

this safety rule is often not followed either because drivers are overconfident or 

ignorant. This thesis focuses on developing a system that detects the front vehicle, 

estimates its distance and can potentially initiate an event based on the value of the 

estimated distance (e.g. warning sound if the distance is dangerously short). Current 

implementations [3], [4], [5], [6], [7] rely on characteristics that can be influenced by 

weather and illumination conditions (e.g. vehicle shadow) and their suitability for real 

time applications can be argued since results related to time efficiency are either 

poor or absent. Meeting the requirements of real time applications can be very hard 

for embedded systems integrated in vehicles because the capacity of the hardware 

resources is usually limited. 

1.2 Thesis Overview 

This thesis is organized in 6 chapters: 

Chapter 2 includes a literature review on related work. We describe ways to detect 

the leading vehicle and measure its distance according to already implemented 

systems. In addition, we comment on their efficiency by pointing out advantages and 

disadvantages. 

Chapter 3 is about the implementation of a novel algorithm for vehicle tracking and 

distance estimation. We describe its function by providing figures, code samples 

and clarifications for each stage of the algorithm and we also include general 

observations and comments on its efficiency. 

Chapter 4 presents a detailed analysis of the algorithm’s possible error when 

estimating the distance from the leading vehicle. We take into account all factors 

that affect the distance measurement and we calculate the range of possible error. 

Moreover, chapter 4 includes information on the applicable distance which is the 
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maximum distance for which the algorithm is able to detect and follow a leading 

vehicle. 

Chapter 5 contains the experimental results of the algorithm being tested on a low 

power ARM processor using 640x480 video from various driving conditions. The 

featured results are outcome of the evaluation of the algorithm based on three 

aspects (time efficiency, reliability and accuracy). 

Finally, Chapter 6 summarizes the thesis by providing overall conclusions for the 

implemented algorithm and by stating lines for further research in the area of 

tracking and estimating the distance of the leading vehicle. 
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Chapter 2 

Literature Review 

This chapter presents ways to track the front vehicle and measure its distance 

according to the literature. Each subsection describes a robust method that has 

been tested and works and can actually be used to provide assistance to drivers. 

All the methods along with their results come from the literature, we did not 

implement the algorithms. We describe their function and comment on their 

strengths and weaknesses. 

2.1 Based on Vehicle Shadow and Symmetry 

In [3] the authors introduce an algorithm for tracking a leading vehicle and estimating 

its distance based on multiple image features. They use corner detection, edge 

detection, vehicle symmetry and image matching to identify a car figure and based 

on its width and height they estimate its distance. 

2.1.1 Algorithm Outline 

This algorithm relies on the fact that the bottom area of a car (shadow) as shown in 

figure 1, displays very strong characteristics and is a very distinct region compared 

to the rest of the road. It is also assumed that there are not any other obstacles in 

front of the car other than the leading vehicle. Such assumption is very reasonable 

though, especially during normal driving conditions. 
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Figure 1: Typical front car image (shadow inside rectangle) [3] 

To detect this region the algorithm starts with Gaussian blurring in order to smoothen 

the image and lessen possible noise. After that, it tries to detect the bottom left side 

of the car that shapes like an “L” by using corner and edge detection as shown in 

figure 2. 

 

Figure 2: Corner detection (left) and edge detection (right) [3] 
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To identify the bottom left side of the car they align an “L” shape template for every 

corner point and find its cross correlation with the edge image. A region of interest 

is identified as the corner point for which the correlation has the maximum value. 

Then, to ensure that this region is actually part of a car they use a threshold saying 

that all enclosed points must have a lower value. This basically means that the 

shadow of the car must be darker that the rest of the road and that there is road only 

below the vehicle. Figure 3 shows the tracking of the bottom left side of a vehicle. 

To identify the right side of the car a column direction projection is used in the region 

of interest. 

 

Figure 3: Tracking bottom left corner [3] 

At this point, left and right side of the car are known and thus, the width of the car is 

known as well. To figure out the height of the car, they take advantage of the fact 

that for each car vehicle category (e.g. sedan, SUV, truck) there is a fixed ratio of 

width/height. They use a matching template technique to decide the category of the 

vehicle and after that they define both vehicle type and height. This way, the car is 

detected more accurately as shown in figure 4. 
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Figure 4: Vehicle tracking [3] 

2.1.2 Comments and Results 

According to the authors, the algorithm was simulated using Matlab and its 

performance was found satisfactory. Figure 5 shows the results of the algorithm 

tracking the front vehicle in real driving conditions. 

 

Figure 5: Tracking for different vehicles [3] 
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However, there is no analysis on the limits of the applicable distance or the range 

of possible error. It is mentioned that it worked for distances from 10 to 20 meters 

and that the Kalman filter was used to estimate the distance but there is no further 

information. 

This algorithm uses several features in order to identify a car, which minimizes the 

possibility of error. However, the more features are considered, the more time is 

needed to process each frame. One of the initial steps of the algorithm is to find all 

corners and for each corner to calculate a value that comes from the cross 

correlation with the edge image. This process can take a lot of time depending on 

the number of corners in the image. A typical image of a car can result in a significant 

number of corners and taking into account any object inside the point of view of the 

camera, the amount of corners can create considerable delay. Additionally, different 

illumination conditions can weaken the vehicle’s shadow which might result in 

detection failure. To conclude, the algorithm seems robust due to the many 

conditions that need to be satisfied in order to identify a car but further testing 

regarding time efficiency and illumination conditions is necessary. More information 

on the algorithm along with its references can be found in [3]. 

2.2 Based on Vehicle Contour and Symmetry  

In [4], the authors describe a feature based algorithm that tries to find the silhouette 

of front vehicles. To avoid false detection of stationary objects inside the point of 

view of the camera, they use two consecutive frames and combine their results. 

They verify the vehicle’s symmetry by matching candidate silhouettes with fixed 

templates of different types of vehicles (e.g. sedan, SUV, track, bus). Upon success, 

the distance is calculated by using a scaling factor of known templates based on the 

type of the vehicle. Additionally, they include the case of difference illumination 

conditions and describe ways to overcome difficulties that might occur during night 

time. 

2.2.1 Algorithm Outline 

At first the algorithm uses active contours to detect vehicle silhouettes and after that 

it matches geographic differences of two consecutive sample frames in order to 

identify object boundaries (figure 6). 



Page 16 of 89 
 

 

Figure 6: Contours of non-stationary objects [4] 

This step might also result in false detection of non-stationary objects as shown in 

figure 7. 

 

Figure 7: False detection [4] 
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For every frame that arrives, information from the previous frame is used so that the 

moving objects can be tracked and stationary objects can be eliminated. To 

accomplice that, each frame is masked with the stencil of stationary objects. This 

way, only moving objects are followed in a sequence of frames. 

Continuously, the candidate silhouette is compared (width to height ratio) to known 

templates of vehicle categories (e.g. car, track, VAN) and the type of vehicle is 

recognized. The symmetric property is used as verification and finally, the distance 

is determined by using a scaling factor. This means that for every type of vehicle 

there is a known relation between size and distance. 

During night time however, vehicle features are not very distinct. According to the 

authors the only feature that can be used is the light from the headlights. For this 

reason, it is proposed to use either known templates of headlights or Haar classifiers 

in order to detect the vehicle’s lights. An example of a template and a classifier is 

shown in figure 8. 

 

Figure 8: Use of template (left) and Haar classifier (right) [4] 

The Haar classifiers for front and rear view are included as well (figure 9).  
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Figure 9: Set of Haar classifiers [4] 

Another feature that they use to identify rear view is the red colour of the rear lights 

of the vehicle. An example is shown in figure 10. 

 

Figure 10: Red colour in rear lights [4] 
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2.2.2 Comments and Results 

Numerical results such as applicable distance, possible error range and average 

process time for each frame are not included. However, calculations are kept to 

minimum necessary for the detection and tracking of the front vehicle and the 

featured images show satisfactory performance, which implies suitability for real 

time implementation. This is not certain though, since there are no measurements 

of processing time. A major concern regarding real time performance is that all 

calculations are performed on RGB images which increases process time 

significantly for each frame compared to converting the image to grayscale before 

processing. It is not known if RGB images are necessary for all stages of the 

algorithm though. Grayscale frames can increase time efficiency but could possibly 

reduce reliability. 

Providing an alternative for night time conditions, where the main algorithm is most 

likely to fail, is definitely an advantage of this implementation. There is no 

information on how day time and night time algorithms are combined though. It is 

not mentioned if the time of the day is an input or if it is part of the algorithm to 

determine illumination conditions. Latter case means that the duration needed to 

detect current illumination creates additional overhead which needs to be taken into 

account when considering time efficiency.  

2.3 Based on Road Lane and Vehicle Shadow 

In [5], the proposed algorithm relies on lane detection and detection of the front 

vehicle’s shadow and after that, it estimates the distance. The lane is recognized as 

two straight lines in front of the camera using the Hough transform. Then, the 

algorithm utilizes the Sobel operator to find a horizontal edge line inside the lane 

that could indicate the existence of a vehicle shadow. The distance is then estimated 

based on the position of the shadow on the lane. 

2.3.1 Algorithm Outline 

This method begins with the Cunny operator in order to find all the edges in a frame. 

After that, all vertical and horizontal lines are deducted because they cannot be part 

of the lane. This way the image becomes clearer as shown in figure 11 and is then 

ready for the Hough transform. This step intends to reduce the calculation time of 

the transform. 
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Figure 11: Initial frame (a), Cunny operator (b), after reducing noise (c) [5] 

To acquire the correct lines from the Hough transform there are two filtering rules. 

The lane lines are found in the most intensive intersection of the transform and these 

lines are required to be accumulated for a period of time. The end of the road, which 

is the point where the two lines of the lane collide is referred to as the vanishing 

point. To acquire the correct lane and vanishing point, multiple frames are used. 

Results of using the Hough transform over a period of time to identify the lane are 

shown in figure 12. 
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Figure 12: Segmentation of the lane until the vanishing point [5] 

After that, a vehicle’s shadow is recognized by using the Sobel operator and by 

searching for a short horizontal line inside the lane. 

Based on the position of the shadow, the vanishing point and the road scale, 

distance is calculated according to the equalities in figure 13. 

 

Figure 13: Distance estimation equalities [5] 

Set_d is the distance between the host car and the vanishing point. 
Vanishing_y is the value of the y coordinate of the vanishing point. 
Car_y is the value of the y coordinate of the car 
H is the width of the frame. 
DD is the distance. 

2.3.2 Comments and Results 

The authors include in their study a table of experimental results shown in figure 14. 

The results are outcome of using three videos of urban and suburban environment 
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with various backgrounds. DN is the number of correct vehicle detections, FN stands 

for the number of false vehicle detections and MN is the number of vehicles. Rates 

are also included, DR indicates the rate of correct detections and FR is the rate of 

false detections. 

 

Figure 14: Evaluation of the algorithm based on three videos [5] 

This algorithm keeps the calculations to minimum and seems to be able to cope with 

real time requirements, even though results on processing time or average frames 

per seconds are not included. Based on the three videos, success rate is at least 

78% and false detections can be up to 19%. 

Other than time efficiency comments that are missing, another concern regarding 

this algorithm is that one of its inputs is the distance between the host vehicle and 

the vanishing point, which is referred to as Set_d in figure 13. This distance cannot 

be regarded as a fixed value since it changes based on the road and the driving 

conditions. This parameter affects the value of the final distance estimation and 

when it deviates from its exact value, it can create additional error. 

2.4 Based on Vehicle Shadow and Licence Plates 

In [6], the authors propose an algorithm that performs detection based on the 

shadow underneath the vehicle and the horizontal edges caused by its silhouette. 

Then for verification of the existence of a vehicle and for estimating its distance they 

make use of the licence plates whose dimensions and shape are standardized for 

each country. They provide a deep analysis of their approach along with 

experimental results. Finally, they conclude their study by saying that tests using 

actual vehicles in real urban traffic conditions were made and the algorithm showed 

excellent robustness and reliability both in vehicle and licence plate detection and 

very good accuracy in distance estimation. 
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2.4.1 Algorithm Outline 

At first, a static region of interest is obtained from the frame. The goal of this region 

is to acquire only the part of the frame that corresponds to the front part of the car. 

This way, objects inside the point of view of the camera that are not in front of the 

car are eliminated (figure 15 a). 

The vehicle detection is based on two features, the vehicle shadow and the 

horizontal edge caused by the shadow. The shadow intensity depends on the 

illumination conditions but it is always more intense and dense compared to the rest 

of the road. To identify the shadow, they use an adaptive threshold based on the 

histogram of the grayscale region of interest. The histogram displays two peaks. 

Since the shadow of the car is most likely to be the darkest area inside the region 

of interest, the lower peak of the histogram corresponds to the shadow underneath 

the vehicle. The higher peak corresponds to the road. Apart from the two peaks, 

there might be higher values that correspond to the lines of the road since they are 

usually white or yellow. After the shadow threshold, they use edge detection to find 

horizontal lines that are considered vehicle candidates. The length of the horizontal 

line is identified as the vehicle’s width. The height is considered to be 130% of the 

width in order to include all types of vehicles (e.g. car, van, SUV). The above steps 

are shown in figure 15. 
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Figure 15: Region of interest (a), shadow threshold (b), horizontal lines (c), candidate vehicle (d) [6] 

At this point, a first estimation of the distance is obtained based on the location of 

the lower edge of the vehicle’s bounding box. To acquire this distance, they use a 

template of preconfigured values that relates the position of the front vehicle in the 

image with distances (in meters) from the host vehicle. These values have been 

established through experimental tests. 

To detect the licence plates, initially they use morphological closing to reduce noise 

and then the Top Hat operator. The Top Hat operator is usually used to extract 

certain features form an image. The returned image includes objects that are 

relatively small and brighter than their surroundings. After Top Hat, the image is 

turned to binary using the Otsu method. The Otsu method calculates a threshold 

based on the intensity of the image and it uses it to convert the image to binary. The 

steps so far are shown in figure 16. 
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Figure 16: Candidate vehicle (a), morphological closing (b), Top Hat method (c), Otsu method (d) [6] 

Continuously, they make use of information that has already been determined. 

Since the width and height of the vehicle has been calculated, there is already a 

rough estimation on the location and the dimensions of the licence plates. On the 

current image (figure 16 d), all elements whose horizontal separation is less than a 

threshold are joined together and from the result if an element is taller than the 

expected height of the plates or wider than the expected width, it is eliminated. To 

verify the existence of plates in the remaining candidate areas they use features of 

the characters that are standardized in each country (e.g. number of characters, 

distance between two consecutive characters, separation gap between numbers 
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and letters). The remaining candidate contained in rectangular areas that 

correspond to the location of the initial estimation based on the vehicle detection are 

the plates. The steps of this stage are shown in figure 17. 

 

Figure 17: Elements horizontally joined (a), width/height elimination (b), plate candidates (c), inside 
rectangular candidates (d) [6] 

After the licence plates have been detected, the distance is estimated based on a 

template of preconfigured values. These values have been extracted from 

experimental tests and relate the width of the licence plate number and the height 

of the characters to the distance of the front vehicle. All the features needed from 

the licence plates are shown in figure 18. 
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Figure 18: Plate number width (NPW), height of character (CH), separation gap (CS), character 
thickness (CT) [6] 

2.4.2 Comments and Results 

According to the authors, the system is tested in real driving conditions of various 

locations and weather conditions. They use a camera with resolution of 1280x720 

to record sample videos and the processing takes place on an Intel Pentium 4 

3.06GHz processor with 480 MB RAM using Matlab. To obtain the real distance so 

it can later be compared to the system’s output values, a LASER distance meter is 

used with functional distance of up to 100 meters. Figure 19 shows the results of 

vehicle detection. 

 

Figure 19: Analysis of vehicle detection [6] 
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The algorithm presents impressive results with successful detection rate of at least 

97.3% and false detection rate of up to 3.5%. Figure 20 shows the results of licence 

plate detection. 

 

Figure 20: Analysis of licence plate detection [6] 

Licence plates are almost always found successfully because licence plate 

detection is only performed on identified vehicles. Figure 21 show the results of 

distance estimation. 

 

Figure 21: Analysis of distance estimation [6] 
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The results of distance estimation are rather impressive as well. When using the 

width of the licence plate number, the distance has an error of up to 14 centimetres 

which actually happens during raining conditions. 

The algorithm presents outstanding results regarding reliability and accuracy. The 

processing time for each frame varies and depends on the number of possible 

candidates. The average time of each frame is 248 milliseconds which implies 

approximately 4 frames per second on a 3.06 GHz Intel processor using Matlab. 

However, according to the authors, running on a more suitable processing unit, the 

algorithm could achieve a higher rate of frames per second. 

Apart from the suitability of the algorithm for real time application which can be 

argued due to high processing duration needed for each frame, there is another 

concern. The algorithm uses pre-configured values that have been established for 

the specific vehicle using the specific camera resolution. If a different vehicle model 

is used these values will change. Same thing will happen if the camera resolution is 

changed. The pre-configured valued will no longer correspond to the actual 

measurements. This means that the algorithm has to be pre-configured for each 

vehicle model that is being used, otherwise it will create an additional error to the 

distance estimation. 

Another possible weakness of the algorithm is that to verify the licence plates, it 

makes use of licence plate number features. The features of the licence number are 

no longer distinct after a few meters of distance. However this does not show in the 

results which means that it does not happen probably because of the high resolution 

of the camera.  

2.5 Based on Road Lane, Vehicle shadow and a Neurofuzzy Network 

In [7], the authors create an algorithm for avoiding lane departure and front vehicle 

collision. The system detects the road lane that the host car follows and keeps track 

of the position of the car. If the car starts moving away from the lane it alarms the 

driver. Additionally, the algorithm uses the area inside the lane as a region of interest 

and it searches for vehicle shadows that could mean the existence of another 

vehicle in front of the host car. Upon successful recognition of a front vehicle, the 

number of pixels in the frame between the two vehicles is given to a neurofuzzy 

networks that estimates the distance.  
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2.5.1 Algorithm Outline 

The algorithm starts with lane detection. The host vehicle is assumed to be driving 

in the middle of the lane so the right line is in the right side of the image and the left 

line is in the left side of the image. To identify the lane lines, the grayscale image is 

divided in two parts (left and right) and each part is used for finding the 

corresponding line. To identify the lines, they define two edge detection masks as 

shown in figure 22.  

 

Figure 22: Edge detection masks [7] 

 

If the value of an edge is greater than 30, its colour is set to green (positive edge) 

and if its value is less than -30, its colour is set to red (negative edge). Background 

colour is set to black. If the distance between two colours (red and green) is less 

than five pixels, then white colour is used to fill in the pixels in between. The result 

of the edge detection is shown in figure 23. 

 

 

Figure 23: Red and green edges (a), red-green distance filled with white [7] 
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After that, the image is converted to binary by turning all pixels apart from the white 

ones to black and then, they keep only the edges of the white pixels. Results are 

shown in figure 24. 

 

Figure 24: White lines (a), edges of white lines (b) [7] 

Continuously, the goal is to identify the lanes. The edges are grouped into line 

segments and then the line segments are combined to form longer lines. At first, the 

segments are sorted to left or right-side segment. Then the biggest segment is used 

as a base and the other segments are added to the base segment if they belong to 

the same line. To calculate if two segments belong to the same line they use the 

straight line equation ax + bx + c = 0 which checks if the points are part of the same 

straight line. If the segments are part of the same straight line they are merged to 

one segment. Eventually the biggest segment for each side corresponds to the lane 

line. To avoid processing the background, all segments over the vanishing point are 

excluded. 

To prevent lane departure, they use the position of the car on its current lane and 

check the corners that are formed from the lane on the road. The movement of the 

car on the lane has an impulse on these corners. Judging from the change of both 

left and right corner the direction of the car’s movement can be established. Figure 

25 shows the lane boundaries and the corners that are formed. 
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Figure 25: Lane boundaries and lane corners [7] 

The algorithm proceeds with finding the front vehicle. The area inside the lane is 

used as a region of interest so only vehicles in the same lane are considered for 

detection. Initially, the image is converted to grayscale and after that it is turned to 

binary. The threshold for the conversion to binary is the average value of all the 

pixels in the image. The goal of this process is to identify the vehicle’s shadow as 

one of the darkest areas in the image. Then, morphological closing is used to fill in 

small holes in the background. Continuously, only the edge of each white area is 

kept since the size of the shadow is not necessary. The width of each shadow is 

compared to the width of the lane as a way to confirm a vehicle’s shadow. The steps 

of this stage are shown in figure 26. 
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Figure 26: Binary image (a), morphological closing (b), edges of shadows (c) [7] 

Since the exact position of the vehicle’s shadow is now known, the horizontal and 

vertical Sobel operator is used in order to find the edges of the vehicle so that the 

contour can be recognized and the vehicle can be detected. To make the algorithm 

perform well during night time, instead of the shadow, the taillights are used. Results 

of the detection are shown in figure 27. 
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Figure 27: Sobel operator (a), vehicle detection (b), taillight detection (c) [7] 

Finally, after the vehicle has been detected, the distance (number of pixels) between 

the two vehicles is used as input for the neurofuzzy network. The structure of the 

proposed neurofuzzy network is shown in figure 28. 
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Figure 28: Structure of the neurofuzzy network [7] 

The flow diagram of the learning process is shown in figure 29. 
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Figure 29: Flow diagram of the learning process [7] 

2.5.2 Comments and Results 

The authors used real measurements to train their network. The training dataset is 

shown in figure 30. 

 

Figure 30: Real distance for different pixels [7] 
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The measurements were taken from real driving conditions. The frames are shown 

in figure 31. 

 

Figure 31: Images of measuring real distance [7] 

The algorithm was tested using video from real driving conditions. Results of the 

algorithm are shown in figure 32. 

 

Figure 32: Training and testing dataset of the neurofuzzy network [7] 

Accuracy rates for lane detection and front vehicle identification are shown in figure 

33. 
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Figure 33: Accuracy rates for lane detection and for vehicle detection [7] 

The overall results of the implementation are impressive, especially their tracking 

method that, as can be seen in their results (figure 32) can detect a front vehicle in 

48 meters and estimate its distance with zero error.  

An obvious weakness is that the vehicle detection depends on the lane of the road 

which means that if there are no lanes or if they are not distinct due to weather or 

corrosion, no vehicle will be detected. Another issue would be that the training 

dataset has values that have been determined from a specific vehicle. For different 

vehicle models these values might require adjustments or they could create 

additional error in the distance measurements. However, the advantage of the 

neural approach is that the network can go through a training process again for 

different models which means that it can adapt to different vehicles. 

Regarding time requirements, the only clue mentioned is that the lane detection 

process was tested in a highway with image processing rate of 20 frames per 

second. 20 frames per second is a satisfactory rate for the specific application. 

However, it does not include the time needed for processing the image until the 

distance estimation is calculated. This means that the processing rate for the 
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distance estimation process is actually less than 20 frames per second, but we 

cannot assume that it is prohibitively less. 

2.6 Overall Conclusions from the Literature 

Conclusions from the literature include the following. 

➢ A major observation is that time is not widely taken into account. The fact that 

we are processing a video stream means that we can take advantage of time. 

The leading vehicle cannot suddenly disappear from one place and appear 

somewhere else. We can use multiple consecutive frames in a pipelined 

manner to identify a car in order to increase reliability. This way even if the 

algorithm makes a false detection in a frame, it won’t be taken into account 

since it would require multiple frames to verify a vehicle. 

➢ There are many different models of vehicles with different dimensions and 

features. Even if testing an algorithm for a specific vehicle model indicates 

no error in estimating distance, it cannot be assumed that there is no error 

for any kind of vehicle. Installing the system on a different vehicle model 

might create additional error. It cannot be assumed that a system that works 

well installed on a short vehicle will have the exact same response when 

installed on a very tall vehicle. Every algorithm should be accompanied by an 

analysis of its possible error and its applicable distance. 

➢ Advanced driving assistance systems have to be able to provide information 

in real time. If the algorithm takes 3 seconds to process each frame it means 

that in a dangerous situation it is not going to alert the driver on time. To be 

considered real time it must be able to produce multiple outputs every 

second. Each system should include an analysis of its processing rate 

(frames/second) along with the algorithm description. 

➢ Most algorithms that intend to calculate the distance of the leading vehicle 

depend on the vehicle’s shadow which is recognized as a very dark area on 

the road. The road on the other hand, is assumed to be of the same colour 

and intensity excluding the white/yellow lines that indicate lanes. The 

assumption of a well-conditioned road is not without reason. Distance 

estimation is mainly intended for highways and roads that support high 

speeds that are always in good condition. However, driving on bad roads 

without lanes is not rare. 
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➢ Another feature that is assumed in the image received from the camera, is 

that the vehicle’s contour is a very distinct area compared to the background. 

Again, that is not without reason. However, the colour of the vehicle and its 

surroundings can create various conditions.  

To conclude, the features that are considered for distance estimation are based on 

driving conditions and can be regarded as almost certain. However, almost certain 

means that there is always doubt. What happens if a car is almost as black as its 

dark shadow or if the colour of the background resembles the colour of the leading 

car? These conditions might create false measurements, or even complete failure 

in detecting the leading vehicle. 

Continuously, we design an algorithm that relies on vehicle features that have been 

standardized (licence plates) in order to optimize the detection process. Moreover, 

we provide an extend analysis of the proposed algorithm’s performance including 

time efficiency, error range and applicable distance.  
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Chapter 3 

Novel Algorithm for Vehicle Tracking and 

Distance Estimation 

This chapter describes the implementation of the algorithm developed for the needs 

of this thesis. The algorithm is written using the C++ programming language and the 

Eclipse development platform. The C++ language is selected because the final 

application is intended to run on embedded systems that are commonly 

programmed with C/C++. Additionally, the openCV library is used for capturing 

frames from the camera and for its data types that support image variables. 

The proposed algorithm, that is described as follows, uses an on-board camera 

module to detect the leading vehicle based on the existence of licence plates. 

According to the law, there are licence plates of fixed dimensions in a visible place 

at the rear of each vehicle and it is not realistic to assume that there could be licence 

plates on the road without a vehicle. That is why the plates are an ideal feature to 

detect the front vehicle. Even if it’s a bus, a truck or a car the plates are always there 

and the dimensions are always the same. 

Our approach on the distance estimation problem includes: 

➢ Detection of licence plates that verify a vehicle. 

➢ Tracking of the plates with a dynamic region of interest. 

➢ Estimating the distance based on the width of the plates. 

3.1 Algorithm Overview 

The algorithm is designed considering time efficiency and reliability. It makes use of 

multiple frames to identify a vehicle so it can’t be deceived by coincidental features 

that resemble a car. Moreover, it uses information from previous frames in order to 

reduce processing and produce outputs as soon as possible. In addition, it utilizes 

a dynamic region of interest that focuses on the processing of the licence plates 

only, in order to keep the calculations to minimum. 
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There are three stages in the process of estimating the distance of the front vehicle 

(figure 34): 

➢ Detection of candidate. 

➢ Verification of vehicle. 

➢ Tracking and estimating distance. 

 

Figure 34: Brief flow diagram of the algorithm 

Each frame that arrives from the camera is used for one the above stages. Initially, 

all frames are used for detecting a candidate. When a candidate is identified, the 

following frames are aimed for verification. Upon successful verification of a 

candidate, all the frames are used for tracking and distance estimation until the front 
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vehicle moves away from the camera.  The functions used within the three stages 

of the algorithm are the following: 

➢ Corner detection. 

➢ Rectangle detection. 

➢ Contour detection. 

➢ Closest candidate. 

➢ Dynamic region of interest for next frame. 

➢ Distance estimation. 

As follows, the above functions are analysed with code samples and figures and 

after that, the three stages of the algorithm are presented along with their function 

in order to finalize the description of the algorithm.  

3.2 The Functions of the Algorithm 

In this section, we describe the process that every frame from the camera is going 

through until the final distance estimation has been calculated. 

3.2.1 Initial Editing 

The initial image is received from the camera in RGB level. Before processing each 

frame, we crop a region of interest. This region of interest is the part of the image 

that corresponds to the front part of the vehicle. This way, objects that are not in 

front of the host vehicle are eliminated and also, the rest of the processing will be 

performed on a smaller image so it will take a shorter amount of time. To reduce the 

calculations even more the region of interest is converted to grayscale. Grayscale 

images require significantly less time for processing comparing to RGB images. 

Notice that cropping precedes the grayscale conversion. That is because grayscale 

conversion requires many multiplications for each pixel. We only need to grayscale 

the region of interest, the rest of the image would not only be pointless but it would 

slow down this step as well. The steps of the initial editing are shown in figure 35. 
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Figure 35: Initial image (a), cropped image (b), grayscale image (c) 

3.2.2 Corner Detector 

When the region of interest is in grayscale level, it is passed to the corner detector. 

The corner detector we use is a custom design that only looks for 90 degree corners 

or similar. This detector aims in finding the four corners of the licence plates. Other 

type of corner detectors that detect corners generally are not suited for this 

application because a common image of a car with an urban background could have 

thousands of corners that would require too much time to process. 
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To detect the four corners of the plates we rely on the properties of a 90-degree 

corner. As shown in figure 36, in a 90 degree corner the exterior colour is darker 

than the colour inside the corner. In other words, the pixels on the sides have lower 

values than the pixels in the middle. That is a fundamental property and is always 

applicable to all the corners of licence plates. 

 

Figure 36: Common 90-degree corner 

To identify these corners, we use a mask that checks the values of the pixels inside 

the image and if the exterior pixels are darker than the interior pixels, the corner is 

stored along with its features. The mask is 10x10 and checks 4 pixels for each side 

of a possible corner. The mask is shown in figure 37. 

 

Figure 37: Corner detection mask 
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The mask checks if the values of all upper pixels (“a” in figure 37) are lower than the 

values of the pixels below them (“1” in figure 37). If the condition is satisfied, then it 

checks for the values of the pixels d and 4. If the second condition is satisfied as 

well, then a corner of type 1 is found. There are 4 types of corners in a rectangle as 

shown in figure 38. Respectively all four corners are checked. To improve time 

efficiency, if one corner is found, no more corners are checked at the same place. 

 

Figure 38: 4 types of corners 

Note that there is a blank line between dark and light pixels. This line of pixels is not 

checked during the execution of the corner detector. The reason is that when there 

is no blank line, the detector might fail to detect slightly rotated 90 degree corners. 

However, using one blank line helps detecting these corners as well. Figure 39 

shows an example of slightly rotated plates that have been successfully detected. 

 

Figure 39: Corner detection on slightly rotated plates 

A code sample of the corner detector including the detection of type 1 corners is 

shown in figure 40. 
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Figure 40: Code sample of the corner detector 

The variable threshold_line keeps the value of the lowest difference between the 

dark and the light pixels of the corner. This variable, changes value during the 

execution of the algorithm. If the vehicle is a candidate, then the corner detector is 

strict and threshold_line has a high value. If plates have been identified from 

previous frames, the detector is more tolerant and threshold_line has a lower value. 

The values of thresholds will be discussed in the section “3.3 the three stages of the 

algorithm” in more detail (same for all the parameters that change value during the 

execution time). 

It is not impossible for the detector, even if it looks only for 90 degree corners, to 

find so many corners that could potentially slow down the whole process. For this 
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reason, we put a limit to the number of corners that can be found in one image. This 

way, we ensure that the detector will not take too much time even for very 

complicated images. To make sure that the corners of the plates are always among 

the corners that are found, we start the mask from the bottom of the image moving 

up. The bottom of the image is the road and even in its worse condition, it cannot 

result in too many 90 degree corners. Thus, starting from the bottom means that the 

first corners that will be found are the road’s (if any), then the front vehicle’s and 

then the background’s that will be ignored if too many. An example is shown in figure 

41. The maximum of 250 corners is used, even though it is always more than 

enough. 

 

Figure 41: Corners ignored at the background 

Finally, the output which is what is returned from the processing of the region of 

interest from the corner detector is a 250x4 table where each line is a corner with 

the following properties: 

➢ Corner type: is a value from 1 to 4 that indicates the type of the 90-degree 

corner. Consider that a rectangle has four different 90 degree corners. 1 is 

the upper left type, 2 the upper right, 3 the down right and 4 the down left 

corner (figure 43). 

➢ Row: the number of the row of the corner. 

➢ Column: the number of the column of the corner. 

➢ Colour: is the value of the white pixel inside the corner. This value is used 

later when finding rectangles because all four corners of the plates have 

approximately the same value of white. 
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The corner detector does not need to output an image with the corners, figure 41 

shows the output of the detector which was produced only for demonstration. 

 

Figure 42: Corners found with the custom corner detector 

 

3.2.3 Rectangle Detector 

The rectangle detector is a function that has as input a table of corners. It processes 

all the fields of the corner table and finds which of the corners can form rectangles. 

To form a rectangle it requires two corners, an upper left and a down right or an 

upper right and a down left. Since the type of the corner is the first field of the corner 

table, it means that corners of types 1 and 3 or 2 and 4 can possibly form rectangles. 

Figure 43 shows the types of corners. 
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Figure 43: Types of corners 

The conditions that need to be satisfied for a pair of corners to form a rectangle are 

the following: 

➢ It must be physically possible. Meaning that to form a rectangle with type 1 

and 3 corners, the row of the type 1 must be a lower value than the row of 

the type 3 and column of type 1 must be a lower value than the column of 

type 3. Respectively, it must be physically possible for corners of type 2 and 

4 to form rectangles as well. 

➢ There is a maximum and minimum value for the width of the rectangle. That 

is because there is a range in the size of licence plate rectangles in the 

images from the camera. Not all sizes can be considered as candidates for 

plates. 

➢ The width to height ratio is fixed. We only accept rectangles that could be 

plates. The fixed width to height ratio for plates is between 3 and 6. 

Rectangles with different ratio are ignored. 

➢ The light colours of the two corners that form the rectangle need to be 

approximately of the same value. The fourth field of the corner table keeps 

the value of the colour of the light colour for each corner. All four corners of 

the licence plates have the same colour (white) inside. To form a rectangle 
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from two corners, these two corners must have approximately the same 

colour inside as well, otherwise they are ignored. 

➢ If a rectangle has been identified as plates and is currently being tracked, it 

is not allowed to change its width violently. That is because a car that is 

currently being followed cannot change its distance instantly. The size of the 

plates of the front vehicle is changed gradually over time and the plates’ width 

is expected to have low deviation between consecutive frames. 

A code sample of the rectangle detector is shown in figure 44. The sample is from 

the detection of rectangles from type 1 and 3 corners. 

 

Figure 44: Code sample of the rectangle detector 

The output of the detector is a table of rectangles that are candidates for being 

licence plates. The fields of the rectangle table are: 

➢ First 4 fields are the coordinates of the type 1 and 3 corners that define the 

rectangle (column and row of each corner). 
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➢ Fifth field is the lowest value between the light pixels of the two corners that 

formed the rectangle. This value is used later for conversion to binary 

(explained in the next section).   

The rectangle detector does not need to output an image with the rectangles, figure 

45 shows the output of the detector which was produced only for demonstration. 

 

Figure 45: Rectangles found using the detector 

 

3.2.4 Contour Detector 

The contour detector takes as input a table of rectangles and the grayscale region 

of interest. Its purpose is to check if there is a dark contour around each rectangle 

that could be identified as the black contour of the licence plates. As shown in figure 

46, all licence plates have a black contour around them no matter the colour or the 

type of the vehicle. 

 

Figure 46: Contour of licence plates. 
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To check if there is a black contour in the rectangles that have been found from the 

rectangle detector we convert the image to binary. The conversion to binary 

however, needs a threshold value which is not easy to find. One option is to set a 

middle value. This means that all pixels with value lower than 255 / 2 are turned to 

black and all pixels with value higher than 255 / 2 are turned to white. The goal of 

the binary image is to separate the white part of the plates from the black part of the 

plates. On cloudy days however, a fixed threshold could turn the white part of the 

plates to black and during shiny days the black part of the plates to white. To be 

able to distinguish the contour under any illumination conditions we cannot use a 

fixed threshold. Figure 47 shows an example of using a fixed threshold for 

conversion to binary. 

 

Figure 47: Binary conversion with fixed threshold 

Another option would be to calculate the average value of all the pixels from the 

image around each rectangle and use it as threshold. This method would probably 

work sufficiently, but there is no proof that the average value will always be a suitable 

threshold. Even if the average was always a suitable threshold, the processing for 

calculating an average for every rectangle would create additional overhead and 

would eventually slow down the processing. 

To overcome this problem, we use a custom method with adaptive threshold. In the 

fifth field of the rectangle table we have kept the value of the light pixels inside the 

corners. This value corresponds to the white part of the plates and is the ideal value 

for threshold that works under any illumination. No matter how dark the plates are, 

if we know the exact value of the supposedly white part, we can perform the 

conversion to binary successfully. Thus, to check for a contour around each 
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rectangle we use each rectangle’s fifth field that contains the colour of the light part 

of its corners. Figure 48 shows an example of our custom method for binary 

conversion with adaptive threshold. 

 

Figure 48: Adaptive threshold 

After the conversion to binary all pixels are black or white with values 0 or 1 

respectively. We look for continuous black pixels around the rectangle in order to 

check if there is a black contour. Rectangles without contours are eliminated. 

Another feature that is checked from the contour detector is the colour of the four 

corners. In licence plates, the inside of the four corners has approximately the same 

value. These values are checked here as well. 

The output of the contour detector is a table of rectangles exactly like the output of 

the rectangle detector but without the rectangles that lack contours. 

More examples of the adaptive threshold are shown in figure 49. 

 

Figure 49: Various adaptive threshold examples 
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3.2.5 Closest Candidate 

This function takes as input a table of rectangles with verified contours. Its purpose 

is very simple. In case there are many rectangles with contours (candidates) pick 

the one with the longest width. The reason this function exists is to pick a candidate 

if two candidates arrive at the same time. Meaning that if two cars appear in the 

region of interest at the same time, the one closest to the host car (longer width) will 

be selected for tracking. 

3.2.6 Dynamic Region of Interest for Next Frame  

To reach this point, it means that there has been exactly one rectangle that is a 

possible candidate for being licence plates. This candidate has been through the 

following tests: 

• Has at least two corners that formed a rectangle. 

• Rectangle is of the correct shape regarding width to height ratio. 

• Rectangle has a dark colour contour around it. 

• It is the one closest to the host car. 

To verify this rectangle as plates, we track it through time. We use multiple 

consecutive frames in a pipelined manner in order to make sure that the same 

rectangle is not a coincidental shape formed from the background but a robust 

rectangular shape of correct width to height ratio that actually travels along with the 

host vehicle. We use a dynamic region of interest for the next frames that follows 

the candidate and makes sure that its movement is steady over time. At this point, 

we assume that a plates-like shape with steady movement over time that is in front 

of the host vehicle, undoubtedly indicates licence plates and therefore a leading 

vehicle. 

To follow the movement of the front vehicle we use a dynamic region of interest 

which is actually a moving window that follows the plates inside the point of view of 

the camera. During the candidate verification process, we use a small window (8 

pixels around the rectangle) that follows the candidate, because we want the 

verification process to be strict. Upon successful verification, we use a bigger 

window (18 pixels around the rectangle) because the plates have been verified. In 

addition, a bigger window can ensure the tracking of the plates even when the front 

vehicle manoeuvres. Note that the size of the window is directly connected to the 
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performance of the algorithm. For each frame, we find the window which is the place 

that we are going to look for the plates in the next frame. If it takes two seconds to 

process the frame then the front car might have moved away from the window 

(during processing of the frame). The faster the processing of each frame, the 

smaller the size of the window can be.  

This dynamic region of interest is the only part of the image that is being processed 

in each frame. Apart from eliminating the unwanted background it also allows to the 

whole algorithm to run significantly faster since instead of the whole image only a 

small part is processed. Figure 50 shows the dynamic region of interest during 

candidate detection, candidate verification and upon successful verification, 

respectively. 
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Figure 50: Dynamic region of interest for the three stages of the algorithm 
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The number of frames that is used for the verification process is discussed later on 

in section 3.3.2 “Verification of vehicle”. 

3.2.7 Distance Estimation 

To reach this stage it means that the plates of the leading vehicle have been 

successfully identified and their coordinates and dimensions are known. To estimate 

the distance, we rely on the fixed dimensions of the plates. Figure 51 shows a typical 

situation of a car preceding another car. 

 

Figure 51: Distances during driving conditions 

To estimate the requested distance BC we need to calculate some other lengths. At 

first, we find the length AB. This length is a straight line from the camera to the 

plates. To find this distance, we conduct an experiment. We create a replica of 

licence plates and we put it at known distances from the camera. Then, we measure 

the lengths in pixels at the pictures. Figure 52 shows the pictures taken from the 

camera along with their length in pixels. 
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Figure 52: Fixed size plates at known distances and their size in pixels 

This experiment proves that the distance of an object from the camera is inversely 

proportional to the number of pixels that correspond to the object width in the picture. 

For instance, as we can see in figure 52 when the meters double, the pixels are 

reduced by half. One meter distance corresponds to 336 pixels, two meters 

correspond to 168 pixels and 4 meters correspond to 84 pixels. This means that the 

function that translates distance to pixels is linear and thus, we can find the exact 

distance of an object by counting its pixels in the picture. For this example (figure 

52) dividing 336 (1 meter) by any number of pixels will result in its distance from the 

camera (in meters). The only information required for this method to work is a known 

distance along with its corresponding pixels of the object in the picture (e.g. 1 meter 

= 336 pixels). The length in pixels from the picture might have an error since the 

plates could be slightly rotated or bent. Error in estimating distance is discussed 

later on, in section 4. To conclude, since the plates’ dimensions are fixed, by 

counting the pixels in the image we can calculate the distance and thus, AB can be 

found. Next, we try to find DE. 

Length DE is not fixed for any vehicle. Actually, this length depends more on the 

front car than on the host car. DE is the vertical length from the plates to the ground. 
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Figure 53 shows this length and how it changes according to the location of the 

plates of the front car. 

 

Figure 53: Change in DE according to the leading vehicle 

This is not a fixed value since front vehicles can vary. However, we can estimate a 

range of its possible values. Its lowest value is acquired when a vehicle with low 

placed plates is followed and its highest value is acquired when a vehicle with high 

placed plates is followed. Figure 54 shows both these cases. According to this range 

we use a middle value for DE and later on, we calculate the limits of the error that 

might occur when DE is different. The error is discussed in section 4. 

 

Figure 54: Lowest and highest value of DE 

The values in figure 54 are actual measurements from real vehicles (an SUV is used 

for high placed plates and a low car is used for low placed plates). DE is then 

determined as 65 cm. 
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So far, we know the lengths AB and DE (figure 51). The length AE is the height of 

the camera from the ground and even if it varies for each vehicle, once the system 

has been installed, AE remains a constant. For this length, we can either use an 

average value (and estimate possible error when the actual value is different) or we 

can measure AE manually. This value would only be needed to be measured once, 

because it is not expected to change after installation. For this reason, we measure 

the length AE and we input it on the algorithm where it is stored and used ever after. 

This is part of the calibration process that only needs to be performed once so that 

the algorithm can adapt on the specific host vehicle and camera (explained in 

section “3.4 calibration process”).  

Since AE is now considered known, AD can be calculated by subtracting DE from 

AE. At this point, we already know AB and AD so we can use the Pythagorean 

Theorem to calculate BD. Next, we need to find the length CD. CD same as AE are 

properties of the host car. We can either measure CD manually one time during the 

calibration process, or we can use an average value and estimate the error that 

might occur when the actual value is different. The proposed method for every car 

is to complete the calibration process so that the algorithm can adapt on the specific 

host vehicle model and on the camera module. This way, the distance measurement 

will be much more accurate. Finally, CD is considered known from the calibration 

process (section 3.4) and thus, the requested length BC = BD – CD. 

3.3 The Three Stages of the Algorithm 

In this section, we explain how all the algorithm’s functions are used during 

execution time. The algorithm has three stages (figure 34): 

➢ Detection of candidate 

➢ Verification of vehicle 

➢ Tracking and estimating distance 

Each stage uses the functions in a slightly different manner in order to perform 

optimally. 

3.3.1 Detection of Candidate 

This is the initial and default stage of the algorithm. During this stage, there is a fixed 

region of interest. This area corresponds to the front of the car. It reduces 
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calculations by processing a smaller part of the image as well as eliminates 

automatically side objects. 

The size of the region is set to 250x250 which was found satisfactory after testing it 

with 640x480 images. Note that we intend to detect licence plates only, thus the 

whole car does not need to be present, only the plates. Figure 55 shows the static 

region of interest during the detection of candidate stage. 

 

Figure 55: Static region of interest for 640x480 image 

This region which is in grayscale after initial editing (explained in section 3.2.1) is 

passed to the corner detector. At this stage, the corner detector uses the value 30 

as threshold. This means that in order to detect a corner, its dark pixels and its light 

pixels must have a difference of 30, the least. The reason we use a high threshold 

for this stage is because at this point we look for solid corners. We don’t want the 

algorithm to be concerned with coincidental shapes or weak corners. Thus, the 

corner detector at this step produces just few well-shaped corners. These corners 

are then checked for rectangles and contours by the two detectors respectively.  
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This stage runs on default on consecutive frames until one frame provides a 

candidate. When this happens, the algorithm uses the coordinates of the candidate 

to define a new dynamic region of interest and moves to the verification stage. 

Figure 54 shows a possible candidate. Note how the region of interest changes on 

two consecutive frames upon detection of a candidate. 

 

Figure 56: Detection of candidate (a), verification of candidate (b) 

3.3.2 Verification of Vehicle 

At this stage, there is already an available candidate and the purpose now is to 

identify this candidate as plates or to confirm that it is not plates and go back to the 

previous stage in order to find another candidate. To do so, we take advantage of 

time and features from previous frames. The region of interest now is 8 pixels around 

the candidate (figure 56 b). 

The corner detector during this stage is a bit different. If the candidate that was found 

in the previous frame during the detection of candidate stage is indeed plates, then 

not only its corners will be inside the region of interest in the current frame but the 

corners in the current frame will have approximately the same colour as the corners 

in the previous frame. At this stage, the corner detector uses a colour threshold for 

the light part of the corners and thus, it only finds corners that resemble the corners 

from the detection of candidate stage. This step eliminates the possibility of 

changing candidates inside the region of interest during the verification process. 

Moreover, the corner detector at this stage has a significantly lower threshold of 

value 8 (previously 30 at the detection of candidate stage). The new lower threshold 
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guarantees that all corners will be found even the weak ones or the slightly distorted 

ones. So, the corner detector at this stage looks for corners that resemble in colour 

with the initial candidate even if they are weak. Figure 57 shows the difference of 

the corners found in the two stages. Note the difference in the amount of corners 

found by the detector due to lowering the threshold. 

 

Figure 57: Corners from detection of candidate (a), corners from verification of vehicle (b) 

The rectangle detector works the same way as in the previous stage but in this 

stage, it has one more added condition. Rectangles in this stage are not allowed to 

change size violently. Along two consecutive frames the size of the candidate is not 

allowed to change more than 3 pixels. This stage lasts less than a second 

(approximately 0.5 seconds discussed later on “5.1 Time efficiency”) and multiple 

frames are used. If the candidate is indeed a vehicle, during two consecutive frames 

it cannot move so much that the plates’ size will be altered considerably. 

The contour Detector works the same as before. Uses adaptive threshold for 

conversion to binary, checks for contours and colour resemblance of the four 

corners. 

The number of frames that is used for the verification process is directly connected 

to the reliability of the algorithm. The more consecutive frames are used for 

verification the more certain it is that a rectangle is actually plates. However, the 

rules during verification are stricter and more processing happens during verification 

than after it. This means that the verification process is time consuming so we don’t 

want to check too many frames. Generally, one second is enough time to verify a 
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vehicle. But if the algorithm is slow and can process for instance 3 frames per 

second then it might need more than a second. Results from our algorithm will be 

presented later on in section 5 but we used 10 consecutive frames for verification 

which actually takes a lot less than a second. 

3.3.3 Tracking and Estimating Distance 

This is the final stage of the algorithm. To be in this stage, it means that plates have 

been identified and confirmed through time. This stage aims in tracking the front 

vehicle and calculating its distance. If the tracking fails it means that the vehicle 

moved away and the first stage of this algorithm will be executed in order to find 

another candidate. If the tracking succeeds, then the distance will be calculated and 

a new region of interest will be acquired from the next frame. 

During this stage, the corner detector works the same as in the previous stage with 

a very low threshold so the front vehicle won’t be falsely missed. The rectangle 

detector works the same as before as well as, but now that the vehicle has been 

verified the size of the plates is allowed to change more during two consecutive 

frames (previously 3, now 6). This way the front vehicle is tracked even if it makes 

sudden moves like sudden stop or accelerate. The size of the region of interest is 

bigger now for the same reason (previously 8, now 18). 

The contour detector at this stage is a bit different. Its initial goal is to check the 

contour of the plates and to check the colour of the four corners. Now that the plates 

are identified we no longer need to check for the contour. We find the corners that 

form a rectangle at (approximately) the same size as before, at (approximately) the 

same place as before. The fact that the four corners are of the same colour is 

enough to ensure that it is the same rectangle thus, during tracking we only check 

rectangle, size, location and colour. This simplifies a lot the processing and the 

algorithm can run faster.  

3.4 Calibration Process 

This process in intended to run one time during the installation of the system on a 

vehicle and its purpose is for the algorithm to get familiar with the camera module 

that is used, the fixed dimensions of the licence plates and the host vehicle. During 

the implementation, we used the standardized European plates and a specific car 

model. However, there is no reason for the algorithm not to work for any fixed 
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dimensions plates or any vehicle model as long as the calibration process has been 

completed. 

During this process, we place the desired plates at a known distance from the 

camera and we let the algorithm count the width in pixels as shown in figure 58. 

 

Figure 58: Width of plates at exactly one meter 

The algorithm stores this value in a file and retrieves it every time the system is 

powered on. Then, to calculate the distance from the camera to the plates, it finds 

the number of pixels that correspond to the width of the plates at unknown distance 

and it divides the original value by the newly found value. The outcome is the 

distance in meters. For instance, if the plates are 336 pixels long at one meter, and 

the current size is 56 pixels it means that the distance is 336 / 56 = 6 meters long. 

This step does not require the system to be installed on a car. 

Other measurements that need to be obtained manually one time when installing 

the system on a car are:  

➢ The vertical distance from the camera to the ground (AE in figure 59). 

➢ The horizontal distance from the camera to the front part of the car (CD in 

figure 59). 

These values are inserted to the algorithm through a user interface with an intuitive 

menu. 
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Figure 59: Distances AE and CD (needed for calibration) 

3.5 General Observations 

This section presents some observations for the whole implementation of the 

algorithm. There are also comments and notes on the algorithm’s behaviour during 

various conditions. 

3.5.1 Illumination Conditions 

A successful algorithm for licence plate detection has to be able to identify plates 

under any illumination conditions that might occur while driving. Figure 60 shows 

successful detections under different illumination conditions. 
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Figure 60: Successful detections during various illumination conditions 

As long as there is a distinct difference between the black contour of the plates and 

the white colour inside, the algorithm will most likely find the plates. 

During night time however, the conditions are a bit different because of darkness 

and the lights of the road. Figure 61 shows successful detections during night time. 
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Figure 61: Successful detections during night time 

3.5.2 Colour Variation 

The colour of the vehicle should not affect the efficiency of the algorithm as long as 

the black contour of the plates is visible. However, the plates’ contour might vanish 

from the image if the distance is too long. Fortunately, in this case the colour of the 

vehicle will take its place as long as it is darker than the white part of the plates. If 

the vehicle is as white as the plates then it will be recognized only if the plates’ 

contour is visible. Figure 62 shows the detection of a white vehicle and how it fails 

when the distance becomes longer and the contour is no longer distinct enough. 
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Figure 62: Detection of a white car (left) and failure (right) 

Generally, the algorithm will fail if there is no contour. The distance that can cause 

this failure depends on the camera. If the camera can pick up the black contour, the 

algorithm will not fail. Using a low cost 640x480 webcam the detection of a white car 

failed after 5 – 6 meters from the camera. 

3.5.3 Different kinds of Plates 

Other than the traditional licence plates, there are plates with different colour that 

indicate a property of the vehicle (e.g. taxis or government vehicles). These plates 

are usually yellow with black letters or white with red letters etc. There is no reason 

for the algorithm to be confused by this matter. As long as there is a distinct contour 

of darker colour than the interior of the plates, the algorithm will not fail. Figure 63 

shows an example of the detection of yellow plates. 
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Figure 63: Detection of yellow plates 

3.5.4 Absence of Edge detection 

Edge detection is widely used for licence plate detection since the plates have many 

edges because of the black characters on white background. In our implementation, 

we completely ignore features from the characters. We do that for two reasons: 

➢ The reflective material that is used on the plates can sometimes shine so 

much, especially due to night lights, that the characters become invisible. 

➢ Long distances can cause the characters to almost vanish and become one 

with the background. 

Even if the characters might become unnoticeable, the plates’ contour is still very 

distinct. For this reason, we decide to rely on the plates’ contour and shape and not 

on the characters. Figure 64 shows an example for each case (distance and 

shinning) where the detection is successful, even without visible characters. 
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Figure 64: Plates detection without distinct characters 

3.5.5 Weaknesses 

We have identified two weaknesses in the implementation of this algorithm. The first 

is the white colour of the front car which was explained in detail in section 3.5.2. The 

second is a feature that we use for tracking. 

As mentioned before (section 3.3.3) when tracking a vehicle, we use the colour of 

the corners from the detection of candidate stage as a threshold and we proceed 

with finding corners in the following frames with approximately the same colour. This 

might create an error when the illumination conditions change instantly. For 

example, if a car that is being tracked drives through a tunnel during daytime, the 

colour of the corners inside the tunnel will not resemble the initial corners. In this 

case the tracking fails, the algorithm looks for a new candidate with the new 

illumination conditions and the new candidate is verified and being tracked. 

The algorithm is not flexible enough to keep the tracking going during such sudden 

changes, but it is very adaptable and it picks up on the new conditions almost 

instantly. The whole process of losing the front car and finding it again with the new 

illumination takes as much time as it takes to verify a new candidate which is 

approximately 0.5 seconds (time efficiency is discussed later on in section 5.1). 
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Chapter 4 

Error Analysis and Applicable Distance 

This chapter presents an analysis of the possible error that might occur in the 

measurement of the distance. At first, we mention all the reasons that the distance 

measurement may be skewed, then we estimate the possible error for each 

occasion and finally, we calculate the overall range of the error. After that, we 

discuss the applicable distance of the algorithm which is the maximum distance for 

which the algorithm is able to track the leading vehicle. 

4.1 Error Analysis 

There are four factors that might affect the distance measurements of the front 

vehicle: 

➢ The height of the plates from the ground. 

➢ The gradient of the road. 

➢ Slightly rotated or bent plates 

➢ Error from not completing the calibration process 

4.1.1 The Height of the Plates from the Ground 

The height of the plates from the ground is a distance that depends completely on 

the front vehicle and it cannot be measured because it is different for each vehicle 

model. For this distance, we have no other choice but to use an average value and 

calculate the range of possible error when the value is different. As shown in figure 

65, we measure a vehicle with very high placed plates (SUV) and a vehicle with very 

low placed plates (low car) and we determine an average value of 65 cm. 
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Figure 65: High placed plates (left), low placed plates (right) 

To calculate the error of using an average value, we place two vehicles at known 

locations and we measure all distances manually. Then, instead of using the actual 

(plates – ground) distance, we use the average (65cm) and we calculate the error. 

The experiment is performed at two meters for high placed (90cm) and low placed 

(40cm) plates. As it can be seen in figure 66, when the average DE is used at 2 

meters distance, it creates an error of 6 cm for low placed plates and 4cm for high 

placed plates. We have determined that plates can be placed at 40 – 90 cm from 

the ground which means that all other possible values are actually closer to the 

average and thus, their error is lower. This means that the values 40 and 90 create 

the maximum error. 

 

Figure 66: Error measurement at two meters due to average DE 
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After that, we recreate the experiment but for distances of one to eight meters. The 

maximum error for each distance is shown in figure 67. 

 

Figure 67: Max error in different distances due to average height 

4.1.2 Roads with gradient 

Our approach to the distance estimation problem is based on the Pythagorean 

Theorem. This means that the two vehicles are considered to be on the same level. 

If the road has a gradient (uphill or downhill) the Pythagorean Theorem still applies 

as shown in figure 68. 

 

Figure 68: Pythagorean on roads with gradient 
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The only case that the Pythagorean Theorem does not apply is if the two vehicles 

are on different gradient. That could happen only in the beginning or the end of a 

change in gradient of the road as shown in figure 69. 

 

Figure 69: Vehicles on a road with different gradient 

However, during driving conditions, this situation rarely happens and when it does, 

it lasts only for a split of a second. Thus, the difference it makes on the distance 

estimation is considered trivial. 

4.1.3 Slightly Rotated or Bent Plates 

It is highly likely that the plates of the front vehicle are not in perfect condition and 

shape. In each frame, the conditions of the plates can be different. For instance, 

during a turn the plates are slightly rotated. The length of the plates in pixels when 

they are slightly rotated or bent could be ± 1 pixel different than if it was level. In this 

section, we calculate possible error that might occur when, for any reason, the 

detection of the plates misses a few pixels. Figure 70 shows an example.  

 

Figure 70: Example of extra pixels in detection 
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To calculate this error, we assume a known distance paired with the respective 

length in pixels and then we calculate the distance that would have resulted if the 

length had been one or two pixels longer or shorter. Figure 71 shows the results.  

 

Figure 71: Max error from missed pixels in different distances from camera 

Note that the above values represent the error of the distance from the plates to the 

camera. However, we are interested in the error of the distance between the two 

vehicles. In other words, figure 71 shows the error in the hypotenuse but we are 

interested in the error of the requested distance BC (figure 72). Based on the error 

of the hypotenuse, we can calculate the error in BC which corresponds to the error 

of the distance between the two vehicles. 

To do that we assume all values known as shown in figure 72 and then we replace 

the hypotenuse with the faulty value in order to check the error in BC. 

 

Figure 72: Error from missed pixels in BC 
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Continuously, we repeat the experiment to determine the maximum error for one 

and two-pixel deviation in the distance between the two vehicles. 

 

Figure 73: Max error from missed pixels in the distance between the two vehicles 

4.1.4 Uncompleted Calibration Process 

Assuming that for any reason the calibration process has not been completed and 

the distances CD and AE (figure 74) are not known. In this case, we have to use 

average values that will result in error when the actual values decline from average.  

 

Figure 74: Distances during driving conditions 

To find the requested distance BC we subtract CD from BD. We can use the average 

value of 1.5 meters as a fixed value but that would mean that if for instance, CD is 

1 meter long, then the error would be 0.5 meters. Any error in CD will result in the 

same error in BC. The length AE is the distance from the camera to the ground. This 
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distance can vary depending on the type of the vehicle and the position of the 

camera. During implementation, we placed the camera on the rear-view mirror as 

shown in figure 74. However, there are more suitable cameras that can be attached 

on the windscreen. The algorithm does not require a specific place for the camera 

as long as the calibration process has been completed and the height of the camera 

from the ground has been given as input during installation. 

These values are critical to the algorithm. Our approach to finding distance is based 

on the Pythagorean Theorem. If all required values are given as input, there is no 

reason for the algorithm to produce additional error. For this reason, it is highly 

recommended that the calibration process is completed during installation. Manual 

measurements might be slightly skewed but that creates trivial error. 

4.1.5 Overall Error 

So far, we have estimated the maximum error from: 

➢ Missed pixels during licence plate detection. 

➢ Using average height between the licence plates and the ground. 

We can now sum the error based on the distance in order to acquire the maximum 

overall error. We use the maximum error from detecting the plates with 2 missed 

pixels (figure 73) and the maximum error from using the average plates’ height 

(figure 67). Figure 75 shows the maximum error based on the distance between the 

two vehicles. 
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Figure 75: Max error based on distance 

Note that to form the overall error we used the values from figure 67 which actually 

correspond to slightly longer distances than the ones used in figure 75. This means 

that the actual maximum error is slightly smaller. We do that to compensate for 

possible error that might have been caused due to measuring distances manually 

during the calibration process.  

4.2 Applicable Distance 

As applicable distance, we define the maximum distance for which the algorithm is 

able to track the front vehicle. For longer distances, the features of the plates are no 

longer distinct and thus, the tracking fails. After experimenting with various videos 

from driving conditions, we concluded that when the length of the plates is shorter 

than 30 – 35 pixels, the plates are no longer recognizable from the algorithm. 

During the implementation of the algorithm, we define a threshold for the shortest 

identifiable rectangle width as 35 pixels, which means that any plates of length 

shorter than the threshold are rejected. Now, the applicable distance of the algorithm 

depends on the camera resolution. For the resolution of 640x480 pixels, the 

maximum applicable distance from the camera to the front car is the length of the 

plates in pixels at one meter (336 pixels) divided by 35 which is the lowest possible 
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value. This means 336 / 35 = 9.6 meters (distance estimation is explained in 3.2.7). 

For greater image resolutions, the applicable distance grows too. 

It has to be noted that the maximum applicable distance applies to tracking. 

Remember that during the detection of candidate stage, the rules for finding plates 

are stricter in order to increase reliability. This means that the front vehicle will be 

tracked for up to 9.6 meters if it has been previously detected. For the detection to 

take place the vehicle has to be closer. After experimenting with videos from driving 

conditions we concluded that for the 640x480 resolution, the front vehicle is detected 

for distances of up to 6 – 7 meters from the camera (hypotenuse), and tracked up 

to 8 – 9.5 meters from the camera (hypotenuse).  
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Chapter 5 

Experimental Results 

To measure the efficiency of the algorithm we set up an experimentation 

environment. We use the Zedboard platform [10] which integrates an ARM Cortex 

A9 processor (up to 667 MHz) which is selected due to the long-established use of 

ARM processors in embedded systems. On the Zedboard we set up Linaro [11], 

which is a Linux based operating system for ARM processors. The C++ 

programming language is used for implementing the proposed algorithm and the 

GCC compiler [12] is used for compiling the source code and creating executable 

files. Additionally, the OpenCV [13] library is utilized in order to acquire the frames 

from the camera as well as for manipulating images. Finally, attached to the 

Zedboard there is a Logitech C170 640x480 webcam [14] which is used for receiving 

video from the front part of the host vehicle. 

In order to test the algorithm, we record video (with the 640x480 Logitech camera) 

of real driving conditions under various illuminations and during driving in various 

locations with different degree of surrounding traffic. Then, we run the recorded 

video through the implemented algorithm and we evaluate its performance based 

on three aspects: 

➢ Time efficiency 

➢ Reliability 

➢ Accuracy 

5.1 Time efficiency 

Time efficiency is considered very important since distance estimation can 

potentially prevent road accidents. Driving assistance systems are supposed to be 

able to provide feedback according to the driving conditions in real time. A system 

might be very reliable and accurate but if it cannot keep up with time it is unhelpful. 

During driving, the conditions of the road and traffic change continuously. The output 

represents the current state of the road based on the frame from the camera. If 

processing one frame takes two seconds, then each output corresponds to the state 

of the road two seconds ago. To be able to prevent accidents, driving assistance 
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systems have to be able to process multiple frames per second and identify potential 

dangers as soon as possible. 

To evaluate the time efficiency of the algorithm developed within the context of this 

thesis, we record video from real driving conditions and we perform the processing 

of the video on the experimentation platform that we have set up (ARM A9 

processor). The algorithm is implemented using the C++ programming language. In 

order to count the amount of frames that are processed each second we use the 

<ctime> library [15] and more specifically the function clock() and the macro 

CLOCKS_PER_SEC. 

The function clock() returns the amount of clock ticks elapsed since a specific 

moment and the CLOCKS_PER_SEC is the amount of clock ticks that correspond 

to one second. By combining these two, we can use clock() as a timer and when 

clock() == CLOCKS_PER_SEC it means that one second has passed. This way we 

can use a counter to find out how many outputs have been produced during that 

time. 

Using the <ctime> library we measure the time efficiency of the algorithm. Figure 76 

shows the results of performing the processing of videos from real driving conditions 

on the ARM processor. 

 

Figure 76: Results of the algorithm regarding time efficiency 

As it can be seen from the results (figure 76) the algorithm can process at least 19 

frames per second during the detection of candidate stage and 20 frames per 

second during the tracking and distance estimation stage. The verification of 
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candidate stage which only needs 10 frames is performed in approximately 0.5 

seconds.  

Based on the implementation, it is during the tracking stage that the algorithm 

calculates the distance and can potentially alert the driver when the front vehicle is 

dangerously close. For this reason, the time efficiency of the algorithm depends on 

the tracking stage. During the tracking and distance estimation stage the processing 

rate is between 20 – 24 frames per second which means that the algorithm can 

indeed perform in real time.  

5.2 Reliability 

To measure reliability, we test the algorithm using videos from real driving conditions 

and we check how often the algorithm fails. There are two scenarios that we 

consider failure: 

➢ There is a vehicle in front of the host car that is not being detected. 

➢ There is no front vehicle, but one is being detected (faulty detection). 

Based on the implementation of the algorithm, there is a trade-off between the two 

scenarios of failure. We can use very strict rules for the verification of candidate 

stage so that the possibility of producing faulty detections would be minimum. That 

however, would cause the algorithm to take longer time to detect a vehicle and it 

would raise the possibility to not detect a front vehicle. On the other hand, if the rules 

for verification are very loose, the front vehicles will be detected and verified faster 

but that would increase the possibility of producing faulty detections. 

The main variables that determine this trade-off are: 

➢ Consecutive frames. The number of consecutive frames of detecting the 

same vehicle before verifying its existence. 

➢ Threshold_line. The difference that is needed between dark and light pixels 

when identifying a corner (explained in section 3.2.2). 

For instance, if we use three consecutive frames for verification, the process of 

verifying a candidate will be almost instant, but the outcome will not be as reliable 

as by using 20 consecutive frames. The latter case would require more time though. 
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Based on experimentation with multiple values and videos we ended up using 10 

consecutive frames for verification. Since the average processing rate is 20 frames 

per second, it means that the whole verification stage requires less than a second 

to either verify a front vehicle or reject it and look for another candidate. For the 

corner threshold, we use the value 30 for initial detection which is a relatively strict 

threshold that eliminates weak candidates. After the initial detection, since a robust 

shape has been detected we use the value 8 for threshold which is a very loose 

threshold and guarantees that the initial shape will be followed over time even if it 

gets unclear. 

Figure 77 shows the results of processing videos from real driving conditions on the 

ARM processor regarding reliability.  

 

Figure 77: Results of the algorithm regarding reliability 

To calculate the error rate, we divide the number of seconds of the video by the sum 

of seconds of plates missed plus seconds of faulty detections. For instance, for 

VIDEO1 (3 + 0) / 77 = 0.03. 

5.3 Accuracy  

Accuracy refers purely to the distance estimation. A robust way to measure 

accuracy would be to install the system on a car and at the same time use a different 

proven accurate tool to measure the distance. That was not an option during 

implementation so Instead, we utilized video recording of real cars. We completed 

the calibration process for the test host vehicle and made it move back and forth at 

known distances from a stationary front vehicle. We used marked locations for fixed 

distances and we compared the output of the algorithm to the manually measured 
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distances. The comparison is performed for distances between the two vehicles as 

shown in figure 78. 

 

Figure 78: Results of the algorithm regarding accuracy 

As it can be seen from figure 78 the error from the measurements is within range 

according to the overall error of the algorithm shown in figure 75. 
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Chapter 6 

Conclusion – Future Work 

Driving assistance systems can possibly aid in preventing accidents and potentially 

save human lives. For this reason, they are widely developed and implemented, and 

are considered an essential part of modern vehicles. In this thesis, we focus on the 

problem of detecting front vehicles and estimating their distance from the host car. 

With knowledge of this distance an electronic system can potentially alert the driver 

using sound signals when a front vehicle is dangerously close. After providing a 

literature review of relevant studies and systems that have already been 

implemented, we proceed with developing our own algorithm for vehicle tracking 

and distance estimation. 

Compared to other implementations, our algorithm takes advantage of time. We 

make use of multiple consecutive frames to confirm a front vehicle in order to 

increase reliability. Additionally, to estimate the distance between the two vehicles 

we use a standardized feature which is the same for all vehicles, that being the 

licence plates. Moreover, we include a calibration process so that the algorithm can 

be adapted to different vehicle models and camera modules. This way, the results 

apply to all vehicles and the implementation does not depend on a specific camera 

module. In fact, higher resolution cameras can be used for tracking in longer 

distances. Along with the algorithm, a full error analysis and a performance analysis 

is included. The algorithm is evaluated based on time efficiency, reliability and 

accuracy. Special emphasis is given to time efficiency since the implementation is 

intended to run in real time, for which the minimum processing rate is 20 frames per 

second. This was achieved by using a dynamic region of interest which allows us to 

process only a small part of the initial frame during the tracking and distance 

estimation stage. The algorithm’s performance was satisfactory based on all three 

aspects (time efficiency, reliability and accuracy). 

The high processing rate of the algorithm regarding time efficiency creates 

additional opportunities for further research. The algorithm was tested using a 

640x480 camera resolution for which it achieved a maximum applicable distance of 
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9.6 meters from the camera. The fact that it can perform so well for this resolution 

means that we can use greater camera resolutions in order to increase the 

applicable distance. A higher frame resolution would decrease the processing frame 

rate. However, the algorithm can perform so fast that it can afford to lower its 

processing rate in exchange for a longer applicable distance. 

Additional research on the topic includes the integration of vehicles on the Internet 

of Things [8], [16]. Distance values and speed values can be encapsulated within 

UDP or TCP messages (UDP being more suitable for real time applications [9]) and 

sent and stored to an online internet cloud for further processing. Results from 

additional processing on the cloud can be an analysis of the driver’s habits regarding 

average distance from front vehicles or even helpful insight for investigating traffic 

accidents. 
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