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Abstract—In recent years, the Internet of Things (IoT) has
gained a lot of attention due to connecting various sensor devices
with the cloud, in order to enable smart applications such
as: smart traffic management, smart houses, and smart grids,
among others. Due to the growing popularity of the IoT, the
number of Internet-connected devices has increased significantly.
As a result, these devices generate a huge amount of network
traffic which may lead to bottlenecks, and eventually increase the
communication latency with the cloud. To cope with such issues,
a new computing paradigm has emerged, namely: fog computing.
Fog computing enables computing that spans from the cloud to
the edge of the network in order to distribute the computations of
the IoT data, and to reduce the communication latency. However,
fog computing is still in its infancy, and there are still related
open problems. In this paper, we focus on the node discovery
problem, i.e., how to add new compute nodes to a fog computing
system. Moreover, we discuss how addressing this problem can
have a positive impact on various aspects of fog computing, such
as fault tolerance, resource heterogeneity, proximity awareness,
and scalability. Finally, based on the experimental results that
we produce by simulating various distributed compute nodes, we
show how addressing the node discovery problem can improve
the fault tolerance of a fog computing system.

I. INTRODUCTION

The IoT paradigm envisions a world in which everyday
objects (i.e., wearables, dumpsters, phones, etc.) connect to
the Internet [1]. Such objects may use this connectivity to
exchange, store, and process data in order to sense and to affect
the surrounding environment [2]. Since the computational
resources of the everyday objects alone may not be sufficient
for handling the required computational efforts to achieve
this, the IoT devices commonly make use of cloud-based
computational resources [3].

However, despite the aid of the cloud, the traffic from a
large number of Internet-connected devices can still lead to
bottlenecks which increase the communication latency, and
may even limit the expansion of the IoT [4]. Moreover, there
are concerns related to preserving the privacy of the aggregated
IoT data, and reducing the communication cost [5]. To cope
with such issues, novel computing paradigms have emerged,
two of the most popular being fog computing, and edge
computing.
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Fig. 1: A fog computing system consisting of various compute
nodes that span from the cloud to the edge of the network.

One distinguishing characteristic to separate fog computing
from edge computing, is that the fog envisions a hierarchy
of computational resources which span from the cloud to the
edge of the network [6]. For example, Fig. 1 shows a fog
computing system that includes various interconnected cloud
and fog compute nodes which spread to the network edge
where the IoT devices reside. Edge computing on the other
hand, aims at pushing the computations towards the edge of the
network wherever there are available computational resources
(e.g., cloudlets or fog nodes) without explicitly including
interactions with the cloud [7].

The research efforts applied in the context of these two
paradigms have resulted in architectures, models, and frame-
works for performing computations in the proximity of the
IoT devices. Due to such efforts, fog compupting and edge
computing systems have been observed to provide significant
benefits for use cases like data stream processing [8], preserv-
ing privacy in the IoT [5], performing analytics of IoT data [9],
online storage [10], and others [11].

To implement such architectures, compute nodes are provi-
sioned at strategic positions throughout the network in order
to distribute the computations, avoid bottlenecks, and reduce
the communication latency [12]. A lot of research has been
conducted in this context, resulting in multiple computing sys-



tems which aim at leveraging the edge of the network in order
to satisfy the application requirements (e.g., regarding latency
and bandwidth) and to improve the user experience [13].

Despite the popularity of fog computing and edge comput-
ing in the distributed systems research community, computing
at the edge of the network is still a relatively recent research
topic. For this reason, there are still various important open
research problems and challenges, which require further inves-
tigation [14]. In this paper, we focus on the node discovery
problem [15], [16].

Typically, fog computing and edge computing research
assumes that compute nodes are already discovered and in-
tegrated in the system [17]. However, this can be a com-
plicated task because the current node discovery approaches
usually used in cloud-based systems, are not applicable to fog
computing since the problem is very different when dealing
with compute nodes at the edge of the network [18]. For
instance, fog computing systems are expected to leverage on
the proximity of the compute nodes while also considering
compute nodes with very diverse resource capacities. Such
aspects which have not been considered in the context of cloud
computing, make novel node discovery techniques–tailored to
fog computing–necessary. For this reason, in this paper we
analyze the node discovery problem in fog computing, and
we discuss the various related aspects that need to be taken
into account. Furthermore, we identify the related research
questions which need to be addressed, in order to tackle this
problem efficiently.

The rest of this paper is organized as follows: Section II
discusses related work from the literature. Afterwards, in
Section III, we analyze the node discovery problem in fog
computing, and we identify related research questions. Subse-
quently in Section IV, we present the preliminary evaluation
results that we produce based on simulations which show some
of the benefits of addressing the proposed problem (regarding
fault tolerance). Finally, Section V concludes this work, and
describes our plans for further research on this topic.

II. RELATED WORK

The majority of related work, assumes that the various
compute nodes of a fog computing system are already dis-
covered and integrated in the system [17]. Typically, these
systems follow a hierarchical architecture whereby the nodes
are organized in layers [19]. For instance, Bellavista et al. [20]
discuss the execution of services on compute nodes at the
edge of the network using a three-layer architecture, and Deng
et al. [21] discuss the provisioning of services in distributed
edge nodes. However, none of these approaches discuss how
the compute nodes are discovered and placed in appropriate
positions in the hierarchy.

Kolcun et al. [22] present a distributed platform that allows
IoT devices from wireless sensor networks, to send data to
cloud and local compute nodes. By shifting the computations
from the cloud to the local nodes, this approach reduces
the network traffic. Furthermore, the authors propose a node

discovery algorithm which aids in finding an appropriate
compute node for each IoT device.

Similarly, Tomar and Matam [23] present a framework that
allows the data from the IoT devices to be processed in local
compute nodes thereby lowering the dependency on the cloud.
This framework also includes a node discovery algorithm for
finding appropriate compute nodes for the IoT devices.

Finally, Venanzi et al. [24] address the same problem
of node discovery for IoT devices although, the focus of
this approach is to prolong the lifespan of these devices by
considering energy efficiency aspects.

Notably, these approaches focus on the problem of select-
ing appropriate compute nodes for processing the IoT data.
In contrast, the work at hand focuses on the problem of
discovering new compute nodes that join a fog computing
system. Even though these problems seem similar, they require
different solutions. The former problem relies on the wire-
less communication of the IoT devices to discover potential
compute nodes (i.e. the compute nodes that reside within
wireless range). In the latter problem, which is the problem
we address in our work, the compute nodes that span from the
cloud to the edge of the network may not integrate wireless
communication. Therefore, the aforementioned solutions that
address the node discovery problem in the IoT, do not apply
to the node discovery problem in fog computing.

Further related work can be found in approaches that aim
at creating fog computing systems for handling applications
related to safety. For instance, Dobrin et al. [25] discuss safety-
critical applications while focusing on the problem of having
unexpected failures, and Desai et al. [26] discuss various safety
aspects (with a focus on safety-critical applications) that need
to be considered in fog computing systems.

In our work, we also address fault tolerance. However, these
works consider fault tolerance as an independent problem
which makes it hard to cope with. In our work, we consider
fault tolerance at a very early stage, i.e., during the node
discovery phase, which increases our options regarding finding
appropriate solutions, and based on this, we present promising
results.

Therefore, the papers discussed so far either briefly mention
the node discovery problem in fog computing, or assume that
the compute nodes are already discovered and integrated in the
system. Thus, they do not provide an analysis of the problem,
or any concrete ways to solve it. On the contrary, in our
work we analyze different aspects of this problem, we propose
related research questions, and we also present promising
results towards addressing the node discovery problem in fog
computing efficiently.

III. THE NODE DISCOVERY PROBLEM

The node discovery problem refers to the way that new
compute nodes are detected by the system, as well as the
process of integrating these nodes (this is also referred to
as the discovery phase). For instance, in Fig. 1 we show a
fog computing system consisting of one cloud compute node,
and eight fog compute nodes (e.g., cloudlets, base stations,



routers, etc.), which are organized in three layers. If a new
compute node becomes available, how is this node detected
by the system, and with which nodes should the new node
communicate? In other words, where should the new node be
placed in the hierarchy. There are several options because a
new node can be placed in each one of the three layers, and
connect to different nodes from the adjacent layers. However,
every option has a different impact on the performance of the
system. Since fog computing systems are expected to scale
massively [27], new compute nodes are likely to join the
system frequently. Thus, node discovery is an essential part
of fog computing systems.

To address this problem, we analyze the different aspects
of a fog computing system that are affected by the manner
whereby nodes are discovered and integrated in the system.
To this end, the following sections discuss the reason that
the node discovery problem affects different aspects of fog
computing, and why these aspects are important. Specifically,
Section III-A discusses fault tolerance, Section III-B addresses
the potential resource heterogeneity of the nodes, Section III-C
discusses the importance of proximity awareness, and Sec-
tion III-D addresses scalability. Finally, Section III-E presents
the research questions that need to be answered in order to
address the node discovery problem efficiently.

A. Fault Tolerance

In fog computing, some of the participating compute nodes
may be unreliable, and might fail unexpectedly at any mo-
ment, which can divide a fog computing system into disjoint
parts [28], and affect the system’s reliability [29]. For this rea-
son, mechanisms for handling node failure become essential.
However, this can be especially challenging in fog computing
because when a node fails, moving the computations to neigh-
bor nodes or to the cloud, may affect the performance of the
system (e.g., might increase the communication latency) [30].

Nevertheless, it is possible to cope with this problem by
integrating efficient mechanisms for handling potential future
node failures, at the discovery phase, i.e., when a new node
joins the system. This can be achieved by having each new
node store additional nodes which may not reside in proximity,
and are not necessarily used for processing the IoT data, but
can be used for maintaining connectivity in case the neighbors
fail (cf. Section IV).

B. Resource Heterogeneity

Fog computing systems consist of various resource-
heterogeneous compute nodes [31]. This means that the par-
ticipating compute nodes may have very different resource
capacities, e.g., regarding CPU and memory, but they may
also have different capabilities, e.g., regarding hosted services
and applications. This diversity should be taken into account
during the discovery phase, because different nodes need to
be treated differently. For example, upon discovery, a cloud
compute node which is able to provide a huge amount of
computational resources should go to the top of the hierarchy.
This way, the nodes of lower layers will be able to send the

IoT data to that node (for processing) by forwarding the data
upwards the hierarchy (cf. Fig 1). On the contrary, a compute
node at the edge of the network should be placed close to
the IoT devices (cf. Fig 1) in order to leverage on the low
communication latency. Therefore, the resource heterogeneity
of the compute nodes needs to be considered during the
discovery phase in order to ensure the efficient operation of a
fog computing system.

C. Proximity Awareness

Since processing data in nearby compute nodes improves
the communication efficiency [27], fog computing systems
leverage on the proximity among the various compute nodes,
and the IoT devices, in order to process the IoT data with
low communication latency. Most approaches assume that
the participating compute node are already discovered and
integrated in the system based on proximity (as discussed
in Section I). However, in order to take into account the
proximity among the nodes, new nodes need to take proximity
measurements (e.g., using round-trip time or hop count), and
then connect to the neighbors of the closest proximity.

Taking into account the proximity among the nodes during
the discovery phase is a challenging task in fog computing,
because proximity measurements may have conflicts with
other aspects, e.g., with the resource heterogeneity aspect (cf.
Section III-B). This can happen for instance, upon discovery
of a new compute node which integrates a big amount of
computational resources, and should be placed in a high layer
so that many nodes of lower layers can use these resources.
At the same time, this new node may be in the proximity of
nodes in lower layers. This means that according to proximity,
the new node should be placed in a low layer. Thus, during the
discovery phase, there may be conflicts based on the different
goals of the discovery problem.

D. Scalability

As discussed in Section I, fog computing systems can
include compute nodes that span from the cloud to the edge
of the network and thus, they may need to scale to a large
degree [27]. This means that during the discovery phase, there
can be a huge number of possible positions for a new node.
Examining all the possible options means taking proximity
measurements for a very large number of potential neighbors.
However, this may not be possible since this process gener-
ates a considerable amount of network traffic which is part
of the overhead of the discovery phase. Furthermore, more
messages need to be exchanged in order to discover and store
additional nodes for fault tolerance, and in order to examine
the resource heterogeneity of the other nodes, as discussed in
Sections III-A and III-B. Since generating a significant amount
of overhead can compromise the scalability of the system,
the overhead of the discovery phase needs to be considered,
especially because in fog computing new compute nodes may
be discovered at any time [28].



E. Research Questions

There are many aspects of fog computing that can be
improved by considering the node discovery problem (cf.
Sections III-A - III-D). For this reason, and in order to be
able to solve this problem efficiently, we identify the following
research questions (RQ):

RQ1 To what degree can fog computing systems be
fault-tolerant by storing additional nodes during the
discovery phase, which are used in case of node
failures?

RQ2 How should the proximity and the resource hetero-
geneity of the compute nodes, affect the position of
a new node that joins a fog computing system?

RQ3 How to make sure that the overhead from new
compute nodes joining, does not compromise the
scalability of a fog computing system?

When we are able to answer these research questions,
then we will be in the position to design efficient discovery
mechanisms that aid in improving various aspects of fog
computing.

IV. EVALUATION

In this section, we report the preliminary results of our
efforts to tackle the node discovery problem in fog computing.
The setup we use in order to produce these results is described
in Section IV-A. Afterwards in Section IV-B, we perform
various experiments which focus on the fault tolerance aspect
of the node discovery problem, and we present our results.

A. Evaluation Setup

In order to perform experiments, and examine the fault
tolerance of a fog computing system, we have built a simulator
using Java. The reason we do not use a simulator devel-
oped in the scope of related work from the literature (e.g.,
iFogSim [32]), is that alternative simulators lack the necessary
functionality to address the proposed problem (e.g., compute
nodes that fail or become unavailable temporarily).

By using our simulator, we are able to simulate hierarchical
fog computing systems consisting of compute nodes that span
from the cloud to the edge of the network. The number of the
participating compute nodes in these systems is configurable,
but the layout is always hierarchical. In the hierarchy, every
parent node selects as neighbors up to three children nodes,
as shown in Fig. 1. For this evaluation, we perform 50
experiments with 100 nodes. The reason we have selected
these specific numbers, is that after experimenting extensively
with this simulator, we found these numbers to produce results
which can be considered representative of the general case.

In each one of the 50 experiments, we select various
percentages of the participating compute nodes to become
unresponsive, and then we examine the percentage of the
responsive nodes that remain connected. Since node failure can
divide a fog computing system into disjoint parts (as discussed
in Section III-A), with this experiment we aim at measuring
the fault tolerance of the system. The specific nodes that fail

(a) When each one of the
compute nodes, stores only the
nearby nodes (i.e., the neigh-
bors).

(b) When each compute node
stores neighbors and additional
nodes to be used in case of fail-
ures.

Fig. 2: Fault tolerance of a fog computing system.

are chosen randomly using the uniform distribution. Using this
evaluation setup, we examine two node discovery mechanisms.

In the first mechanism, each new node requests to join from
a preexisting node of the system (i.e., a contact node), and
stores only nearby neighbors which are found through the
contact node. In the second, the new node requests to join
through the contact node again, but apart from storing the
nearby neighbors, it also stores the neighbors of the contact
node. The neighbors of the contact node may not reside nearby
so they might not be suitable for processing data with low
communication latency. However, these nodes are used in case
the other neighbors fail.

B. Evaluation Results

In Fig. 2, we show the results of our experiments. For
Fig. 2a, the nodes store only neighbors, i.e., using the first node
discovery mechanism (cf. Section IV-A). In this experiment,
we induce node failure of 10%, 12%, 14%, 16%, 18%,
and 20% of the nodes, and we measure the corresponding
percentages of the responsive nodes that remain connected.
Each box plot includes 50 values from the 50 experiments we
have conducted. Notably, the average percentage of responsive
compute nodes that remain connected is approximately 53%
with 10% node failure, and the fault tolerance of the system
decreases, while the percentage of node failures increases.

For Fig. 2b, we repeat the same experiment, but we change
the node discovery mechanism. Instead of storing only neigh-
bors (as done for Fig. 2a), in this experiment every node
stores additional nodes to be used in case of failures, i.e.,
the second node discovery mechanism (cf. Section IV-A).
Thus, when a responsive node detects (e.g., using heartbeat
messages) that the neighbors have failed, this node tries to



connect to the system using the additional nodes. Notably, the
average percentage of responsive compute nodes that remain
connected in this experiment, is approximately 99% with
10% of node failure. Again, the fault tolerance of the system
decreases, while the node failures increase although, until the
node failures reach 20%, the average fault tolerance remains
always above 90%.

Based on Fig. 2a, we note that creating a fog computing
system whereby each node stores only its neighbors, is not
an efficient approach with regard to fault tolerance. This is
claimed because, when various nodes fail, the percentage of
remaining responsive nodes which remain connected decreases
radically.

However, according to Fig. 2b, we note that the fault
tolerance of a fog computing system can be increased signifi-
cantly, by storing additional nodes during the node discovery
phase. Similarly, we believe that addressing the node discovery
problem can aid in improving various aspects of fog computing
systems, as discussed in Section III.

V. CONCLUSION

In this paper, we present the node discovery problem in fog
computing systems. To this end, we analyze various aspects of
fog computing that can be affected from the way new nodes
are discovered and integrated in the system, such as: fault
tolerance, resource heterogeneity, proximity awareness, and
scalability. Furthermore, we identify related research questions
which need to be addressed in order to tackle the proposed
problem efficiently. Finally, we simulate fog computing sys-
tems, and we perform experiments with various compute nodes
which integrate a node discovery mechanism that focuses on
improving the fault tolerance of the system. By analyzing the
results, we show that when each new node that joins, stores
additional nodes during the discovery phase, the fault tolerance
of a fog computing system improves significantly.

Due to the promising results, in the future we plan to focus
on node discovery mechanisms that improve fog computing
systems. Specifically, we plan to design node discovery mech-
anisms tailored to fog computing systems by considering not
only the fault tolerance of the system, but also aspects related
to proximity awareness, resource heterogeneity, scalability, and
others.
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