
Accepted at: 4th IEEE International Conference on Edge Computing (EDGE 2020), pp. 1–9

Towards Extensibility-Aware Scheduling of
Industrial Applications on Fog Nodes

Mohammadreza Barzegaran∗, Vasileios Karagiannis†, Cosmin Avasalcai†

Paul Pop∗, Stefan Schulte† and Schahram Dustdar†

∗DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{mohba, paupo}@dtu.dk

†Distributed Systems Group, TU Wien, Vienna, Austria
{v.karagiannis, c.avasalcai, s.schulte, dustdar}@dsg.tuwien.ac.at

Abstract—Fog computing has been identified as an enabler
for many modern technologies like connected vehicles and the
Industrial Internet of Things (IIoT). Such technologies are
characterized by the integration of applications with different
levels of criticality on shared platforms, which are referred to
as mixed-criticality systems. Mixed-criticality systems typically
use static scheduling for critical tasks; however, static scheduling
is not suitable for scenarios where fog nodes run dynamic non-
critical applications that implement, e.g., maintenance checks and
data analytics.

To address this challenge, in this paper, we differentiate be-
tween critical tasks that are statically allocated (called “native”)
and dynamic non-critical tasks that may migrate across fog
nodes (called “temporary”). We propose a static scheduling
approach that maximizes the number of temporary tasks that
can be added at runtime, without negatively impacting the
already scheduled native tasks. This approach enables fog nodes
to become more suitable for IIoT environments by configuring
them with extensible schedules for the native tasks. To evaluate
our approach, we perform experiments considering several test
cases, which show that given a number of native tasks, the
generated extensible schedules enable the fog nodes to run a
larger number of temporary tasks at the same time. Furthermore,
the extensible schedules exhibit 7.8% less missed deadlines (on
average), compared to the non-extensible schedules.

Index Terms—Fog computing, mixed-criticality systems,
scheduling, extensibility, optimization

I. INTRODUCTION

Computing at the edge of the network has emerged as
a promising paradigm for enabling applications in various
domains such as connected vehicles [1] and the Industrial
Internet of Things (IIoT) [2]. According to this paradigm,
the applications that demand guarantees in safety, security,
and real-time performance, are executed on a Fog Computing
Platform (FCP) which is extended from Cloud computing
towards the edge of the network. Other terms (e.g. Edge
Computing) with similar objectives and principles are also
used for such platforms [3]. An FCP includes nodes capa-
ble of communicating and executing computations, i.e., fog
nodes (FNs), in the proximity of the data source [4] to
guarantee effective collaboration between the devices, nodes
and the Cloud (see Figure 1). An FN is a compute node that
runs latency-sensitive applications on the available resources
at the edge of the network [5]. FNs which intend to cope with
low latency, need to consider that involved applications may
have different criticality levels. Systems that host applications
with different levels of criticality on the same platform, are
usually referred to as mixed-criticality systems [6]. There are
usually three levels of criticality in mixed-criticality systems:
(i) safety-critical, (ii) mission-critical, and (iii) non-critical [6];
considering their timing requirements that may (i) compromise

the safety of their surroundings, (ii) compromise their normal
operation, and (iii) be prone to delay.

Even though coping with mixed-criticality applications is
still a significant challenge in industrial Internet [7], both
the Edge Computing consortium [8] and the Industrial In-
ternet consortium [3] consider computing at the edge of
the network as an enabler of smart factories which are at
the very core of industrial Internet. So far, various methods
have been proposed for scheduling tasks in mixed-criticality
systems, such as hierarchical scheduling [9], task partitioning
and scheduling [10], and container-based scheduling [11]. In
addition, some approaches target FNs for mixed-criticality
systems [12], and automotive use cases [13] in particular.
However, none of these approaches consider the execution of
dynamic fog applications that produce tasks which migrate
across FNs. These applications are crucial for the operation
of the IIoT since it enables the system to perform tasks such
as maintenance checks, analytics, and software updates. For
this reason, in this work, we design a scheduling algorithm
for FNs, which considers both static critical tasks, i.e., the
required tasks to execute industrial applications, which we call
“native tasks”; and dynamic non-critical fog applications that
implement, e.g., analytic services and diagnostic checks, which
contain tasks that we call “temporary”.

To achieve this, we bring extensibility [14], [15] to the
schedules of FNs which supports adding a larger number of
temporary tasks to the FN without disrupting the execution of
the native tasks, i.e., without modifying the existing schedules.
Keeping existing schedules unmodified is desirable since it
preserves the performance level of the native tasks (including
critical control applications) [16], and does not require re-
certification of safety-critical applications. In particular, we
address the problem of scheduling optimization of native tasks
which are all critical with different levels of criticality on FNs,
considering the extensibility of the schedules.

More precisely, our contributions are: We motivate the need
for a novel scheduling optimization approach for FNs. We pro-
pose such a scheduling approach for optimizing extensibility
of FNs’ schedules, for which we have defined an extensibility
metric. The proposed scheduling approach uses static cyclic
scheduling policy to generate schedules which contain tasks’
activation times. We also allow preemption in our schedules
which is decided at the time of generating the schedules and
increases the solution space. Besides, we propose an approach
for scheduling of temporary tasks which considers the existing
schedules and runs at runtime. Moreover, we provide an eval-
uation that compares the different derivatives of our proposed
approach and shows the extensibility improvement.

Fig. 1. Fog Computing Platform: FNs (boxes) are places at the edge of the
network and connected via network (thick lines) to each other, equipment and
the Cloud. Applications are running on FNs and in the Cloud.

The rest of the paper is structured as follows. Section II
motivates our work by presenting the need for extensible
schedules on FNs, and Section III describes the related work.
Afterward, Section IV presents our underlying system model.
We give the problem definition in Section V, and Section VI
proposes our scheduling optimization approach. Finally, Sec-
tion VII evaluates the performance of our proposed approach,
and Section VIII concludes the paper.

II. MOTIVATION

Current computing platform architectures in industry consist
of different types of processing elements, e.g., programmable
logic controllers or industrial personal computers, which
run tasks that are typically high-critical [17]. Moreover, the
processing elements currently used in industry have major
limitations, such as lack of network capabilities, no support
for web services, limited resource capacities, or plug-and-
play features [17]. The paradigm of fog computing not only
eliminates these limitations but also brings increased pro-
ductivity and flexibility, mass customization, reduced time-
to-market, improved product quality, innovations, and new
business models [18], being an architectural means to realize
the Operational and Information Technologies (OT/IT) con-
vergence [19].

Both industry and academia have made a significant effort
to promote the convergence of OT/IT. Until recently, OT was
needed in small scale static networks within the industrial
domain, which is why there is no support for dynamic changes
and online reconfigurations [20]. This inability of OT now
becomes a necessity with the increase in network size [20].
For this reason, the convergence of OT/IT aims at integrating
mechanisms from the OT field into IT use cases to cope with
such concerns [20]. The outcome of this convergence can
increase the connectivity, interoperability, and scalability of
industrial systems [21].

In this paper, we assume that the OT/IT convergence has
taken place implementing the proposed platforms such as [22],
and FNs now replace the processing elements within the
industrial domain. An example of this assumption, imple-
mented in industrial use cases, is the solution developed by
Nebbiolo [23], where FNs are used in robotic applications.
These FNs implement scheduling algorithms that schedule
the execution of mixed-criticality tasks. Moreover, the FNs

Cloud

Fog device Fog device Fog device

Cloud Layer

Fog Layer

IoT sensors,
actuators,
and control

Fig. 2. Smart factory: an overview of the FCP.

can communicate with each other for potentially sharing the
load of the applications and also, they may communicate
with the Cloud for exploiting available resources there [24].
Figure 2 presents an overview of the FCP implemented in the
considered industrial use case.

For this environment, at design time, tasks which are all
critical with different levels of criticality are scheduled on
an FN. However, we make the key observation that due
to the dynamic nature of fog applications the FN may be
required to run additional tasks at runtime, which have not
been considered for scheduling at design time, e.g., periodic
maintenance tasks. Such tasks are non-critical but may have
timing requirements (e.g., deadlines), and in addition they may
be temporary, i.e., they may be replaced by other such tasks.
Moreover, there may be new temporary tasks that are added to
the FCP at a later time when the static scheduling of critical
native tasks is already in place. As a result, the execution
of these tasks may affect the timing requirements of the
existing native tasks and hence compromise their performance
and safety, e.g., if the native tasks are part of safety-critical
applications.

This work’s motivation stems from the need for industrial
equipment implemented as FNs to run mixed-criticality native
tasks alongside the temporary tasks for the industrial domain
similar to [25]. We aim to bring extensibility to FNs’ schedules
in order to accommodate temporary tasks into the static
schedules of native tasks, and thus efficiently use the available
resources of FNs. The advantages of the FNs over legacy
industrial processing elements become more evident when
bringing this extensibility feature to the FN’ schedules.

As a motivational example, let us consider an industrial
application with several robots which uses an FCP as the
architecture of the computing platform (see Figure 2). The
native tasks are the control operation of robots, which are
implemented on the FNs of the FCP; the static scheduling of
these tasks is determined at design time. This static schedule
is designed to ensure the correct functionality of the safety-
critical tasks on the current platform. However, after a period
of time, the system engineers define another set of tasks
for data analytics; tasks that must run on the FCP without
modifying the current schedule of native tasks. The engineers
need to run these temporary tasks to record data from FNs to
the Cloud for later analysis. The deployment strategy used to
place the temporary tasks on the FCP can be done at runtime
using a decentralized resource allocation technique [26]. Since
the FNs have extensible schedules, the analytic tasks can be

added to run on the FNs without disturbing the performance
of the control operation of robots.

III. RELATED WORK

There has been much research in the field of scheduling
algorithms for critical applications [27]. Thus, there are various
approaches in the literature, each one showing benefits when
applied to the targeted environment. The scheduling of crit-
ical applications with strict execution requirements has been
studied in [28], and specifically for mixed-criticality systems
in [29]. Besides, the scheduling of critical applications con-
sidering shared computation and communication resources has
been studied in [30]. Nevertheless, none of these approaches
takes into account the potential benefits of extensibility which
we consider in our work.

Various approaches in the literature propose scheduling
algorithms which target fog and edge computing environ-
ments [31]. Motivated by the challenge of scheduling tasks
with execution deadlines in IoT systems, Deng et al. [32]
describe a workload scheduling algorithm for delay-sensitive
IoT applications in fog computing. In this work, the workload
dynamic scheduling algorithm (WDSA) is designed to provide
task scheduling toward worst-case delay and optimal utility
for single hop Fog-IoT architectures. However, WDSA does
not allow to schedule additional tasks without rescheduling
the existing tasks. Barzegaran et al. [33] propose a scheduling
algorithm for industrial applications in an FCP considering
extra–functional requirements of the industrial control tasks.
The proposed algorithm generates static cyclic schedules for
the FNs, and also determines the mapping of tasks to the cores
of FNs. In the work at hand, we use the same heuristic-based
algorithm to generate static cyclic schedules. We consider
the extensibility of the schedules, and ignore the problem
of task mapping to cores. Moreover, we define a metric for
extensibility of the schedules in Section VI-B which is used
in our proposed algorithm as the optimization objective.

Yin et al. [11] propose a task scheduling algorithm for
delay-sensitive applications in an FCP, which schedules the
tasks either on the FNs or in the Cloud. This algorithm targets
smart manufacturing environments that can benefit from the
computational and storage services of fog computing, e.g.,
for fault detection or analysis of the state of the devices in
assembly lines. This task scheduling algorithm is modeled
considering the role of containers to cope with the limited
resources and the delay-sensitive services that hinder the
application of virtualization technologies in the scheduling.
However, this work does not address scenarios where tasks
may need to be scheduled on the FN temporarily, which is
the goal of our work.

Pham and Huh [34] design a task scheduling algorithm for
Cloud-fog computing environments. In this work, the authors
first formulate a task scheduling problem, and then they
propose a heuristic-based algorithm to balance execution time
and cost. The proposed algorithm is intended to be used by a
fog provider who wants to exploit both proprietary FNs and
leased Cloud nodes in order to perform application offloading
efficiently. Notably, the authors target scenarios such as a
shopping center that has many FNs deployed on different
floors for providing WiFi access and for delivering services.
Thus, critical applications that have strict latency requirements
are not considered.

Pop et al. [15] propose an incremental scheduling algorithm

TABLE I
SUMMARY OF NOTATION

Symbol Notation
N Set of all fog nodes

Ni ∈N fog node
Stemp Set of temporary schedule tables
Sext Set of extensible schedule tables

s j ∈ Stemp Temporary schedule table
si ∈ Sext Extensible schedule table
υ j ∈ si Execution slice
|si| Number of execution slices
H Hyperperiod

Γnative Set of all native applications
Γtemp Set of all temporary applications

γi Set of tasks
τ j ∈ γi Task

D j Deadline of a task
Tj Period of a task
C j WCET of a task
M The task mapping function to the fog nodes

for embedded systems which aims at facilitating applications
with deadlines. This approach considers a system with tasks
that have already started and generates extensible schedules
for adding specific future tasks considering that the existing
tasks should be disturbed as little as possible. In this work,
the authors use the idle time slots of the schedules in order to
provide extensibility. For the evaluation, an extensibility metric
is defined as the distribution of the idle time slot profiles in
the schedules concerning the future task sets.

Various other metrics have also been defined for extensible
schedules, such as the metrics in [14], [35]. Zhu et al. [35]
propose an approach for robust task scheduling in distributed
systems concerning the changes in task requirements. In this
work, the notion of extensibility is used for robustness. The
extensibility metric is defined as the weighted sum of each
task’s execution idle time over its period.

Zheng et al. [14] propose a mathematical modeling approach
for extensible scheduling to accommodate additional tasks. In
this work, the extensibility metric is defined as the maximum
execution time a schedule can accommodate for a new inde-
pendent task with certain period. This definition distributes
the idle time among all tasks and targets all variations of
future task sets, i.e., no prior specification of future tasks are
required. In our work, we define extensibility in a way that
our proposed approach provides general solutions independent
of the additional tasks’ specifications.

IV. SYSTEM MODEL

We assume an FCP with various FNs located at the edge of
the network, and each FN integrates the proposed scheduling
algorithm in order to handle critical tasks at design time, while
non-critical tasks may also be added to each FN at runtime.

The system model consists of an architecture model that
describes the architecture of the FCP and its FNs, and an ap-
plication model which describes the tasks. Table. I summarizes
the notation.

A. Architecture Model
The architecture consists of a set of FNs denoted by N .

Without loss of generality, we assume that each node Ni ∈N
has a single core CPU (multi-core FNs can be modeled by
adding multiple nodes to the architecture). We use static cyclic
scheduling to schedule the tasks once at design time and once
at runtime, concerning the schedule tables.

Fig. 3. Example architecture with three FNs: The orange box shows the
extensible schedule table; the white box shows our proposed algorithm; the
purple box shows the migration mechanism [26]; the yellow box shows the
runtime schedule table.

The set of all the schedule tables which will be determined
by our proposed scheduling approach for extensibility at
design time, is denoted with Sext . We call these schedule tables
“extensible”. Our proposed scheduling approach may be run
at runtime to schedule the temporary tasks (see Section IV-B)
which determines the set of the schedule tables, denoted
with Stemp. We call these schedule tables “temporary”.

A static schedule table repeats with a hyperperiod denoted
by H, which is the least common multiple of all the assigned
task periods. To increase the design space of our solution, we
allow tasks to preempt each other in the generated schedule,
and thus our proposed approach may decide to execute a
task in several execution slices. The preemption granularity
is controlled by a parameter called macrotick [36], thus
improving the schedulability [37] and performance of control
tasks [16].

An example architecture model composed of three FNs is
shown in Fig. 3. The extensible schedule table (orange box)
is determined by our proposed algorithm (white box) during
design time. At runtime, our proposed algorithm schedules the
temporary tasks which have arrived with a migration mech-
anism (purple box), and determines the temporary schedule
table (yellow box).

The schedule table si has a set of execution slices denoted
by υ j ∈ si, which are time slices representing the task execu-
tions generated by capturing the start time and finishing time
of the tasks assigned to the core of Ni. We denote the number
of execution slices in the schedule table with |si|. We give an
example extensible schedule table s1 ∈ Sext of the node N1,
in Fig. 4 using a Gantt chart, where the boxes are execution
slices, and the arrows show task preemption. The example
has three tasks denoted with different colors with a total of

Fig. 4. Example schedule table of N1 with three tasks and fifteen execution
slices: different colors represent different tasks; boxes show execution slices;
arrows show preemption.

Fig. 5. Example application model with three applications and seven tasks

fifteen execution slices. The blue task interrupts the yellow
task as indicated by arrows. An extensible schedule table has
distributed idle times. Thus, an additional task can use the
idle times to be executed before its deadline (see extensibility
metric in Section. VI-B).

B. Application Model
Our application model consists of (i) a set of applications

considered at design time, denoted with Γnative, and (ii) a
set of applications considered at runtime, denoted with Γtemp.
Each native application γi ∈ Γnative is statically allocated to an
FN at design time, and consists only of native tasks which
are static critical tasks with different levels of criticality.
Furthermore, each temporary application γ j ∈ Γtemp will be
dynamically allocated to an FN and may migrate across the
FNs. The application consists only of temporary tasks which
are dynamic non-critical tasks.

Each application γi (whether native or temporary) is mod-
eled with a directed acyclic graph (DAG), where nodes and
edges represent tasks and data flows between the tasks. A
task τ j ∈ γi has a period Tj, a deadline D j, and a known worst-
case execution time (WCET) C j on the mapped FN. Each task
is ready to execute when all its inputs have arrived. The output
of a task is produced upon the termination of the task. The
mapping of tasks to the FNs is known and captured by the
function M : τi −→N .

An example application model composed of three applica-
tions (and seven tasks) is shown in Fig. 5. The application γ3
and its tasks are temporary and the remainders are native. The
WCETs, periods, and deadlines of the tasks in milliseconds
are shown in the figure.

V. PROBLEM DEFINITION

We formally define the problem to be solved by our ap-
proach as follows. Given (i) a set of native applications Γnative,
(ii) a set of temporary applications Γtemp, (iii) an architecture
consisting of a set of fog nodes N , and (iv) the mapping of
tasks to the FNs captured by the function M, we want to
determine: (i) The set of extensible schedule tables Sext at
design time. (ii) The set of temporary schedule tables Stemp at
runtime. These need to be determined such that: (1) the dead-
lines of all the tasks (both native and temporary) are met, and
(2) the extensibility of the extensible schedules is maximized,

Algorithm 1 S = EASA(Γ,N ,M,Ψ)

1: i← 0
2: t← Tstart
3: Φ←{Di};Θ←{0}
4: S← EDFSimulation(Γ,N ,M,Φ,Θ,Ψ)
5: Ω← CostFunction(S,Γ)
6: repeat
7: < Φi,Θi >← Neighbor(Γ,N ,M,Φ,Θ)
8: Si← EDFSimulation(Γ,N ,M,Φi,Θi,Ψ)
9: Ωi← CostFunction(Si,Γ)

10: λ ←Ωi−Ω

11: if λ < 0 or random[0,1)< Prob(λ , t) then
12: S← Si;Φ←Φi;Θ←Θi
13: end if
14: t← t×α

15: until stopping criterion is true
16: return S

which enables adding a larger number of temporary tasks at
runtime.

VI. PROPOSED SOLUTION

In this section, we first describe our scheduling optimization
approach in detail and then define our objective function,
which considers extensibility with an example to support.

A. Scheduling algorithm
The proposed approach, named Extensibility–Aware

Scheduling Algorithm (EASA), is a Simulated Annealing (SA)-
based metaheuristic [38]. SA is an optimization heuristic that
tries to find the global optimum by randomly selecting a new
solution from the neighbours of the current solution [38].
SA uses moves to explore the search space and to generate
solutions from the neighbours which are evaluated with the
objective function, presented in Section VI-B. Naturally, SA,
as a heuristic, is not guaranteed to find the optimal solution.

The SA decides scheduling parameters which are task offsets
(earliest start time of tasks) and relative deadlines, denoted
by Θ and Φ respectively. The schedule tables are generated
based on an EDF simulation [27], using the scheduling
parameters which indicate when tasks become ready (based
on their offsets) and the priority of the ready tasks (based on
their relative deadline) for running at the time being. Deciding
different scheduling parameters generates different schedules,
thereby SA explores the search space to try finding the global
optimum. Our proposed EASA (shown in Algorithm 1) has
two variants which can be applied: (i) at design time for
determining the extensible schedules, and (ii) at runtime for
determining the temporary schedules. The configuration for
design time variant is: (1) Γ ←− Γnative, (2) Sext ←− S,
and (3) Ψ←− ∅. The configuration for the runtime variant
is accordingly: (1) Γ ←− Γtemp, (2) Stemp ←− S, and (3)
Ψ←−Sext .

The EASA starts from a solution with the initial scheduling
parameters: the offsets Θ and relative deadline Φ are set to
zero and their deadline values, respectively (line 3 in Alg. 1),
and explores the solution space (lines 6–15). The schedule
tables S are generated from the EDF simulation (line 4) which
is performed for a hyperperiod H (see Section IV-A).

The EDF simulation creates jobs of tasks on the fly, and
gives the highest priority to the job which has the earliest
deadline with all its precedent jobs having arrived at the time
being. High-priority jobs run on the mapped cores captured by
the functionM (for the design time variant: at the time being;

for the run time variant: at the earliest time when the associated
core becomes idle concerning the extensible schedules) for the
duration of their WCETs Ci. A high-priority ready job may
interrupt the currently running job (on the same core) if its
priority is higher considering the scheduling constraints, e.g.,
the data dependency (see Section IV-B) and the macrotick (see
Section IV-A). In the runtime variant of EASA, an idle space
coming to the end interrupts the currently running job (on the
same core), forcing the job to continue its execution from the
next idle space concerning the extensible schedules.

A new solution from the neighbours of the current solution
is generated using the moves iteratively which randomly varies
the scheduling parameters (line 7). The Deadline Adjustment
move randomly selects a task and sets its relative deadline Φ

in the range from its deadline Di to its period Ti. The Offset
Adjustment move randomly selects a task and sets its offset Θ

in the interval from 0 to its deadline Di.
The new solution is evaluated with the objective func-

tion Ω (line 9), see Section VI-B. EASA compares the Ωi value
of the new solution with the Ω value of the current solution,
and accepts the new solution if the cost is improved (line 11).
A new solution may be accepted with a certain probability
even if the cost is not improved, thus better exploring the
solution space. The acceptance probability is

Prob(λ , t) = e−
λ
t , (1)

where λ is the cost difference calculated in line 10. It
decreases as the temperature t cools down from an initial
temperature Tstart (line 2) with the rate of α as the time
passes in each iteration (line 14). A stopping criterion stops the
search (line 15). In the work at hand, the stopping criterion is
either that no improvement after a given number of iterations
occurs, that a temperature of zero is reached, and a time limit.
The one happening first is applied as stopping criterion.

B. Extensibility metric and objective function
We define the objective function Ω for evaluating the

solutions generated by EASA, in Eq.(2). The objective function
takes the schedule tables (Sext in the design time variant
and Stemp in the runtime variant) and calculates the cost
with the weighted summation of two terms: the extensibility
metric and task schedulablity constraints. The EASA controls
the search for schedulable solutions with optimized objective
decided with weights by choosing a lager β1 to the search for
optimized extensibility, and contrariwise for finding schedu-
lable solutions faster. The weight β1 is always zero in the
runtime variant of EASA.

Ω = β1×E +β2×Λ (2)

Our proposed extensibility definition is similar to the one
in [14]: The extensibility is captured by the function E which is
shown in Eq. 3. The function E first finds the idle time slices
in each schedule table si ∈ Sext , by removing the execution
slices υ j ∈ si from it (equivalent to the time slices in which
the assigned core is idle), denoted with Li

k. These time slices
– which are “idle spaces” – are where the temporary tasks
(assigned to the same FN) can run. The function E calculates
the variance of the duration of the idle spaces. A solution
with better extensibility has less deviation in the duration of
all idle spaces in each schedule table, thus, a smaller value of
function E.

(a) Extensible schedule table with optimization (NATIVE–OPTIMIZED)

(b) Temporary schedule table with optimization (TEMP–OPTIMIZED)

(c) Extensible schedule table without optimization (NATIVE–BASE)

(d) Temporary schedule table without optimization (TEMP–BASE)

Fig. 6. Four schedule tables for an illustrative example: NATIVE–OPTIMIZED is optimized for extensibility, TEMP–OPTIMIZED has successfully added
temporary tasks (hatched boxes represent native tasks), NATIVE–BASE does not consider extensibility, TEMP–BASE cannot successfully add temporary
tasks, thus, some tasks (shown with red border boxes) have missed their deadlines (hatched boxes represent native tasks).

∀si ∈ Sext ,m = |si|−1, j = {1, ..,m},υ j ∈ si,

Li
k =
∣∣∣startυ j+1 − endυ j

∣∣∣ ,
L̄=

∑Li
k

m
,σL =

√
∑ |Li

k−L̄|
m

:

E = σL×H−1

(3)

We present an illustrative example for the extensibility
metric in Fig. 6 where the schedules of the tasks from
Table II are shown. The colored boxes represent different
tasks. We generate an optimized extensible schedule for native
tasks (described in Fig. 6a as “NATIVE-OPTIMIZED”), and a
non-optimized extensible schedule table (described in Fig. 6c
as “NATIVE-BASE”). We applied the function E to both
“NATIVE-OPTIMIZED” and “NATIVE-BASE”, which have
thirteen and eight number of idle spaces respectively. All na-
tive tasks are successfully scheduled, and none of them misses
its deadline in both schedules. The function E reports the
values of 0.0035 and 0.0420 for “NATIVE-OPTIMIZED” and
“NATIVE-BASE” respectively, which shows that the duration
of idle spaces in “NATIVE-OPTIMIZED” is less deviated.

We generate temporary schedule tables at runtime for the
temporary tasks based on their existing schedules. We show
the temporary schedule table “TEMP-OPTIMIZED” in Fig. 6b
and the non-optimized version “TEMP-BASE” in Fig. 6d. All
temporary tasks are successfully scheduled, and none of them
misses its deadline in “TEMP-OPTIMIZED”, whereas, the
scheduling is not successful in “TEMP-BASE” and three tasks

TABLE II
DETAILS OF THE ILLUSTRATIVE EXAMPLE

Application set Applications Tasks C (µs) T (µs) D (µs)
γ1 τ1 500 5000 4000

Γnative τ2 1000 6000 4000
τ3 1200 10000 9000
τ4 1500 15000 7000

Γtemp γ2 τ5 1000 5000 4000
τ6 750 5000 3000

miss their deadlines.
The task schedulablity constraints are captured by the func-

tion Λ, which checks for deadline violations of all the tasks
in the schedule tables. Since the outcome of the function E
is in the range [0,1], we normalize Λ starting form 0, for no
violations, to 1, for the case in which all the jobs have missed
their deadlines.

VII. EVALUATION

Our proposed scheduling optimization approach, EASA, was
implemented in C# and all the experiments were run on a
computer with an i9 CPU at 3.6 GHz and 32 GB of RAM,
with a time limit of 10 to 30 minutes, depending on the size
of the test case.

The weights of the objective function Ω were determined
experimentally to guide the search faster towards feasible
solutions with optimized extensibility. We set the weight β1
and β2 to 0.25 and 1.0, respectively. The weight β1 can
be determined by analyzing periods and WCETs of native
and temporary tasks. The value of 1.0 for the weight β2
is a relatively large value considering that the terms of the
objective function are in the range [0,1].

We have evaluated our proposed method on eight synthetic
test cases and one realistic test case. We have generated the
synthetic test cases considering the overall CPU utilization
of all their tasks and progressively increasing number of
native tasks and applications. The details of the synthetic
test cases are shown in Table III. The realistic test case is
an FN inside a vehicle [39] which has three native applica-
tions (representing different engine control applications) and
two temporary applications (representing different passenger
comfort applications). The details of the realistic test case are
shown in Table IV.

A. Synthetic Test Cases
In this first set of experiments we were interested to evaluate

the ability of our proposed method to create extensible sched-
ules of native tasks that accommodate adding a larger number
of temporary tasks. The focus is on evaluating our algorithm,

TABLE III
EVALUATION RESULTS FOR THE EIGHT SYNTHETIC TEST CASES

Test Total no. Total no. CPU Ω Perc. dev. Ω Missed Missed Missed
cases of native of temporary of of EASA/E deadlines deadlines deadlines

applications/tasks applications/tasks Utilization EASA from EASA with EASA with EASA/E with EASA/R
1 3/7 2/3 63% 0.0680 263% 0% 0% 0%
2 3/7 4/8 79% 0.0680 263% 0% 0% 0%
3 3/8 4/8 80% 0.0580 324% 0% 38% 0%
4 3/8 2/6 69% 0.0580 324% 0% 0% 0%
5 4/10 2/6 82% 0.0420 307% 0% 0% 0%
6 4/10 3/4 83% 0.0420 307% 0% 8% 0%
7 5/12 3/4 94% 0.0397 442% 4% 16% 0%
8 5/13 2/3 90% 0.0417 436% 0% 4% 0%

Average 80% 0.0522 333% 0.5% 8.3% 0%

hence look in isolation at a single fog node and consider
that the created schedule has to accommodate all temporary
applications from Table III on this fog node throughout the
execution. In order to facilitate evaluation, we have defined
two other solutions for comparison purposes: EASA/E, and
EASA/R.

The EASA/E is derived from EASA by ignoring the ex-
tensibility optimization. In this solution, the schedules are
generated concerning only the schedulability constraints by
setting the weight β1 to zero which removes the extensibility
metric value E in the evaluation of the visited solution. Hence,
leaving the weight β2 as the same value for EASA. Such a
solution could be in principle generated by a system engineer
with the state-of-the-art scheduling tools on the market.

The EASA/R is also derived from EASA by unifying both
temporary and native tasks and ignoring the extensible sched-
ules. The solution’s schedules are generated at runtime by
rescheduling both native and temporary tasks. Hence the
weight β1 is set to zero (ignoring the incremental scheduling
aspect) and the value of the weight β2 is the same as EASA’s.
The idea behind this solution is to adapt at runtime to changes
in tasks, i.e., instead of focusing of creating extensible sched-
ules at design time the alternative implemented by EASA/R
is to allow the schedules to completely change at runtime,
including allowing changes to native tasks.

The evaluation results are also presented in Table III. We
report the objective function values Ω for the extensible
schedules of EASA in column 5. The column 6 reports the
variation of objective function value for EASA/E comparing
to the values of EASA. No values are reported for EASA/R,
since the extensibility is not applicable to the solutions.

Since all the three solutions are considering the schedul-
ing constraints, we have reported the percentage of missed
scheduling constraints (missed task deadlines) for all the tasks
(both native and temporary tasks) in the table. In all test cases
the native tasks always meet their deadlines (there is enough
capacity for the native tasks in the fog node since it is expected
to handle additional temporary applications), so the percentage
of missed deadlines shows the deadlines missed by temporary
tasks.

As the results show, no missed deadlines are reported for
EASA/R which means that all the generated schedules are
feasible. This may indicate that it is preferable to re-generate
all schedules at runtime every time there is a change. However,
for the safety-critical native applications the safety standards
dictate the development processes and the certification pro-
cedures that have to be followed, increasing the cost of the
system. Furthermore, safety assurance practice dictates that

changes to a certified system result in the re-certification of the
system, adding further (re-certification) costs. For this reason,
changing the existing schedules of the native tasks at runtime
is not desirable, i.e., they have to be fixed at design time. Also,
by creating schedules for all tasks in the system (both native
and temporary) every time there is a change in temporary tasks
allocated to the fog node will generate a larger computational
overhead. Furthermore, when native tasks are scheduled at
the same time with temporary tasks, we increase the risk
of missing the deadlines for the native (critical) tasks, which
renders them unsafe. It is preferable that we miss deadlines
for the temporary tasks, which can be migrated to fog nodes
with more resources in order to successfully execute.

EASA/E, which does not consider extensibility, results in
missed deadlines for temporary tasks: up to 38% of deadlines
are missed in test case 3, and 8.3% on average. This is
expected, since EASA/E does not consider the need to extend
the native tasks’ schedules to accommodate temporary tasks.
The important result here is that our proposed EASA solution
that considers extensibility is able to successfully schedule
both the native and temporary tasks in all test cases, with a
single exception: 4% of deadlines are missed in test case 7 (the
assumption is that such temporary tasks that miss deadlines
could be migrated to another fog node with more resources).
On average, EASA improves over EASA/E in terms of satisfy-
ing the number of task deadlines with 7.8%.

In the table we also show the value of the cost function
Ω for EASA and the percentage deviation from this value
of EASA/E. These Ω columns indicate the reason why we
have less missed deadlines with EASA compared to EASA/E.
EASA has been able to obtain an average objective function Ω

of 0.0522, which shows the solutions have less deviated idle
space duration, compared to the average value of 0.2261 for
EASA/E. The Ω values for EASA are smaller in all the test
cases and the EASA’s schedules are optimized for extensibility,
thus allow adding more temporary tasks and less missed
deadlines as a result.

B. Realistic Test Case: Fog-based vehicle applications
In the second set of experiments we were interested to eval-

uate our proposed solution on a realistic test case consisting of
applications running on a fog node inside a vehicle. Future ve-
hicles are envisioned to be “fog nodes on wheels” [39] as they
integrate more and more functions and become interconnected
with each other. In this test case we consider the dynamic
nature of the fog, i.e., we evaluate our solution on scenarios
where temporary applications migrate in-and-out of the fog
node over time.

TABLE IV
FOG-BASED VEHICLE APPLICATIONS: SENSOR READING (SR);

TEMPERATURE (TEMP); APPLICATION (APP.)

App Apps Tasks C T D
set (ms) (ms) (ms)

Coolant Temp SR (τ1) 0.7 20 18
Engine temp. (γ1) Fan speed set (τ2) 0.4 20 20
control Coolant Flow SR (τ3) 0.3 16 14.4

apps flow Throttle SR (τ4) 0.6 16 15
(Γnative) (γ2) Valve relay set (τ5) 1 16 16

Oil flow Oil flow SR (τ6) 1.8 12 7
(γ3) Indicator set (τ7) 1.5 12 11

Passenger Climate Temp SR (τ8) 0.1 30 18
comfort control Input reading (τ9) 0.1 30 19

apps (γ4) A/C set (τ10) 0.6 30 20
(Γtemp) Cabin Lighting SR (τ11) 0.2 30 23

light (γ5) Lights set (τ12) 0.3 30 25

The details of the test case are in Table IV. The seven native
tasks are distributed in three applications γ1, γ2, and γ3. The
FN on the vehicle is needed to run five temporary tasks in two
application γ4, γ5 which may also be removed/replaced from
the FN at runtime.

We scheduled the native tasks with our proposed method
at design time, and generated the extensible schedules Sext .
The generated solution successfully scheduled all the native
tasks, i.e., no deadlines are missed. EASA reported a value
of 0.0738 for the objective function Ω. We assume that the
FN has to run the temporary application γ4 at the passenger’s
request. EASA also successfully scheduled these temporary
tasks at runtime generating the temporary schedules Stemp.
In our considered scenario, the temporary application γ4 stops
after some time. Thus, EASA removes its tasks and rolls back
to the extensible schedules Sext . Afterwards, the application γ5
is migrated to run on the FN, and EASA successfully extended
the schedules Sext to accommodate the tasks of γ5. We also
evaluated our proposed solution on the scenario where both
applications γ4 and γ5 arrive at the same time. EASA also
successfully scheduled all the temporary tasks.

As indicated by this experiment, our proposed EASA shows
promising results in successful adding of temporary tasks
without impacting the native tasks also in the case of realistic
test cases. Besides, EASA being more successful in scheduling
of temporary tasks, avoids negatively impacting the native
tasks. The experiments in this section show that our proposed
EASA method is able to bring extensibility to FNs’ schedules.

VIII. CONCLUSIONS

Fog Computing is used in an increasing number of ap-
plication areas, including in areas with safety- and time-
critical applications. In the Industrial IoT area the vision is to
virtualize industrial equipment and services, including critical
control, and run these as software tasks on a Fog Comput-
ing Platform (FCP). However, in such application areas the
resources of the FCP have to be statically allocated at design
time to these critical in order to provide the dependability
guarantees required by safety assurance. These applications
then become native to (associated to) the fog nodes where
they are allocated.

The disadvantage of the design time static configuration
of the FCP is that it will not easily accommodate dynamic
non-critical fog applications. Hence, in this paper, we have
proposed a scheduling approach for fog nodes in an FCP that
aims at increasing the extensibility of the static configuration.

This approach can schedule statically allocated critical tasks
in a way that allows adding more dynamic non-critical tasks
without compromising the performance of the native tasks.
This makes our proposed approach applicable to industrial
environments where the fog nodes need to run critical tasks
but also, they need to run non-critical tasks which are not con-
sidered at design time such as maintenance checks, analytics,
etc. Our proposed method does not consider any assumption
about temporary tasks and generates extensible solutions. To
evaluate our approach, we evaluated its performance on several
test cases. The results show the validity of our approach and
its ability to synthesize extensible configurations, where more
temporary tasks can be added at runtime.

In our future work, we will consider the temporal separation
of tasks with different criticality levels in the extensible
schedules. We will take into account the possibility of having
isolated partitions for native and temporary tasks, and we will
also consider using Constraint Programming as an alternative
optimization technique, integrating both the scheduling of
tasks and the scheduling of messages.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA—Fog Computing for Robotics
and Industrial Automation.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Workshop on Mobile Cloud Computing
(MCC), pp. 13–16, ACM, 2012.

[2] C.-H. Chen, M.-Y. Lin, and C.-C. Liu, “Edge computing gateway of
the Industrial Internet of Things using multiple collaborative micro
controllers,” IEEE Network, vol. 32, no. 1, pp. 24–32, 2018.

[3] OpenFog Consortium, “OpenFog reference architecture for fog comput-
ing,” Technical Report, 2017.

[4] V. Karagiannis, S. Schulte, J. Leitao, and N. Preguica, “Enabling
fog computing using self-organizing compute nodes,” in International
Conference on Fog and Edge Computing (ICFEC), pp. 1–10, 2019.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[6] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Computing Surveys (CSUR), vol. 50, no. 6, p. 82, 2018.

[7] J.-Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan, “Industrial
Internet: A survey on the enabling technologies, applications, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1504–1526, 2017.

[8] Edge Computing Consortium, “Edge computing reference architecture
2.0,” Technical Report, 2017.

[9] Y. Wang, Y. Zhang, Y. Su, X. Wang, X. Chen, W. Ji, and F. Shi,
“An adaptive and hierarchical task scheduling scheme for multi-core
clusters,” Parallel Computing, vol. 40, no. 10, pp. 611 – 627, 2014.

[10] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in Euromicro
Conference on Real-Time Systems (ECRTS), pp. 239–248, IEEE, 2009.

[11] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721,
2018.

[12] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the internet of things: A survey,” ACM Transactions on
Internet Technology, vol. 19, no. 2, pp. 1–41, 2019.

[13] F. Bonomi, S. Poledna, and W. Steiner, The role of fog computing in
the future of the automobile, pp. 189–210. Wiley Online Library, 2017.

[14] Wei Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli, “Extensible and scalable time triggered scheduling,” in
International Conference on Application of Concurrency to System
Design (ACSD), pp. 132–141, 2005.

[15] P. Pop, P. Eles, and Z. Peng, “Incremental mapping and scheduling
for distributed heterogeneous real-time systems,” Real-Time in Sweden,
2003.

[16] M. Barzegaran, A. Cervin, and P. Pop, “Performance optimization of
control applications on fog computing platforms using scheduling and
isolation,” IEEE Access, vol. 8, pp. 104085–104098, 2020.

[17] M. Jbair, B. Ahmad, M. H. Ahmad, and R. Harrison, “Industrial cyber
physical systems: A survey for control-engineering tools,” in IEEE
Industrial Cyber-Physical Systems, pp. 270–276, 2018.

[18] H. Bauer, C. Baur, D. Mohr, A. Tschiesner, T. Weskamp, K. Alicke,
and D. Wee, “Industry 4.0 after the initial hype–where manufacturers
are finding value and how they can best capture it,” McKinsey Digital,
2016.

[19] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
Computing for industrial automation through time-sensitive networking
(TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[20] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN networks,” in IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–8, 2017.

[21] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo, “Interop-
erability for industrial cyber-physical systems: An approach for legacy
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 6,
pp. 3370–3378, 2017.

[22] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and
W. Steiner, “The FORA Fog Computing Platform for Industrial IoT,”
arXiv preprint arXiv:2007.02696, 2020.

[23] Nebbiolo Technologies, “Nebbiolo.” http://www.nebbiolo.tech, 2020 (ac-
cessed May 10, 2020).

[24] V. Karagiannis, “Compute node communication in the fog: Survey and
research challenges,” in Workshop on Fog Computing and the IoT (IoT-
Fog), pp. 1–5, ACM, 2019.

[25] M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and
J. Kuusela, “Fogification of electric drives: An industrial use case,” in
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), p. 1–5, 2020.

[26] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Decentralized resource
auctioning for latency-sensitive edge computing,” in IEEE International
Conference on Edge Computing (EDGE), 2019.

[27] G. C. Buttazzo, Hard real-time computing systems: Predictable schedul-
ing algorithms and applications. Springer, 2011.

[28] P. Naghshtabrizi and J. P. Hespanha, “Analysis of distributed control
systems with shared communication and computation resources,” in
American Control Conference (ACC), pp. 3384–3389, 2009.

[29] D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time systems,” ACM Transaction on Embedded Computing, vol. 14,
pp. 50–78, May 2015.

[30] D. Fontanelli and L. Palopoli, “Quality of service and quality of
control in real-time control systems,” in International Symposium on
Communications, Control and Signal Processing (ISCCSP), pp. 1–5,
IEEE, 2012.

[31] J. Bellendorf and Z. Á. Mann, “Classification of optimization problems
in fog computing,” Future Generation Computer Systems, vol. 107,
pp. 158–176, 2020.

[32] Y. Deng, Z. Chen, D. Zhang, and M. Zhao, “Workload scheduling
toward worst-case delay and optimal utility for single-hop Fog-IoT
architecture,” IET Communications, vol. 12, no. 17, pp. 2164–2173,
2018.

[33] M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-
aware scheduling of industrial applications on fog computing platforms,”
in Workshop on Fog Computing and the IoT (IoT-Fog), p. 1–5, ACM,
2019.

[34] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a Cloud-Fog
computing system,” in Asia-Pacific network operations and management
symposium (APNOMS), pp. 1–4, 2016.

[35] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-
Vincentelli, “Optimizing extensibility in hard real-time distributed sys-
tems,” in Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pp. 275–284, 2009.

[36] S. S. Craciunas, R. Serna Oliver, and V. Ecker, “Optimal static schedul-
ing of real-time tasks on distributed time-triggered networked systems,”
in International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8, IEEE, 2014.

[37] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium (RTSS), pp. 239–243, IEEE, 2007.

[38] E. K. Burke, G. Kendall, et al., Search methodologies. Springer, 2005.
[39] M. Chiang, B. Balasubramanian, and F. Bonomi, Fog for 5G and IoT,

vol. 288. Wiley Online Library, 2017.

