
Digital Object Identifier 10.1109/ACCESS.2021.3099942

edgeRouting: Using Compute Nodes in
Proximity to Route IoT Data
Vasileios Karagiannis1, Stefan Schulte2
1Distributed Systems Group, TU Wien, Vienna, Austria (e-mail: v.karagiannis@dsg.tuwien.ac.at)
2Christian Doppler Laboratory Blockchain Technologies for the Internet of Things, TU Wien, Vienna, Austria (e-mail: s.schulte@dsg.tuwien.ac.at)

Corresponding author: Vasileios Karagiannis (e-mail: v.karagiannis@dsg.tuwien.ac.at).

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 764785, FORA—Fog Computing for Robotics and Industrial Automation. The
financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology
and Development and the Christian Doppler Research Association is gratefully acknowledged.

ABSTRACT
Due to the proliferation of edge computing, cloud providers have started offering compute nodes at the
edge of the network in addition to traditional compute nodes in data centers. So far, various systems have
been proposed for processing Internet of Things (IoT) data on both edge and cloud compute nodes in order
to reduce the communication latency. However, such systems do not typically consider that the network
bandwidth between an edge node and a cloud node can be orders of magnitude higher than the bandwidth
between an IoT device and a cloud node. As a result, the IoT data are commonly sent selectively to either
edge or cloud nodes disregarding alternative network paths through edge nodes, which may have higher
network bandwidth, and lower communication latency.
To avoid this, in this paper we analyze the latency of sending data to edge and cloud compute nodes of cloud
providers. Based on this analysis, we propose edgeRouting which routes the data through the closest edge
compute node. By doing that, edgeRouting exploits both the low propagation delay of nodes at the edge,
and the high bandwidth among edge and cloud compute nodes of cloud providers. To evaluate our approach,
we perform experiments on a real-world setup with nearby and remote compute nodes of a cloud provider,
and we show that edgeRouting reduces the communication latency by up to 55% compared to alternative
methods.

INDEX TERMS Communication latency, Edge computing, Fog computing, Internet of Things, Propaga-
tion delay, Queuing delay, Transmission delay

I. INTRODUCTION

Due to the advent of the Internet of Things (IoT), a huge
amount of data generated by sensor devices are sent to the
cloud for processing [1]. Since remote cloud compute nodes
alone may not be able to process these data in a timely
manner, edge computing has been proposed for reducing the
communication latency [2]. To achieve this, edge computing
relies on the utilization of distributed compute nodes which
aim at processing the IoT data in the proximity of the IoT
devices [3].

Driven by the potential market demand for edge comput-
ing, cloud providers extend their network of data centers
with additional sites which provide computational resources
at the edge of the network. For instance, Google utilizes
Edge Points of Presence in various regions around the world,
and Microsoft uses Edge Zones in population centers which

are far away from cloud infrastructure [4], [5]. To exploit
such resources in an efficient manner, various approaches
have been proposed for sending data to compute nodes in
proximity [2]. Typically, this includes a placement algorithm
which considers network-related metrics such as end-to-
end propagation delay and bandwidth, to decide which one
of the available compute nodes at the edge and the cloud
should process the data [6], [7]. Based on the decisions of
this algorithm, the data are sent to a suitable compute node
for processing.

Even though such approaches may reduce the communica-
tion latency compared to using only remote cloud nodes [8],
considering end-to-end metrics might hide that different parts
of the underlying network may have very different capacities.
For instance, when sending data from an IoT device to
an edge or cloud compute node of a cloud provider, the

VOLUME 9, 2021 1



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

bandwidth of the transmission is limited by the Internet
provider (e.g., AT&T or Telefonica), and is commonly a
few Megabits per second (Mbps) [9], [10]. However, when
sending data between compute nodes, cloud providers do not
impose such low limits, thereby allowing transmissions with
bandwidth that can be orders of magnitude higher [11], [12].
Nevertheless, this bandwidth is not utilized when the data are
sent directly from an IoT device to the compute node that
performs the processing. Therefore, considering end-to-end
metrics from the IoT devices to the available compute nodes
may hide alternative network paths which can potentially
reduce the communication latency even more.

To counter this problem, we analyze the different delays
that contribute to the latency of sending data from IoT
devices to edge and cloud compute nodes offered by cloud
providers. Based on this analysis, we propose edgeRouting
which is a routing approach for reducing the communication
latency. According to edgeRouting, when sending data from
an IoT device to a suitable compute node of a cloud provider,
these data are routed through the closest available edge com-
pute node. This way, the data are sent to the edge node using
the connection of an Internet provider (i.e., with potentially
limited bandwidth), and from there, the data are routed again
to the suitable compute node with higher bandwidth offered
by a cloud provider. Thus, this approach manages to leverage
both the low propagation delay of edge compute nodes, and
the high bandwidth among edge and cloud compute nodes of
cloud providers, in order to achieve low latency.

Our contributions include the analysis of the latency of
sending IoT data to distributed compute nodes at the edge
and the cloud, and the design of a routing approach which
sends the data in a manner that reduces this latency. Fur-
thermore, we implement edgeRouting along with alternative
routing approaches, and we conduct a comparative evaluation
considering IoT use cases. According to our results, the
proposed edgeRouting reduces the communication latency
by up to 55%.

The rest of this paper abides by the following structure:
Section II provides a discussion of related work, and Sec-
tion III describes our system model. Afterwards in Sec-
tion IV, we analyze the latency of sending IoT data to
distributed compute nodes, and we propose an approach for
reducing this latency. Subsequently in Section V, we perform
experiments in order to compare the proposed approach to
alternative methods, and we present our findings. Finally,
Section VI concludes this paper, and proposes promising
directions for future work.

II. RELATED WORK
We identify related work in approaches from the literature
which route IoT data to edge and cloud compute nodes.
To present such approaches in a comprehensive manner, we
divide them into three categories, namely direct routing, mul-
tihop routing, and overlay routing. Specifically, direct routing
is presented in Section II-A, multihop routing is discussed in
Section II-B, and overlay routing is discussed in Section II-C.

Finally, in Section II-D we provide a discussion of the exist-
ing approaches compared to the proposed edgeRouting.

A. DIRECT ROUTING APPROACHES
Most of the related approaches from the literature present
a placement algorithm that distributes applications on the
available compute nodes, and then route the data from the
data source to a suitable compute node directly. For this
reason, we refer to such approaches as direct routing. For ex-
ample, Samanta et al. [13] design a framework for executing
applications in a system with edge and cloud compute nodes,
according to an auction-based placement algorithm. Each
compute node in this system is assumed to be addressable
from every access point in the network, so that data can be
routed directly to the compute node which hosts a specific
application. Bellavista et al. [14] present a middleware for
fog computing. In this work, each IoT device utilizes a
local agent which finds a suitable compute node considering
various application constraints, and sends data directly to that
node. Yao and Ansari [15] propose a system whereby the IoT
data are sent directly to suitable compute nodes which use a
scheduler for assigning the necessary applications on virtual
machines based on an optimization problem. Mansouri and
Wong [16] design a quality of experience optimization frame-
work in which the IoT devices send data directly to either
a nearby or a remote compute node. Du et al. [17] create
a decision maker component which selects a user device,
a nearby compute node or a remote node for deploying
an application. Then, a user device communicates with the
selected node directly.

B. MULTIHOP ROUTING APPROACHES
In addition to direct routing, there are other approaches which
also implement a placement algorithm, but route the data on
a multihop path from the data source to a suitable compute
node. We refer to these as multihop routing. In such ap-
proaches, the data travel on a path of various compute nodes,
until a suitable node accepts the data for processing. For in-
stance, Martinez et al. [18] design a computing infrastructure
in which the data are routed through various compute nodes
based on optimization logic that considers transmission de-
lay and network congestion. Ascigil et al. [19] propose a
placement approach whereby the applications are distributed
on edge and cloud compute nodes, and the data are routed
on a multihop path along these nodes, until accepted for
processing. Mortazavi et al. [20] present the design and
implementation of a system that routes the data on a path of
network compute nodes that exist between the edge and the
cloud. Tong et al. [21] discuss a hierarchical structure of edge
and cloud compute nodes for serving workloads from mobile
users. In this approach, the peak workloads are routed on a
path towards the cloud in order to serve a larger number of
users. Okay and Ozdemir [22] propose an approach based
on software-defined networks, for processing IoT data on
nearby and remote compute nodes. In this approach, there are
various distributed controllers which manage the local traffic

2 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

(and lower the latency) while the data are routed through
various nodes to a suitable compute node for processing.

C. OVERLAY ROUTING APPROACHES
There is also related work on approaches that do not stem
from the edge computing literature, but do aim at improv-
ing the communication between sender and destination by
routing the data through intermediate nodes. For example,
Brennan and Rabinovich [23] discuss the potential benefits of
overlay routing compared to native IP routing, and propose a
multipath TCP approach which creates routing detours that
improve throughput. Lee et al. [24] investigate the utilization
of bandwidth as the main metric for creating overlay paths
which are shown to have lower latency than native Inter-
net routing. Lumezanu et al. [25] present a mechanism for
finding mutually beneficial overlay detours for peer nodes,
so that the communication latency is reduced. Gummadi
and Madhyastha [26] explore overlay detours for creating
resilient routing paths that are less likely to fail than native
Internet paths. Cai et al. [27] conduct an experimental study
of the communication between clouds, and show improved
throughput when using detours.

D. DISCUSSION
To sum up the discussion of related approaches from the
literature, most current edge computing works route the
data either directly or on a multihop path, to a suitable
compute node for processing. Notably, both of these routing
approaches typically consider end-to-end communication,
and disregard alternative network paths with detours that may
lower the communication latency due to providing higher
bandwidth.

The overlay detour approaches on the other hand, which
consider alternative network paths, manage to show benefits
compared to native Internet routing. However, most of these
approaches have not been designed in the context of edge
computing, and therefore, do not take into account edge
compute nodes. In addition, most overlay detour approaches
stem from the field of overlay networks consisting of peers,
and suffer from privacy concerns related to sharing data
among peer nodes [25].

In this paper, we propose using a detour when routing IoT
data to edge and cloud compute nodes. We consider such
environments as an ideal case for applying detours because:
i) The IoT data are not routed through other (peer) users,
but rather through the available edge compute nodes which
can actually improve privacy [28], [29]. ii) The difference in
the capacity of paths with detours can be so large (e.g., due
to the different bandwidth limits between Internet and cloud
providers), that utilizing such paths may lead to significant
benefits (as shown in Section V).

III. SYSTEM MODEL
In this section, we present the utilized system model for
processing IoT data using edge and cloud compute nodes.
For this, first we discuss the architecture of the target systems

Google
Microsoft

FIGURE 1: Regions around the world with computational
resources offered by two cloud providers.

in Section III-A. Afterwards in Section III-B, we discuss the
typical behavior of various system parameters that affect the
communication latency in such systems.

A. SYSTEM ARCHITECTURE
Our system includes distributed compute nodes in data cen-
ters and at the edge of the network, which can be used for
processing data from IoT devices [30]. Such nodes can be
provisioned on demand by cloud providers. For example,
Fig. 1 shows the regions with (existing or announced) compu-
tational resources from two cloud providers, namely Google
and Microsoft [31], [32]. Notably, these regions, i.e., from
two cloud providers alone, may provide compute nodes in
the proximity of IoT devices in various areas around the
world (e.g., in Europe, India, eastern Asia, Australia, and the
US). Thus, based on Fig. 1, and by considering that other
commercial cloud providers may support additional regions,
we assume that compute nodes from cloud providers can be
provisioned both far away, and close to IoT devices [33].

In such environments, we consider that application
providers deploy their applications on compute nodes in or-
der to process data from IoT devices. These applications can
be, e.g., for detecting anomalies in the energy consumption
(such as gas leaks) using smart meters, for monitoring the
appearance of house visitors using smart doorbells, etc. [34].
For such cases, utilizing a single compute node with enough
computational resources to process the data from all the IoT
devices (i.e., a centralized cloud node) may result in high
communication latency for data coming from regions outside
the proximity of this node [6]. Utilizing multiple compute
nodes in the proximity of all the IoT devices, each one with
enough resources to process all the data, lowers the latency,
but may increase the monetary cost due to maintaining many
nodes with high computational resources. Thus, utilizing few
compute nodes with high computational resources, and many
compute nodes with lower resources but distributed around
the regions of the IoT devices, can provide a balance between
delay and cost [35].

Therefore, in this work we target environments with a
system architecture that includes multiple geographically
distributed edge and cloud compute nodes and IoT devices, as

VOLUME 9, 2021 3



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

shown in Fig. 2. The IoT devices in such systems represent
devices with sensors, which act as data sources. The edge
and cloud compute nodes can be created on demand in any
region which is supported by a cloud provider (e.g., Google,
Microsoft, Amazon, Oracle, IBM, Alibaba, etc). Edge com-
pute nodes offered by cloud providers are similar to cloud
compute nodes in that they are both able to provide the same
services [5]. However, since edge compute nodes reside in
the proximity of the data sources, the communication latency
of sending data from IoT devices to these nodes is lower [36].

The flow of the data in this system starts from the IoT
devices which generate data using the sensors. These data are
sent to a compute node over a logical link that is facilitated
by an Internet provider (e.g., using cable or 4G Internet), as
shown in Fig. 2. Notably, when the data are sent from an
IoT device to a compute node, restrictions imposed by the
Internet provider may apply. For instance, Internet providers
commonly limit the upload bandwidth to a few Mbps [9],
[10]. However, when the data are sent between compute
nodes of cloud providers, such low limits do not apply,
because cloud providers allow ingress/egress bandwidth with
a limit that is orders of magnitude higher [11], [12].

B. COMMUNICATION LATENCY
The latency of sending data to a compute node
can be considered as the sum of the following de-
lays: propagation delay noted as Pro (calculated as
linkDistance/dataSpeed), transmission delay noted as
Tra (calculated as dataSize/bandwidth), queuing delay
noted as Que (amount of time the data wait in queues,
e.g., of network devices), and processing delay (time needed
to process the headers) [37], [38]. The processing delay is
usually very low (several microseconds), and may therefore
be considered negligible [37]. These delays apply when
sending a packet over a link, but for simplicity, we consider
that similar delays apply when sending IoT data between
nodes. Thus, all the factors that contribute to the commu-
nication latency are considered by taking into account the
aforementioned delays. Notably, each one of these delays
consists of all the time periods that are required for sending
the data between various nodes in the underlying network,
until the data reach the destination compute node. This means
that, e.g., the Pro of sending data from an IoT device to
a cloud compute node, includes all the propagation delays
of the logical link that connects sender and destination. The
same applies for Tra, and Que.

Such delays apply regardless of the utilized communica-
tion protocol, e.g., TCP, UDP, HTTP, etc. [39]. Each protocol
may have a different message structure which can affect the
discussed delays, e.g., an HTTP message may be larger than
a UDP message with the same payload, which affects the
Tra. Similarly, the specific characteristics of the Internet
connection, and underlying network, e.g., using cable, or
4G Internet, can affect these delays. However, when the
same communication protocol is used over the same Internet
connection, we consider that measuring the communication

Cloud nodes

Edge nodes

IoT

Cloud node

Edge node

IoT device

Link by Internet provider

Link by cloud provider

FIGURE 2: The target system architecture with distributed
edge and cloud compute nodes, and IoT devices. The links
show the communication between compute nodes (facilitated
by cloud providers), and between IoT devices and compute
nodes (facilitated by Internet providers).

latency in this manner provides a good approximation for
comparing different routing approaches in systems with edge
and cloud compute nodes.

The nodes in our model are represented by a set s =
{n1, n2, . . . , nN} which includes n1 being the IoT device,
n2 being the edge compute node in closest proximity of n1,
and all the other compute nodes of the system. Thus, to refer
to, e.g., the Pro between an IoT device and the compute node
in closest proximity, we use Pron1,n2

(similarly: Tran1,n2
,

Quen1,n2
, etc.). n1 may send data to any of the other nodes

of s for processing. The compute node that processes the
data is denoted as nX . To make our system model more
comprehensible, we summarize all the utilized notation in
Table 1.

As discussed in Section III-A, this work targets sys-
tems with edge and cloud compute nodes offered by cloud
providers, which are used for processing IoT data over the In-
ternet. Based on the literature of similar systems, we deduce
the following formulations regarding the typical behavior of
the communication latency when sending data to nearby and

TABLE 1: The utilized notation.

Symbol Description
s = {n1, n2, . . . , nN} Set including all the nodes of the system.
n1 The IoT device (i.e., a data source).
n2 Edge compute node closest to n1.
nX Compute node that processes the data.
Proni,nj Propagation delay from ni to nj .
Trani,nj Transmission delay from ni to nj .
Queni,nj Queuing delay from ni to nj .
DLatn1,nX Direct routing latency from n1 to nX .
MLatn1,nX Multihop routing latency from n1 to nX .
ELatn1,nX edgeRouting latency from n1 to nX .

4 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

remote compute nodes [40], [41]:
• Pro is defined as linkDistance/dataSpeed, which

means that this delay is affected by the speed that the
data travel on the network links, and the traveled dis-
tance between sender and destination. Since the speed
can be considered a constant (which is usually around
2 · 108 meters per second based on the signal speed
on copper cables) [42], Pro depends on the distance of
the network path that connects sender and destination.
Based on this definition, we can also say that since
the denominator is a very high constant number, Pro
approaches zero, when the numerator becomes small.
Thus, when n1 is very close to n2, Pron1,n2 approaches
a very small number which does not contribute consid-
erably to the communication latency, and may therefore
be considered insignificant [40]. Notably, this applies
to Pron1,n2 , but not the whole communication latency
between n1 and n2, which may be higher. Hence:

Pron1,n2
≈ 0 (1)

• Tra is defined as dataSize/bandwidth, which means
that for the same data size, this delay depends on the
available bandwidth. We can also say that when the
bandwidth becomes abundant, Tra approximates zero.
Since edge compute nodes of cloud providers belong
to the same network of the provider’s data centers, the
bandwidth limit is the same for both edge and cloud
compute nodes [5]. This limit may vary according to
each cloud provider and the current network load, but
is usually very high. For example, Google allows seven
Gigabits per second (Gbps) of egress bandwidth to
external IPs, while the ingress bandwidth can be more
or even unlimited [11]. Microsoft also allows unlimited
ingress/egress bandwidth [43]. Notably, even though the
bandwidth may be abundant, a compute node needs
to have sufficient processing resources (e.g., CPU and
memory) to process the ingress/egress data. In addition,
the utilized bandwidth may be subject to a pricing
model. When such restrictions do not pose significant
concerns, the compute nodes of cloud providers are
able to utilize as much network bandwidth as they
need. Therefore, Tra does not contribute considerably
to the communication latency, and can be considered
insignificant, when the sender and the destination are
both compute nodes which communicate with very high
bandwidth [44]. Hence:

∀ ni, nj ∈ s− {n1}, T rani,nj
≈ 0 (2)

• The queuing delay between compute nodes of cloud
providers can also be considered insignificant in the
calculation of the communication latency. This may
happen when there is abundant bandwidth, as previously
discussed, that makes it unlikely for the data to have
to wait in queues [41]. Hence, Que does not contribute
considerably to the communication latency when sender

Start

Input data

Transmit data
to target node

Propagation
delay

Transmission
delay

Queuing
delay

Node accepts data No

Yes

End

FIGURE 3: Flowchart with the communication latency of
sending data to a compute node.

and destination are compute nodes of cloud providers,
i.e.:

∀ ni, nj ∈ s− {n1}, Queni,nj ≈ 0 (3)

We use Equations (1), (2), and (3), for comparing the
communication latency of different routing approaches in
Section IV. After that, we revisit them in Section V-D, and
we discuss these equations from a practical point of view
based on our experiments, also considering cases when these
approximations deviate from zero.

The overall communication delay of executing an applica-
tion on a compute node of a cloud provider always includes
the delay of sending the data from the sender to the desti-
nation node, i.e., the upload latency. In case the application
produces a response that needs to be sent back to the sender,
the overall communication delay also includes the download
latency. For simplicity, in this work we focus on reducing
the communication latency of sending the data, i.e., the
upload latency, because this latency constitutes the minimum
delay to start executing an application. Nevertheless, in our
evaluation in Section V-C, we also discuss how the download
latency is affected by the different routing approaches.

To further elaborate on how the communication latency of
sending data to distributed compute nodes is modeled in this
paper, we depict a flowchart in Fig. 3. Initially, the input data
are generated at n1 and sent to a target node n ∈ s − {n1}.
This transmission is subject to propagation, transmission,
and queuing delays, until the data arrive at the target node.
Upon arrival, this node decides to either accept the data for
processing, or to forward the data to a new target node. The
former results in the end of the transmission which means
that there is no more communication latency. The latter re-
sults in another transmission which is repeated until the data
are accepted by a node. Thus, the communication latency of
sending data to distributed compute nodes is considered as

VOLUME 9, 2021 5



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

the period from the time the data are sent from n1 until the
data are accepted by a node.

IV. SENDING IOT DATA TO COMPUTE NODES
In this section, we examine the latency of sending IoT data
to edge and cloud compute nodes, based on different routing
approaches. Specifically, Sections IV-A and IV-B analyze the
latency of common routing approaches from the literature
(discussed in Section II). Afterwards in Section IV-C, we
take into account this analysis in order to design a routing
approach which lowers the latency by utilizing the underlying
network resources more efficiently.

A. DIRECT ROUTING
As discussed in Section II, direct routing is used widely
for sending IoT data to edge and cloud compute nodes.
According to this approach, the IoT devices are configured
to send the data directly to the compute nodes which perform
the required processing [13]. In the flowchart of Fig. 3, this
means that when using direct routing the data are accepted
by the target node after one transmission. Thus, the target
node accepts the data the first time, and the loop that starts
when a node does not accept the data (in Fig. 3) is not
triggered. To facilitate this, a placement algorithm is utilized
for placing the applications on suitable compute nodes based
on various resource-related (e.g., CPU and RAM) and/or
network-related (e.g., transmission and propagation delay)
metrics [45]. After the applications are placed, the data
are commonly routed from an IoT device (through a local
gateway [46]) to a suitable compute node directly, using the
connection of an Internet provider, as shown in Fig. 4a.

Thus, assuming that data are sent from an IoT device n1

to a suitable compute node nX with nX ∈ s − {n1}, the
communication latency using direct routing DLatn1,nX

can
be defined as the sum of the propagation, transmission, and
queuing delay, i.e.:

DLatn1,nX
= Pron1,nX

+ Tran1,nX
+Quen1,nX

(4)

Pron1,nX
depends on the speed that the data travel on

the network links, and the distance between n1 and nX .
Since the speed can be considered a constant (as discussed
in Section III-B), this delay is affected by the distance of the
network path that connects n1 and nX . This path is usually
selected based on a gateway protocol that implements a best
path algorithm [47].

Tran1,nX
depends on the upload bandwidth limit of the

Internet provider, and the data size. The data size is a variable
which depends on the specific application. For example,
applications that perform analytics based on sensor measure-
ments may utilize smaller data sizes than image processing
applications.

Quen1,nX
depends on the time that the data wait in queues,

e.g., the buffers of the network devices that perform the
routing. Notably, if the buffers are full, e.g., due to congestion
(which may occur in IoT environments), packets are dropped

𝑛𝑋

𝑛1

Link by Internet 
provider

𝑛 Compute node

(a) Direct

𝑛1

…

𝑛2

𝑛𝑋−1

𝑛𝑋

𝑛3

IoT device

(b) Multihop

𝑛1

𝑛𝑋

𝑛2

Link by cloud 
provider

(c) edgeRouting

FIGURE 4: Routing approaches for sending data to edge and
cloud compute nodes. The links show the provider that fa-
cilitates the communication (either cloud provider or Internet
provider).

and need to be retransmitted. This also increases the commu-
nication latency [48].

Therefore, while the propagation delay is not affected by
the bandwidth limit of the Internet provider, the transmission
delay can increase when the network bandwidth is low.
Moreover, low bandwidth may result in the data waiting
in queues longer, which might lead to congestion, dropped
packets and retransmissions [48]. Thus, the bandwidth of the
Internet provider plays a critical role in the communication
latency of direct routing.

B. MULTIHOP ROUTING
Similar to direct routing, in multihop routing there is also
a placement algorithm which distributes the applications on
the compute nodes (as discussed in Section II-B). However,
the flow of the data is different. In multihop routing, the
data are sent from an IoT device n1 to an edge compute
node n2. If this node hosts the required application, and
has adequate available computational resources to perform
the required processing, the data are accepted. Otherwise,
the data are rerouted to the next node in proximity [21].
Similarly, that node either accepts or reroutes the data, and
the process repeats. This process is bound to finish, because
usually the last node on a multihop path is a cloud compute
node which is assumed to always be able to perform the
required processing [36].

In the flowchart of Fig. 3, when using multihop routing
the data are accepted by the target node after one or more
transmissions (one transmission if nX = n2, more other-
wise). This means that the loop that starts when a node does
not accept the data (in Fig. 3) may be triggered multiple
times, thereby initiating more transmissions and inducing
more delay. These transmissions are facilitated by different

6 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

providers, and may therefore have different bandwidth limits.
As shown in Fig 4b, the data are sent from the IoT device
to the compute node in proximity using the connection of
an Internet provider. Assuming that this node is not able to
perform the required processing, the data are routed again to
another compute node. This time however, since the data are
routed from a compute node, the transmission is facilitated
by a cloud provider, i.e., with higher bandwidth.

Thus, when sending data from an IoT device n1 to a
suitable compute node nX using multihop routing, the com-
munication latency MLatn1,nX

consists of the propagation,
transmission, and queuing delays, between each sender and
destination until the data reach nX , i.e.:

MLatn1,nX
= Pron1,n2 + Tran1,n2 +Quen1,n2+

Pron2,n3 + Tran2,n3 +Quen2,n3 + . . .+

PronX−1,nX
+ TranX−1,nX

+QuenX−1,nX

(5)

The propagation delay Pron1,nX
in multihop routing is

the sum of the propagation delay of each transmission,
i.e., Pron1,n2

+ Pron2,n3
+ . . . + PronX−1,nX

. Thus,
the routing path from n1 to nX includes detours (i.e.,
n2, n3, . . . , nX−1), and is not based on a best path algorithm
(unless n2, n3, . . . , nX−1 exist within the best path from
n1 to nX ). Therefore, the traveled distance of the data in
multihop routing, is expected to be longer than a direct trans-
mission from n1 to nX , which means that the propagation
delay is increased.

The transmission delay Tran1,nX
consists of the trans-

mission delay from n1 to n2, and the transmission delay
between compute nodes of cloud providers. The former can
be increased by the bandwidth limit imposed by the Inter-
net provider. The latter however, can be considered rather
insignificant based on Equation (2).

The queuing delay Quen1,nX
consists of the queuing delay

from n1 to n2, and the queuing delays between compute
nodes. Quen1,n2 can be affected by low bandwidth and con-
gestion, but this is unlikely because nodes that reside close to
each other do not typically suffer from low bandwidth [36],
[49], although the limit of the Internet provider still applies.
The queuing delays between compute nodes are expected to
be insignificant based on Equation (3).

C. EDGEROUTING
Based on the analysis of the latency in Sections IV-A
and IV-B, we note that while direct routing has low propaga-
tion delay, the transmission and queuing delays may increase
due to the bandwidth limit of the Internet provider. Multihop
routing on the other hand, may have low transmission and
queuing delays due to the high bandwidth between compute
nodes, but the propagation delay may increase due to the
detours. Thus, in order to leverage both the low propagation
delay of nodes in proximity, and the high bandwidth between
compute nodes, we propose edgeRouting.

According to edgeRouting, the data are routed from an IoT
device n1 to the edge compute node in closest proximity n2,

and from there, the data are routed directly to the suitable
compute node nX for processing, as shown in Fig. 4c. In
the flowchart of Fig. 3, when using edgeRouting the data are
accepted by the target node after one or two transmissions
(one transmission if nX = n2, two otherwise). This means
that the loop that starts when a node does not accept the
data (in Fig. 3) is either not executed (when nX = n2),
or executed one time (when nX 6= n2) which triggers a
second transmission directly to nX . The first transmission is
routed by the Internet provider, and the second by the cloud
provider. This way, during the first routing the data are sent
with low propagation delay, and during the second routing,
the data are sent with low transmission and queuing delays
due to the high bandwidth.

Notably, direct routing commonly preconditions that there
is a placement algorithm which distributes the applications
on the compute nodes, and that the IoT devices (or the
gateways) know the address of nX in order to initiate the
transmission of the data (as discussed in Section IV-A).
Similarly, multihop routing usually preconditions that there
is a placement algorithm, and that the IoT devices know the
address of n2 for initiating the transmission (as discussed
in Section IV-B). edgeRouting preconditions a placement
algorithm, that the address of n2 is known, and that the
address of nX is known. This enables sending the data to
n2 along with the address of nX which is used by n2 for the
second routing.

The communication latency in edgeRouting ELatn1,nX

consists of the propagation, queuing, and transmission delays
to send the data from n1 to n2, and from n2 to nX , i.e.:

ELatn1,nX
= Pron1,n2 + Tran1,n2 +Quen1,n2+

Pron2,nX
+ Tran2,nX

+Quen2,nX
(6)

The propagation delay Pron1,n2
can be insignificant based

on Equation (1). Pron2,nX
depends on the distance between

n2 and nX . The transmission delay includes the Tran1,n2

which can be increased by the bandwidth limit of the Internet
provider, and Tran2,nX

which can be insignificant based on
Equation (2). The queuing delay contains Quen1,n2 which
is unlikely to be affected by congestion (as discussed in
Section IV-B), and Quen2,nX

which can be insignificant
based on Equation (3). Regarding the comparison of edge-
Routing with direct and multihop routing, we deduce that
edgeRouting is able to provide similar or lower communi-
cation latency based on Lemmata 1 and 2:

Lemma 1. Equation (6) . Equation (4).
Proof: When the compute node in closest proximity per-

forms the required processing, i.e., nX = n2, for Equa-
tion (6) applies that: Pron2,nX

+Tran2,nX
+Quen2,nX

= 0
because this part of the equation represents the communi-
cation latency to send the data from n2 to n2, which does
not incur any latency. Thus, Equation (6) = Pron1,n2 +
Tran1,n2

+Quen1,n2
+ 0 = Equation (4).

When nX 6= n2, the propagation delay of edgeRouting
according to Equation (6), i.e., Pron1,n2

+ Pron2,nX
, is

VOLUME 9, 2021 7



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

approximately equal to Pron2,nX
, because Pron1,n2

can be
considered insignificant based on Equation (1). Pron2,nX

can be considered approximately equal to the propagation
delay of direct routing from Equation (4), i.e., Pron1,nX

,
because n1 and n2 reside in proximity, which means that
the distance from n1 to nX is similar to the distance from
n2 to nX . It is possible that these two transmissions take
different paths to nX , which may have slightly different path
distances. However, the very high data speed of the trans-
missions (discussed in Section III-B) makes Pro resilient to
small distance changes. Thus, even in such cases Pro does
not change significantly. Consequently, since Pron2,nX

≈
Pron1,nX

, and Pron1,n2
≈ 0, the propagation delay of

edgeRouting is approximately equal to the propagation delay
of direct routing, i.e.:

Pron1,n2 + Pron2,nX
≈ Pron1,nX

(7)

The transmission delay of direct routing from Equation (4),
i.e., Tran1,nX

, depends on the bandwidth limit of the Internet
provider. Since the bandwidth may be shared among many
users, the effective bandwidth of Tran1,nX

can be lower than
the limit, based on the overall network traffic which depends
on the current network load [50]. This phenomenon can cause
low bandwidth in Tran1,nX

, especially when nX is a remote
cloud compute node [9]. Tran1,n2

is also facilitated by the
Internet provider, and can be affected by the current network
load too. However, since n1 and n2 reside close to each
other, Tran1,n2 is unlikely to suffer from low bandwidth
[36], [49]. Thus, we consider that Tran1,n2

≤ Tran1,nX
.

The equality stands when the network is not/equally loaded
in both transmission delays, which means that similar band-
width is utilized. The inequality applies when the network is
loaded due to nX being a remote node, and Tran1,nX

has
less bandwidth than Tran1,n2 . The case that the network is
loaded only at the edge, i.e., between n1 and n2, without
being loaded between n1 and nX is unlikely because based
on our system model, nX can either equal n2 or be farther
away. The transmission delay of edgeRouting according to
Equation (6) includes Tran1,n2 and Tran2,nX

. Tran2,nX

can be considered insignificant based on Equation (2). Thus,
Tran2,nX

≈ 0 and Tran1,n2
≤ Tran1,nX

, which means
that the transmission delay of edgeRouting is similar or lower
than the transmission delay of direct routing, i.e.:

Tran1,n2 + Tran2,nX
. Tran1,nX

(8)

The queuing delay of edgeRouting according to Equa-
tion (6) consists of Quen1,n2

which is unlikely to suffer
from congestion, and Quen2,nX

which can be considered in-
significant (both are discussed in Section IV-B). The queuing
delay of direct routing from Equation (4), i.e., Quen1,nX

,
may be increased due to congestion in the routing path from
n1 to nX (as discussed in Section IV-A). Thus, we assume
that Quen1,n2

≤ Quen1,nX
. The equality applies if there

is no congestion, whereas the inequality applies if there is
congestion in the path from n1 to nX . Therefore, since
Quen2,nX

≈ 0, and Quen1,n2 ≤ Quen1,nX
, the queuing

delay of edgeRouting is similar or lower than the queuing
delay of direct routing, i.e.:

Quen1,n2
+Quen2,nX

. Quen1,nX
(9)

By adding Inequalities (7), (8), and (9), applies that:

Pron1,n2
+ Pron2,nX

+ Tran1,n2
+ Tran2,nX

+

Quen1,n2
+Quen2,nX

. Pron1,nX
+ Tran1,nX

+

Quen1,nX
⇔

Equation (6) . Equation (4) (10)

Hence, we note that the communication latency of edge-
Routing is expected to be lower than direct routing because
the transmission and queuing delays are likely to be lower,
while the propagation delay is likely to be similar. This
applies because edgeRouting enables the IoT devices to avoid
direct communication with remote compute nodes, thereby
avoiding network paths with potential congestion and low
bandwidth.

Lemma 2. Equation (6) . Equation (5).
Proof: When the compute node in closest proximity per-

forms the required processing, i.e., nX = n2, Equation (6)
= Pron1,n2

+ Tran1,n2
+ Quen1,n2

= Equation (5). Simi-
larly, when nX = n3, Equation (6) = Pron1,n2+Pron2,n3+
Tran1,n2+Tran2,n3+Quen1,n2+Quen2,n3 = Equation (5).

When nX 6= n2 and nX 6= n3, both the propagation delay
of edgeRouting according to Equation (6), and the propaga-
tion delay of multihop routing according to Equation (5) in-
clude Pron1,n2 . Apart from that, edgeRouting also includes
Pron2,nX

, whereas multihop routing includes Pron2,n3
+

. . . + PronX−1,nX
. For these delays applies that the former

is lower or equal, i.e., that Pron2,nX
≤ Pron2,n3

+ . . . +
PronX−1,nX

. The equality applies if n3, . . . , nX−1 exist on
the path from n2 to nX , i.e., the same path that is followed
in Pron2,nX

. The inequality applies when n3, . . . , nX−1 are
detours, because detours increase the distance from n2 to
nX and consequently, the propagation delay (as discussed in
Section IV-B). Thus, by adding Pron1,n2

to both sides of the
aforementioned inequality, applies that the propagation delay
of edgeRouting is equal or lower than the propagation delay
of multihop routing, i.e.:

Pron1,n2
+ Pron2,nX

≤ Pron1,n2 + . . .+ PronX−1,nX

(11)

The transmission delay of edgeRouting according to Equa-
tion (6) includes Tran1,n2 which is also included in the trans-
mission delay of multihop routing according to Equation (5).
Except for that, edgeRouting includes Tran2,nX

, while mul-
tihop routing includes Tran2,n3

+ . . .+ TranX−1,nX
. These

are all transmission delays between compute nodes, which
can be considered insignificant based on Equation (2). Thus,
Tran2,nX

≈ Tran2,n3
+ . . . + TranX−1,nX

. By adding
Tran1,n2

to both sides, applies that the transmission delay of

8 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

edgeRouting is similar to the transmission delay of multihop
routing, i.e.:

Tran1,n2
+ Tran2,nX

≈ Tran1,n2
+ . . .+ TranX−1,nX

(12)

The queuing delay of edgeRouting in Equation (6), and
the queuing delay of multihop routing in Equation (5) both
include queuing delays between compute nodes, which can
be considered insignificant based on Equation (3). Thus,
Quen2,nX

≈ Quen2,n3 + . . . + QuenX−1,nX
. By adding

Quen1,n2 to both sides, applies that the queuing delay of
edgeRouting is similar to the queuing delay of multihop
routing, i.e.:

Quen1,n2
+Quen2,nX

≈ Quen1,n2
+ . . .+QuenX−1,nX

(13)

By adding Inequalities (11), (12), and (13), applies that:

Pron1,n2 + Pron2,nX
+ Tran1,n2 + Tran2,nX

+

Quen1,n2 +Quen2,nX
. Pron1,n2 + . . .+

PronX−1,nX
+ Tran1,n2 + . . .+ TranX−1,nX

+

Quen1,n2 + . . .+QuenX−1,nX
⇔

Equation (6) . Equation (5) (14)

Hence, we note that the communication latency of edge-
Routing is expected to be lower than multihop routing be-
cause the propagation delay is likely to be lower, while the
transmission and queuing delays are likely to be similar. This
applies because the routing path of multihop routing may
include detours which increase the traveled distance of the
data, and consequently the communication latency.

V. EVALUATION
To evaluate edgeRouting, we implement a prototype for each
routing approach, i.e., the proposed edgeRouting, and the
direct and multihop routing. The latter two represent alterna-
tive approaches (as discussed in Section II) which we use as
baselines. Furthermore, we run experiments and we measure
the incurred communication latency. To present our results
in intelligibly, first we describe the details of the evaluation
environment (in Section V-A), and then we discuss the actual
quantitative results (in Section V-B). Subsequently, we pro-
vide a discussion of the examined approaches based on other
aspects than the communication latency (in Section V-C).
Finally, we elaborate on weaknesses and limitations of the
work at hand (in Section V-D).

A. EVALUATION ENVIRONMENT
1) Evaluation Setup
To create a system as shown in Fig. 2, we employ a Raspberry
Pi 4 as the IoT device, and distributed compute nodes provi-
sioned using the Google Cloud Platform (GCP). We position
the IoT device in central Europe (in Vienna, Austria), and we
provision compute nodes in the currently available regions
of the GCP in the broader area, i.e., Zurich, Frankfurt,
Belgium, Netherlands, and London. We consider this to

be an appropriate setup for examining the communication
latency of sending IoT data to distributed compute nodes,
because there are already many experimental IoT and smart
city applications running in this area (e.g., in France, Spain,
Serbia, Germany, and the United Kingdom) [51].

Notably, even though edge compute nodes have been an-
nounced by cloud providers (e.g., the Edge Zones by Mi-
crosoft), their availability is still limited [5]. For this reason,
we emulate the edge compute node n2 using the compute
node in closest proximity to n1 (i.e., the compute node in
Zurich). This way, our emulated edge compute node can be
reached with the lowest propagation delay, while providing
high bandwidth when sending data to other compute nodes
(the same as the edge compute nodes discussed in our system
model in Section III). However, our edge compute node is not
very close to the IoT device, e.g., in the same city, but rather
in a nearby city which is approximately 600 kilometers away.
This means that the propagation delay between n1 and n2

can be about 3 ms, based on the propagation delay definition
discussed in Section III-B. In fact, this delay might be slightly
higher because the network distance between n1 and n2 can
be a bit larger than the physical distance. Consequently, the
propagation delay using the emulated edge compute node
might not be extremely small as discussed in Section III-B,
but it is still small enough not to affect the presented results
significantly. This is discussed further in Section V-C in
which we analyze the error that occurs due to emulating the
edge compute node. In brief, this error is estimated to be
trivial for this evaluation.

Regarding the underlying network, the bandwidth between
GCP compute nodes can be up to 7 Gbps because we use the
external IPs of the compute nodes [11]. Even though internal
IPs enable higher bandwidth, we use the external IPs in order
to make our setup representative of scenarios with compute
nodes from different cloud providers, i.e., when the use of
internal IPs is not possible. For the bandwidth between the
IoT device and the compute nodes (i.e., from the Internet
provider) we use a standard cable connection with upload
bandwidth of up to 6 Mbps (and download bandwidth of up to
50 Mbps). Additionally, since 4G Internet has become typical
for IoT devices [52], we also use a standard 4G Internet
connection with upload bandwidth of up to 7.17 Mbps (and
download bandwidth of up to 48.97 Mbps).

2) Evaluation Baselines
For the implementation of the multihop routing approach,
the data are sent on a path from the IoT device n1 to nX ,
i.e., n1, n2, . . . , nX−1, nX . The compute nodes on this path
are ordered based on network proximity. This means that n2

is the closest compute node to n1, n3 is the closest to n2,
etc. To measure proximity, we use round trip times which
consistently result in the same order of nodes. Notably, the
order of the compute nodes based on network proximity is the
same as based on physical proximity, i.e., n1 is in Vienna, n2

is in Zurich, n3 is in Frankfurt, n4 is in Belgium, n5 is in the
Netherlands, and n6 is in London. To achieve this order, n1

VOLUME 9, 2021 9



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

is configured to send the data to n2, n2 to n3, etc., until nX .
For the implementation of the direct routing approach, the
IoT device n1 is configured to send the data directly to nX .
edgeRouting is implemented as discussed in Section IV-C.

The suitable compute node nX is commonly selected us-
ing a placement algorithm, as discussed in Sections I and II.
However, in order to gather information from routing data to
each compute node of the system, we run separate experi-
ments with each node being selected as nX . To implement
the routing approaches, we use prototypes developed in Java
11, which we deploy both on the IoT device (for sending the
data), and on the compute nodes (for rerouting or accepting
the data for processing). All the nodes use the Debian 10
operating system (the Raspberry Pi uses the Debian 10-based
Raspbian).

3) Evaluation Experiments
Since the proposed edgeRouting aims at reducing the com-
munication latency, we conduct various experiments, and
we measure the induced latency for each routing approach.
Considering that the communication latency can also be
affected by the data size (as discussed in Section III-B),
we perform experiments with different payloads in order to
acquire results that can be extrapolated to a wider range
of use cases. To represent small data sizes, we consider
sensor measurements of few bytes, while for larger data sizes
we examine images of approximately 430 kilobytes (kB).
Both of these data sizes are selected to represent actual IoT
applications, namely: a smart home application, and an IoT
image processing application.

For the small data sizes, we present the results of using
as payload the measurements of a smart gas sensor (in
Section V-B1). The actual values of these measurements are
acquired from a publicly available dataset that is provided
by the Loughborough University, and is part of the data
gathered in the context of the REFIT project which monitored
various smart homes in the United Kingdom [53]. Since these
values have been collected periodically every 30 minutes,
we configure our IoT device to produce periodic messages
with the same frequency. Each message includes a gas sensor
measurement as payload, and is sent to a compute node nX

for processing. This configuration can be representative of a
smart energy use case (e.g., for detecting anomalies such as
leaks and malfunctions), and also for a variety of other IoT
use cases that include sending periodic sensor measurements
to a compute node [54].

For the large data sizes, we experiment with images that
can be representative of various IoT use cases that perform
image processing (in Section V-B2). For example, a smart
doorbell that sends a notification with the image of the visitor
to the house owner, or opens the door automatically if the
visitor is also a resident [34]. The size of about 430 kB
is selected for being a common size of images intended
for face recognition in environments with edge and cloud
compute nodes [55]. We also perform experiments with face
recognition tasks being executed in compute nodes using the

OpenCV library [56], which aid in interpreting the communi-
cation latency results better. This is discussed in Section V-C.

Since measurements of experiments conducted using the
Internet can vary over time due to potential changes in the
network load, we run the three examined routing approaches
at the same time. Thus, each generated sensor measurement
is sent to nX three times based on each routing approach
(sequentially). We do this in order to collect results which
represent the examined approaches under the same network
conditions, thereby making the results of each approach
comparable to the others.

In the experiments, we measure the time needed to send the
data from the IoT device n1 to nX . This time period repre-
sents the communication latency from n1 to nX including all
delays, and potential additional rerouting by compute nodes
on path (i.e., detours). Since we use HTTP requests to send
the data, the communication latency also includes parsing of
the HTTP headers and making the data available to nX , but
excludes any other processing by nX .

B. EVALUATION RESULTS
For this evaluation, we run 2,000 experiments for each rout-
ing approach, in order to acquire results that capture the
general behavior of the system for each setting. Notably,
the latency measurements of all the examined approaches
include outliers. This is expected in experiments conducted
over the Internet, because the resources of the underlying
network may be shared among many users which affect the
network load. The outliers represent isolated occurrences
of maximum values which may affect the average latency,
despite being rather rare. For this reason, we consider the
median as a more representative statistical measure of the
results, since it is not affected (as much) by the outliers. To
visualize our results in a meaningful manner, in the following
we present box plots which include all the latency values of
our experiments, and we interpret these values based on the
median, and the difference in the interquartile range.

1) Sensor Measurements as Payload

In Figs. 5 and 6, we plot the distribution of the latency val-
ues when sending sensor measurements via cable and 4G
Internet. These figures show the latency when each com-
pute node of the system is selected as nX . Specifically,
Fig. 5a shows the latency of direct routing over cable, Fig. 5b
shows the latency of multihop routing over cable, and Fig. 5c
shows the latency of edgeRouting over cable. Similarly,
Figs. 6a, 6b, and 6c shows the latency of the examined rout-
ing approaches over 4G.

When using the same Internet connection, the latency of
n2 is always very similar, and the latency of n3 is very
similar between multihop routing and edgeRouting. This is
expected due to the proofs of Lemmata 1 and 2 which say
that n2 has the same latency in all the examined routing
approaches, and n3 has the same latency in multihop routing
and edgeRouting.

10 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

(a) Direct (b) Multihop (c) edgeRouting

FIGURE 5: Latency of sending sensor measurements to distributed compute nodes via cable Internet for each routing approach.

(a) Direct (b) Multihop (c) edgeRouting

FIGURE 6: Latency of sending sensor measurements to distributed compute nodes via 4G Internet for each routing approach.

For direct routing, we note that based on the interquartile
ranges of Figs. 5a, and 6a, the latency has a tendency to
increase when nX resides farther away from n1. This is
expected since the propagation delay increases due to the
longer distance between n1 and nX . Multihop routing also
exhibits this behavior based on the interquartile ranges of
Figs. 5b, and 6b, although the rate of the increase is higher.
This happens because the propagation delay of multihop
routing includes detours which are not present in direct
routing. In edgeRouting as shown in Figs. 5c, and 6c, this
increase is not as evident. There is a clear increase in the
interquartile ranges from n2 to n3, but after that the latency
stabilizes with a slight increase for n6 in Fig. 5c. This hap-
pens because even though the propagation delay increases,
this increase is countered by a decrease in the transmission
and queuing delays due to the transmissions between com-
pute nodes.

0

50

100

150

n₂ n₃ n₄ n₅ n₆

L
at

en
cy

 (
m

s)

Direct Multihop edgeRouting

FIGURE 7: Median values of latency from Fig. 5 for each
routing approach.

To visualize the trend of each routing approach in a more
obvious way, Fig. 7 shows only the median values of latency
when using cable Internet (from Fig. 5). Similarly, in Fig. 8,
we show only the median values of latency when using 4G
Internet (from Fig. 6). In Fig. 7, we note that all approaches
start with a very similar median at n2 (about 59 ms). At
n3, we observe that the median of direct routing (64 ms) is
increased only slightly, while multihop and edgeRouting are
a bit higher (about 74 ms). This happens because multihop
and edgeRouting follow the same path to n3 which includes
a detour from n2. After that, the median of multihop routing
keeps increasing until n6 (133 ms), while the median values
of direct routing and edgeRouting are very similar, and do
not increase significantly until n6 (the edgeRouting median
is 81 ms, and the direct routing median is 86 ms). Thus,
we conclude that when sending sensor measurements over
cable Internet, edgeRouting is similar or better than multihop

0

50

100

150

n₂ n₃ n₄ n₅ n₆

L
at

en
cy

 (
m

s)

Direct Multihop edgeRouting

FIGURE 8: Median values of latency from Fig. 6 for each
routing approach.

VOLUME 9, 2021 11



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

(a) Direct (b) Multihop (c) edgeRouting

FIGURE 9: Latency of sending images to distributed compute nodes via cable Internet for each routing approach.

(a) Direct (b) Multihop (c) edgeRouting

FIGURE 10: Latency of sending images to distributed compute nodes via 4G Internet for each routing approach.

routing with latency reductions that reach up to 39% based
on the median values, while direct routing and edgeRouting
perform similarly.

In Fig. 8, we can observe that all approaches start with a
very similar median at n2 (about 99 ms). At n3, we observe
that all approaches increase similarly (about 114 ms) due to
the increased propagation delay. After that, each approach
follows a different trend.

Direct routing increases monotonically but only slightly,
with a more defined increase at n6 (132 ms). This happens
due to the increased propagation delay which does not cause
considerable changes because the nodes do not reside ex-
tremely far from each other. Multihop routing also increases
monotonically until n6 (167 ms), but with a higher rate
because the propagation delay includes detours. edgeRouting
does not follow this trend, but rather stabilizes until n6

(107 ms). This happens because the decrease in transmis-

0

600

1200

1800

n₂ n₃ n₄ n₅ n₆

L
at

en
cy

 (
m

s)

Direct Multihop edgeRouting

FIGURE 11: Median values of latency from Fig. 9 for each
routing approach.

sion and queuing delays (due to employing transmissions
between compute nodes) is enough to hide the increase of
the propagation delay. In multihop routing, there is also
similar decrease in transmission and queuing delays, but this
not noticeable due to the increased propagation delay of
the detours. Thus, we conclude that when sending sensor
measurements over 4G Internet, edgeRouting is similar or
better than the baselines. The latency reductions reach up to
19% compared to direct routing, and up to 36% compared to
multihop routing.

2) Images as Payload
In Figs. 9 and 10, we show the distribution of the latency
results when sending images using the cable and the 4G Inter-
net connections. To show the trend of these results, we show
the median values alone in Figs. 11 and 12. Figs. 9 and 10
show the latency for each compute node of the system being

0

600

1200

1800

n₂ n₃ n₄ n₅ n₆

L
at

en
cy

 (
m

s)

Direct Multihop edgeRouting

FIGURE 12: Median values of latency from Fig. 10 for each
routing approach.

12 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

selected as nX . Figs. 9a, 9b, and 9c show the latency over
cable for direct routing, multihop routing, and edgeRouting,
respectively. Similarly, Figs. 10a, 10b, and 10c show the la-
tency over 4G for direct routing, multihop routing, and
edgeRouting, respectively. Presumably, the latency of n2

for each routing approach when using the same Internet
connection is very similar, and the latency of n3 is similar
between multihop routing and edgeRouting (as discussed in
Lemmata 1 and 2).

Based on the interquartile ranges of the latency over cable
in Fig. 9, we note that all routing approaches have a very
slight tendency to increase. This tendency stems from the
increased propagation delay when nX is farther away. The
reason that this increase is very small is that the propagation
delay does not contribute significantly to the latency because
the routed data are images (i.e., rather large). Thus, the
latency is affected more by the transmission and queuing
delays. In the case of edgeRouting, the propagation delay
is also increased, but this is not very obvious due to the
low transmission and queuing delays of the transmissions
between compute nodes. Multihop routing also has low
transmission and queuing delays but the latency is increased
because of the detours.

When using 4G as shown in Fig. 10, the baselines exhibit
an increase which is now more defined, while edgeRouting is
rather stable. The reason that the increase is more defined,
is that the latency is much lower when using 4G. Thus,
the same increase in propagation delay has more potential
to affect the overall latency. However, this does not affect
edgeRouting significantly, because the increased propagation
delay is again hidden by the low transmission and queuing
delays.

Interestingly, when sending images over cable the re-
sults have much more variance than over 4G, which can
be observed by looking at the interquartile ranges between
Figs. 9 and 10. We believe that the prime contributing factor
for this phenomenon is the higher upload bandwidth limit of
the 4G network which allows larger volumes of data to be
transferred at once, thereby reducing the variance. Another
factor could be a potential difference in the network load
between cable and 4G. However, since this is not observed
when sending sensor measurements (between Figs. 5 and 6),
it is more likely the former.

In Fig. 11 which shows the median values of latency
over cable (from Fig. 9), we note that the three approaches
are very similar at n2 (about 1,190 ms), and n3 (about
1,290 ms). After that, direct routing increases the most until
n6 (1,639 ms). Multihop routing also increases but slightly
less until n6 (1,518 ms). edgeRouting remains rather sta-
ble until n6 (1,293 ms). Therefore, when sending images
over cable Internet, edgeRouting is similar or better than
the baselines with latency reductions that reach up to 21%
compared to direct routing, and up to 15% compared to
multihop routing.

In Fig. 12 which shows the median values of latency over
4G (from Fig. 10), we observe that all approaches start with

(a) Via cable (b) Via 4G

FIGURE 13: Latency of sending sensor measurements to
distributed compute nodes for each routing approach.

(a) Via cable (b) via 4G

FIGURE 14: Latency of sending images to distributed com-
pute nodes for each routing approach.

a very similar median at n2 (about 530 ms), and n3 (about
570 ms). After that, direct and multihop routing increase until
n6 (988 ms and 1,482 ms, respectively). edgeRouting on the
other hand increases only slightly until n6 (671 ms). Hence,
when sending images over 4G, edgeRouting is similar or
better than the baselines, and the latency reduction is up to
32% compared to direct routing, and up to 55% compared to
multihop routing.

3) Overview of the Results
To provide an overview of our results, Fig. 13a shows the dis-
tribution of all the latency values of sending sensor measure-
ments over cable. This means that each box plot includes the
latency from all compute nodes being used as nX . Similarly,
Fig. 13b shows the latency of sending sensor measurments
over 4G, Fig. 14a shows the latency of images over cable,
and Fig. 14b shows the latency of images over 4G. The exact
values of average, median, and standard deviation of these
box plots are shown in Tables 2 and 3.

In Fig. 13a, we note that the median of edge-
Routing (73 ms) using a cable connection is very similar
to direct routing (74 ms), but approximately 26% less than
multihop routing (98 ms). In addition, we note that the upper

VOLUME 9, 2021 13



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

quartile of edgeRouting (79 ms) is well below the median of
multihop routing. This shows that 75% of the edgeRouting
values are lower than 50% of the multihop routing values.
Fig. 13a also shows that, excluding outliers, multihop routing
has the highest latency. This happens because the transmis-
sion and queuing delays which are affected by the data size
do not contribute a lot to the latency, since the data size is
small. Thus, the latency is affected more by the propagation
delay. Multihop routing has the highest propagation delay
because the data travels to nX through detours, as discussed
in Section IV-B. Direct routing and edgeRouting have similar
propagation delays (as discussed in Section IV-C) which is
why their latency is also similar.

The results when using 4G shown in Fig. 13b, exhibit the
same behavior as cable (in Fig. 13a) with regard to the in-
terquartile range of multihop and edgeRouting. However, the
upper quartile of edgeRouting (115 ms) is now lower than the
median of direct routing (116 ms). This indicates that 75%
of the values of edgeRouting are also lower than 50% of the
values of direct routing. This stems from the transmission and
queuing delays which are affected by the bandwidth, and are
lower in edgeRouting due to the higher bandwidth between
compute nodes. The median of edgeRouting (105 ms) is
approximately 9% less than direct routing (116 ms), and 16%
less than multihop routing (125 ms).

The latency when using 4G (in Fig. 13b) is, overall, higher
than when using cable (in Fig. 13a), even though the 4G
connection has a higher upload bandwidth limit. This shows
that the bandwidth of the Internet provider is not the only
factor that affects the incurred latency of sending data to
compute nodes. For this reason, routing approaches such
as edgeRouting may be able to reduce the communication
latency despite the utilized Internet connection. The reason
that 4G has higher latency in this case, is likely due to
potential higher propagation delay of the paths over the 4G
network (since small data sizes are not affected significantly
by the transmission delay).

In Fig. 14a which shows the latency of images over cable,
the median of edgeRouting (1,252 ms) using a cable connec-
tion is approximately 8% less than direct routing (1,356 ms),
and approximately 7% less than multihop routing (1,343 ms).
Notably, the time reduction of edgeRouting when sending
images over cable (about 100 ms reduction in the median
compared to direct and multihop routing), is much higher
than when sending sensor measurements (1 ms compared
to direct routing, and 25 ms compared to multihop routing).
The reason for this is that images are larger files which are
more likely to be affected by bandwidth limitations. Thus,
since edgeRouting leverages the high bandwidth between
compute nodes, images are able to be sent faster. In Fig. 14b
which shows the results of images over 4G, we note that
the median of edgeRouting (644 ms) is approximately 32%
less than direct routing (954 ms), and approximately 46%
less than multihop routing (1,195 ms). Excluding outliers,
the maximum value of edgeRouting (846 ms) is less than
the median of both direct routing, and multihop routing. This

TABLE 2: Average, median, and standard deviation of the
latency values in Fig. 13.

Cable 4G
Direct Multi. edgeR. Direct Multi. edgeR.

Average 76 100 75 120 133 111
St. dev. 21 33 21 28 33 30
Median 74 98 73 116 125 105

TABLE 3: Average, median, and standard deviation of the
latency values Fig. 14.

Cable 4G
Direct Multi. edgeR. Direct Multi. edgeR.

Average 1515 1478 1376 920 1085 723
St. dev. 677 587 584 309 419 263
Median 1356 1343 1252 954 1195 644

suggests that all the values of edgeRouting (apart from the
outliers) are less than 50% of the values of the baselines.

Notably, the latency of using 4G to send images (shown
in Fig. 14b) is, overall, lower than with cable (shown in
Fig. 14a). This can be attributed to the higher upload limit of
the 4G connection. Furthermore, we note that edgeRouting
performs particularly well compared to the baselines when
using 4G (as shown in Fig. 14b). We presume that the reason
for this is that the 4G network which is primarily used by
mobile devices, may be less loaded at the network edge
(i.e., between n1 and n2) than cable which is used primarily
by stationary users that commonly run more bandwidth-
consuming applications such as online gaming [57]. Thus,
edgeRouting benefits from using a larger part of the available
bandwidth between n1 and n2. Direct routing on the other
hand, may not benefit from this, because the image is sent
from n1 to nX , and this path might be more loaded. Multihop
routing can also benefit from more bandwidth at the edge,
but the overall latency is increased due to the detours. This
assumption is also supported by Fig. 10 which shows that
the latency of direct routing is rather low for nearby nodes
n2 and n3 suggesting that the network is not particularly
loaded. However, after n3 there is a steep increase indicating
potential bandwidth limitations for direct transmissions to
remote nodes. Similarly, multihop routing has low latency for
nodes n2 and n3, but after that the latency increases due to
the accumulated propagation delay of the detours.

In our experiments, we also measure the bit rate of the
transmissions based on the routed data (including payload
and packet headers). These results align with the presented
communication latency results, and can be interpreted in the
same manner. For this reason, we do not discuss them explic-
itly in this evaluation. However, in order to provide a differ-
ent perspective on the overall performance of each routing
approach we note the following: When sending sensor mea-
surements over cable and 4G, direct routing has an average
of 3.42 kB/s with a standard deviation of 0.97 kB/s. Multihop
routing has an average of 2.89 kB/s with a standard deviation

14 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

of 0.95 kB/s. edgeRouting has an average of 3.54 kB/s with a
standard deviation of 0.87 kB/s. When sending images over
cable and 4G, direct routing has an average of 431.06 kB/s
with a standard deviation of 198.45 kB/s. Multihop routing
has an average of 400.36 kB/s with a standard deviation of
189.04 kB/s. edgeRouting has an average of 499.83 kB/s with
a standard deviation of 199.23 kB/s. Presumably, the values
of sending sensor measurements are much lower than images
because the available network bandwidth of both Internet
connections is not fully utilized when sending very small data
sizes. This reduces the bit rate compared to utilizing more
of the available bandwidth, which happens when sending
images.

Hence, we conclude that, overall, edgeRouting provides
the lowest latency and highest bit rate in our experiments.
There are cases that edgeRouting has similar latency to the
baselines, but the distribution of the latency values in gen-
eral, is reduced. The minimum gains for edgeRouting occur
when sending sensor measurements over cable Internet, in
which case edgeRouting performs similar to direct routing
(but better than multihop routing with 26% reduction). The
maximum gains occur when sending images over 4G, in
which case edgeRouting reduces the latency by 32% and
46% compared to direct and multihop routing, respectively.
Importantly, these outcomes comply with the analysis of
Section IV-C, which draws similar conclusions (i.e., Lem-
mata 1 and 2).

C. DISCUSSION
Since the proposed edgeRouting aims at reducing the com-
munication latency of sending IoT data to edge and cloud
compute nodes, our evaluation reflects on that by measuring
this latency, and by comparing it to the baselines. However,
the implementation of each routing approach utilizes a dif-
ferent amount of computational resources, e.g., for rerouting,
which can be considered as overhead. For example, direct
routing does not require additional computational resources
in compute nodes for rerouting data, because the data are sent
directly to nX . Multihop routing on the other hand, may em-
ploy many compute nodes for rerouting (i.e., n2, . . . , nX−1)
until the data reach nX , while edgeRouting employs exactly
one (i.e., n2). To make sure that the overhead does not
compromise the operation of the system, in our experiments
we monitor the resource utilization of all the compute nodes.
This overhead is found to be negligible in all the examined
approaches. Specifically, we use relatively small compute
nodes (i.e., with 2 vCPU), and the CPU utilization in all the
approaches remains constantly less than 3%, with sporadic
spikes which do not exceed 7%.

Furthermore, in systems with edge and cloud compute
nodes, the goal is usually to achieve low latency of offloading
computations. This includes both the communication latency,
and the execution delay of the application [58]. The execution
delay can vary based on the specific tasks of an applica-
tion. For example, performing face recognition tasks on an
edge node using common image files (as the images we

use in this evaluation), requires about 200 ms [55]. In our
experiments, using the OpenCV library and pre-trained Haar
cascade classifiers, we also reach this number, with a stan-
dard deviation of about 30 ms. Notably, this is significantly
lower than the average time needed for sending an image
to a compute node, as discussed in Section V-B2. Thus, the
communication latency can be a prime factor in the overall
latency of offloading computations. This further advocates
the importance of approaches that reduce the communication
latency—such as the proposed edgeRouting. Additionally,
the communication latency may include both upload and
download latency, if the application produces a result that
needs to be sent back (e.g., to an actuator). Even though
the download bandwidth of the Internet provider may be
higher than the upload bandwidth (which is the case in our
setup), the difference compared to the bandwidth between
compute nodes is still significant. Thus, we consider that the
interpretation of our results, applies to download latency as
well.

As discussed in Section V-A1, in our experiments we use
a compute node which resides in Zurich, to emulate the edge
compute node n2. Thus, n2 is not in such close proximity
to n1 to provide close-to-zero propagation delay. Instead,
Pron1,n2

≈ 3 ms, as mentioned in Section V-A1. This may
raise the question of how the presented results would differ,
had we used an actual edge compute node. If we had used
an edge node as n2, the latency values of n2 in all our
experiments, would be slightly lower due to a 3 ms lower
propagation delay. In direct routing, the rest of the latency
values (i.e., to all the compute nodes apart from n2), would
not be affected because Pron1,n2

is not part of the commu-
nication latency DLatn1,nX

since the data is sent directly
to nX . This also means that for direct routing, the median
values of the overall latency in Figs. 13 and 14 would not be
affected, because the median is not affected by a change in
the lower values of the data. In multihop routing and edge-
Routing, Pron1,n2 always affects the communication latency
MLatn1,nX

and ELatn1,nX
, as discussed in Section IV.

This means that for multihop routing and edgeRouting, all
the latency values of our experiments would be slightly lower
due to a 3 ms reduction in Pron1,n2

. The median values in
this case would also be lowered by the same amount as all the
other values. However, since the exact values of the medians
are between 73 and 1,343 ms (as shown in Tables 2 and 3),
a 3 ms reduction accounts for about 0.2–4% of these values.
A slight change in such a small percentage of the values does
not have the potential to create considerable error. Thus, we
consider that the emulated edge compute node does not affect
the results significantly, compared to an actual edge compute
node.

Based on our analysis in Section IV, edgeRouting man-
ages to provide similar or lower communication latency than
the baselines, under the condition that Pron1,n2

approxi-
mates zero, as shown in Equation (1). However, the presented
results show that the proposed routing approach works well
even when Pron1,n2

slightly deviates from zero. The reason

VOLUME 9, 2021 15



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

that our approach works well even though n2 is not an
edge compute node, is that n2 is significantly closer to n1

than the other available compute nodes. Thus, we note that
edgeRouting performs best when n2 is an edge compute node
in very close proximity to n1, although benefits can also be
observed as long as n2 is significantly closer to n1 than the
other compute nodes of the system.

It is worth mentioning that even though our system model
and evaluation target the specific case of IoT devices send-
ing data to distributed compute nodes of cloud providers,
edgeRouting may also be applicable to other similar environ-
ments. For example, a recent trend is the utilization of various
distributed local nodes which all work together to provide an
ad hoc cloud [59]. In such environments, there is usually a
cloud connector that connects the ad hoc cloud with actual
cloud resources [60]. For this exact communication between
a node of the ad hoc cloud, and cloud compute nodes of
cloud providers, edgeRouting can be used for reducing the
communication latency. In this case, the local ad hoc cloud
node becomes the data source n1, while the other available
cloud compute nodes are n2, . . . , nN . Therefore, our system
model and the presented evaluation can also apply for the
communication between an ad hoc cloud and compute nodes
of cloud providers.

D. WEAKNESSES AND LIMITATIONS
In Section III-B, we formulate Equations (1), (2), and (3), for
delays that do not contribute significantly to the communi-
cation latency, and approximate zero. While these equations
can apply in the target environment, there is no guarantee that
they will always hold, especially since the communication
over the Internet can be unpredictable [61], [62]. Therefore,
we consider this as a potential weakness in our theoretical
analysis of the communication latency in systems with edge
and cloud compute nodes. In our experiments, we use the
standard 7 Gbps bandwidth limit with external IPs from
Google, and an edge compute node which resides in a nearby
city. These settings do not opt for a very close approximation
to zero in Equations (1), (2), and (3), which could be pursued
with utilizing an edge compute node in the same city, and
higher bandwidth that can be acquired using internal IPs or a
pay-to-use plan for increased bandwidth. Despite not aiming
for a close approximation to zero, edgeRouting still exhibits
the expected behavior with reduced communication latency
over the baselines. This shows that even when taking into
account the potential weakness in our theoretical analysis
due to the unpredictability of the Internet, edgeRouting still
provides significant benefits.

A potential limitation of our work can be with regard to
the different routing policies of Internet and cloud providers.
These providers may implement their own policies for select-
ing the network path of every transmission, and each policy
may affect the communication latency. In our experiments,
we use only the default routing of the providers, because
different policies are not configurable by users.

Nevertheless, we consider that edgeRouting can exhibit

benefits over direct and multihop routing, independently of
the routing policy of the providers, for the following reasons:
i) In direct routing, the Internet provider is not aware of po-
tential nearby compute nodes of cloud providers, that can be
used as detours. Thus, the data cannot be sent through a com-
pute node. For this reason, edgeRouting which preconditions
an edge compute node that can be used as a detour, holds an
advantage over direct routing, regardless of the routing policy
of the Internet provider. ii) In multihop routing, sending
data through various compute nodes can introduce detours
which inevitably increase the propagation delay. Therefore,
by avoiding these detours, edgeRouting can provide benefits
independently of the routing policy of the cloud provider.
There is the possibility that only compute nodes which exist
on the network path from n2 to nX are used as detours. In this
case, edgeRouting and multihop routing perform similarly,
with multihop routing having slightly higher latency due to
the overhead of examining the data on each compute node on
the path (as discussed in Section IV-B).

Another way to affect the selection of routing paths be-
tween compute nodes, is by utilizing a load balancer. For
example, GCP allows the use of different traffic tiers that
can be utilized by a load balancer, for routing the incoming
traffic of a compute node to different instances which may
reside in different areas. Thus, this technique can be useful
when scaling a node by creating multiple instances, because
the load balancer can distribute the incoming traffic on these
instances automatically [63]. Even though load balancers can
affect the routing paths, we do not consider them as com-
peting approaches, but rather as supplementary techniques
which can be implemented on top of edgeRouting, for scaling
purposes.

VI. CONCLUSION
Since current approaches for routing IoT data to edge and
cloud compute nodes may not consider routing paths with
increased bandwidth due to detours, in this paper we propose
edgeRouting. edgeRouting routes the data through the closest
edge compute node which is commonly able to communicate
with other compute nodes with very high bandwidth, thereby
reducing the communication latency. To support this claim,
we analyze the factors that contribute to the communication
latency in edgeRouting and in alternative approaches, and
we show that edgeRouting provides similar or lower latency.
Furthermore, we perform an evaluation using nearby and
remote compute nodes, and considering real-world use cases.
Our results show that edgeRouting reduces the communica-
tion latency by up to 55% compared to the alternatives.

Due to the encouraging results which are particularly
promising when routing images over a 4G Internet connec-
tion, in the future we plan to adapt our approach to consider
compute nodes in base stations for potential integration into
5G networks. This can be very useful for applications that
operate over cellular networks and require a lot of bandwidth,
such as IoT image processing, augmented reality, and video
streaming. Exploring such use cases may also reveal further

16 VOLUME 9, 2021



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

insights which apply when using different file sizes. In ad-
dition, it would be interesting to investigate the efficiency
of edgeRouting when applied to computing systems which
employ only private edge compute nodes, i.e., that do not
belong to a cloud provider. This can provide benefits for use
cases related to the concept of ad hoc clouds.

REFERENCES
[1] T. Pasquier, J. Singh, J. Powles, D. Eyers, M. Seltzer, and J. Bacon, “Data

provenance to audit compliance with privacy policy in the internet of
things,” Personal and Ubiquitous Computing, vol. 22, no. 2, pp. 333–344,
2018.

[2] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the
internet of things: A case study,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 1275–1284, 2018.

[3] V. Karagiannis and S. Schulte, “Distributed algorithms based on proximity
for self-organizing fog computing systems,” Pervasive and Mobile Com-
puting, vol. 71, p. 101316, 2021.

[4] “Google cloud network,” accessed: April 2021. [Online]. Available:
https://cloud.google.com/about/locations#network

[5] “Microsoft edge zones,” accessed: April 2021. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/networking/edge-
zones-overview#edge-zones

[6] V. Karagiannis and A. Papageorgiou, “Network-integrated edge computing
orchestrator for application placement,” in International Conference on
Network and Service Management (CNSM). IEEE, 2017, pp. 1–5.

[7] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of virtual
machine management in edge computing,” Proceedings of the IEEE, vol.
107, no. 8, pp. 1482–1499, 2019.

[8] V. Karagiannis, “Compute node communication in the fog: Survey and
research challenges,” in Workshop on Fog Computing and the IoT (IoT-
Fog). ACM, 2019, pp. 36–40.

[9] S. A. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan, “The
emerging landscape of edge computing,” Mobile Computing and Commu-
nications, vol. 23, no. 4, pp. 11–20, 2020.

[10] Y.-H. Liu, J. Prince, and S. Wallsten, “Distinguishing bandwidth and
latency in households’ willingness-to-pay for broadband internet speed,”
Information Economics and Policy, vol. 45, pp. 1–15, 2018.

[11] “Google cloud limits,” accessed: April 2021. [Online]. Available:
https://cloud.google.com/vpc/docs/quota#per_instance

[12] B. R. Kandukuri, R. P. V., and A. Rakshit, “Cloud security issues,” in
International Conference on Services Computing (SCC). IEEE, 2009,
pp. 517–520.

[13] A. Samanta, L. Jiao, M. Mühlhäuser, and L. Wang, “Incentivizing mi-
croservices for online resource sharing in edge clouds,” in International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 420–430.

[14] P. Bellavista, L. Foschini, N. Ghiselli, and A. Reale, “MQTT-based
Middleware for Container Support in Fog Computing Environments,” in
Symposium on Computers and Communications (ISCC). IEEE, 2019, pp.
1–7.

[15] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware IoT
networks,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–8269,
2019.

[16] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 3246–3257, 2018.

[17] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource
allocation in mixed fog/cloud computing systems with min-max fairness
guarantee,” IEEE Transactions on Communications, vol. 66, no. 4, pp.
1594–1608, 2018.

[18] I. Martinez, A. Jarray, and A. S. Hafid, “Scalable design and dimensioning
of fog-computing infrastructure to support latency sensitive IoT applica-
tions,” IEEE Internet of Things Journal, vol. 7, pp. 5504–5520, 2020.

[19] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and
G. Pavlou, “On uncoordinated service placement in edge-clouds,” in
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2017, pp. 41–48.

[20] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. de Lara,
“Cloudpath: A multi-tier cloud computing framework,” in Symposium on
Edge Computing. ACM, 2017, pp. 1–13.

[21] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in International Conference on Computer Communi-
cations (INFOCOM). IEEE, 2016, pp. 1–9.

[22] F. Y. Okay and S. Ozdemir, “Routing in fog-enabled IoT platforms: A
survey and an SDN-based solution,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 4871–4889, 2018.

[23] S. Brennan and M. Rabinovich, “Improving communication through over-
lay detours: Pipe dream or actionable insight?” in International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1422–
1431.

[24] S.-J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu,
“Bandwidth-aware routing in overlay networks,” in International Confer-
ence on Computer Communications (INFOCOM). IEEE, 2008, pp. 1732–
1740.

[25] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in internet routing overlays.” in Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 2009,
pp. 467–480.

[26] P. K. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of internet paths with one-hop
source routing.” in Symposium on Operating Systems Design and Imple-
mentation (OSDI), vol. 4. USENIX, 2004, pp. 13–13.

[27] C. X. Cai, F. Le, X. Sun, G. G. Xie, H. Jamjoom, and R. H. Campbell,
“Cronets: Cloud-routed overlay networks,” in International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2016, pp. 67–77.

[28] M. Satyanarayanan, G. Klas, M. Silva, and S. Mangiante, “The seminal
role of edge-native applications,” in International Conference on Edge
Computing (EDGE). IEEE, 2019, pp. 33–40.

[29] F. Pallas, P. Raschke, and D. Bermbach, “Fog computing as privacy
enabler,” IEEE Internet Computing, vol. 24, no. 4, pp. 15–21, 2020.

[30] W. Shi, G. Pallis, and Z. Xu, “Edge computing [scanning the issue],”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1474–1481, 2019.

[31] “Google cloud regions,” accessed: April 2021. [Online]. Available:
https://cloud.google.com/about/locations#regions

[32] “Microsoft cloud regions,” accessed: April 2021. [Online]. Available:
https://azure.microsoft.com/en-us/global-infrastructure/geographies

[33] S. Ilager, R. Muralidhar, and R. Buyya, “Artificial intelligence (ai)-centric
management of resources in modern distributed computing systems,” in
Cloud Summit. IEEE, 2020, pp. 1–10.

[34] C. Perera, C. H. Liu, and S. Jayawardena, “The Emerging Internet of
Things Marketplace from an Industrial Perspective: A Survey,” IEEE
Transactions on Emerging Topics in Computing, vol. 3, no. 4, pp. 585–
598, 2015.

[35] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya,
“Cost-effective processing for delay-sensitive applications in cloud of
things systems,” in International Symposium on Network Computing and
Applications (NCA). IEEE, 2016, pp. 162–169.

[36] V. Karagiannis and S. Schulte, “Comparison of alternative architectures in
fog computing,” in International Conference on Fog and Edge Computing
(ICFEC). IEEE, 2020, pp. 19–28.

[37] Y. Zhong, M. Haenggi, F.-C. Zheng, W. Zhang, T. Q. Quek, and W. Nie,
“Toward a tractable delay analysis in ultra-dense networks,” IEEE Com-
munications Magazine, vol. 55, no. 12, pp. 103–109, 2017.

[38] X. Li and X. Zhang, “A concurrent multi-path transmission of data
allocation algorithm based on heterogeneous networks,” in International
Conference on Systems and Informatics (ICSAI). IEEE, 2016, pp. 487–
491.

[39] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of things,”
Transaction on IoT and Cloud computing, vol. 3, no. 1, pp. 11–17, 2015.

[40] R. Hussain, M. Amini, A. Kovalenko, Y. Feng, and O. Semiari, “Federated
edge computing for disaster management in remote smart oil fields,” in
International Conference on High Performance Computing and Commu-
nications (HPCC). IEEE, 2019, pp. 929–936.

[41] P. Kansal and A. Bose, “Bandwidth and latency requirements for smart
transmission grid applications,” IEEE Transactions on Smart Grid, vol. 3,
no. 3, pp. 1344–1352, 2012.

[42] M. Fadhil, G. Owenson, and M. Adda, “Proximity awareness approach
to enhance propagation delay on the bitcoin peer-to-peer network,” in
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 2411–2416.

[43] “Microsoft cloud limits,” accessed: April 2021. [Online].
Available: https://docs.microsoft.com/en-us/azure/virtual-network/virtual-
machine-network-throughput

VOLUME 9, 2021 17



Karagiannis and Schulte: edgeRouting: Using Compute Nodes in Proximity to Route IoT Data

[44] X. Ji, J. Huang, M. Chiang, and F. Catthoor, “Downlink OFDM scheduling
and resource allocation for delay constraint SVC streaming,” in Interna-
tional Conference on Communications (ICC). IEEE, 2008, pp. 2512–
2518.

[45] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and G. Agha, “Droplet:
Distributed operator placement for IoT applications spanning edge and
cloud resources,” in International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 1–8.

[46] V. Karagiannis, “Building a testbed for the internet of things.” Alexander
Technological Educational Institute of Thessaloniki, 2014, pp. 1–92.

[47] M. Z. Ahmed, A. H. AbdallahHashim, O. O. Khalifa, and M. J. Salami,
“Border gateway protocol to provide failover in multihoming environ-
ment,” International Journal of Information Technology, vol. 9, no. 1, pp.
33–39, 2017.

[48] N. Akhtar, M. A. Khan, A. Ullah, and M. Y. Javed, “Congestion avoidance
for smart devices by caching information in MANETS and IoT,” IEEE
Access, vol. 7, pp. 71 459–71 471, 2019.

[49] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[50] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, “Scalability
and performance evaluation of edge cloud systems for latency constrained
applications,” in Symposium on Edge Computing (SEC). IEEE, 2018, pp.
286–299.

[51] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things
(IoT): Research, Simulators, and Testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, 2017.

[52] M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik, and Y. Le Moul-
lec, “A survey on the roles of communication technologies in IoT-based
personalized healthcare applications,” IEEE Access, vol. 6, pp. 36 611–
36 631, 2018.

[53] “Refit smart home dataset,” accessed: April 2021. [Online]. Available:
http://www.doi.org/10.17028/rd.lboro.2070091.v1

[54] F. J. Dian, R. Vahidnia, and A. Rahmati, “Wearables and the internet of
things (IoT), applications, opportunities, and challenges: A survey,” IEEE
Access, vol. 8, pp. 69 200–69 211, 2020.

[55] N. Muslim and S. Islam, “Face recognition in the edge cloud,” in Inter-
national Conference on Imaging, Signal Processing and Communication
(ICISPC). ACM, 2017, pp. 5–9.

[56] “Opencv,” accessed: April 2021. [Online]. Available: https://opencv.org/
[57] J. Gascon-Samson, J. Kienzle, and B. Kemme, “Dynfilter: Limiting

bandwidth of online games using adaptive pub/sub message filtering,”
in International Workshop on Network and Systems Support for Games
(NetGames). IEEE, 2015, pp. 1–6.

[58] J. Liu and Q. Zhang, “Code-partitioning offloading schemes in mobile
edge computing for augmented reality,” IEEE Access, vol. 7, pp. 11 222–
11 236, 2019.

[59] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and edge
computing,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[60] A. J. Ferrer, J. M. Marques, and J. Jorba, “Ad-hoc edge cloud: A frame-
work for dynamic creation of edge computing infrastructures,” in Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2019, pp. 1–7.

[61] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform
for high-performance internet applications,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[62] P. Zhao, W. Yu, S. Yang, X. Yang, and J. Lin, “On minimizing energy
cost in internet-scale systems with dynamic data,” IEEE Access, vol. 5, pp.
20 068–20 082, 2017.

[63] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load balancing
for dynamic virtual machine reconfiguration based on vertical and hori-
zontal scaling,” IEEE Transactions on Services Computing, vol. 12, no. 2,
pp. 319–334, 2016.

VASILEIOS KARAGIANNIS is with the Dis-
tributed Systems Group of TU Wien, Vienna, Aus-
tria. He has a BSc from the Alexander Technolog-
ical Educational Institute of Thessaloniki, Greece,
and a MSc from the University of Patras, Greece.
Outcomes from his research on cloud comput-
ing, edge computing, and Internet of Things have
contributed to the publication of various scientific
articles and patents.

STEFAN SCHULTE is Associate Professor
and head of the Christian Doppler Labora-
tory Blockchain Technologies for the Internet of
Things at the Faculty of Informatics at TU Wien.
His research interests span the areas of data engi-
neering, cloud computing, the Internet of Things,
and the application and extension of blockchain
technologies. Findings from his research have
been published in more than 100 refereed schol-
arly publications.

18 VOLUME 9, 2021


