
World Wide Web
DOI 10.1007/s11280-011-0112-x

Context-driven personalized service discovery
in pervasive environments

Katharina Rasch · Fei Li · Sanjin Sehic ·
Rassul Ayani · Schahram Dustdar

Received: 15 July 2010 / Revised: 5 November 2010 /
Accepted: 17 January 2011
© Springer Science+Business Media, LLC 2011

Abstract Pervasive environments are characterized by a large number of embedded
devices offering their services to the user. Which of the available services are of most
interest to the user considerably depends on the user’s current context. User context
is often rich and very dynamic; making an explicit, user-driven discovery of services
impractical. Users in such environments would instead like to be continuously
informed about services relevant to them. Implicit discovery requests triggered by
changes in the context are therefore prevalent. This paper proposes a proactive
service discovery approach for pervasive environments addressing these implicit
requests. Services and user preferences are described by a formal context model
called Hyperspace Analogue to Context, which effectively captures the dynamics of

This work is supported by EU FP7 STREP Project SM4ALL (Smart hoMes for ALL), under
Grant No. 224332.

K. Rasch (B) · R. Ayani
School of Information and Communication Technology (ICT SCS),
Royal Institute of Technology Stockholm (KTH), Forum 120, 16440 Kista, Sweden
e-mail: krasch@kth.se

R. Ayani
e-mail: ayani@kth.se

F. Li · S. Sehic · S. Dustdar
Distributed Systems Group, Vienna University of Technology,
Argentinierstrasse 8/184-1, 1040 Wien, Austria

F. Li
e-mail: li@infosys.tuwien.ac.at

S. Sehic
e-mail: sehic@infosys.tuwien.ac.at

S. Dustdar
e-mail: Dustdar@infosys.tuwien.ac.at



World Wide Web

context and the relationship between services and context. Based on the model, we
propose a set of algorithms that can continuously present the most relevant services
to the user in response to changes of context, services or user preferences. Numeric
coding methods are applied to improve the algorithms’ performance. The algorithms
are grounded in a context-driven service discovery system that automatically reacts
to changes in the environment. New context sources and services can be dynamically
integrated into the system. A client for smart phones continuously informs users
about the discovery results. Experiments show, that the system can efficiently
provide the user with continuous, up-to-date information about the most useful
services in real time.

Keywords pervasive environments · context awareness · context model ·
service discovery

1 Introduction

Pervasive environments are user-centric, featuring an increasing number of devices,
a rich user context and various user preferences. In such environments, Service-
Oriented Architecture (SOA) has been widely applied for integrating devices,
sensors, actuators and software applications [4, 23]. State of the art service discovery
approaches in pervasive environments use techniques from the traditional SOA field,
where explicit user requests are the driving factors of service discovery.

In pervasive environments, however, user context and user preferences become
essential aspects when deciding, which of the available services are of most interest
to the user in a given situation. The user context is rich and ever-changing; it
covers aspects such as user location, current time, environmental information and the
users’ health status. These continuously changing aspects pose a significant challenge
to state of the art discovery mechanisms. We argue that most service discovery
requests in pervasive environments are implicit. The system should discover services
in response to changes in the user context, even if the user did not issue an explicit
service discovery request to the system. We will show, that the capability of capturing
these implicit requests can improve user experience significantly.

In this paper we propose a novel, proactive service discovery approach for per-
vasive environments. The discovery approach is based on a formal model of context
exploiting multi-dimensional space—Hyperspace Analogue to Context (HAC). The
model extends the concept of space beyond the spatial relationship commonly
observed in the literature [16, 22], so context properties other than location receive
equal recognition when discovering services. We use the concepts in HAC to model
user preferences and the capabilities of services in relation to context. The key in
service discovery becomes thus to identify changes in the user context and to filter out
unsuitable services by checking their preconditions against the new context. Those
services that are of most interest to the user can then be selected by matching their
effects with the user’s preferences.

The proactive discovery algorithm is the core of our service discovery system. The
system integrates various types of sensors, devices and appliances and makes them
available as context-aware resources. New context sources and services can easily
be described using a set of Java annotations. They can be dynamically deployed to



World Wide Web

the system and are seamlessly integrated into the pervasive environment. Changes
in the user context, the user’s preferences and in the set of available services
are automatically detected and the service discovery algorithm is initiated when
necessary. Users can get continuous updates with the list of services via an interface
on mobile phone devices. Our experimental results show, that our system can provide
the user with continuous updates of interesting services in real time.

In Li and Rasch et al. [15] we have presented the problem for the first time and
our preliminary solutions to it. Compared to our previous work, in this paper we
have improved and extended our solution in several aspects. First, the discovery
algorithm is further optimized with an offline service score calculation procedure and
a change detection method based on sampling. Second, the service discovery system
is implemented and integrated with a specialized context provisioning system. Third,
we did more extensive evaluations of our prototype towards the end-to-end discovery
time in more realistic scenarios.

The paper starts with a scenario motivating the need for a proactive, context-
driven service discovery system. Section 3 re-introduces our Hyperspace Analogue
to Context and related concepts. Section 4 presents an extended and improved set of
algorithms for proactive service discovery. A smart home system based on HAC is
described in Section 5. In Section 6 we evaluate both our formal model of context and
the discovery algorithms as well as the performance of our system. Section 7 surveys
closely related work.

2 Motivating scenarios

Frida Frida suffers from a neurodegenerative disease (Amyotrophic Lateral
Sclerosis ALS). She relies on a Brain Computer Interface (BCI) [11] for
a number of daily activities like home appliance control, communication
and handling emergencies. Nowadays BCI systems can recognize up to 50
different input commands [11]. However, to enhance usability, the number
of alternatives displayed on the BCI input screen is often limited to less than
25 icons.
Several hundreds of services may be installed in a smart home environment,
however only a fraction of those services are useful given a user’s current
context. A proactive service discovery system is needed, which can exploit
dynamic user context, user preferences and service availability with the aim
of identifying the best services for a given situation. Consider a typical
morning with Frida awaking in her bed. Based on her current context and
her preferences, the system displays different options on her BCI screen,
for example Raise headboard, Turn on TV and Open blinds. After she
has selected to adjust the headboard to a comfortable position, the system
detects the context change and shows instead Call nurse. When she moves
to the kitchen, bedroom services are no longer useful to her; her device
could be updated with new options: Make cof fee, Check fridge content and
Find recipe. Meanwhile, a heavy storm is coming. A service to close all open
windows in her house appears on her screen, Close windows. When having
breakfast, Frida suddenly experiences difficulties breathing; such indications
about Frida’s dangerous physical status are reported by a sensor. A new



World Wide Web

service list containing Call nurse, Call emergency service, Call relatives is
presented to Frida. All updates of the service list happen automatically
without Frida explicitly requesting a new service discovery.

Alex Alex is a young technician who is open to new technologies. He uses the
services in his smart home environment via an Android smart phone on
which a client software is installed to continuously display the services most
interesting to Alex depending on his current situation. His main interests in
using a smart home system are information access and entertainment rather
than controlling his household appliances. Alex often buys new devices
and expects that he can integrate them into the smart home system with
minimal effort.
Alex has had dinner and enters his living room. According to Alex’ prefer-
ences, the smart home system suggests several choices for recreation: Watch
TV, Movie program and Play Games. He opts to watch a movie in a local
cinema. The local movie program is retrieved and he selects a movie that
will be shown in one hour. When he has selected an entertainment service,
the service list is updated with some other activities he typically does after
dinner: Light the f ireplace and Call girlfriend. He selects to call his girlfriend
via internet phone; this prompts his smart home client to be updated with the
service Mute radio. When Alex is about to leave for the movie, his system
displays a set of services to ensure the correct status of the house for his
absence, such as to turn off the lights and appliances and to lock the doors
and windows. Again the client is updated by the smart home without explicit
discovery requests.

The scenarios are only fragments of the daily life of two users. User context is rich
and ever-changing, including temporal, spatial, device information, user actions and
user status. From several hundreds of services that may be available in a smart home
environment, only a small percentage will be of interest to the user in any given
situation. It is simply impractical for the user to keep track of all context changes
and issue explicit discovery requests. Instead, implicit service discovery is crucial, i.e.
after each change in the user context, the client should be updated with the set of the
currently most interesting services.

In order to be able to deal with all the different types of context information, we
need to define a formal model for describing context, services as well as user prefer-
ences. Based on this model we can then propose a proactive discovery algorithm,
which reacts to context changes on-the-fly, identifies fitting services and matches
them with the user preferences. A smart home system based on on this formal model
and the discovery algorithm needs to be able to automatically detect changes in the
user’s context, initiate a new service discovery and update the user’s client with the
discovery result.

3 Hyperspace analogue to context

Hyperspace Analogue to Context (HAC) is a formal model of context as a multi-
dimensional space, effectively capturing continuously changing status from various
context sources. HAC is a novel approach to modeling context. It is intended to
avoid the symbol grounding problem of ontology-based models [9]. The relationships



World Wide Web

between context properties in HAC are characterized by geometric structures, which
largely improves the performance when reasoning on situations. In this section we
describe HAC and its operations in a series of definitions. Based on these, we
can model all necessary information for our proactive service discovery algorithm,
including services and user preferences.

3.1 Basic definitions

Definition 1 (n-Dimensional HAC) An n-Dimensional HAC is a space H =
< D1, D2...Dn >, where each dimension Di denotes a type of context.

In HAC, a dimension is the meta data to describe the data type and value set
for a specific type of context, for example location, time, and status of a service.
Depending on the data type, the values of a dimension can be continuous or discrete,
infinite or limited. For a location dimension, the values could be the rooms in a
house; for a temperature dimension it could be the values between zero and one
hundred degree Celsius. All dimensions together span the n-dimensional space of all
potential context descriptions. The number of dimensions may be large because of
the complexity of pervasive environments; however most context descriptions only
use a fraction of all dimensions, as will be shown later.

Definition 2 (Context point) The context point of an object o in space H is
co =< d1, d2...dn >, where di ∈ Di.

The context of an object is described as a point in HAC. The changing of
its context is considered as the object moving in HAC. For example, in our
scenario the context of Frida may be < dlocation = bedroom, dphysical = normal >.
When an emergency happens, Frida is moved to another point: < dlocation =
bedroom, dphysical = abnormal >.

Definition 3 (Context Scope) A context scope C is a subspace in H. C =
< D1, D2...Dn >, where Di ⊆ Di.

A context scope limits the value sets for the dimensions. It is often used to
describe a condition, e.g. < Dhumid = [60 . . . 70], Dtemp = [15 . . . 18] > describes a
condition for the temperature to be between 15 and 18◦C and the humidity between
60% and 70%. We define a context point c to be within a context scope C as:
c ∈ C ⇐⇒ ∀i, di ∈ Di.

3.2 Operations in HAC

Definition 4 (Basis) In an n-Dimensional HAC, a basis is a vector B =
< b 1, b 2...b n >, where bi ∈ {0, 1}.

The basis identifies those context dimensions relevant for a context description.
The basis is defined for both context scope and context point. The basis of a context
scope C is B(C) =< b 1, b 2...b n >, where bi = 0 ⇐⇒ Di = ∅. The basis of a context



World Wide Web

T
V

S
ta

tu
s

Loca
tio

n

11pm

Time

A

B

10 pm

a

b

T
V

S
ta

tu
s

Time

A’

B’

a’

b’

Projection
B=(1,1,0)

c c

12pm 11pm10 pm 12pm

On

Off

Stand
by

On

Off

Stand
by

Bedrooom

ΔΔ

Figure 1 Visualization of concepts.

point c is B(c) =< b 1, b 2...b n >, where bi = 0 ⇐⇒ di is not relevant. For example,
in H =< D1, D2, D3 > a context point c =< d1, d3 > has the basis B(c) =< 1, 0, 1 >.

Definition 5 (Projection) Projection is an operation to render a partial view of
context. It is denoted by ×B. C′ = C × B, where ∀i, (D′

i = Di ⇐⇒ bi = 1)∧
(D′

i = ∅ ⇐⇒ bi = 0).

This operation can be applied to both context scopes and context points. For
example, if H =< D1, D2, D3 > with C =< D1, D2, D3 > and c =< d2 >, then the
projection C × B(c) =< ∅, D2, ∅ >.

Definition 6 (Context change) Context change ×�c =< �d1,�d2...�dn >, is an
operation to change a context point. �di denotes the new value for a dimension,
d′

i = di × �di. If di doesn’t change, �di = ∅.

The �c operation effectively moves a context from one point to another in HAC.
Context changes as described by �c are the main driving force of service discovery
in HAC.

Figure 1 visualizes the concepts introduced in this section. The example context
space has three dimensions, H =< DTime, DTVStatus, DLocation >. Two context scopes
A and B are defined in the space. In each scope a context point, a and b respec-
tively, is defined. Assume that the user has the current status a. If now the time
changes from 10:30 to 11:10 and the TV is turned off, then the user moves to b ;
�c =< 11:10, of f,∅ >. The context change can be characterized on a projected
2-dimensional space with the projection operation using a basis B =< 1, 1, 0 >.

3.3 Services and user preferences

Definition 7 (Context-aware Service) A context-aware service is situated in HAC.
It can be invoked in a certain context scope and invoking it will change the context



World Wide Web

of the user. Thus, a service s =< CPre
s , CEff

s > is characterized by two types of
context scopes.

– Precondition CPre
s is the required triggering condition of service s. When user is in

CPre
s , service s becomes one possible choice. Formally, if cu is the current context

of the user, then cu × B(CPre
s ) ∈ CPre

s .
– Effect CEff

s is the possible context scope after running a service. Formally cu ×
B(CEff

s ) ∈ CEff
s .

The Precondition and Effect of context-aware services is similar to the Precondi-
tion and Effect in the IOPE (Input, Output, Precondition and Effect) model defined
by M. Paolucci et al. [20]. If a service s is successfully executed, a transition of
user context cu → c′u happens such that cu × B(CPre

s ) ∈ CPre
s and c′u × B(CEff

s ) ∈
CEff

s . An example service s which turns on the oven and heats it up to a desired
temperature could be described as CPre

s =< Doven = [of f ] > and CEff
s =< Doven =

[on], DovenTemp = [120 . . . 250] >. It can be seen that most descriptions of precondi-
tions and effects only use a fraction of all available dimensions, e.g. the oven service
can be described by using only two of the potentially hundreds of dimensions.

According to Definition 4, the basis of the precondition and effect of each service
is a n-dimensional vector, indicating which dimensions are relevant to the service.
As we will show later, this concept is one of the key factors in our algorithms
performance.

Definition 8 (User Preferences) The preferences of user u are defined as
the set of context scopes that the user would like to be situated in. P

u =
{(w1, P1), (w2, P2), . . . , (wt, Pt)}, where each Pi is a context scope, wi ∈ (0, 1) is the
weight of each preference.

User preferences describe the goal of service discovery: suggesting relevant
services that lead to a new context that matches a preference given by a user. A user
will typically have many preferences for different situations. A preference definition
Pi may set preferred values for one or more dimensions. Again, only a fraction of
all possible dimensions will typically be used for describing a user preference. We
use the notion of context scope rather than context point for preference, because a
scope is more flexible for expressing the possibly fuzzy goals of the user, such as “the
temperature should be between 20–25◦C”. The weight represents the importance
of each preference, e.g. a “no fire” preference is obviously more important than
one concerning a comfortable lighting. It needs to be noted, that the collection and
analysis of user preference is beyond the scope of this paper.

3.4 HAC in the smart home

There is a plethora of context types [1, 26] that can form the dimensions for HAC.
In the following we introduce a list of dimensions we have identified in typical
smart home environments. However the list is intended not to be exhaustive, but
illustrative. The dimensions can easily be adapted or extended to more general
pervasive environments.



World Wide Web

3.4.1 Location

The location Dlocation of persons or objects is a context dimension typically used in
context-aware systems. The area that a service is available in is of major importance
for determining which services are applicable in a given situation. We mainly use
relative location between objects rather than absolute coordinates because they are
more convenient for service discovery and more intuitive to the user. e.g. in the
kitchen or in front of the house.

3.4.2 Time

The time Dtime describes when an action is happening. In some services a user may
be interested only within a specific time frame. The time can be described in absolute
terms (November 19th 2009, 11:01 am) or relative terms (after the washing machine
is f inished).

3.4.3 Environment

Service discovery can also be driven by changes in the environment. In our scenario,
the service Close windows is presented after the detection of rain. Each relevant
environmental property can be seen as a context dimension. In a smart home we
may for example monitor the temperature Dtemperature, the humidity Dhumidity or the
noise level Dvolume.

3.4.4 Health status

Health status is critical to users in need of continuous monitoring and caring,
such as Frida in our scenario. The heart rate Dheartrate, breath rate Dbreathrate, and
blood pressure Dbloodpressure are the general metrics. More specific dimensions in this
category can be added for specific diseases and with the support of special devices.

3.4.5 Device status

The status of devices has direct effects on the service discovery result. Obviously the
service Close windows is of no use if the windows are already closed. In the smart
home we can identify a multitude of potential device statuses as dimensions, for
example for media devices DmediaStatus (on, of f, play, pause, forward) or the coffee
machine DcoffeeStatus (on, of f, making cof fee). Quality of Service (QoS) [7, 21] metrics
can also be described as dimensions of device status.

4 Proactive service discovery

4.1 Context matching

For the service discovery algorithm we need to be able to assess, how well a service
can fulfill a user preference, i.e. whether the service effect changes the current
context in such a way that the user preference is fulfilled. For comparing services
and selecting the ones that match a given set of user preferences best, a numerical
representation of how well one context scope matches another one is necessary.



World Wide Web

4.1.1 Context matching score

Evaluating how well a service matches a request is a well-known problem in web
service discovery research. Typically the subsumption hierarchy of service parame-
ters and capabilities is used to find out which services can fulfill a request [20]. In
context matching we are not only looking for full matches, i.e. a service that can fully
fulfill a preference. Information about which services bring the system nearer to the
user goal is just as valuable. Intuitively we need to calculate how much of the user
preference is covered by the service’s effect.

The context matching score matching(C1, C2) is a numerical assessment of how
well C2 fulfills C1. It is composed of the individual matching of dimensions in the
scopes. Since scope C1 is to be matched, only the k dimensions set in C1, i.e. those
with B(D) = 1, need to be considered. According to (1), the dimensional matching
value dmatch(D1, D2) is determined by calculating the overlap between the two
dimension values D1 and D2, dividing it by the size of D1. This equation captures the
notion, that if D2 is fully contained in D1, then dmatch(D1, D2) = 1. If B(D1) = 0 or
B(D2) = 0, of course dmatch(D1, D2) = 0.

dmatch(D1, D2) =
⎧
⎨

⎩

|D1 ∩ D2|
|D1| if B(D1) = 1 ∧ B(D2) = 1

0 else
(1)

The overall matching score is determined according to (2) by adding the individual
dimension matching scores and dividing by k, the number of set dimensions in C1.
Dividing by k effectively penalizes the dimensions that can not be fulfilled by C2.

Matching(C1, C
2) =

∑n
i=1 dmatch

(
D1

i , D2
i

)

k
(2)

4.1.2 Numerical encoding

The actual calculation of the dimension overlap depends of course on the data type of
the respective dimensions. For numerical values on an interval scale, this is straight-
forward. However in a smart home there are many dimensions with non-numerical
values. This includes the status of various devices, e.g. play/pause/start/on/off for a
media center or a location expressed as rooms of the house. In these cases it is
more adequate to model a dimension with concepts in an ontology [10] than with
numerical values. Figure 2 shows for example an extract of an ontology for the
location dimension in a smart home. As in this example, the expressiveness of a
taxonomy using only is-a relationships is typically sufficient when modeling context
dimensions.

For being able to efficiently calculate the dimension matching of non-numeric
dimensions, we encode the ontology using the postorder interval scheme proposed
by Agrawak et al. [2]. A concepts postorder number is defined as its position in a
postorder (depth-first) traversal of the hierarchy. Each concept is represented by an
interval of the form [i, j], with j being the postorder number of the concept and i being
the lowest postorder number among its descendants. The intervals reflect thereby
the subsumption hierarchy, a concept B is subsumed by a concept A, if B’s interval
lies within A’s interval. For a correct calculation of the overlap between concepts,
we needed to slightly modify the encoding such that j is represented by the highest



World Wide Web

Figure 2 Taxonomy of
location concepts.

postorder number among the descendants of the nodes. Figure 2 shows the intervals
for the concepts of the location ontology.

By using this encoding scheme, the dimension matching for ontology con-
cepts becomes very similar to numerical dimension matching. Set operations
are used to determine the number of concepts contained in a dimension value
and in the overlap between two values. In the location ontology, for exam-
ple, the overlap between D1 = {room} and D2 = {kitchen} can be calculated by
dmatch(D1, D2) = |{1,2,3}∩{2}|

|{1,2,3}| = 1
3 . The encoding scheme allows for a very efficient

calculation of the dimension match value without the need for reasoning about the
subsumption hierarchy. The modeling of a context dimension can be considered
static, so that the encoding of the ontology can be pre-computed at configuration
time.

4.2 Proactive service discovery algorithm

Based on the previous introductions of ontology coding scheme and matching
method, this section presents our proactive algorithm for service discovery in HAC.
The efficiency of the algorithm is assured by four mechanisms. First, services that
are not affected by a context change are filtered out with a fast bit-set operation
and excluded from the evaluation phase. Second, we maximize the reuse of previous
discovery results by keeping those services that are not affected by the changed
context in the result set. Third, we introduce a separate offline algorithm for
maintaining and evaluating service scores. Fourth, we describe a change detection
algorithm that decides, which changes in the smart home environment should trigger
a new service discovery.

Figure 3 illustrates the relationship between the algorithms presented in this
section. The input parameters of the algorithms are as follows.

– Spre is the service set discovered in the previous round of the algorithm. Spre

contains the services currently presented to the user. For the initial round of the
algorithm, Spre is set to empty, ∅. It will then be updated iteratively with the result
of each execution round, Sranked.

– S is the whole set of services registered in the environment. The service’s
preconditions and effects are represented as numeric values according to the
concept coding mechanisms presented in Section 4.1.



World Wide Web

Figure 3 Illustration of
algorithm input and output. Context

User

Preference

Sranked

cu, cu

Pu

Service
Discovery

Service S
Score

Calculation

S
(with score)

Context
Change

Detection

cu, cu

Spre

Δ

Δ

– cu is the current context of the user. cu is a context point with the dimension
values set to reflect the current status of the user. Again all elements of the
context are represented by numeric values.

– �cu is the change of user context compared to the previous status of cu, as defined
in Definition 6. In our algorithm, only the basis of �cu is used to evaluate which
dimensions have changed.

– P
u is the set of user preference as defined in Definition 8.

Algorithm 1 Proactive Service Discovery
1: procedure ServiceDiscovery(Spre, S, cu, �cu)
2: Scand = ∅
3: for ∀s ∈ S do
4: if B(�cu) ∧ B(CPre

s ) = 0 then
5: Scand = Scand + s
6: end if
7: end for
8: Sranked = Spre − Scand

9: for ∀s ∈ Scand do
10: c′u = cu × B(CPre

s )

11: if c′u ∈ CPre
s then

12: Sranked.add(s, s.score)
13: end if
14: end for
15: return Sranked

16: end procedure

Algorithm 1 runs continuously in response to the update of context information.
We call each execution of the algorithm a round.

Lines 3 to 7 form the first phase of our service discovery, which identifies the
services that are affected by the context change and adds them to a candidate service
set Scand. The basis of the context change and the service’s precondition is evaluated:
B(�cu) ∧ B(CPre

s ) = 0. A non-zero result indicates that service s is listening to at least
one of the changed dimensions in �c. Although the loop is applied to all the services
in the current environment, it costs only a very small fraction of the algorithm
execution time, since for each service it simply entails a fast bit-set operation. Scand is
the input to the second phase of discovery.



World Wide Web

Line 8 initializes the result of the algorithm Sranked. The result of the previous
round is reused by keeping all previously discovered services that are not affected
by the context change. A service is not affected by a context change, if none of
the dimensions that are used in the service’s precondition changed. This service is
therefore also available in the new context and it is unnecessary to re-evaluate it.
The intersection of Spre and Scand, however, contains those previously discovered
services that are affected by the changed context and that will therefore have to be
re-evaluated in the second phase of the algorithm.

Candidate services are ranked in lines 9–14. Line 10 keeps in c′u only the
dimensions related to the precondition of a service. If c′u is in the scope of service
precondition CPre

s (line 11), this service will be included in the algorithm result.
The service is added to Sranked ordered by the services’ scores. The service score
is depending on the user preferences. We assume that user preferences are changing
slowly and that the service scores are mostly fixed. We therefore calculate the service
score not during the discovery phase, but in an extra algorithm called only when
service scores have to be re-calculated.

4.3 Calculating service scores

Algorithm 2 evaluates how well services can cover the given user preferences. Again,
only those dimensions of the service effect that are relevant to the user preference
are considered (line 5). For each of the preferences, the matching method described
in Section 4.1 is invoked in line 6. The matching score is tuned by the weight of each
preference. For each service only the highest score of preference matching will be
used for ranking (line 7–8). In our system, the algorithm is at first run at initialization
phase. When the system is running, this algorithm is run in background only for
preference changes and updates in the list of available services.

Algorithm 2 Service Score Calculation
1: procedure ServiceScore(S, P

u)
2: for ∀s ∈ S do
3: s.score = 0
4: for ∀(wi, Pi) ∈ P

u do
5: C

′Eff
s = CEff

s × B(Pu)

6: score = wi ∗ Matching(Pi, C
′Eff
s )

7: if score > s.score then
8: s.score=score
9: end if

10: end for
11: end for
12: end procedure

4.4 Detecting significant context changes

We would like to avoid running a new round of the service discovery algorithm for
each small context update that occurs in the house. A temperature sensor may, for
example, send frequent context updates with the individual temperature readings



World Wide Web

differing only by 0.1◦C. Instead of re-running the service discovery for each of
those updates, we need to identify the significant changes in the context. What is
considered a significant context change differs of course between the dimensions. We
therefore define for every dimension in HAC a sampling function samp(d), which
converts the possible context values into a finite, discrete value set. We consider
a context change from di to d′

i for a dimension Di to be significant, if sampi(di) =
sampi(d′

i). In case of the temperature dimension, for example, the sampling function
could round the temperature reading to the largest previous integer. Say that the
temperature at the beginning is 16.1◦C. Continuous increases of 0.1◦C result only in
a significant context change, if the temperature raises to at least 17.0◦C. At this point
the sampled value jumps from 16◦C to 17◦C and a service discovery is triggered.

We see two major advantages of using a sampling function instead of a simple
threshold for detecting significant context changes. First, using a sampling function
makes it easy to keep track of continuous, small updates of a context value. Second,
a sampling function allows defining a different behavior for different subsets of
a dimension. For example for a dimension representing the room temperature,
the sampling function could generate a much more fine-grained discretization for
temperature values between 18 and 23◦C than for values between 23 and 30◦C.

The Change Detection component runs Algorithm 3 whenever context updates
arise. The input to the algorithm is the user’s current context cu =< d1, d2, ..., dn >

and a context point �c that describes the updated context information. Line 2 applies
the context update to the user’s current context to obtain the new user context
c′u =< d′

1, d′
2, ..., d′

n >. Lines 3–7 check for all updated dimensions, if the context
update was significant. Line 4 checks, if the sampled value of the old user context
equals the sampled value of the updated context. If this is the case, then line 5 sets the
basis of this dimension to zero in �c, marking the dimension thereby as unchanged.
If for at least one dimension the context update was significant, the service discovery
is initiated (lines 8–10).

Algorithm 3 Detecting significant context changes
1: procedure ContextChangeDetection(cu, �c)
2: c′u = cu × �c
3: for ∀d′

i ∈ �c′ do
4: if sampi(d′

i) = sampi(di) then
5: B(d′

i) = 0
6: end if
7: end for
8: if B(c′) = 0 then
9: Invoke Algorithm 1

10: end if
11: end procedure

5 A HAC-based smart home system

5.1 System architecture

We have implemented a prototype of a pervasive system that incorporates our
formal model of context. The prototype is based on the scenario of a smart home



World Wide Web

Smart Home Management and Monitoring HAC-based Proactive Service Discovery

Smart Home Environment

COPAL

Preference
Management

sensor event

Discovery
Processing

context

Context-aware
Registry

trigger

Dimension
Management

result

Change
Detection

preferences

services
config.

invocation

register
register

Figure 4 System architecture.

system. In the following we will first give an overview of the system architecture and
will afterwards take a closer look at our system by detailing two typical situations:
(i) installing new context and service providers and (ii) reacting to changes in the
environment.

Figure 4 shows the architecture of our system. Devices and sensors are deployed
throughout the smart home environment, providing context information and services
that can be invoked by the user. The Context-aware Registry administers information
about services that are deployed in the system. Whenever a new device gets installed,
it must register itself with the Context-aware Registry, which will create and register
a context-aware description. Since HAC is a general concept and specific pervasive
environments can have different sets of context dimensions depending on the
available devices and user requirements, the Dimension Management component is
introduced to customize the types of context information. It provides information
about all dimensions currently defined in the system to the other components. User
preferences are managed in the Preference Management component.

Context information from heterogeneous sources is collected and processed by
the COPAL (COntext Provisioning for ALl) framework,1 which is a complex
event processing system, producing formatted context events. COPAL features a
composable architecture allowing to integrate new context sources, to create new
information models, and to support various information processing requirements of
context-aware services.

The Change Detection component monitors significant changes of context, user
preferences and services. On detection of such a change, it triggers the service
discovery in the Discovery Processing component which is running our discovery
algorithm. The Discovery Processing automatically updates the user’s client with the
discovery results.

1http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/

http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/


World Wide Web

5.2 Adding context and service providers

One of the foundations of smart home environments is the rich selection of context
information providers that are deployed throughout the house. The majority of
context information is provided by sensors which for example monitor environ-
mental properties, the user’s health status or detect hazardous situations. When a
new context provider is deployed in the house, the context information that can be
provided has to be described. A temperature sensor may, for example, describe a
context type for the temperature containing numerical data between −10 and 70◦C.
Sources of context information are registered to COPAL as context publishers.

As described in Definition 7, the capabilities of context-aware services are based
on the available context information. Service providers are for example house
controllers, household appliances or entertainment devices. For deploying a new
service provider, all services offered need to be described with their preconditions
and effects, referring to the context types available in the system. An air-conditioner
may be described with preconditions and effects referring to the context type defined
by the temperature sensor. Service descriptions include of course also the name of
the service, the URI where the service can be called and information about service
parameters.

The devices deployed in a smart home are often both context and service
providers. A lamp for example offers context information about whether it is
currently turned on or off. It also offers services for turning it on and off. The service’s
preconditions and effects are referring to the lamp status, e.g. the service s for turning
the lamp on may be defined with precondition Cpre

s =< lampStatus = of f > and
effect Cpre

s =< lampStatus = on >.
Figure 5 shows the sequence of action happening when a new context or service

provider is being registered. A description of the new device is sent to the Context-
aware Registry. For each new context type defined in the device description, the
registry creates a new context dimension with a globally unique name and registers it
with the Dimension Manager. The Dimension Manager makes the information about
a new context type known to the Context Provisioning framework.

Device ContextAwareRegistry ChangeDetectionDimensionManagement COPAL

returnContextPublisher()

registerDevice

createDimensions

registerContextType

publishServiceUpdate

publishContextChange

Figure 5 Adding a new context-aware device.



World Wide Web

“

“

“

„

“
“

“

„
„

„

“
““

“
“ “

“

„„
„

„ „
„

„

„

„

Figure 6 Annotations describing a context-aware coffee machine.

For all offered services, the Context-aware Registry creates the HAC-based
description of the preconditions and effects. It registers this information and also
publishes information about the new services. After the registration process is
finished, the Context-aware Registry returns a reference to a COPAL Context
Publisher for publishing updates of the context values. The device will typically
publish initial values of the context information it provides.

We propose a simple way of describing service and context providers using
Java annotations. Figure 6 shows the description of a coffee machine using these
annotations. The coffee machine is marked as a context-aware device with the name
myCof feeMachine. A new context type status is defined. The definition refers to an
OWL ontology that contains the allowed values for the type (e.g. idle and in use)
and will be the basis for the encoding of this new context type. A service is defined
for making a cup of coffee. The service’s precondition refers to the new context type
status, declaring that the service should only be available when the coffee machine
is currently idle. It also refers to the context type Location, stating that the service
is available when the user is currently in the kitchen. References to context types
already defined, e.g. Location, are automatically resolved during device deployment.
The effect of the service is, that the coffee machine is marked as in use.

When the coffee machine is deployed to the system, the annotations are automat-
ically read and a valid device description is created and used for setting it up in the
system. As it can be seen in Figure 6, it is possible to mix our device annotations
with annotations for RESTful web services [8]. In this case our system reads both
the device and the REST annotations, deploys the web service to a service container
and automatically sets up all necessary information for service invocation, i.e. service
URI, call method and service parameters. Enabling the communication with the
actual physical devices is out of the scope of this paper, but is under investigation in
the SM4All project.2 In the project a tool set is being developed, that aims at making
the functionalities of smart home devices using standard technologies like UPnP and
Bluetooth easily available through web service interfaces.

2http://www.sm4all-project.eu

http://www.sm4all-project.eu


World Wide Web

Table 1 Discovery actions for
changes in the smart home
environment.

Detected change Action

Significant context ServiceDiscovery(Sranked, S, cu,�cu)

change �cu

New service s ServiceScore(s, P
u)

i f (cu × B(Cpre
s )) ∈ Cpre

s

Sranked.InsertOrdered(s)
Removed service s Sranked = Sranked \ s
New preference P ServiceScore(S, P)

Sranked.updateOrdering(S)

Removed preference P ServiceScore(S, P
u \ P)

Sranked.updateOrdering(S)

5.3 Reacting to changes in the smart home environment

Changes in the user’s current context, the set of registered services or the set of user
preferences may result in the need to update the current list of discovered services.
The Change Detection component listens to any such changes and detects the
significant changes. If necessary it triggers a new service discovery with the Discovery
Processing component. Based on the type of the detected change, the Discovery
Processing executes specific actions to update the list of discovered services. Table 1
gives an overview of the actions that are executed. If a significant context change
was detected, the service discovery process is executed as described in Section 4. If a
new service was registered, first the score of this service is calculated. If the service is
applicable in the current context, it is added to the set of ranked services. If a service
was unregistered, it is removed from the set of ranked services.

For changes in the set of preferences, the score of all services has to be recalcu-
lated. Since the set of services discovered in Sranked is not affected by the change of
preferences, it is enough to reorder the ranked services based on the new service
scores. Any changes in the ranked services result in a service update that is sent to
the user client, which then updates it’s display of services accordingly.

5.4 Android client

For testing our prototype of a HAC-based smart home system, we have implemented
a client for Android-based smart phones. A screenshot of the client can be seen in
Figure 7. The major part of the display is dedicated to the list of currently available
services. The client needs to be connected to the Discovery Processing to receive an
initial service list and subsequent updates of the currently available services. A status
icon at the top of the client interface shows the clients connection status and allows to
connect to and disconnect from the Discovery Processing using a socket connection.
When the client connects to the Discovery Processing, it must identify itself with the
user’s credentials and receives an initial service list calculated according to the user’s
current context and preferences. Subsequent updates are sent to the client whenever
the set of currently available services changes.

The service update contains the identificators of the discovered services ordered
by the service scores. If the client receives a new service list, it needs to resolve
further information about the services. It gathers from the Context-Aware Registry
information about the service names, icons, parameters and where and how to call



World Wide Web

Figure 7 Screenshot of the
Android client.

the services. To avoid having to retrieve service information for every update of the
service list, the client keeps a cache of the service details in a local database.

Services can be invoked by clicking on them in the user interface; the client then
displays a notification about success or failure of the service invocation. Invoking a
service may of course mean that the current context changes and that the service list
will be updated again shortly.

6 Experiments

The performance of the service discovery significantly influences the user’s experi-
ence. Context changes can happen very frequently and the discovery results should
quickly reflect these changes. In this chapter we first evaluate the performance of the
discovery algorithms and the relevance of the discovered services using synthetical
data. Afterwards we evaluate the prototype of our context-aware pervasive system
based on our scenarios of a smart home.

6.1 Performance evaluation

In order to test how well our formal model of context and our discovery algorithm
can handle frequent context changes, we have run a series of experiments using
synthetically generated data. We have identified three important variables that can
influence the performance of the discovery algorithm: (i) the number of available
services, (ii) the number of dimensions, (iii) the percentage of services affected by a
context change (in the following referred to as affected services).



World Wide Web

Figure 8 Discovery time
depending on number of
services and dimensions
(30% affected services).

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700  800  900  1000

D
is

co
ve

ry
 ti

m
e 

[m
s]

Number of services

10

50

100

Number of dimensions

We have performed several experiments to show the system performance in
different settings. For each of the experiments we have generated synthetic data sets
that vary some of the variables, keeping the rest fixed. We have used conservative
estimates of a real smart home when setting the experimental input, e.g. we generally
assume that 30% of all services are affected—in a real home with a high service
diversity we expect a much smaller number of affected services, which will in turn
result in a shorter execution time of our algorithm. All of the experiments were
performed on a desktop PC with an Intel Core 2 Duo CPU with 3 GHz and 4 GB
RAM running Linux, and were run for 100 replications.

Figure 8 shows how the discovery time depends on the number of services
and dimensions. It can be seen that the system scales linearly for the number of
dimensions and services. With 1000 services and 100 dimensions, the discovery time
equals to circa 25 ms (with a standard deviation of 2.2 ms), allowing for a near real-
time update of the user interface.

Figure 9 shows how the discovery time depends on the percentage of affected
services. The best results can of course be achieved with 0% affected services; in this

Figure 9 Discovery time
depending on number of
services and percentage of
affected services
(50 dimensions).

 0

 10

 20

 30

 40

 50

 0  100  200  300  400  500  600  700  800  900  1000

D
is

co
ve

ry
 ti

m
e 

[m
s]

Number of services

0%

30%

70%

100%

Percentage of affected services



World Wide Web

case only the bit-set operations to identify the services affected by the context change
need to be performed. For a higher percentage of affected services, the time needed
to check which services can be used in the current context increases. We can see that
the system also scales well in this regard, for 100% affected services, the discovery
time equals circa 40 ms (with a standard deviation of 1.1 ms).

We have also evaluated Algorithm 2 for Score Calculation to find out how
fast the service scores can be calculated depending on the number of services and
preferences. For the initial calculation of service scores, all combinations of services
and preferences have to be evaluated. We have found that for 100 services and 10
preferences with 50 dimensions the calculation time is circa 35 ms, for 1000 services
and 50 preferences it is circa 350 ms.

As described in Section 5.3, it is not necessary during runtime to recalculate all
combinations of services and preferences. When new preferences are added, it is
sufficient to calculate the scores for the new preferences and all services; analogously
the scores only have to be calculated for the new services when adding services.
Figure 10 shows the performance of the score calculation algorithm when adding
ten new preferences depending on the number of services currently registered. It can
be seen that the calculation algorithm scales linearly; when increasing the number of
services from 100 to 1000, the calculation time increases by a tenfold, equaling circa
75 ms (1.2 milliseconds standard deviation).

6.2 Relevance of discovery results

We have tested how well our discovery approach is able to present the most relevant
services to the user with only a limited number of icons on the user interface. We
first generated a set of 10 preferences and of 100 services such that each service
fulfills one of the preferences to a randomly varying degree. We then ran the service
discovery algorithm and trimmed the results down to the k best services, with k being
the number of icons to be displayed. To find out how well this service selection
fulfills the preferences, we have merged all preferences into one context scope
Pref All =< D1, D2...Dn >, where Di is defined by (3), in which t is the number of

Figure 10 Score calculation
time for 10 new preferences
(50 dimensions).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600  700  800  900  1000

S
co

re
 c

al
cu

la
tio

n 
tim

e 
[m

s]

Number of services



World Wide Web

preferences. Similarly the output context of all services is merged to ServAll and that
of the k selected services to ServSel. We then calculated how well the preferences are
covered using (4), which normalizes the matching score between PrefAll and ServSel
according to the maximum matching score achievable with all services. For coverage
calculation, we assumed the same weight for all preferences.

Di =
t⋃

j=1

D
P j

i (3)

Coverage = Matching(Pref All, ServSel)
Matching(Pref All, ServAll)

(4)

Figure 11 shows the results of this experiment for a varying number of icons.
Even with only 9 service icons, we can already achieve around 60% of the maximum
preference coverage, with 25 icons over 90% can be achieved. The remaining 75
services not included in this selection fulfill the preferences only to a very small
degree, so our discovery result is an optimal tradeoff between the limitations of the
user interface and the number of interesting services.

6.3 Prototype evaluation

We have evaluated how fast our prototype of a HAC-based smart home system can
react to changes in the environment. We have therefore measured the round-trip
time beginning with the user executing a context-changing action and ending with the
user receiving an updated service list. This round-trip time includes: (i) invocating a
service on the user device, (ii) the service executing and issuing a context change,
(iii) the Change Detection reacting to the context change and triggering a service
discovery, (iv) the Discovery Processing executing the discovery and sending the
results to the client and (v) the client updating its service display.

In our evaluation system we have deployed all components of our smart
home system (Context-Aware Registry, Change Detection, Discovery Management,
Dimension Management, Preference Management and Context Provisioning) on
the same host. This is a realistic set-up of a smart home system with a central

Figure 11 Preference
coverage depending on the
number of icons displayed.

 0

 20

 40

 60

 80

 100

6 9 12 16 20 25

P
re

fe
re

nc
e 

co
ve

ra
ge

 [%
]

Number of icons



World Wide Web

home management server. The user client is deployed in the same wireless LAN
network as the central server. Based on our two usage scenarios, we have created
a set of circa 30 context-aware devices implementing all necessary devices, sensors
and human actors. Currently we are simulating all devices. Since our evaluation
focuses at measuring how fast our smart home system can react to any changes in
the smart home environment, we assume that all context changes happen instantly.
For example, when calling the OpenBlinds service, the context changes instantly to
Dblinds = open; whereas for actual blinds this status would be reached only after a
certain time.

We have first tested the performance of our system using a simple command-line
client. We have measured the round-trip time for 100 replications and found that the
new service list is received by the client circa 25 ms after issuing a service invocation
(11 ms standard deviation). Using the same setup we have then tested our Android
client. The round-trip time here starts when the user clicks on a service and finishes
when the new service list is displayed. We have found that the round-trip time in this
case averages to circa 150 ms. The increased average compared to the command-line
client can be attributed to the necessary reload of the user interface.

Our experimental results show, that our smart home system can provide clients
with an up-to-date service list in real time. Indeed, for our smart phone client,
the time needed for processing a change in the smart home environment and the
subsequent service discovery is minimal compared to the time needed for managing
the graphical user interface.

7 Related work

Service discovery in pervasive environments has been intensively investigated in
recent years [24, 25]. Early discovery approaches were based on the functional
description of services, for instance service category, semantic description and key
words. For enhancing service discovery, many research efforts involved Quality of
Service (QoS) and context in different phases. However, as far as we know, few work
has acknowledged context as a first-class criterion and motivating factor in service
discovery. In other words, explicit, request-driven service discovery approaches are
predominant in pervasive environments.

The following two examples address service discovery with QoS and context
information, but they don’t consider the impact of continuous context changes on
service discovery. Mokhtar et al. [18] proposed the EASY (Efficient semantic Service
discoverY) framework which takes QoS and context into account. EASY relies on
semantic modeling using OWL-S to describe context, QoS and functionalities of
services. The EASY-L language is proposed to present service capabilities and re-
quests; the corresponding matching approach is called EASY-M. For improving the
performance of service discovery, the semantic description of services is optimized by
a numeric coding scheme, a widely adopted method for enhancing the performance
of ontology processing. User preference is not considered in EASY. Our focus
in information modeling is not on service descriptions but on modeling powerful
context descriptions that allow us to provide context-driven discovery results without
explicit service requests. Different numeric coding schemes for basis and context
concepts are an essential aspect of our context model. Our prototype includes a



World Wide Web

specialized context provisioning framework so that the updated context information
can be dealt with in real time. Park et al. [21] presented the concept of Virtual
Personal Space (VPS) to extend the scope of service discovery. VPS conceptually
extended the concept of space beyond the location domain by including QoS, user
rating and service load in service discovery. The distance between users and services
is calculated based on the virtual space parameters. The idea of a VPS is similar
to HAC, however we extensively elaborated on the modeling of virtual spaces,
dimensions and the calculation of similarity. Again the factors considered in VPS
are service-oriented rather than context-oriented.

The Context attributes proposed by Lee and Helal [13] are an early effort of service
discovery in smart home environments. Context attributes extend the Jini [3] service
discovery protocol to include domain specific context information in the
service description. The attributes are dynamically evaluated when discovering
services. The processing of attributes is transparent to the client, but the evaluation
rules are hard coded in source code, which largely limits the flexibility of the ap-
proach. Similarly, Cuddy et al. [7] have applied generic dynamic attributes to service
descriptions. The corresponding evaluation approach relies on application-specific
weight vectors to tune the significance of each dynamic attribute. Broens et al. [6]
enhanced the idea of context attributes with an ontology-based context model. The
model is able to describe the relationships between different context attributes, and
in turn support the semantic matching of service and context description. All of these
works focus more on an extension of existing service discovery protocols rather than
on the dynamic and complex nature of context.

There are few works that have addressed proactive discovery as a complement
to explicit request-driven service discovery, however our work distinguishes itself
substantially. Bellavista et al. [5] proposed a user-centric service view for explicit
discovery. Discovery scope and service view are the keys to indicate the changes of
context information and its impact on available services. The paper illustrates the
implementation of the two concepts, but it is unclear how the discovery scope and
service view are modeled and which factors were driving their definition. Hesselman
et al. [12] presented the idea of a persistent discovery request but did not provide
further details. Our goal is similar to these two in terms of updating the set of relevant
services dynamically. However our work is based on a comprehensive formal model
of context and an efficient algorithm able to reflect the changes in context, user
preference, and services in real time. Our prototype is implemented with a strong
focus on maintaining context information and detecting changes, which we regard as
keys to effectively changing discovery scopes. The numerical coding approach and
a series of discovery scope optimizations improve the performance of the iterative
service discovery significantly. As a result, the discovery scopes can be more fine-
grained and more frequent proactive discovery can be performed to improve user
experience.

Our HAC has been inspired by (HAL) Hyperspace Analogue to Language
[17] and the context space of assumptions [14]. Both approaches originated in the
Artificial Intelligence domain. HAL is used for understanding natural language and
measuring the difference between statements. Context space of assumptions aims
to analyze interpretations of assumptions within different communication contexts,
which is completely different to the meaning of context in pervasive environments.
In our domain, Padowitz et al. [19] have proposed a usage of space theory for



World Wide Web

situation reasoning. In this work concepts are generally treated as non-numeric
enumerates so that no comparison is applicable, thereby leaving out a large spectrum
of context information. In contrast, HAC uses ontologies and numeric coding to
characterize the relationship between concepts. HAC also formalizes the methods
to alter different views of dimensions by basis and to describe context transitions by
changes. Most importantly, our goal is largely different to situation reasoning, since
based on HAC, we model services and user preferences to propose a context-driven
service discovery approach.

8 Conclusion

In this paper, we proposed a proactive service discovery solution for pervasive
environments. In such environments users need to have access to the most relevant
and interesting services within a rich and dynamic context. A theoretical model—
Hyperspace Analogue to Context (HAC)—is proposed to describe context, ser-
vices and user preference. HAC includes useful operations to tailor context views
and describe context changes. Since performance is an important factor for the
usability of continuous service discovery, we have applied a series of performance
improvement approaches. Services that are related to a specific context update are
identified with a fast bit-set operation. Context ontologies are encoded numerically
so that no costly reasoning has to be performed during the discovery. Existing service
discovery results are efficiently reused to minimize the need for context matching.
The calculation of service score against user preferences is carried out in a separate
algorithm, that is only invoked when changes in services or preferences happen.
An efficient sampling method is used to detect significant context changes and
subsequently triggers service discovery.

We have proposed and implemented a context-driven proactive service discovery
system based on HAC. A context-provisioning system (COPAL) is employed to
dynamically update context information and manage context sources. New services
and new context types can be added to a context-aware registry by an annotation-
based service description approach. A client software based on the Android smart
phone platform was developed to present proactive discovery results to the user.
Our experimental results prove that our system can efficiently and effectively provide
users with up-to-date information about the most relevant and interesting services.
In addition, our context model and discovery approach could also assist traditional,
explicit service discovery approaches by limiting their search scope.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness. In: Proceedings of the First International
Symposium on Handheld and Ubiquitous Computing, pp. 304–307 (1999)

2. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. In: Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, vol. 18, pp. 253–262. ACM, New York (1989)

3. Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.: Jini Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc
Ubiquitous Comput. 2, 263–277 (2007)



World Wide Web

5. Bellavista, P., Corradi, A., Montanari, R., Toninelli, A.: Context-aware semantic discovery for
next generation mobile systems. IEEE Commun. Mag. 44(9), 62–71 (2006)

6. Broens, T., Pokraev, S., van Sinderen, M., Koolwaaij, J., Dockhorn Costa, P.: Context-aware,
ontology-based service discovery. In: Ambient Intelligence. Lecture Notes in Computer Science,
vol. 3295, pp. 72–83. Springer, Berlin/Heidelberg (2004)

7. Cuddy, S., Katchabaw, M., Lutfiyya, H.: Context-aware service selection based on dynamic and
static service attributes. In: IEEE International Conference on Wireless And Mobile Computing,
Networking And Communications, 2005, (WiMob’2005), vol. 4, pp. 13–20 (2005)

8. Fielding, R.T., Software, D., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2, 115–150 (2002)

9. Gärdenfors, P.: Conceptual Spaces: the Geometry of Thought. MIT Press (2004)
10. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),

199–220 (1993)
11. Guger, C., Holzner, C., Groenegress, C., Edlinger, G., Slater, M.: Brain-computer interface for

virtual reality control. In: Proceedings of ESANN 2009, pp. 443–448 (2009)
12. Hesselman, C., Tokmakoff, A., Pawar, P., Iacob, S., et al.: Discovery and composition of services

for context-aware systems. Lect. Notes Comput. Sci. 4272, 67 (2006)
13. Lee, C., Helal, S.: Context attributes: an approach to enable context-awareness for service

discovery. In: Proceedings of the 2003 Symposium on Applications and the Internet, pp. 22–30
(2003)

14. Lenat, D.: The dimensions of context space. Technical report, CYCorp. http://www.cyc.com/
doc/context-space.pdf (1998). Accessed 2 July 2010

15. Li, F., Rasch, K., Truong, H.-L., Ayani, R., Dustdar, S.: Proactive service discovery in pervasive
environments. In: Proceedings of the 7th ACM International Conference on Pervasive Services
(ICPS), pp. 126–133 (2010)

16. Loke, S.W., Krishnaswamy, S., Naing, T.T.: Service domains for ambient services: concept and
experimentation. Mobile Netw. Appl. 10, 395–404 (2005)

17. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence.
Behav. Res. Methods Instrum. Comput. 28(2), 203–208 (1996)

18. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy: efficient semantic
service discovery in pervasive computing environments with qos and context support. J. Syst.
Softw. 81(5), 785–808 (2008)

19. Padovitz, A., Loke, S., Zaslavsky, A.: Towards a theory of context spaces. In: Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and Communications Workshops,
pp. 38–42 (2004)

20. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capa-
bilities. In: The Semantic Web ISWC 2002, vol. 2342, pp. 333–347. Springer, Berlin/Heidelberg
(2002)

21. Park, K., Yoon, U., Kim, S.: Personalized service discovery in ubiquitous computing environ-
ments. IEEE Pervasive Computing 8(1), 58–65 (2009)

22. Park, M., Hong, J., Cho, S.: Location-based recommendation system using bayesian users prefer-
ence model in mobile devices. In: Ubiquitous Intelligence and Computing, pp. 1130–1139 (2007)

23. Truong, H.L., Dustdar, S.: A survey on context-aware web service systems. Int. J. Web Inf. Syst.
5(1), 5–31 (2009)

24. Ververidis, C., Polyzos, G.: Service discovery for mobile ad hoc networks: a survey of issues and
techniques. IEEE Communications Surveys & Tutorials 10(3), 30–45 (2008)

25. Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments. IEEE
Pervasive Computing 4(4), 81–90 (2005)

26. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In:
Modeling and Using Context, pp. 558–571 (2007)

http://www.cyc.com/doc/context-space.pdf
http://www.cyc.com/doc/context-space.pdf

	Context-driven personalized service discovery in pervasive environments
	Abstract
	Introduction
	Motivating scenarios
	Hyperspace analogue to context
	Basic definitions
	Operations in HAC
	Services and user preferences
	HAC in the smart home
	Location
	Time
	Environment
	Health status
	Device status


	Proactive service discovery
	Context matching
	Context matching score
	Numerical encoding

	Proactive service discovery algorithm
	Calculating service scores
	Detecting significant context changes

	A HAC-based smart home system
	System architecture
	Adding context and service providers
	Reacting to changes in the smart home environment
	Android client

	Experiments
	Performance evaluation
	Relevance of discovery results
	Prototype evaluation

	Related work
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


