
COPAL
An Adaptive Approach to Context Provisioning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Sanjin Sehic
Matrikelnummer 0426689

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Fei Li

Wien, 18.07.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Sanjin Sehic
Goldschlagstraße 125/34, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

This thesis is dedicated to my parents

Mehmed and Jesenka Sehic

who taught me to never stop learning and to always remember to have fun.

Acknowledgements

First and foremost, I would like to express deepest gratitude to my advisers Schahram Dustdar
and Fei Li. Without their unselfish sharing of knowledge, long discussions, patience with an-
swering my questions and never-ending support, implementing COPAL and writing this thesis
would not have been as fun as they were. They gave me a chance to prove myself and this meant
a huge deal to me.

I am especially thankful to my sister, Suncica Sehic. She was there for me when I need
someone the most. She always reminds me who I am and where I come from. Because of her, I
will never forget where I should be going. And to her, I can only say “voli te buraz.”

Last but not least, I want to thank my friends who were my family away from my family,
my colleagues at Distributed Systems Group for good company and interesting conversations,
all professors and assistants during my bachelor and master studies at Vienna University of
Technology for making me push myself to new limits, and the SM4ALL project for providing
us with the financial support to develop COPAL.

v

Abstract

Context-awareness is one of the cornerstones of mobile and ubiquitous computing. It refers to
the idea that an application can understand its context to reason about its current situation and
perform suitable operations based on this knowledge. Moreover, as the situation changes over
time, the application should adapt its behavior according to new circumstances, which would
increase its usability and effectiveness.

In context-aware systems, context information is gathered from numerous heterogeneous
context sources. These sources are mostly low-level sensors that are unaware of application
requirements and its information models. Furthermore, information from sensors is too fine-
grained and low-level for applications to consume. Thus, the task of context-aware systems
can be summarized as hiding the complexity of gathering context information from context
sources, inferring new context information from presence or absence of source information,
and providing applications with an easy interface to retrieve the context information and adapt
accordingly. These diverse requirements create a great challenge for development of flexible
and scalable context-aware systems.

This thesis introduces the COPAL (COntext Provisioning for ALl) middleware — an adaptive
approach to context provisioning. The COPAL middleware is a flexible and scalable context-
aware service platform that provides a new publish-process-listen programming model. Its
loosely-coupled and modular implementation allows the system to be customized for differ-
ent use-cases and deployed on different platforms. The COPAL programming model separates
the task of context-awareness into three independent steps supported by three loosely-coupled
components: publishers, processors, and listeners. This component design enables develop-
ers to progressively extend the system to support new types of context information and various
context-aware applications.

Furthermore, the thesis presents a customizable processing mechanism that dynamically
couples context information with its processing. This mechanism is the key concepts in the
COPAL middleware by which a wide range of operations can be carried out. Most importantly,
it can be used to infer new context information and to provide some context information at
different levels of granularity.

An instance of the COPAL middleware is currently deployed in a working prototype smart
house at Fondazione Santa Lucia in Rome, Italy, where it provides context-awareness for auto-
mated execution of tasks, goals, and processes. The prototype smart home was built as part of the
SM4ALL (Smart hoMes for ALl) project — an international scientific research project research
project funded by the European Community under Seventh Framework Programme (FP7).

vii

Kurzfassung

Kontextbewusstsein ist einer der Grundpfeiler des mobilen und ubiquitären Computing. Es be-
zieht sich auf die Idee, dass eine Applikation ihren Kontext verstehen kann, um ihre aktuelle
Situation zu überlegen und beruhend auf diesem Wissen geeignete Operationen auszuführen.
Während sich die Gegebenheiten mit der Zeit ändern, sollte die Applikation ihr Verhalten an die
neuen Situationen anpassen, um ihre Verwendbarkeit und Wirksamkeit zu verbessern.

In kontextbewussten Systemen werden Kontextinformationen aus zahlreichen, heterogenen
Kontextquellen gesammelt. Diese Quellen sind meistens systemnahe Sensoren auf niedrigem
Abstraktionsniveau, welche für sich genommen die Anforderungen der Applikationen und deren
Informationsmodelle nicht kennen. Weiters sind die rohen Sensorinformationen zu feinkörnig
und systemnah, um direkt von den Applikationen konsumiert zu werden. Um diesen Umstand
zu bewerkstelligen, ist es die Aufgabe eines kontextbewussten Systems, die Komplexität des
Aufbereitens von Informationen aus Kontextquellen zu verbergen, neue Kontextinformationen
aus dem Vorhandensein oder Fehlen von ursprünglichen Informationen abzuleiten, und den Ap-
plikationen eine einfache Schnittstelle für Informationsabfrage und entsprechende Adaptierung
bereitzustellen. Diese diversen Anforderungen stellen eine große Herausforderung dar, flexible
und skalierbare kontextbewusste Systeme zu implementieren.

Diese Arbeit stellt die COPAL (COntext Provisioning for All) Middleware vor – einen Ansatz
für adaptive Verarbeitung und Provisionierung von Kontextinformationen. Die COPAL Middle-
ware ist eine flexible und skalierbare kontextbewusste Serviceplattform, die ein neues publish-
process-listen Programmiermodell bereitstellt. Die lose gekoppelte und modulare Implementie-
rung ermöglicht es, das System auf verschiedene Anwendungsfälle anzupassen und in verschie-
denen Plattformen zu verwenden. Das COPAL Programmiermodell unterteilt die mit Kontextbe-
wusstsein verbundenen Aufgaben in drei unabhängige Bausteine, die mit drei lose gekoppelten
Komponenten unterstützt werden, nämlich Publishers, Processors, und Listeners. Dieses Kom-
ponentendesign erlaubt Entwicklern, das System stufenweise zu erweitern, um neue Typen von
Kontextinformationen und diverse kontextbewusste Applikationen zu unterstützen.

Weiters präsentiert die Arbeit einen anpassbaren Mechanismus, der Kontextinformationen
dynamisch mit ihren Verarbeitungselementen koppelt. Dieser Mechanismus ist das Schlüssel-
konzept in der COPAL Middleware, mit dessen Hilfe diverse Operationen ausgeführt werden
können. Als wichtigster Anwendungsfall kann sie dafür benutzt werden, neue Kontextinforma-
tionen abzuleiten und Kontextinformationen auf verschiedenen Granularitätsstufen bereitzustel-
len.

Eine Instanz der COPAL Middleware ist derzeit in einem funktionierenden Prototyp von
Heimautomatisierung (Smart Home) in Fondaziona Santa Lucia (Rom, Italien) im Einsatz, wo

ix

sie Kontextbewusstsein für automatisierte Ausführung der Aufgaben, Ziele, und Prozesse be-
reitstellt. Der Prototyp des Smart Home wurde im Zuge des SM4ALL (Smart hoMes for All)
Projekts entwickelt – ein internationales Forschungsprojekt finanziert von der Europäischen Ge-
meinschaft unter dem Siebenten Rahmenprogramm (Seventh Framework Programme, FP7).

Publications

Parts of this thesis have appeared in the following publications:

• Fei LI, Sanjin Sehic, Schahram Dustdar, (2010). COPAL: An Adaptive Approach to Con-
text Provisioning. The 6th IEEE International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob 2010), 11-13 October 2010. Niagara
Falls, Canada.

• Sanjin Sehic, Fei LI, Schahram Dustdar, (2011). COPAL-ML: A Macro Language for
Rapid Development of Context-Aware Applications in Wireless Sensor Networks. The
2nd International Workshop on Software Engineering for Sensor Network Applications
(SESENA 2011) at ICSE, 21-28 May 2011, Honolulu, Hawaii, USA.

Furthermore, the COPAL middleware was additionally used in the following publication as
part of the overall solution:

• Katharina Rasch, Fei Li, Sanjin Sehic, Rassul Ayani, Schahram Dustdar (2011). Context-
driven Personalized Service Discovery in Pervasive Environments. World Wide Web
(WWW): Internet and Web Information Systems Journal, Volume 14, Issue 4, July 2011.

xi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 3
1.3 Approach . 4
1.4 Contribution . 5
1.5 Organization . 5

2 Context-Awareness 7
2.1 Context . 7
2.2 Context-Aware . 10
2.3 Summary . 11

3 Related Work 13
3.1 Context Toolkit . 13
3.2 CASS . 14
3.3 Gaia . 16
3.4 Solar . 17
3.5 C-CAST . 18
3.6 Summary . 20

4 Design 23
4.1 Context . 23
4.2 Processing Patterns . 35
4.3 Distribution . 38

5 Implementation 43
5.1 Technologies . 43
5.2 Publishing, Querying, & Processing . 47
5.3 Distribution . 50
5.4 Modules . 56
5.5 Deployment . 59

6 Evaluation 63
6.1 Performance . 63

xiii

6.2 SM4ALL Deployment . 68

7 Conclusions and Future Work 73

A Tutorials 75
A.1 Hello World . 75
A.2 Advance Event & Query Configuration . 83
A.3 Processors . 91

B Query Criteria EBNF 99

Bibliography 101

xiv

List of Figures

3.1 The Context Toolkit . 13
3.2 CASS . 15
3.3 Gaia . 16
3.4 Solar . 17
3.5 C-CAST . 19

4.1 Context Type . 24
4.2 Context Type Registry . 24
4.3 Context Event . 25
4.4 Publisher . 27
4.5 Publisher Registry . 27
4.6 Starting and Stopping Publisher . 28
4.7 Publishing Service . 29
4.8 Listener . 30
4.9 Query . 31
4.10 Query Factory . 32
4.11 Action . 33
4.12 Processor . 33
4.13 Processor Registry . 34
4.14 Process Event . 34
4.15 COPAL Components . 35
4.16 Processing Pattern: Filter . 36
4.17 Processing Pattern: Enrichment . 36
4.18 Processing Pattern: Peeling . 36
4.19 Processing Pattern: Abstraction . 37
4.20 Processing Pattern: Differentiation . 38
4.21 Example Distributed COPAL Nodes . 39
4.22 Distributed COPAL Node . 39
4.23 Eager Distribution . 40
4.24 Lazy Distribution . 41

5.1 OSGi Bundle Life-Cycle . 46
5.2 Esper Registration of Context Types . 48
5.3 Publishing of Context Events . 48

xv

5.4 Querying of Context Events . 49
5.5 Processing of Context Events . 50
5.6 Marshaller . 51
5.7 Unmarshaller . 52
5.8 Marshallers and Unmarshallers . 53
5.9 Essential COPAL Modules . 57
5.10 Extensions COPAL Modules . 59
5.11 Local-only Deployment . 60
5.12 Client/Server Deployment . 60
5.13 Distributed Deployment . 61

6.1 SM4ALL Platform Architecture . 69
6.2 Floor Plan of Casa Agevole . 71

xvi

List of Tables

3.1 Comparison of Context-Aware Systems . 21

4.1 Operations in Query’s Criteria . 31

5.1 Bundle Life-Cycle . 47

6.1 Test Machines . 64
6.2 Test Setups . 64
6.3 Latency Test Results . 66
6.4 Throughput Test Results . 67
6.5 Throughput with Processing Test Results . 68

xvii

List of Listings

5.1 Bundle Activator Interface . 46
5.2 Integer Marshaller . 51
5.3 Integer Unmarshaller . 52
5.4 Processor Marshaller . 54
5.5 Example Processor XML Element . 55
5.6 REST Interface for Context Type Registry Service 56
5.7 Example Usage of COPAL REST Client . 56

B.1 Query Criteria EBNF . 99

xix

List of Abbreviations

COPAL COntext Provisioning for ALl

API Application Programming Interface

DHT Distributed Hash Table

DOM Document Object Model

EBNF Extended Backus–Naur Form

EPL Event Processing Language

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JAR Java ARchive

JMS Java Message Service

JSON JavaScript Object Notation

OSGi Open Services Gateway initiative

P2P Peer-to-peer

QoS Quality of Service

REST Representational State Transfer

RFID Radio Frequency Identification

SGML Standard Generic Markup Language

SM4ALL Smart hoMes for ALL

xxi

SOA Service-Oriented Architecture

UML Unified Modeling Language

URI Uniform Resource Identifiers

URL Uniform Resource Locator

XML eXtensible Markup Language

JAX-RS Java API for RESTful Web Services

xxii

CHAPTER 1
Introduction

Mark Weiser started his paper [70] from 1991 with these seminal words: “The most profound
technologies are those that disappear. They weave themselves into the fabric of everyday life
until they are indistinguishable from it.” He envisioned the 21st century world as place where
computing will be ubiquitous. The essence of his vision was an environment, he called it the
“embodied virtuality”, where computers are drawn out of their hardware shells and become part
of the physical world around us. His vision was simply too far ahead for his time as there was
yet no technology required to support it.

After two decades of software and hardware development, we can see first glimpses of his
vision coming true. Netbooks, tablets, smartphones, smart appliances, cloud computing, and
pervasive environments just to mention a few. We can easily see the trend: computers are be-
coming ubiquitous in our daily lives and we are becoming more dependent on them to understand
and interact with the world and people. To support this, computers are becoming increasingly
more aware of their surrounding and the person that is using them. Advantage of increasing
awareness about the environment in devices is that they allow us build applications that are min-
imally intrusive to the user [62]. These applications are aware of user’s state and surroundings,
and adapt their behavior based on this information. A user’s environment and state can be quite
rich in information, consisting of attributes such as physical location, physiological state (such
as body temperature and heart rate), emotional state (such as angry, distraught, or calm), per-
sonal history, daily behavioral patterns, and so forth. If we were to give such information to a
person, he or she would be able to make decisions in a proactive fashion, anticipating the user’s
needs. Thus, we can expect from applications that use this information to be able to reason about
current situation and can be built to be less intrusive and more proactive for the user.

Context-awareness is one of the cornerstones of mobile and ubiquitous computing [8,27,62].
The history of context-aware systems started with introduction of Active Badge Location System
by Want et al. [68] in 1992. The system is considered to be one of the first context-aware
applications. It used the infrared technology to determine location of its users and forward phone
calls to a telephone closes to its user. The actual term “context-aware” was coined by Schilit and
Theimer in their paper [64] from 1994. Today, context-awareness has been associated with some

1

other terms: adaptive [15], reactive [24], responsive [30], situated [46], context-sensitive [55],
and environment-directed [34].

In general, context-awareness refers to the idea that applications can understand their con-
text and adapt their behavior based on information gathered from the environment without an
explicit user intervention. Thus, it aims to increase usability and effectiveness of applications.
This feature is particularly important in mobile system, where it is desirable that applications and
services react specifically to their location, time and other environmental attributes and modify
their behavior according to changing circumstances. Most importantly, this dynamic adaptation
aspect can provide context-aware applications with a degree of autonomy. Furthermore, it frees
users from the current model of human-computer interaction, where they have to explicitly ex-
press all information that is relevant for application’s task and to confirm all actions executed by
the application.

1.1 Motivation

The following motivational scenario is meant to introduce the reader with requirements that are
expected from a flexible context-aware system. Moreover, it should be considered as a prelude
into challenges associated with designing and implementing a context-aware system that will be
explained in next section.

In this scenario, we will consider an imaginary person named Alice that lives in a smart
home. The smart home is equipped with different sensors and a context-aware service platform.
The first requirement that we will consider in this imaginary scenario is that context-aware ser-
vices should keep a comfortable ambiance for Alice. For the most basic use-case, these context-
aware services should decide suitable lighting and settings for an air-conditioner (AC). That
would require them to be able to access information about current luminance and temperature in
the house.

Additional helpful reading would be to have presence of Alice in the house. This information
could control if keeping comfortable ambiance is currently required at all. For example, it would
be very wasteful to keep the lights on when Alice is not even in the house. On the other hand,
the context-aware services should be implemented such that they do not depend on the presence
information, as some houses do not have a sensor for it. They should instead fail gracefully
to keep the comfortable ambiance when user manually demands them to. In our scenario, the
smart home does contain a device that can determine exact coordinates of Alice in the house
using a RFID (Radio Frequency Identification) tag. This information does not exactly provide
the presence information, but it does provide enough information to deduce if Alice is in the
house or not based on the presence or absence of the signal emitted from the RFID tag.

Furthermore, Alice is additionally involved in an experimental deployment of smart me-
ters and smart grids [20] that implement a brand new pattern of power service and encourage
residential energy saving. Smart meters are deployed in Alice’s house to monitor and control
appliances like lights in each room, AC, fridge, television, etc. They provide the current power
consumption for each appliance and are deployed together with the current price indicator that
receives real-time price information from the power market [67]. Using this information and
the context-aware service platform, Alice wants to develop a context-aware service that will re-

2

duce her power consumption. This context-aware service will have three modes of operation
depending on her total power consumption and total power cost: aggressive, moderate, and le-
nient. Based on the current mode of operation, it will control how much freedom the ambiance
services have. For example, the tolerance level before AC is turned on would be higher in the
aggressive mode than in the moderate mode, thus keeping AC turned off for longer periods of
time. This service also shows the discrepancy between data that is required, total power con-
sumption and cost, and data that is provided, power consumption per appliance and current price
of power. Therefore, the context-aware service platform must be extensible enough to provide
mechanism to compute this information.

This motivational scenario was meant to illustrate the requirements for a flexible context-
aware service platform. First, it enumerates the major actors that play role in communicating
with the platform: appliances, sensors, and context-aware services; and that all of them com-
municate differently with the platform and expect different requirements from it. Second, it
shows that context-aware services must exploit multiple types of context information that are
provided by many sources: luminance sensor, thermometer, RFID sensor, smart meters, and
price indicator. Finally, it demonstrates that some additional implicit information will have to
be deduced in the platform and to be provided to the services: user presence in the house, total
power consumption, and total price of consumed power.

1.2 Challenges

A key challenge in context-aware systems is how to obtain information needed for an application
to function in a proactive and non-intrusive manner [62]. In a context-aware system, context has
to be gathered through automated means. This removes burden for users to explicitly provide all
necessary information. Thus, context has to be acquired from many heterogeneous information
sources with each one having its own way of accessing and storing data. Some sources will
require continuous pooling of data for changes, and others will notify when information changes.
Some will require the system to access data over a network, and others will store it locally.
Moreover, data format can be different from one device to another. This creates an additional
challenge, because if we were to expect from context-aware applications to understand all these
formats, the complexity of developing the applications would increase exponentially with each
addition of new context source. Hence, accessing, storing, and understanding data from different
context sources has to be solved in the context-aware system, using some dedicated context
model [13,66], for it to be usable by different types of context-aware applications and to be able
to scale linearly with each new type of context information.

Other major challenge in supporting context-aware applications is how to bridge the vast
information gap between context sources and context-aware applications [49]. Context informa-
tion is generated by heterogeneous devices, which are unaware of the application requirements
and information models. This information is mostly too fine-grained and low-level for context-
aware applications to consume. For example, a GPS (Global Positioning System) can provide
you with a three-dimensional position using longitude, latitude, and altitude. This informa-
tion might be is important for some types of critical systems like airplane navigation, but many
user applications do not require such fine-grained information. They might only require current

3

street name or name of the city for it to function correctly. This discrepancy between granularity
level of information that is provided by the context sources and level that is required by context-
aware applications can create a challenge for a context-aware system, as well as its programming
model, as it will need to provide support to bridge this gap.

The last challenge in a context-aware system is that it needs to allow context-aware applica-
tions to adapt their behavior. In the core of this challenge lies situation-reasoning. Context-aware
applications have to be able to define situations in the environment that are of interest to them.
For example, the aforementioned service that keeps comfortable temperature in Alice’s home
will define temperature range when it will turn on the AC and temperature ranges for which the
AC will be off. Change of temperature from one temperature range to another is a situation in
the environment, which is of interest to the service, as it will need to either turn on or turn off
the AC. Thus, a context-aware system should provide a flexible mechanism, so a context-aware
application can specify under which circumstances it should be notified.

Finally, we can now define the objective of this thesis:

To develop a context-aware service platform which will provide, by gathering
and abstracting, sufficient information about the environment for context-
aware applications to be able to reason about the current situation, make
proactive decisions and adapt themselves to the changing context.

1.3 Approach

Our approach in designing a context-aware system extends the context provisioning [48] idea
that bases itself on the publish/subscribe model [12]. The three aforementioned challenges are
solved as three independent steps in the system, namely publishing, processing, and listening.
The publishing step uses set of publishers to acquire information about the environment from
context sources. Each publisher is associated with one context source and specifically developed
for that source to hide the complexity of accessing and communicating with it. Furthermore, they
enforce a common representation model for context and publish their observations as events that
represent a single change in context. The processing step allows construction of complex con-
text provisioning schemes by invoking multiple processors before events reach context-aware
services. The idea of processing context is borrowed from the model for event-processing net-
works [65] and is adapted in our solution to work as part of context provisioning. Processors de-
fine abstract relationships between input and output events. They can be used to modify events,
filter malformed or low-quality information, translate events from one representation to another,
and aggregate/differentiate events into one or more events. Most importantly, processors can
provide same information in different levels of granularity and to infer new information from
occurrence and/or absence of events. Lastly, the listening phase provides a complex selection
mechanism to continuously query published and processed events. Continuous queries provide
the mechanism to specify under which circumstances a context-aware service will be notified.
Hence, services can react to changes in context and adapt their behavior accordingly.

4

1.4 Contribution

The COPAL1 (COntext Provisioning for ALl) middleware is the implementation of the afore-
mentioned approach for building a context-aware system. It is situated between communication
layer that allows access to context sources and application layer that is interested in context infor-
mation. Its main advantage is that it hides complexity of accessing context sources from context-
aware applications and provides developers with simple API to create and deploy context-aware
applications. Merits of the COPAL middleware are as follows:

• It is a flexible context-aware service platform that provides a new programming model
for development of context-aware systems using publisher-processor-listener abstraction.
The programming model allows to progressively extend the system to support new types
of environmental information and to add new context-aware services.

• It provides a scalable and distributed architecture that can handle many heterogeneous
context sources and can be used for varying context-aware services. Instances of the
COPAL middleware that are part of same global context can be distributed over multiple
devices. Communication and synchronization of context between the instances is trans-
parent to all context-aware services.

• It is separated into multiple modules to allow easy extension with new modules or even to
be reimplemented using new ideas. The loosely-coupled and modular architecture allows
the system be customized for different use-cases and deployed on different platforms.

• It provides a flexible solution to build adaptive and customizable processes using common
processing patterns. Processing of context is one of the key concepts in this thesis by
which a wide range of operations can be carried out. This thesis proposes five processing
patterns, namely filter, aggregation, differentiation, enrichment, and peeling, which can
be used to design and compose complex processing schemes.

Finally, an instance of the COPAL middleware is currently deployed in a working prototype
smart house at Fondazione Santa Lucia2 in Rome, Italy, where it provides context-awareness for
automated execution of tasks, goals, and processes. The prototype smart home was built as part
of the SM4ALL3 (Smart hoMes for ALl) project, which investigates middleware platform for
inter-working of smart embedded services in environments like private houses and home-care
assistance. The SM4ALL project is an international scientific research project founded by the
European Community under Seventh Framework Programme (FP7).

1.5 Organization

The remaining chapters of this thesis are organized as follows: An in-depth look at context
and context-awareness is presented in Chapter 2. Chapter 3 provides a short survey of other

1http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/
2http://www.hsantalucia.it/
3http://www.sm4all-project.eu/

5

http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/
http://www.hsantalucia.it/
http://www.sm4all-project.eu/

implementations of context-aware systems and examines their characteristics compared to the
COPAL middleware. The in-depth design of the COPAL middleware is explained in Chapter 4
together with description of processing patterns and distribution of COPAL instances. Chapter 5
describes the technologies behind the implementation of the COPAL middleware and how they
were used to support publishing, processing, querying, and distribution of COPAL instances.
Chapter 6 evaluates the performance of the COPAL middleware and demonstrates the usage of
the COPAL middleware in the SM4ALL platform. Finally, Chapter 7 concludes the thesis with a
short summary and plans to improve the COPAL middleware in future efforts.

6

CHAPTER 2
Context-Awareness

Context and context-aware systems have been investigated for a decade. Many definitions and
concepts about context and context-awareness have emerged in this period, which wanted to
clarify the usefulness of these basic ideas in computing. In Section 2.1, we will first review
numerous attempts to define, categorize, and model the context. Then, Section 2.2 will exam-
ine, based on by then increased understanding of what context is, several efforts to define the
“context-aware” term more formally. Finally, we will summarize the history of investigating the
concepts of context and context-awareness in Section 2.3

2.1 Context

Definitions

At first, we can try to understand context by looking at how it used in written and spoken text.
The meaning of context in natural language can be seen as an implied knowledge that allows
us to fully comprehend the point of some statement. For example, if someone says, “he will be
joining us there,” the pronoun “he” and the adverb “there” are implied knowledge and can be
inferred from previous spoken context. Listener has to share this knowledge with the speaker to
be able to fully understand whom the speaker is referring to and which place he is talking about.

Context and context-awareness in computing emerged as part of the ongoing research in
ubiquitous/pervasive environments. In a ubiquitous system, computing capability is an intrinsic
part of any object in the human environment. Thus, a ubiquitous system can be seen as a system
of “machines that fit the human environment instead of forcing humans to enter theirs.” [70]
These objects provide us with rich information about the current environment. Furthermore,
applications can use this information to improve their understanding of the environment, modify
their behavior based on current situation in the environment, and execute suitable operations
depending on the situation. Thus, context information becomes an inherent part of application’s
state.

7

First definitions of context were based on enumerating examples of information that should
be part of context. Schilit and Theimer [64] defined context as location, identities of nearby peo-
ple and objects, and changes to those objects. Brown et al. [18] defined it as location, identities of
the people around the user, the time of day, season, temperature, etc. Ryan et al. [59] proposed
definition of context as the user’s location, environment, identity and time. Finally, Dey [26]
enumerated context as the user’s emotional state, focus of attention, location and orientation,
date and time, objects, and people in the user’s environment. These definitions were given as
part of specialized context-aware applications like context-aware tour guide, which uses user’s
location to provide relevant information about sites around him. Problem with them became
apparent when general context-aware systems emerged. When we want to determine whether a
type of information that is not listed in the definitions is in context or not, these definitions are
not helpful as it is not clear how we can use any of them to solve the dilemma. Thus, they result
in a limited scope of understanding context.

Better way to define context is with usage of synonyms. Brown [16] defined context to
be the elements of the user’s environment that the user’s computer knows about. Franklin &
Flaschbart [38] saw it as the situation of the user. Ward et al. [69] viewed context as the state of
the application’s surroundings and Rodden et al. [56] defined it to be the application’s setting.
Hull et al. [46] included the entire environment by defining context to be aspects of the current
situation. Finally, Dey and Abowd [27] proposed a definition for context that is currently most
widely used:

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

The advantage of this definition is that it allows developers of context-aware service to define
which context information is relevant for a given scenario. If a piece of information can be used
to describe a situation of a participant in an interaction with the service, then that information is
part of the context relevant for the service. For example, let us consider a service that controls
lighting in a house. If user executes the command “turn on lights”, the actual “lights” have to
be implied from the user’s location in the house. Thus, location information is in the context for
this service because it can be used to characterize the situation of an entity.

Categories

Prekop and Burnett [54] and Gustavsen [40] separated context based on the way it was acquired
into external and internal. External context consisted of measurements made by hardware sen-
sors like location, temperature, lighting, and so forth. Whereas, internal context consisted of
information that was inferred from user’s interactions with the context-aware system like goals,
tasks, emotional state, and so forth. Most commonly, context-aware systems use only external
context as it provides enough information about the environment and can be easily acquired
from sensing technology that is already available at the market. Notable exceptions from this

8

rule were made by Watson project [19] and the IntelliZap project [37] that used logical context
gathered from information read out of open web pages, documents, etc.

Hofer et al. [44] differentiated context based on its origin into local and remote. In a dis-
tributed network of context-aware devices, the device’s own sensors generate local context.
Whereas, remote context is generated by nearby devices and can be shared with other devices.
The remote context can be used together with local context to approximate values like current
temperature at some location. Furthermore, the remote context can be used to provide additional
information about the environment that local context does not poses.

Dey and Abowd [28] partitioned context based on the type of information into primary
and secondary. The primary context consisted of location, identity, time and activity. This
information was chosen as it can fully answer “who’s, where’s, when’s, and what’s of an entity
and could be used to determine why a situation is occurring.” Furthermore, this information
can also be used as indices into secondary context of same entity as well as primary context for
other related entities. For example, using person’s identity, we can find his phone number, email
address, birthday, and so forth, which correspond to his secondary context. Additionally, using
the same identity we can find identities of his parents, relatives, coworkers, and so forth, which
correspond to primary context of other related entities.

Models

Context models define and store context data in a machine readable and processable format. A
well-designed model is a key to the success of any context-aware system. Strang and Linnhoff-
Popien in their survey [66] summarized the most relevant context modeling approaches. In this
section, context models presented in the survey will be enumerated and described briefly.

Key-value models are the most simple model representations. They use key-value pairs to
provide the value for some specific type of context information [63]. For example, user’s location
can be represented as the pair (location, kitchen). The key-value model provides an easy way to
manage context information, but lacks any sophisticated means to structure the information in
a more efficient manner for context retrieval algorithms. This context model is frequently used
in distributed service frameworks, where services are most commonly described with a list of
attributes in a key-value representation. Then, service discovery operates by exact matching of
these attributes.

Markup scheme models use a hierarchical data structure consisting of markup tags with
attributes and content. In particular, the context of the markup tags is usually defined by other
markup tags. Typical representatives of this kind of context modeling approach are profiles,
which are usually based on a serialization of a derivative of Standard Generic Markup Language
(SGML) [1]. Typical examples of such profiles are Composite Capabilities/Preference Profile
(CC/PP) [47], User Agent Profile (UAProf) [3], and Pervasive Profile Description Language
(PPDL) [23].

Graphical models use graphical components to model the context. This type of models
are particularly applicable for generating ER-models (Entity-Relationship models) [22] that can
be used as structuring tools for a relational database in information systems. Typically, this
context model extend any of graphical modeling languages, such as Unified Modeling Language
(UML) [4] or Object-Role Modeling (ORM) [43].

9

Object-oriented models use various object to represent different types of context informa-
tion. Access to contextual information is only allowed through a well-defined interface. Details
of context processing is encapsulated on an object level and hence hidden to other components.
Common to all object-oriented context modeling approaches is the intention to employ the main
benefits the object-oriented technique, namely encapsulation and reusability, to solve some parts
of the problems arising from the dynamics of context in a context-aware system.

Logic-based models use facts, expressions, and rules. A logic-based system allows con-
ditions to be defined on which a concluding expression or fact is derived from a set of other
expressions or facts. This process is known as reasoning or inference. In a logic-based model,
context information is most commonly inserted, updated, or removed in terms of facts. Fur-
thermore, additional context information is inferred by applying expressions and rules from the
model. Common to all logic-based models is a high degree of formality.

Ontology-based models provide a standardized vocabulary to define entities in a context-
aware system, their properties and relations between them. Formally, ontology is a standardized
representation of knowledge as set of concepts within a domain and relationships between those
concepts. It can be used to effectively reason about entities within that domain. Due to their high
level of expressiveness, they are becoming a very promising instrument for modeling context
information.

2.2 Context-Aware

The first category of definitions for “context-aware” term defines it as an ability to “adapt to con-
text.” Schilit and Theimer [64] define context-aware system as a system that “adapts according
to its location of use, the collection of nearby people and objects, as well as changes to those ob-
jects over time.” [64] Ryan [58] defined context-aware applications as applications that monitor
input from environmental sensors and allow users to select from a range of physical and logi-
cal contexts according to their current interests or activities. This definition is more restrictive
than the previous one, because it additionally specified the method, the user selection, in which
applications act upon context. Brown [17] saw context-aware applications as applications that
automatically provide information and/or take actions according to the user’s present context as
detected by sensors. He also took a narrow view of context-awareness by specifying that these
actions can take the form of presenting information to the user, running a program according to
context, or configuring a screen of the user’s mobile device. All these definitions require that an
application modifies its behavior for it to be considered context-aware.

The second category of definitions tries to be more general and not to exclude existing
context-aware applications. Thus, they define “context-aware” simply as an ability to “use con-
text.” Hull et al. [46] and Pascoe [52] defined context-awareness to be the ability of computing
devices to detect and sense, interpret and respond to aspects of a user’s local environment and
the computing devices themselves. Dey [26] limited context-awareness to the human-computer
interface, as opposed to the underlying application. Afterwards, he began to introduce the no-
tion of adaptation by defining context-awareness to be the work leading to the automation of
a software system based on knowledge of the user’s context [29]. Salber et al. [60] defined

10

context-aware to be the ability to provide maximum flexibility of a computational service based
on real-time sensing of context.

Finally, Dey and Abowd [27] provided their own definition for context-awareness that is
most liberal:

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.

This definition only requires a context-aware system to respond to context, unlike Hull et
al. [46] and Pascoe [52] definition that requires a context-aware system to detect, interpret and
respond to context. This allows the detection and interpretation of context to be performed in
some other computing entity like e.g. context-aware middleware. Moreover, it differs from
the other “use context” definitions given above by not limiting awareness to just the human-
computer interface as in [26], not requiring applications to perform services automatically as
in [29], and not requiring real-time acquisition of context as in [60].

2.3 Summary

The review of definitions demonstrated the gradual development of the understanding of con-
text, and the evolution of the field. First context-aware systems were specialized applications for
certain use cases. Examples of these were context-aware tour guides [5,16] and office awareness
systems [53, 68]. Accordingly, definitions of context and context-awareness were influenced by
their respective use-case. Context was defined by examples of which information the particular
system required and context-awareness was defined by how the system adapted to context infor-
mation. Afterwards, came general context-aware toolkits and frameworks [28,61] that provided
support for implementing context-aware applications. These frameworks were built on the con-
cept that a context-aware system should enable applications to retrieve the context they require
without them having to worry about how the context was acquired. Thus, definitions for context
and context-awareness evolved to be more general. Instead of using examples and adaptation
techniques, they defined context using synonyms and context-awareness simply as usage of con-
text. Dey and Abowd’s definition of context [27] is of great importance here because it provided
an abstraction for context. They defined the context as “information used to characterize the
situation of an entity.” This enabled developers of context-aware systems to stop thinking about
use-cases that they should support in their system, and focus on context-awareness in terms of
entities that interact with the system and programming abstractions for the system to represent
these entities. Hence, many context-aware systems [21, 33, 48, 57] emerged to easily build vari-
ous context-aware applications that support many different use-cases.

11

CHAPTER 3
Related Work

Baldauf et al. describe in their survey [8] many different approaches to design a context-aware
system. In this chapter, five distinct implementations will be mentioned: Context Toolkit (Sec-
tion 3.1), CASS (Section 3.2), Gaia (Section 3.3), Solar (Section 3.4), and C-CAST (Sec-
tion 3.5). These implementations are chosen and explained because each one represents a
distinct approach to implement a context-aware system. Finally, comparison and summary of
solutions, including the COPAL middleware, will be presented in Section 3.6.

3.1 Context Toolkit

query

callback

query

callback

query
Application

Simple
Widget

Simple
Widget

Simple
Widget

Application

Composed
Widget

Figure 3.1: The Context Toolkit

The Context Toolkit [28, 61] (Figure 3.1) is one of the first developed context-aware frame-
works. The central idea of the system is borrowed from GUI (Graphical User Interface) toolkits

13

and widget libraries that create reusable building blocks and hide specifics of physical system.
Context widgets equivalently try to hide the complexity of actual sensors and provide reusable
and customizable building blocks for context-aware applications. Thus, a context widget is a
software component that provides applications with access to context information from their
operating environment. In the same way GUI widgets insulate applications from some presenta-
tion concerns, context widgets insulate applications from context acquisition concerns. Hence,
context widgets provide developers with following benefits:

• They hide the complexity of the actual sensors used from the application. For example,
whether the presence of people is sensed using an active badge, floor sensors, video im-
age processing or a combination of these should not impact applications that require this
information.

• They abstract context information to suit the expected needs of applications. For example,
a context widget that tracks the location of a user within a building notifies applications
only when the user moves from one room to another and doesn’t report less significant
moves to the applications.

• They provide reusable and customizable building blocks of context sensing. For example,
a context widget that tracks the location of a user can be used by a variety of applications,
from tour guides to office awareness systems

• They can be tailored and combined to create more complex widgets. For example, a
presence widget senses the presence of people in a room. A meeting widget may rely
on the presence widget and assume a meeting is beginning when two or more people are
present in same room.

Applications can access context information from context widgets using two methods. First,
a widget provides a set of attributes that can be queried by applications. For example, an identity
presence widget has attributes for its location, the last time a presence was detected, and the
identity of the last user detected. Second, applications can register to be notified of context
changes detected by the widget. The widget triggers callbacks to the application when changes
in the environment are detected. The identity presence widget for instance, provides callbacks
to notify the application when a new person arrives, or when a person leaves.

The problem with the context toolkit is that applications have to know beforehand which
context widgets they require and where they are located. This creates a problem when we want
to use a new sensor. Although, the context widget for this sensor will hide the complexity of
accessing the sensor, the application still has to be modified to use the new context widget.
Furthermore, the new context widget might provide context information in different format,
which will require further modifications to the application.

3.2 CASS

CASS (Context-Awareness Sub-Structure) [33] (Figure 3.2) is server-based middleware in-
tended to support context-aware applications on handheld and other small mobile devices. It

14

Sensor NodeCASS Middleware

Inference
Engine

Database Sensor

Sensor

Mobile Device

Application

Application

notify send

Figure 3.2: CASS

enables developers to overcome the memory and processor constraints of small mobile devices
while supporting a large number of low-level sensor and other context sources. A key fea-
ture of CASS is its support for high-level context data abstraction and the separation of context
based inferences and behaviors from application code. This separation opens the way to making
context-aware applications that are configurable by users.

The system is separated into three components: sensor nodes, a server hosting the CASS
middleware, and context-aware applications. Sensor nodes are computers that communicate di-
rectly with one or more sensors that are attached locally to it. Sensor node can be mobile or
static. All sensory data from sensor nodes is transmitted to the CASS middleware that is run-
ning on the server. Context-aware applications run on mobile devices that are connected to the
server over wireless networks. They do not need to communicate with each individual source of
context directly but only with the CASS middleware and therefore do not need to store low-level
details of context sources. The CASS middleware provides them with a mechanism to listen
for notification of context change events. Database storage and inference engine are part of the
CASS middleware, which removes burden from sensor nodes and mobile devices to process and
store data locally. The database offers a persistent data storage for context-awareness. Besides
storing context information, the database can be used to store domain knowledge represented as
rules and behavior relevant to specific context-aware application. This allows the context reason-
ing and behaviors of context-aware applications to be changed in a dynamic way. The inference
engine works in conjunction with the database and uses rules and goals that are stored in the
database to solve problems. It provides the CASS middleware with the ability to infer high-level
context information using rules to create an abstraction of low-level context information. Then,
it uses this high-level information to find matching goals when a change in context is detected.
Goals allow the CASS middleware to change or activate some specific context-aware behavior
of context-aware applications.

The biggest drawback of this architecture is its centralized server. Although, performance,
memory, and battery limitations create a strong point for having processing and storing context
information remotely, this does not constitute a need to have it centralized on one server. If we
start to increase number of sensors and applications, shear amount of data stored in the system
that needs to be processed will create a bottleneck and the system would not be able to scale.

15

3.3 Gaia

Gaia

Context Service

Event Manager
Service

SensorApplication
Context File
System

store

Sensor

accessread

Active Space
notify

store

Application

Figure 3.3: Gaia

Gaia [57] (Figure 3.3) is a meta-operating system built as a distributed middleware infras-
tructure that coordinates software entities and heterogeneous networked devices contained in a
physical space. It is designed to support the development and execution of portable applications
for active spaces. Active spaces are programmable ubiquitous computing environments in which
users interact with several devices and services simultaneously. Gaia extends the concepts of tra-
ditional operating systems to ubiquitous computing spaces, which enables it to simplify space
management and application development. It exports services to query, access, and use exist-
ing resources and context, and provides a framework to develop user-centric, resource-aware,
multi-device, context-sensitive, and mobile applications.

A physical space is some geographically defined region with well-defined and physical
boundaries. It contains physical objects, numerous network-connected devices, and users that
perform activities. An active space is a physical space that is additionally controlled and co-
ordinated by a context-based software infrastructure that allows mobile users to interact and
configure physical and digital seamlessly. Thus, active spaces support development and execu-
tion of user-centric mobile applications. In active spaces, sessions store user data and associate
applications with users. This allows users to move around an active space and have their data
and applications always available.

Because Gaia is a general solution for providing fully ubiquitous environment for its users,
we will only focus on its components that support the context-awareness part of the solution,
namely its event manager, context service, and context file manager. The event manager service
allows active spaces to expose and propagate events that signify changes in their current state
to other interested parties in the space. It is implemented as a decoupled communication model
based on producers, consumers, and channels. A channel forwards events from producers to
consumers. A default set of event channels in Gaia notify their consumers about new services,
applications, people, errors, and component heartbeats. The context service lets applications
query and register for some specific context information. It consists of context providers that
offer sensory information about the current environment and of components that can infer cer-

16

tain high-level information from sensory data. Its context model is based on first-order logic and
Boolean algebra. Context information is described using predicates. Logic-based model allows
the context service to create rules for inferring higher-level context information using quantifica-
tions, implications, conjunctions, disjunctions and negations. The context file system is used to
make user’s data automatically available to applications, organizing the data to facilitate locating
relevant material, and retrieve the data in a format based on user preferences or device charac-
teristics through dynamic data types. It constructs a virtual directory hierarchy based on the
types of context associated with particular files. It combines the environment’s current context
information with user-specific information to create correct data for an application.

The only drawback of this solution is the context model. Logic-based context model does
provide a very nice way to create rules for inferring new context information that are based on
logical expressions, but this model is not comprehensive enough to define rules that are based
on even simplest algebraic calculations. For example, we cannot use this model of inference to
define a rule that calculates power consumption in a house by summing the power consumption
of each appliance in the house.

3.4 Solar

Sensor

Sensor

Operator

Operator

Operator

Application

Application

Figure 3.4: Solar

Solar [21] (Figure 3.4) is a peer-to-peer (P2P) network based on the application layer multi-
casting and Distributed Hash Table (DHT) [7]. It distinguishes that applications typically need
high-level context rather than raw sensor data and that high-level context can be derived by
aggregating data from one or more sensors. Solar aims to make it possible to offload this com-
putation from the end-user application device into the middleware, running on one or more
servers that host the Solar software. From the application’s viewpoint, Solar encourages a mod-
ular structure and reduces programming time through code-based reuse. From the system’s
viewpoint, Solar minimizes redundant computation and network traffic and increases scalability
through instance-based reuse.

In the system, applications compose data flows, rather than interacting directly with mobile
and embedded sensors and devices. They instruct Solar on which sensor to use and how the

17

sensor data should be aggregated into desired context. Solar uses the filter-and-pipe software
architectural pattern for data-stream oriented processing, which supports reuse and composition
naturally. In a filter-and-pipe style, each component (filter) has a set of inputs and a set of
outputs. A component reads streams of data on its inputs and produces streams of data on its
outputs. A connector (pipe) serves as conduits for the streams, transmitting outputs of one filter
to inputs of another. A data flow starts from a source, through a sequence of pipes and filters,
and reaches a sink. In Solar terminology, a filter is called an operator and a pipe a channel. A
channel is directional and has two ends; at the input end is attached a source, and at the output
end is attached a sink. A sensor is a source and an application is a sink; an operator is both a
source and a sink. An operator is a self-contained data-processing component, which takes one
or more data sources as input and acts as another data source. A channel connects an upstream
operator to a downstream operator, and the direction of a channel indicates the direction of
data flow. This simple model allows developers to easily connect the sensors, operators, and
applications with channels to form an acyclic graph.

Solar takes a fully-distributed approach and consists of a set of functionally equivalent hosts
named planets. Planets provide some key services: (1) operator hosting and execution, (2) sen-
sor/operator registration and discovery, (3) and data dissemination through operator graphs. The
more Planets are deployed, the more capacity Solar has to serve sensors and applications. Since
planets are functionally equivalent, Solar interconnects them using an application-level P2P pro-
tocol. The advantage of using a P2P-based service overlay is its capability of automatic handling
as planets join and depart. Furthermore, Solar uses a DHT where each planet is assigned a unique
numeric identification. The DHT interface allows components to send a message to a numeric
key and the message will be delivered to a planet with the numerically closest identification.

The biggest drawback in Solar architecture is its processing design using a filter-and-pipe
architecture. It creates a very rigid software architecture as in does not provide ways to employ
processing on event level. We can easily see that either all data in a channel is processed or none
is. Furthermore, the decision on how to compose sensors and operators lays in applications. This
increases complexity of applications because different sensors that provide same type of context
information might need different operators to create same high-level context. For example,
retrieving information about a presence of a user in a room will require different combination
of operations based on if we use raw data from active badges or from a security camera feed.
From this example, we can see that applications will have to know which sensor is available in
the system and create an operator graph accordingly.

3.5 C-CAST

C-CAST [48] (Figure 3.5) first proposed a broker-based context-provisioning system that is sup-
ported by a publish/subscribe model [12]. It was designed to support mobile context based
services over any network. Thus, all communication in the system is based by exchange of
HTTP (Hypertext Transfer Protocol) [11, 36] messages using a REST (Representational State
Transfer) [35] interface, which allows components to be ported onto almost any networked de-
vice. Furthermore, the context publish-subscribe model, together with the context broker model,

18

lookup lookup

query subscribe

announce update

Context
Consumer

Context
Consumer

Context
Broker

Context
Provider

Context
Provider

Providers
Registry

Subscriptions
Registry

Figure 3.5: C-CAST

allows the framework to scale in terms of physical distribution of components and in terms of
context reasoning complexity.

In the system, components take the role of either context provider or context consumer. The
context broker holds registrations of all context providers and offers a directory and lookup ser-
vice so context consumers can find and access the context providers. Registration and lookup of
context providers is based on subjects of interests, i.e. types related to the contextual informa-
tion. Context providers are responsible for accessing and gathering context information from any
kind of sensor. A context provider will register with the context broker using an advertisement
message in which the context provider announces its capabilities and type of context informa-
tion that it can provide. The advertisement message additionally contains information on how
to access the context provider, its query model, and the way context can be accessed. Context
consumers may be any kind of application or actuator utilizing the context information. They
ask the context broker for a list of context providers that can provide a specific context type, and,
if available, can directly query a context provider for its context. This is a synchronous method
of communication. Another method of context query by context consumer is available which is
asynchronous in nature. First, a context consumer subscribes for context information with the
context broker. Next, the context broker forwards subscriptions from the context consumer to all
registered context providers. When a context provider can match the subscription with produced
context information, it will inform the context broker of the available match and from then on
will update the context broker on context changes. Finally, the context broker will forward any
context changes from the context provider to the subscribed context consumer.

The major limitation of this architecture is the centralized context broker, which creates
a single point of failure in the system. Although, the context producers and consumers can be

19

distributed on many machines, the system is inherently centralized, as there is one single context
broker, which mediates almost all communication between context consumers and producers.
This can create a huge bottleneck in the system as number of context consumers and producers
increases and will not allow the system to scale. Furthermore, the system does not provide any
simple way to process context information before it reaches context consumers. Filtering low-
quality data, composing multiple types of context to create a high-level information about the
environment, and transforming one type of context into another are all responsibility of context
consumers and the system does not envision a way to share this information between them.

3.6 Summary

Table 3.1 compares described approaches to designing context-aware systems together with the
COPAL middleware. By examining the requirements to develop context-aware systems, the
following six criteria for the evaluation have been chosen:

• C1: Decoupling of acquisition

• C2: Processing mechanism

• C3: Complex notification mechanism

• C4: Decentralized

• C5: Extensible

• C6: Programming model

First three criteria (C1–C3) are based on the context-aware challenges that were described
in Section 1.2. They are directly related to task of supporting context-awareness in applications.
First challenge of context-aware system is to hide acquisition of context from rest of the system
(C1). This enables a context-aware system to more easily support many heterogeneous context
sources and allows the system to standardize the context model and the interface for accessing
the context information. Second challenge is to provide a mechanism to process context infor-
mation before it is consumed by context-aware applications (C2). Processing of context can
be used to infer new context information from presence or absence of other information and
to transform one type of information into another type that is more suitable for consumption.
Last challenge is to allow context-aware applications to specify under which circumstances they
should be notified. Context-aware applications are required to use context information to change
their behavior. Most of the time, they only do this if only some specific situation in context oc-
curs. Complex notification mechanism (C3) supports applications by allowing them to more
easily define these situations.

Last three (C4–C6) are additional criteria that respectively measure system’s support for
scalability, flexibility, and ease-of-development. They do not inherently help with the task of
context-awareness, but they can lead to solutions that are more versatile and can be deployed
to support context-awareness in wider range of use-cases. Decentralized context-aware system

20

(C4) allow a graceful handling of growing number of context sources and applications by in-
creasing the number of machines that the system is deployed on. A context-aware system that
can be dynamically and progressively extended (C5) helps developers to adapt the system as
new requirement arise and new use-cases are envisioned. Finally, programming models (C6)
enable the developers to more easily reason about behavior of context-aware applications and to
prove the correctness of their source code.

C1 C2 C3 C4 C5 C6
The Context Toolkit yes yes no yes no yes
CASS yes yes yes no yes no
Gaia yes partially1 no yes yes yes
Solar yes yes no yes yes yes
C-CAST yes no no no yes yes
COPAL yes yes yes yes yes yes

Table 3.1: Comparison of Context-Aware Systems

Although acquisition of context varies between the approaches, all of them separate the
acquisition mechanism from the rest of the system (C1). Processing of context information (C2)
is also very well supported; except for C-CAST which does not have a dedicated processing
mechanism. Interestingly, the complex notification mechanism (C3) is only supported in two
context-aware systems: CASS and the COPAL middleware. The COPAL middleware puts big
emphasis on this criterion, because it can ease the development of context-aware applications.
In context-aware systems that do not support the complex notification mechanism, the system
will notify context-aware applications on every change in context. Thus, applications have to
reason by themselves if a change in context is relevant or not. If the relevancy changes over
time as, for example, user preferences change, it can lead to complex ad-hoc solutions that are
hard to maintain and error-prone. Only two approaches, CASS and C-CAST used a centralized
context-aware system (C4). They did create a context-aware system that is well suited for their
particular use-case involving constrained mobile devices, but this lead to architecture that is not
particularly useful for other use-cases. The Context Toolkit is only context-aware system that
is not easily extensible (C5), because it does not provide any kind of mediator that decouples
components that acquire context from context-aware applications, which can be progressively
extended to support new context sources without impeding applications that are already using
it. Finally, only CASS does not provide any programming model for building the context-aware
system (C6). It does not create any high-level abstraction for context-awareness and applications
directly use technologies like database and rule engine to communicate with the system.

1Gaia can only do logical inference.

21

CHAPTER 4
Design

The design of the COPAL middleware is presented in this chapter. First, Section 4.1 will describe
context model used in the COPAL middleware and explain gathering, reacting, and processing
changes in context. Next, processing patterns, which are supported in the COPAL middleware,
will be introduced in Section 4.2. Finally, Section 4.3 will explain the distributed hierarchy for
organizing instances of the COPAL middleware and distinguish two ways to share environmental
information between the instances.

4.1 Context

Model

In Chapter 2, context has been formally defined as “any information that can be used to char-
acterize the situation of an entity.” Informally, context can be acquired or inferred from the
surrounding and can help to explain current situation that user or an application is in. For exam-
ple, weather, time, location, or even CPU utilization can all be part of the same context as they
describe different aspects of the same surrounding. We can immediately see that there are many
distinct types of environmental information and that each has different domain and has to be rep-
resented differently. Even one type of information can have different representations depending
on what is required by context-aware applications. For example, current time can be represented
as exact value in time continuum (e.g. 1st May, 2011 16:00), or it can be represented as time in
a day with possible values being morning, midday, afternoon, evening, or night. Thus, we will
have to divide context into many distinct context types — like time, location, temperature, etc.
— that each specifies different information about the environment. Each type of information in
the environment is associated with exactly one context type, which describes which properties
is part of this environmental information. For example, a context type describing temperature
may consist of properties that specify when a measurement was made, where it was made, how
many degrees and in which unit the measurement is.

23

name: String
ContextType «interface»

Format

1 *
name: String
type: Class
required: boolean

«interface»

Field

Figure 4.1: Context Type

Figure 4.1 shows a UML class diagram that defines a context type. First, each context
type has a unique name. Names of context types differentiate types from each other and allow
referencing them in the COPAL middleware based on just their name. Second, each context
type is associated with a Format that describes how and where data is stored. Format of a
context type allows the COPAL middleware to understand, for example, where to find the value
of temperature. It does this by storing an array of field definitions that describe which fields
are allowed for this specific type of environmental information. Each field definition consists
of three properties: name, type and a Boolean value specifying if field is required. For
example, the temperature context type would have a field with name degrees of integral type
that is required.

register(ContextType type)
unregister(String name)
get(String name): ContextType
getAll(): ContextType[]

«service»

ContextTypeRegistry

ContextType
*

Figure 4.2: Context Type Registry

Furthermore, the COPAL middleware requires all context types to be registered with a con-
text type registry service, which provides a centralized place for other components to retrieve
context types (Figure 4.2). First, the register and unregister methods allow to respec-
tively add and remove context types from the system. Second, the context type registry provides
a way to retrieve a context type using its name with the get method. Finally, the getAll
method returns all currently registered context types in the system.

In the process of developing context-aware applications, services that applications provide
are dominantly interested in just a small subset of environmental information and want to be
notified when this information changes. The most common case is that the application will react
to some change in the environment and provide a different service to the user or execute some
specific task. For example, let us consider a context-aware application that shows a list of fa-
vorite people that user can call. In normal situation, this list is static and defined by the user,
but in an emergency situation this list is replaced with a new list to call hospital, police, or fire
department. Therefore, we can summarize that the task of a context-aware service platform is to
provide applications with a way to specify which changes in the environment the application is

24

interested in and to allow the application to react when one of these changes happens. Therefore,
the COPAL middleware uses events that represent a change in a context, as means to communi-
cate between the components in the system. An event carries new information about the context
and is associated with one context type. An example of an event for the aforementioned temper-
ature context type is a measurement where temperature in the living room on 1st May, 2011 at
16:00 was 20◦C.

type: String
sourceID: String
timestamp: Date
ttl: long
priority: int

ContextEvent

«interface»

Data

1

ContextType
«interface»

Format

1

«describe»«define»

Figure 4.3: Context Event

Figure 4.3 shows a UML class diagram that defines a context event. First, each event is
associated with a single context type using the type property to associate it with the name of
context type. Second, it provides the name of its origin and time when change in context hap-
pened with the sourceID and timestamp properties respectively. The ttl property defines
the time-to-live period of an event in milliseconds and together with timestamp can determine
if event is still valid or not. For example, a time event that specifies change in minutes of an hour
should only be valid for one minute. On other hand, if event should be valid until next event of
same type and origin happens, we specify the ttl property to be 0. The priority property
specify the importance of an event using an integer between 1 and 10 inclusive where 1 is the
lowest possible priority and 10 is the highest one. Finally, a context event carries information
about the environmental change using an instance of the Data class. The information must ad-
here to format that is specified in event’s context type so the COPAL middleware can understand
the event and process it.

Finally, it is important to emphasize that all context events in the COPAL middleware are self-
contained. This requires them to serialize all the information necessary to be correctly distin-
guished and processed. Thus, event’s type, sourceID, timeStamp, ttl, and priority
properties are all persisted together with its Data when the event is serialized. This requirement
easies the development of distributed COPAL, as we will see in Section 4.3, because an event can
be easily transmitted between two instances of COPAL and will be understood by the receiving
instance immediately without having to query the sending instance for additional information.

25

Gathering

In this section, we will focus on gathering environmental information from physical, virtual and
logical sensors. We define publishing as process of gathering information about the environment
and publishing it in a format understandable by other components in the COPAL middleware. We
can distinguish two problems that have to be solved in this layer:

• Reading environmental information from sensors. This problem arises from heterogeneity
of sensors and lack of specific standard for gathering environmental information from
sensors. First, we can distinguish different ways of receive information from a sensor like
pooling, broadcasting and multicasting changes from the environment. Second, there is
an additional difference arising with respect to different transportation protocols that can
be used in communicating with the sensor like TCP/IP, UDP, HTTP, etc.

• Transforming the sensory information into context events. This problem arises from het-
erogeneity of data formats used by the sensors to provide their sensory information. For
example, sensors can format the sensory outputs using a custom binary format, XML (eX-
tensible Markup Language) [14], JSON (JavaScript Object Notation) [25], and so forth.

Publisher is a component that is responsible with encapsulation of one single solution for the
problem of heterogeneity in communicating with sensors. Thus, each publisher is specifically
developed to be used with one single sensor and can be considered as a mediator between the
sensor and the COPAL middleware. Most important benefit of such a loosely-coupled design
is that publishers may be added and removed from the system at any time without affecting
functionality of other components in the COPAL middleware. Next, we distinguish and explain
three main responsibilities of publishers:

• Sensor data acquisition. Each publisher is responsible for acquiring the raw information
and providing it as the environmental information for the COPAL middleware. Sources
typically comprise of physical sensors (e.g. temperature sensor), virtual sensors (e.g. cal-
endar files) and logical sensors (e.g. databases). In addition, sensors may be attached
locally or remotely via wired or wireless communication means and using various com-
munication protocols. Hence, publishers are responsible to completely hide the acquisi-
tion complexity from the rest of the system.

• Event creation. A publisher is responsible to transform raw sensor information into con-
text events that represent changes in the environment. Context events must use data for-
mat defined in their respective context types, which might be different from the format
provided by the sensor. Therefore, the publisher is only component that is required to un-
derstand the data format provided by the sensor and has to be able to create context events
from it. Thus, publishers are able to hide the complexity of heterogeneous sensor formats
from the rest of the system.

• Publishing strategy. Publishers are responsible to decide when to publish context events.
We can distinguish two distinct solutions: time-based and change-based. In time-based

26

publishing, context events are published in specific time intervals. This approach is suit-
able when change in the environment is continuous and happening all the time. For ex-
ample, time is one example of environmental information that is changing continuously,
therefore we have to publish time events in some predefined interval like every minute.
In change-based publishing, context events are published if and only if the change from
previously published context event of same type and from same source is greater than
some predefined threshold. For example, we could publish a temperature event only when
change from previously published temperature from same location is greeter than 1◦C.

getSourceID(): String
getPublishedTypes(): String[]
start(ContextType type)
stop(String type)

«interface»

Publisher

ContextEvent
«instantiate»

Figure 4.4: Publisher

Figure 4.4 shows a UML class diagram of the interface that all publishers in the COPAL

middleware have to implement. First, a publisher is associated with a source ID, returned by
the getSourceID method, that is used to define the origin of all context events published by
the publisher. The source ID is unique between each publisher and is used in every context
event publish by a publisher to specify its sourceID property. Furthermore, a publisher has to
return names of all event types it will publish using the getPublishedTypes method. As
context types can be registered and unregistered from the COPAL middleware at any point in time
during the execution (see Figure 4.2), the COPAL middleware has to know which event types a
publisher might publish so it can notify the publisher that it should start or stop publishing of
events of those types. The mechanism to start and stop publishing in a publisher is implemented
by the publisher, with the start and stop methods, as the mechanism is different between
publishers with respect to how they communicate with sensors. Publishers have a guarantee
from the COPAL middleware that it will invoke these methods as context types are registered
and unregistered from the system.

register(Publisher publisher)
unregister(String sourceID)
get(String sourceID): Publisher
getAll(String type): Publisher[]

«service»

PublisherRegistry
«interface»

Publisher

*

Figure 4.5: Publisher Registry

Furthermore, all publishers in the COPAL middleware are registered with the publisher reg-
istry, which offers a lookup service so other components can find and access the publishers

27

(Figure 4.5). First, the register and unregister methods allow to respectively add and
remove publishers from the system. Second, the publisher registry provides two ways to find
publishers: by a source ID using the get method and by a published type using the getAll
method. The source ID lookup, as name says, uses the source ID to find a publisher. The lookup
based on the published type finds all publishers that can publish context events of specified con-
text type. Finally, the publisher registry is the responsible party for activating and deactivating
publishers using their start and stop methods respectively. When a context type is regis-
tered with the COPAL middleware, the publisher registry will notify all publishers that they are
allowed to publish context events of registered context type. Analogously, when a context type
is unregistered, the publisher registry will notify all publishers that they must stop publishing
context events of unregistered context type.

:Publisher:PublisherRegistry:ContextTypeRegistry

start(type)

publishersFor(type)
add(type)

publishersFor(type)

stop(type)

remove(type)

loop [publishers]

loop [publishers]

Figure 4.6: Starting and Stopping Publisher

Figure 4.6 shows a UML sequence diagram between context type registry, publisher registry
and publisher as new context type is registered and unregistered. First, during registration of
new context type, the publisher registry will receive an asynchronous notification that the con-
text type has been registered. Then, the publisher registry will find all publishers that can publish
this context type and will invoke their respective start methods with the context type as argu-

28

ment. Analogously, during unregistration of a context type, the publisher registry will find all
publishers that can publish this context type and will invoke the publisher’s stop method.

publish(ContextEvent[] events)

«service»

PublishingService
«interface»

Publisher

«use»

Figure 4.7: Publishing Service

Finally, it is worth mentioning that the actual publishing of context events is done using
a publishing service that is provided by the COPAL middleware (Figure 4.7). This service
provides a unified interface for publishers to use for publishing context events. The reason for
providing the publishing service in the COPAL middleware is that it hides the actual underlying
technology (see Section 5.1) used to transmit context events between components in the system.
The publishing service implements only one method, the publish method, that allows atomic
publishing of an array of context events where atomicity means that either all context events are
published or none of them is. If there is any problem with publishing of any one of specified
context events, the method will fail and throw a FailedPublishignException with a
failure reason.

Reacting

On the other side of the COPAL middleware are context-aware services and applications. They
utilize the COPAL middleware by subscribing to be notified about changes in the environment
and to be able to react when they happen. Their main goal is to provide relevant information
and/or actions to the user with help of the environmental information. For example, a service that
controls air-conditioning (AC) in a house can ask user to specify temperature (te) and maximum
deviation (∆t) from the temperature. The task of this service is to turn on the AC and set it to
the specified temperature te whenever the current temperature in the house is above or below
the maximum deviation (te ±∆t). This will ensure that the temperature in the house is always
comfortable for the user.

Next, we will explain two important features provided by the COPAL middleware, which
allows it to support context-awareness in applications:

• Callback invocation. When a change in the environment occurs, the COPAL middleware
is responsible with asynchronous invocation of all callback methods that are interested in
this specific change in the environment. The programmer’s task while developing context-
aware applications is to implement all application’s reactions to changes in the environ-
ment using the callback methods that do some specific actions based on the context event
they receive from the COPAL middleware.

• Continuous querying. Context-aware application should be in control of which types of
context events are delivered to which of their callback methods. This allows fine-grained
control of the reactions to changes in the environment by defining that only certain call-
back methods are invoked when some specific change in the environment occurs. This

29

mechanism is supported in the COPAL middleware with creation of a query that defines
a context event selection mechanism. Furthermore, all queries in the COPAL middleware
run continuously and deliver all received events that pass their respective selection mech-
anism to callback methods that are associated with them. The continuous delivery of
context events will run continuously until query is discarded by the context-aware appli-
cations that created it.

Listener defines a callback method in a context-aware application that the COPAL middle-
ware can invoke on some context changes. Idea behind listeners is that they should be highly
specialized tasks that are defined by the context-aware application and that should be invoked on
some environmental changes. If the context-aware application provides multiple actions to the
user, then it should implement each action as separate callback method. For example, the previ-
ously defined service that controls AC has two different actions: (1) to turn on AC when current
temperature is outside the interval defined by the maximally allowed temperature deviation, and
(2) to turn off AC when current temperature is inside the interval. Hence, we will require two
separate callback methods: one that turns on AC and one that turns it off. Furthermore, callback
methods do not define on which context changes they should be invoked. We expect that during
runtime context-aware applications might change criteria when to invoke their callback methods
as, for example, user preferences change. It would be very unreasonable to expect developers to
implement separate callback method for each possible configuration choice. From out previous
example, the AC control service has two configuration parameters, the expected temperature te
and maximum deviation ∆t, but the actions to turn on AC and to turn it off remain fundamentally
same regardless of change in the parameters.

getName(): String
onEvent(ContextEvent event)

«interface»

Listener

Figure 4.8: Listener

Figure 4.8 shows a UML class diagram of the interface that all listeners in the COPAL mid-
dleware have to implement. First, each listener is associated with a name, returned by the
getName method, which separates it from the rest of listeners. This name should be a com-
bination of name of the context-aware application and name of the callback method inside the
application that this listener implements (e.g. ACController.TurnACOn). Second, the in-
terface defines the onEvent method that expects a context event as argument that represents
our aforementioned callback method. The COPAL middleware will invoke this method with
context events using continuous query mechanism that is explained next.

Query is a component that is provided by the COPAL middleware to support continuous
querying of context for changes. It supports two mechanisms to select events from the context:
(1) name of event type (e.g. temperature), and (2) optional criteria based on event’s fields (e.g.
value > 10◦C). Furthermore, queries are also responsible for asynchronous delivery of context
events to all registered listeners. This mechanism assures that context-aware applications do

30

not have to directly pool the COPAL middleware for new context events, but instead, they create
queries and register their callback methods with them. A query will start receiving context events
from the COPAL middleware as soon as it is created and will continue to receive them until it
is destroyed. When a context event is received, it will invoke all currently registered listeners
and will pass them the received context event as argument for their onEvent method. Multiple
listeners can be registered with a query during runtime and each registered listener will receive
context events from the query until it is unregistered from the query or the query is destroyed.

Operation Name Returns

Logical
not a negation true iff a is false
a and b conjunction true iff a and b are both true
a or b disjunction true iff at least one of a and b is true

Comparison

a = b equality true iff a is equal to b
a != b inequality true iff a is not equal to b
a < b less true iff a is less than b
a <= b less-or-equal true iff a is less than or equal to b
a > b greater true iff a is greater than b
a >= b greater-or-equal true iff a is greater or equal to b
a is null presence true iff a is not defined in an event
a is not null absence true iff a is defined in an event

Arithmetic

a+ b addition sum of a and b
a− b subtraction difference of a and b
a ∗ b multiplication product of a and b
a / b division integral quotient of a and b
a % b modulo remainder of dividing a with b

String a || b concatenation string ab

Table 4.1: Operations in Query’s Criteria

As previously mentioned, criteria in a query is an optional Boolean statement that allows
queries to further filter out context events based on event’s fields. Table 4.1 lists all allowed op-
erations in query’s criteria and Appendix B shows the complete EBNF (Extended Backus–Naur
Form) [2] for the criteria.

register(Listener listener)
unregister(String name)
destroy()

name: String
listenedType: String
criteria: String

Query

«interface»

Listener

*

ContextEvent
«send» «send»

Figure 4.9: Query

31

Figure 4.9 shows a UML class diagram of the query class in the COPAL middleware. First,
each query has a unique name property that distinguishes it from other queries and allows
context-aware applications to reference and retrieve queries from the COPAL middleware. Sec-
ond, it has a listenedType property and an optional criteria property that will be used
to filter out interesting events. Furthermore, the register and unregister methods allow
to respectively add and remove a listener from receiving context events that pass the query’s
selection mechanism. Finally, the destroy method will unregister all currently registered lis-
teners and notify the COPAL middleware to discontinue delivery of any future context events to
the query.

create(String name, String type)
create(String name, String type, String criteria)
get(String name): Query
getAll(String type): Query[]

«service»

QueryFactory

Query
«create»

Figure 4.10: Query Factory

The COPAL middleware provides a query factory service that is used to create queries
(Figure 4.10). The query factory implements two overloaded create methods to create a
query with or without criteria. These methods will create an instance of query class that will
use underlying libraries (see Section 5.1) to continuously deliver context events to its listeners.
Moreover, the query factory assures that if a query with same name, listened type and crite-
ria was previously created by some other service, then no new query instance will be created,
and instead the previously created instance will be returned. Conversely, if we try to create
a query with same name but different listened type or criteria, the query factory will throw a
RedefinitionOfQueryException signaling the reason of failure. Finally, we can re-
trieve an already created query using its name with the get method or all created queries that
listen on some specific event type using the getAll method.

Processing

We define processing of a context event as using the event as input to create zero or more output
context events. In the COPAL middleware, processing phase of a context event comes after the
event has been published and can consists of zero or more steps before the event is consumed by
context-aware applications. Output in each step of processing can consist of any number of new
context events. Optionally, a modified version of input event can be a result of processing step
and the modified version of the input event will be used as the input for subsequent processing
steps. Conversely, if the input event is not in the list of output context events, the unmodified
version will be used as the input in subsequent processing steps.

We define a processing step in a context event by adding an action into the event. There-
fore, processing phase of a context event is defined with zero or more actions. Each action (Fig-
ure 4.11) contains two properties: name and a Boolean value specifying if action is required.

32

ContextEvent
*

name: String
required: boolean

Action

Figure 4.11: Action

Action’s name together with type of the context event uniquely defines which action needs
to be done on the event. For example, Celsius temperature event might contain an action
ToFahrenheit that creates a new Fahrenheit temperature event. This action is different from
the ToFahrenthit action in a Kelvin temperature event because context types are different
and we will require different equations to calculate Fahrenheit from Kelvin and Fahrenheit from
Celsius. Requirement of an action specifies if the action is mandatory or not. If we cannot pro-
cess some mandatory action in a context event, the event will be removed from the system and
will never reach context-aware applications. Conversely, if we cannot process an optional action
in a context event, the action will be skipped and processing will continue with any subsequent
action.

Processor is component in the COPAL middleware that can process actions on some input
context events. Each processor defines a set of pairs (action name, context type) that define
which actions on which context type the processor can handle. For example, let say that a
context event of type t requires an action a. If a processor specifies that it can do the action a on
the context type t, this processor will be invoked by the COPAL middleware to handle the action.
Furthermore, each processor action has to specify which types of context events can be output
of invoking the action. For example, if a processor action defines t1 and t2 as types of output
events, result of invoking the action can be any of these cases: (1) no context events, or (2) any
number of context events of type t1 and t2.

getName(): String
process(ProcessorAction action, ContextEvent event)

«interface»

Processor * action: String
inputType: String
outputTypes: String[]

ProcessorAction

ContextEvent

«send»

*
Action

«call»

Figure 4.12: Processor

Figure 4.12 shows a UML class diagram of the interface that all processor in the COPAL

middleware have to implement. First, a processor has a unique name, returned by the getName
method, which is used to specify which processor was used to handle an action in a context event.
Second, each processor specifies which actions it can do with the array of ProcessorAction

33

instances. Each processor action has three properties: name of action, name of input con-
text type, and array of names of output context types. Finally, processor must implement the
process method that is invoked by the COPAL middleware with a processor action and a con-
text event as arguments for the method. This method returns an array of context events that
represent the result of invoking specified action on specified input context event. The types of
output context events must be in the array of output context types for specified action.

register(Processor processor)
unregister(String name)
get(String name): Processor
getAll(String type, String action): Processor[]

«service»

ProcessorRegistry
«interface»

Processor

*

Figure 4.13: Processor Registry

The COPAL middleware requires all processors to be registered so the system can know
which actions can be handled and which cannot. The processor registry (Figure 4.13) is a
service that is provided by the COPAL middleware that allows context-aware applications to
add and remove processor from the system using the register and unregister meth-
ods. Furthermore, the processor registry provides two ways to find processors: by a name
using the get method and by a (action name, context type) pair using the getAll method.
The name lookup, as name says, uses the name to find a processor. The lookup based on the
(action name, context type) pair finds all processors that can handle specified action on specified
input context type.

:PublishingService :ProcessorRegistry

process(event)

processorFor(action, type)

Processor

process(action. event)

eventspublish(events)

loop [event actions]

Figure 4.14: Process Event

Figure 4.14 shows a UML sequence diagram between publishing service, processor registry
and processor as a context event is published that requires an action to be processed. First, if
during publishing of context events there is a context event that needs processing, the event will
be delivered to the processor registry for processing. The processor registry will find a suitable

34

processor for specific context type and action and will invoke the processor with action and the
context event as arguments for the process method. Finally, the output context events, which
are returned by the process method, will be further passed to the publishing service to be
published as new events in the context.

Summary

ContextEvent
«interface»

Data

1

ContextType
«interface»

Format

1

«describe»«define»

*

«interface»

Field
«service»

ContextTypeRegistry

*

«interface»

Publisher

«instantiate»

«service»

PublisherRegistry

*«service»

PublishingService

«use»

Query
«interface»

Listener

«send» «send»

*

«service»

QueryFactory

«create»

*

Action

*

«interface»

Processor

*

ProcessorAction

«call»

«service»

ProcessorRegistry

*

Figure 4.15: COPAL Components

This section explained many details about how context is modeled in the COPAL middleware,
how environmental information is gather and processed using context events, and how context-
aware applications can continuously query and listen to context events. Figure 4.15 shows the
summary of all COPAL components that have been explained in this section and details how the
components interact and come together to create the COPAL domain model.

4.2 Processing Patterns

Understanding and utilizing processors can help with designing and constructing complex con-
text provisioning schemes. Hence, we differentiate five primitive patterns that the COPAL mid-
dleware supports and can be used as building blocks when constructing a context-provisioning
schema: filter, enrichment, peeling, abstraction, and differentiation. These patterns are inspired
by the work in complex event-processing [50] and event-processing networks [65], and are
adapted specifically for context provisioning.

35

Filter e
1

e
3

e
1

e
2

e
3

Figure 4.16: Filter

Filter

Filter processing pattern (Figure 4.16) excludes context events from being further processed and
the excluded events will never reach context-aware applications. The basic idea is to exclude
context events based on some QoS (Quality of Service) criteria. For example, a RFID location
sensor may occasionally provide some false-positive readings. A location filter would be re-
sponsible with assigning a confidence level with each location event based on the sensor’s signal
strength and pruning those events that are under some specific threshold.

Enrichment

Enrichment e
1

e
2

e
3

e
1

e
2

e
3

Figure 4.17: Enrichment

Enrichment processing pattern (Figure 4.17) adds additional information into context events.
The additional information can be derived from the information that is already in the context
events or it can be queried from some external source (e.g. file system, database, web service,
etc.). For example, we could add the name of person into a location event based on the RFID
tag number. For this, we would could create a database with associations between RFID tag
numbers and names, and query it whenever a location event is published.

Peeling

Peelinge
1

e
2

e
3

e
1

e
2

e
3

Figure 4.18: Peeling

Peeling processing pattern (Figure 4.18) removes information from context events. Some in-
formation after processing may not be required anymore or it would be a security risk if context-

36

aware applications could access it, and hence, it should be removed from context events. For
example, after adding the name of person into a location event, we can safely remove the RFID
tag number because no service should depend on it.

Abstraction

Summarizatione1e2e3 ∑e

(a) Summarization

Aggregation

e
1

e
2

e
3

e
1

e
2

e
3

e 1

e 2

e 3

(b) Aggregation

Figure 4.19: Abstraction

Abstraction processing pattern (Figure 4.19) creates new context events to indicate new in-
formation about the environment, which can be inferred from occurrence or absence of one or
more other context events. The abstraction can be furthered separated into two distinct process-
ing patterns: summarization and aggregation. Summarization processing pattern (Figure 4.19a)
gathers context events of same type that have occurred based on some criteria like time span or
number of events, and publishes a summarizing context event. For example, the power usage in
a whole house can be a summary of power usages of all appliances in the house. Finally, Ag-
gregation processing pattern (Figure 4.19b) gathers context events of different types and infers
a context event of new type. For example, we can infer that a person is watching a television
by observing that the person is in a same room where the television is and that the television is
turned on.

Differentiation

Differentiation processing pattern (Figure 4.20) uses a context event of some type to infer new
context events of different types. Using differentiation, same information can be forked and fed
to different processors and listeners at different granularity or abstraction levels. For example,
using an absolute coordinates of a person in a house, we can infer and publish new event, beside
the old absolute location, specifying which room the person is in. This new context event can
then be used to determine settings for lightning in the house based on which room the person is
in.

37

e
1

e
2

e
3

e 1

e 2

e 3

e
1

e
2

e
3

Differentiation

Figure 4.20: Differentiation

4.3 Distribution

Distributed COPAL is an extension to the COPAL middleware. It supports creation of distributed
network of COPAL instances that share environmental information between each other. Instances
can be on separate machines and are connected with each other through a transport layer. The
approach on how to design a functioning network of distributed COPAL instances requires three
important questions to be answered:

1. What is the organization of COPAL instances in a distributed network?

2. Which information needs to be shared between COPAL instances?

3. How is information shared between COPAL instances?

The COPAL middleware uses a hierarchical approach with a tree structure to layout nodes in
a distributed network of COPAL instances. Each node in the network can have many downstream
nodes, but can only have one upstream node. The information about the environment flows from
the downstream nodes towards upstream nodes. Therefore, the more we go upstream, the more
information about the environment we have. This topology inherently creates a tree-like struc-
ture from the nodes in the system where topmost upstream node will contain all the information
about the environment. An example of this tree-like topology is shown in Figure 4.21.

This approach in organizing nodes in distributed COPAL was taken because in our primary
use-case, that involves smart homes, we have a clear separation of entities in topology: buildings
consist of floors that consist of apartments that consist of rooms. We can see that this use-
case also creates a tree-like structure between each entity with part-of associations between
them that easily fits the COPAL organization of distributed network. Therefore, in this scenario
each entity would use a separate COPAL instance where room instances will use the apartment
instance as the upstream node, the apartment instances will use the floor instance, and the floor
instances would use the building instance. This topology allows us to create context aware
services that only receive environmental information on the granularity level that it is interested
in. For example, a context-aware service that is only interested in temperature in one room of an
apartment would only have to connect to the COPAL instance associated with this room.

38

Living roomKitchen Bedroom Bathroom

Apartment 1BApartment 1A Apartment 1C

1st Floor

downstream !downstream

!

upstream

!

upstream !

Figure 4.21: Distributed COPAL Nodes

name: String
address: URL

«interface»

Node
*

downstream

0..1
upstream

Figure 4.22: Distributed COPAL Node

Figure 4.22 shows a UML class diagram of the interface that distributed COPAL nodes have
to implement. Each node has a unique name property to distinguish it from all other nodes and
an URL (Uniform Resource Locator) [9] address property where it can be reached. Moreover,
the node is associated with many downstream nodes and at most one upstream node. The actual
implementation of the nodes will depend on the approach on how information is distributed
between COPAL instances, as we will see later in this section.

With respect to sharing information between distributed COPAL nodes, first and foremost,
we need to share information about the environment between nodes in a distributed network.
This requires context events to flow from downstream nodes towards upstream nodes and also
their associated context types to be registered with all upstream nodes. Therefore, if we register
a context type in a downstream node, additionally all upstream nodes have to receive this context
type as they would need to understand context events of this type that are published in the down-
stream node. Next, publishers and listeners can use any node in the system and they are only
allowed to communicate with the nodes that they are registered to. Hence, they do not require
to be distributed between the COPAL instances, as they are the ones that are in control of which
instances they require and use. On other hand, processors do need to be distributed, as a node
might need a processor for a context event that is not available locally. The sharing of processors
between the nodes in the system goes in reverse from sharing events — a processor registered

39

in an upstream node can be only used in downstream nodes. To see why complete sharing of
processors between all nodes in the system is not reasonable, let us consider a case with a pro-
cessor that can resolve a user name from a user identification number and two COPAL instances
associated with two apartments in a building. The aforementioned processor is registered with
second instance and provides resolution only for residents in the second apartment. If a context
event that requires this processor was published in first apartment, it would be unreasonable to
use the processor from second apartment, as residents are different. Therefore, our topology
should only allow sharing of processors registered in upstream nodes, as for example we could
have a processor that resolves user names on the level of building which could be used for any
context event that requires this processor in any apartment in the building.

The only remaining component that might require sharing between nodes in a distributed
system is a query. This component requires further understanding of how the distribution of
context events is handled in a distributed system before the question if sharing queries is required
can be answered. We can distinguish two approaches to send context events in the distributed
system, namely eager and lazy, which will be explained next.

Eager Approach

In the eager approach, all context events that are published locally or received from downstream
nodes are sent to the upstream node. In this approach, queries only have to be created locally in
a node, as we will receive context events nevertheless if there is a query that catches them in the
node. This approach has a drawback that bandwidth in a distributed network is wasted if none of
the upstream nodes is interested in a particular context event, but it has advantage that is much
simpler to implement and that we can be sure that when a query is created it will immediately
start to receive context events from downstream nodes.

:PublishingService local:Node

new(event)
getUpstreamNode()

upstream:Node

send(event)

Figure 4.23: Eager Distribution

Figure 4.23 shows a UML sequence diagram between publishing service, local node and
upstream node as new context event is published. We can see that publishing service will invoke
the local node whenever a new context event is published. This will in turn send this context
event to the upstream node so the event can also be published there.

40

Lazy Approach

In the lazy approach, only context events that upstream node is interested in are sent to it. The
interest in a context event is tightly coupled with queries and listeners. If we have a query
that has listeners registered to it in some upstream node, we have to announce the interest in
context events that this query can catch to all downstream nodes. Therefore, the sharing of
queries between the nodes is required in this approach and it uses same principle as sharing
processors — queries created in an upstream node have to be created in all downstream nodes
and the upstream node has to be registered as listener with the downstream nodes. In this case,
only context events that are published locally should be transmitted to upstream nodes to avoid
duplicate receipt of events in the upstream nodes. This approach does require either less or at
most same amount of bandwidth as the eager approach, but it is also much more complex to
implement and it does not guarantee that all context events from downstream nodes are received
after a query has been created as there might be delay between when an event has been published
and query has been created in a downstream node.

:QueryFactory local:Node

new(query)
getDownstreamNodes()

downstream:Node

create(query, address)

new(event)

query:Query

new

loop [downstream nodes]

Figure 4.24: Lazy Distribution

Figure 4.24 shows a UML sequence diagram between query factory, query, local node and
a downstream node as new query is created and a context event is published. First, the query
factory will notify the local node as new query is created and this will in turn invoke create
query method on all downstream nodes and pass the address property of the local node as
additional argument so the local node can be immediately registered as listener in all newly
created downstream queries. Finally, when a context event is published in a downstream node,
it will directly invoke the query in the local node passing the event as argument.

41

CHAPTER 5
Implementation

In this chapter, the implementation of the COPAL middleware is presented. Section 5.1 will pro-
vide a short introduction into technologies used in the development of the COPAL middleware.
The underlying mechanism for publishing, processing, and querying events in the COPAL mid-
dleware will be explained in Section 5.2. Section 5.3 will present two tools that are implemented
in the COPAL middleware to support the communication between distributed COPAL instances.
Finally, the separation of the COPAL middleware into modules and deployment options will be
described in Section 5.4 and Section 5.5 respectively.

5.1 Technologies

This section will provide a short introduction into technologies used in the development of the
COPAL middleware.

Esper

Esper1 [32] is a complex event processing component that is designed for high-volume event
correlation where millions of events coming in would make it impossible to store them all for
later querying using the classical database architecture. It is a lightweight kernel written in Java
which is fully embeddable into any Java process, Java EE application server, or Java-based En-
terprise Service Bus, and enables rapid development of applications that process large volumes
of incoming messages or events. A tailored Event Processing Language (EPL) allows expressing
rich event conditions, correlation, and spanning time windows, thus minimizing the development
effort required to set up a system that can react to complex situations.

Relational databases or message-based systems such as Java Message Service (JMS) make
it really hard to deal with temporal data and real-time queries. For example, databases require
explicit querying to return meaningful data and are not suited to push data as it changes. JMS

1http://esper.codehaus.org/

43

http://esper.codehaus.org/

systems are stateless and require the developer to implement the temporal and aggregation logic
himself. By contrast, the Esper engine provides a higher abstraction and can be thought of as
a database turned upside-down. Instead of storing the data and running queries against stored
data, Esper allows applications to store queries and run the data through. Response from the
Esper engine is real-time when conditions occur that match user defined queries. The execution
model is thus continuous rather than just momentary when a query is submitted.

Esper defines an event as an immutable record of a past occurrence of an action or state
change, and event properties capture some useful information in the event. An event can be
represented by any of the following types: (1) Java Beans, (2) Maps, and (3) XML documents.
EPL is a SQL-like language with SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER
BY clauses. Event streams replace tables as the source of data with events replacing rows as the
basic unit of data. An event stream is a time-ordered, unbounded sequence of events in time.
Thus, events can only be append into a stream and cannot be removed. EPL statements are used
to derive and aggregate information from one or more streams of events, and to join or merge
event streams. Subscribers of statements receive updated data as soon as the engine processes
events for that statement, according to the statement’s choice of event streams, views, filters and
output rate. Lastly, a sender sends events into the Esper engine for some specific event type.

REST

In the concept of Service-Oriented Architecture (SOA) [31], services are used as fundamental
software elements for developing applications. It defines services as “self-describing, platform-
agnostic computational elements that support rapid, low-cost composition of distributed appli-
cations” [51]. One possible and very popular way to implement SOA applications is by means
of web services. The W3C defines a web service as “a software system designed to support
interoperable machine-to-machine interaction over a network” [41].

The REST is a software architectural style of implementing web services. It recognizes
that the web is composed of resources that are accessed using URIs (Uniform Resource Iden-
tifiers) [10]. The RESTful architectures consist of clients and servers where clients initiate
requests to servers, and servers process requests and return appropriate responses. Requests and
responses are built around the transfer of representations of resources. A resource can essen-
tially be any coherent and meaningful concept that is addressable, but most-often resources are
arranged same as an underlying data model in a web service.

The following principles encourage RESTful applications to be simple, lightweight, and
fast:

• Resource identification using URI. A RESTful web service exposes a set of resources that
identify access points of the interaction with its clients. Resources are identified by URIs,
which provide a global addressing space for resource and service discovery.

• Uniform interface. Resources are manipulated using a fixed set of four create, read, up-
date, delete HTTP operations — namely PUT, GET, POST, and DELETE. PUT creates a
new resource, which can be then removed by using DELETE. GET retrieves the current
state of a resource in some representation. POST transfers a new state onto a resource.

44

• Self-descriptive messages. Resources are decoupled from their representation so that their
content can be accessed in a variety of formats, such as XML, JSON, plain text, and others.

• Stateful interactions through hyperlinks. Every interaction with a resource is stateless; that
is, request messages are self-contained. Stateful interactions are based on the concept of
explicit state transfer. Furthermore, information can be embedded in response messages
to point to valid future states of the interaction.

Apache CXF2 is an open source services framework that helps with building and develop-
ing services using frontend programming APIs like JAX-RS (Java API for RESTful Web Ser-
vices [42]). JAX-RS is a Java programming language API that provides support in creating web
services according to the REST architectural style and is an official part of Java EE 6. It uses
annotations to simplify the development and deployment of web services and their respective
endpoints. Developers decorate Java programming language classes with JAX-RS annotations
to define resources and the actions that can be performed on those resources.

OSGi

The OSGi3 (Open Services Gateway initiative) [6] framework is a module system and service
platform for the Java programming language that provides a general purpose, secure, and man-
aged Java framework that supports the deployment of extensible and downloadable applications
known as bundles. An OSGi-compliant container manages the installation and update of bun-
dles in a dynamic and scalable fashion. To achieve this, it manages the dependencies between
bundles in detail. Furthermore, it provides developers with the resources necessary to take ad-
vantage of Java platform independence and dynamic code-loading capability in order to easily
develop services that can be deployed on in a larger system.

In the OSGi framework, each bundle is a tightly-coupled, dynamically loadable collection
of interfaces, classes, and configuration files that explicitly declare their external dependencies.
They are the only entities for deploying Java-based applications in the OSGi framework and
are packaged as a Java ARchive (JAR) with a well-defined manifest file that specifies informa-
tion that the OSGi framework needs to install correctly and activate the bundle. Furthermore,
the OSGi framework defines six states in bundle’s life-cycle shown in a UML state diagram
(Figure 5.1) and explained in Table 5.1.

If a bundle defines a bundle activator in its manifest file, the OSGi framework will start
the bundle by invoking the activator. The BundleActivator interface (Listing 5.1) defines
methods that the OSGi framework invokes when it starts and stops the bundle. The start
method can be used to register services or to allocate any resources that the bundle needs. If
this method throws an exception, the bundle will be marked as stopped. Furthermore, the OSGi
framework creates a BundleContext instance and provides this object as an argument to the
startmethod. The BundleContext interface defines methods to retrieve information about
bundles installed in the OSGi framework. Finally, The stop method is called when the bundle

2http://cxf.apache.org/
3http://www.osgi.org/

45

http://cxf.apache.org/
http://www.osgi.org/

INSTALLED

RESOLVED

UNINSTALLED

STARTING

ACTIVE

STOPPING

start

stop

Figure 5.1: OSGi Bundle Life-Cycle

is stopped so the OSGi framework can perform the bundle-specific activities necessary to stop
the bundle. In general, this method should undo the work that the start method has done.

Listing 5.1: Bundle Activator Interface

1 public interface BundleActivator {
2

3 void start(BundleContext context) throws Exception;
4

5 void stop(BundleContext context) throws Exception;
6 }

Lastly, the OSGi frameworks provide a mechanism to connect bundles in a dynamic way
by offering a publish-find-bind model for defining and retrieving services. A service is defined
semantically by its service interface and implemented as a service object. The service object is
owned by, and runs within, a bundle. The bundle must register the service object with the OSGi
framework service registry so that the service’s functionality is available to other bundles. The
OSGi framework transparently manages dependencies between a bundle that owns a service and
bundles that use it. For example, when a bundle is stopped, all services registered by that bundle
will be automatically unregistered. The OSGi framework maps services to their underlying
service objects, and provides a simple query mechanism that enables a bundle to request services
it needs. The OSGi framework also provides an event mechanism so that bundles can receive
events of services that are registered, modified, or unregistered. The service query and event
mechanism can be accessed through the BundleContext interface.

46

State Description
INSTALLED A bundle has been successfully installed.
RESOLVED All dependencies that the bundle requires are present

and available. This state indicated that the bundle is
either ready to be started or has been stopped.

STARTING The bundle is being started, i.e. the
BundleActivator’s start method is ex-
ecuting.

ACTIVE The bundle has been successfully started and is
running, i.e. the BundleActivator’s start
method has returned without an exception.

STOPPING The bundle is being stopped, i.e. the
BundleActivator’s stop method is exe-
cuting.

UNINSTALLED The bundle has been successfully uninstalled.

Table 5.1: Bundle Life-Cycle

5.2 Publishing, Querying, & Processing

In the COPAL middleware, Esper is used to transmit context events between publishers, proces-
sors and listeners. Thus, whenever a context event is published, it is passed to Esper engine
to be delivered to processors that can process event’s actions and afterwards to queries that are
interested in the event. This integration requires from COPAL middleware:

• to provide an implementation of the publishing service (see Figure 4.7) that will be used
to send context events using event streams, and

• to deliver context events to COPAL processors and queries using Esper statements and
subscribers.

Publishing

Publishing of context events requires from the COPAL middleware to use event streams to send
events. It will create a new event stream for each type of context event and use the appropriate
event stream to publish an event.

Figure 5.2 shows a UML sequence diagram for registering COPAL context types with Es-
per. First, during registration of new context type, the Esper publishing service will receive an
asynchronous notification that the context type has been registered. Then, the publishing service
will register this type into the Esper runtime engine and retrieve a sender for this type to be used
whenever a context event of this type requires publishing. Analogously, whenever the Esper
publishing service receives an unregistered notification for a context type from the registry, it

47

:EsperRuntime:EsperPublishing:ContextTypeRegistry

register(type)add(type)

remove(type) unregister(type)

getSender(type)

sender

removeSender(type)

Figure 5.2: Esper Registration of Context Types

will unregister the type from the Esper runtime engine and remove the sender for this type so it
cannot be used anymore for publishing.

:Sender:EsperPublishing:Publisher

publish(event)

send(event)

getSender(type)

Figure 5.3: Publishing of Context Events

Figure 5.3 shows a UML sequence diagram for publishing context events using Esper.
Whenever a context event is published, the Esper publishing service will first find a suitable
sender for the event’s type. Then, the sender will be used to send the context event into the
appropriate event stream.

48

Querying

Querying of context events requires from the COPAL middleware to select events from an event
stream. It will create an EPL SELECT statements for each query with the appropriate FROM and
WHERE clause.

notifier:Notifier:EsperPublishing:QueryFactory

new(query)created(query)

:EsperRuntime

create(statement)

statement

query:Query statement:EPStatement

update(event)

onEvent(event)

new

setSubscriber(notifier)

Figure 5.4: Querying of Context Events

Figure 5.4 shows a UML sequence diagram for delivering context events to COPAL queries
using EPL SELECT statements and notifiers. First, during creation of new query, the Esper
publishing service will receive an asynchronous notification that the query has been created.
Then, the publishing service will create a new notifier with the query as an argument that will
in turn create an EPL SELECT statement using the Esper runtime engine and register itself as
subscriber to the statement. Finally, whenever the notifier receives an update notification from
the statement with a context event as an argument, it will invoke the onEvent method in the
query with the event that will in turn notify all listeners of the query.

Processing

Finally, processing of context events requires from the COPAL middleware to intercept events
that require processing from event streams and delivering them to appropriate processor. Thus,
it will create an EPL SELECT statement to select context events that require processing from
event streams. For this method to function correctly, COPAL queries have to generate EPL state-
ments that only select context event that do not require processing or context events for which
processing is already finished. Then, the COPAL middleware can generate for each processor
action an EPL statement that selects context events that require this action.

Figure 5.5 shows a UML sequence diagram for delivering context events to COPAL proces-
sor using EPL SELECT statements and notifiers. First, during registration of new processor, the
Esper publishing service will receive an asynchronous notification that the processor has been
registered. Then, the publishing service will create for each processor’s action a new notifier
with the processor and the action as arguments. The notifier will in turn create an EPL SELECT

49

notifier:Notifier:EsperPublishing:ProcessorRegistry

new(processor, action)

registered(processor)

:EsperRuntime

create(statement)

statement

processor:Processor statement:EPStatement

update(event)

process(event, action)

new

setSubscriber(notifier)

eventsevents

loop [processor action]

Figure 5.5: Processing of Context Events

statement using the Esper runtime engine and register itself as subscriber to the statement. Fi-
nally, whenever the notifier receives an update notification from the statement with a context
event as an argument, it will invoke the process method in the processor with the action and
the event. Any resulting output events from invocation of the process method will be published
using the Esper publishing service.

5.3 Distribution

Distributed version of the COPAL middleware requires two tools for it to function correctly:

• A transformation mechanism that can convert any COPAL component into a machine-
readable representation.

• A transportation mechanism that is used to transfer COPAL components between dis-
tributed COPAL instances.

Marshaling & Unmarshaling

In the COPAL middleware, marshaling is defined as process of transforming a COPAL compo-
nent into a machine-readable representation. The reverse process of marshaling is called unmar-
shaling and it is used to transform a machine-readable representation back to identical COPAL

component. Furthermore, we say that a marshaller is a class that is responsible for marshaling
an instance of some COPAL type into a specific format, and analogously, an unmarshaller is a
class that can unmarshal the COPAL instance back from the same format.

In the COPAL middleware, we use this mechanism to be able to transform COPAL compo-
nents into an XML DOM (Document Object Model) [45] tree and vice versa. We use XML
DOM tree because it provides us with an object-oriented representation of an XML docu-
ment that can be read and modified in-memory before it is stores as an XML document. The

50

XML DOM implementation in the Java standard library (package org.w3c.dom) defines
an Element interface that is used in marshaling and unmarshaling of COPAL components.
The Element interface represents an element in an XML document. XML elements may
have attributes associated with them and the interface defines methods getAttribute and
setAttribute to retrieve and store an attribute value by name. Furthermore, XML elements
may also have child elements associated with them and the interface defines methods to append,
removed, replace, and retrieve child elements.

marshal(T value)

«interface»

Marshaller

T

Figure 5.6: Marshaller

Figure 5.6 shows a UML class diagram that defines an interface that all marshallers in the
COPAL middleware have to implement. It is a generic interface where T is type of Object
that is marshaled. The marshaller interface defines only the marshal method that expects an
argument of type T, which will be marshaled. The important aspect of this interface is that it
does not create any dependency on particular format that should be used to marshal the argument
and delegates the choice of format to implementations of concrete marshallers. Thus, developers
are free to use any format they prefer like XML, JSON, plain text, or a custom binary format.

Listing 5.2: Integer Marshaller

1 public class IntegerMarshaller implements Marshaller<Integer> {
2

3 private Element element;
4 private String attribute;
5

6 public IntegerMarshaller(Element element, String attribute) {
7 this.element = element;
8 this.attribute = attribute;
9 }

10

11 public void marshal(Integer i) {
12 element.setAttribute(attribute, String.valueOf(i));
13 }
14 }

Listing 5.2 shows a marshaller that can marshal an integer value into an attribute of an XML
element. We can see that during the initialization of the class we expect caller to provide as
with an Element reference and name of attribute where integer values will be saved. Thus,
the integer marshaller will only require an Integer value to be passed as an argument for the

51

marshal method so the marshaling process can be completed. The actual marshaling is done
using the setAttribute method on the Element instance with the name of attribute and
the Integer value as arguments for the method.

marshal(T value)

«interface»

Marshaller

T unmarshal()

«interface»

Unmarshaller

T

T

Figure 5.7: Unmarshaller

Figure 5.7 shows a UML class diagram that defines the unmarshaller interface in the COPAL

middleware. It is also a generic interface where T is type of unmarshaled value, and same as the
marshaller interface, it does not specify any reference to particular format. The concrete classes
that implement the unmarshaller interface have to define the unmarshal method that returns
the unmarshaled value of type T. You should also notice that the unmarshaller interface extends
the marshaller interface as unmarshaling should always come in pair with marshaling.

Listing 5.3: Integer Unmarshaller

1 public class IntegerUnmarshaller extends IntegerMarshaller implements
Unmarshaller<Integer> {

2

3 private Element element;
4 private String attribute;
5

6 public IntegerUnmarshaller(Element element, String attribute) {
7 super(element, attribute);
8 this.element = element;
9 this.attribute = attribute;

10 }
11

12 public Integer unmarshal() {
13 return Integer.valueOf(element.getAttribute(attribute));
14 }
15 }

Listing 5.3 shows an implementation of an unmarshaller that can unmarshal an Integer
value that was marshaled by the integer marshaller from Listing 5.2. It also requires caller to pro-
vide as with an Element reference and name of attribute where integer values will be retrieved.

52

Thus, the integer unmarshaller does not require any other argument to be passed as an argument
for the unmarshal method. The actual unmarshaling is done using the getAttribute
method on the Element instance with the name of attribute as argument for the method.

marshal(T value)

«interface»

Marshaller

T unmarshal()

«interface»

Unmarshaller

T

T

element: Element
name: String

«interface»

Attribute

T

StringAttribute

BooleanAttribute

IntegerAttribute

LongAttribute

DateAttribute

«bind»
String

«bind»
Boolean

«bind»
Date

«bind»
Long«bind»

Integer

unmarshaller: Unmarshaller<T>
ElementUnmarshaller

T

unmarshaller: Unmarshaller<T>
ListUnmarshaller

T

parent: Element
child: String
marshaller: Marshaller<T>

ElementMarshaller
T

parent: Element
child: String
marshaller: Marshaller<T>

ListMarshaller
T

«bind»
List<T>

«bind»
List<T>

Figure 5.8: Marshallers and Unmarshallers

As we mentioned before, the COPAL middleware uses this mechanism to be able to store
and retrieve any COPAL component to and from an XML DOM tree. Hence, we provide a
multitude of primitive marshallers and unmarshallers that can store and retrieve values into and
from XML elements and their attributes. Figure 5.8 shows a UML class diagram of complete
hierarchy of primitive XML marshallers and unmarshallers in the COPAL middleware. First,
we have a generic Attribute abstract unmarshaller that can retrieve and store a value in an
attribute of an element. There are five concrete implementations of the Attribute abstract
class: string, integer, long, Boolean, and date. Each one can store a specific type of value,
String, Integer, Long, Boolean, and Date respectively, in the attribute of an element.
Next, we have the element marshaller and unmarshaller. This class requires a parent element,
name of child element, and actual marshaller or unmarshaller that will be used to retrieve or
store a value of type T. The marshaling process is implemented like this: the marshaller will first
look if there is already a child element in the parent element that has same name as specified
name of child element, and if there is no such element, it will create one. Then, it will invoke the
specified marshaller on the child element using the value passed as argument to the marshal
method. The unmarshaling process is identical except that the unmarshaller will be invoked on
the child element to retrieve the marshaled value. Finally, the list marshaller and unmarshaller
is almost analogous to the element marshaller and unmarshaller except that it stores or retrieves
a List of type T values to and from child elements of the parent element.

53

The idea behind the primitive XML marshallers and unmarshallers is that they can be com-
bined using the Composite and Builder design pattern to create more specific implementations
that can marshal and unmarshal a COPAL component to and from an XML element. The com-
posite design pattern is used when we need to describe a group of object that should be treated
in the same way as single instance of an object [39]. The intent of a composite class is to
compose objects into a tree-like structure to represent a part-whole hierarchy. The compos-
ite design pattern fits nicely with our model of marshaling, as we have to combine multiple
primitive unmarshallers to create a more specific implementation that can store and retrieve a
COPAL component to and from an XML element. The builder design pattern is used to delay the
construction of a complex object until all information that is required to instantiate the object is
available [39]. In design of marshaller and unmarshaller interface, we deliberately didn’t specify
any data storage class in the argument list of the marshal and unmarshal methods to make them
agnostic of the data format. Thus, we have to provide the data storage during the instantiation of
a concrete marshaller. This creates a problem when we want to compose a sub-marshaller with
an element (or list) marshaller, because the underlying child element, which will be used with
the sub-marshaller, might not be present in the parent element and the element marshaller will
have to create it before marshaling can proceed. Thus, the builder design pattern can be used to
delay instantiation of the sub-marshaller until the child element has been created.

Listing 5.4: Processor Marshaller

1 public class ProcessorMarshaller implements Marshaller<Processor> {
2

3 private Unmarshaller<String> name;
4 private Unmarshaller<List<ProcessorAction> > actions;
5

6 public ProcessorMarshaller(Element element) {
7 this.name = new StringAttribute(element, ”name”);
8 this.actions = new ListUnmarshaller(element, ”Actions”, new

ElementUnmarshaller.Builder(”Action”, new
ProcessorActionUnmarshaller.Builder()));

9 }
10

11 public void marshal(Processor p) {
12 name.marshal(p.getName());
13 actions.marshal(p.getActions());
14 }
15 }

Listing 5.4 shows the implementation of an XML marshaller for the Processor class (see
Figure 4.12). This marshaller uses a string attribute unmarshaller and a composite of list, ele-
ment, and processor action unmarshallers to respectively store name and actions properties
of a Processor instance. In the processor marshaller, we can also see the usage of builders
in composition of marshaller for the actions property. Because ”Actions” and ”Action” child

54

elements might not be present in the specified element, the list and element marshallers will
have to create these elements before processor action unmarshaller can be used. Finally, if we
would use this marshaller to marshal into a Processor XML element a temperature calculator
processor that can convert a Celsius context event into Fahrenheit and Kelvin context events, we
would get the XML element in Listing 5.5 as the result of marshaling.

Listing 5.5: Example Processor XML Element

1 <Processor name=’TemperatureCalculator’>
2 <Actions>
3 <Action name=’ToFahrenheit’ input=’Celsius’ output=’Fahrenheit’ />
4 <Action name=’ToKelvin’ input=’Celsius’ output=’Kelvin’ />
5 </Actions>
6 </Processor>

REST Interface

The COPAL REST interface is used as the transportation mechanism to transfer COPAL compo-
nents between distributed COPAL instances. It exposes context type, publisher, and processor
registries and query factory using JAX-RS annotations together with Apache CXF. Furthermore,
the same REST interface can be used to allow applications to remotely interact with the middle-
ware. It uses the XML format as a representation for all COPAL resources.

The COPAL middleware in most situations uses the standard request-replay mechanism for
invocation of REST services. This mechanism is suited for many tasks like registering context
types, creating publishers, publishing context events and so worth, but there are two cases which
require different approach: (1) delivering context event to a remote listener, and (2) processing
context event with a remote processor. Both of these cases requires the COPAL middleware to
deliver context event to some remote service. Hence, the COPAL middleware requires the remote
service to implement a REST endpoint and specify its URL during the registration process. If
remote service is registered as a listener, a context event will be delivered in the payload of
the HTTP POST method on specified URL. Analogously, if remote service is registered as a
processor, a context event will also be delivered in the payload of the HTTP POST method on
specified URL and the COPAL middleware will use the response of the POST invocation as the
result of processing.

Listing 5.6 shows how to define a JAX-RS interface with which the context type registry
(see Figure 4.2) is exposed as a RESTful service. The @GET, @POST, @PUT, and @DELETE
annotations define which HTTP method will invoke which Java method. The @Path annota-
tions define the path part of the URL, and using a {. . .} construct in the path together with the
@PathParam annotation, we can specify some parts of the path to be passed as arguments to
the method. For example, in our case, we want to extract a name of a context type from the URL
in the get method.

Furthermore, the COPAL middleware provides a library that can be used on the client side
to invoke the COPAL REST interface. Listing 5.7 shows, how we can use this library to retrieve

55

Listing 5.6: REST Interface for Context Type Registry Service

1 @Path(”/”)
2 public interface ContextTypeService {
3

4 @GET
5 ContextType[] getAll();
6

7 @PUT
8 void register(ContextType type);
9

10 @GET
11 @Path(”name”)
12 ContextType get(@PathParam(”name”) String name);
13

14 @DELETE
15 @Path(”name”)
16 void unregister(@PathParam(”name”) String name);
17 }

Listing 5.7: Example Usage of COPAL REST Client

1 URL address = . . . ;
2 RemoteCOPAL copal = new RemoteCOPAL(address);
3 ContextType temperature = copal.getEventType(”temperature”);

a temperature context type from a remote COPAL instance at some URL. First, we have to cre-
ate an instance of the proxy class, called RemoteCOPAL, which can be used to communicate
with the remote COPAL instance. The proxy requires a URL address where the remote CO-
PAL instance can be found. Afterwards, we can use the proxy to invoke the getEventType
method, which will invoke the remote context type registry and receive the temperature con-
text type. Behind the scenes, the proxy will use information found in the annotations of the
ContextTypeService class to do correct HTTP method on correct path. In this example, it
will do GET on the /events/temperature path.

5.4 Modules

The COPAL middleware uses an OSGi framework to decouple itself into different modules. This
structure allows parts of the COPAL middleware to be implemented independently from other
modules using different technologies when different requirements are needed. For example,
we can implement registries to store their components transiently in the memory, persistently
in a database, or remotely using the COPAL REST interface. Additionally, all services in the
COPAL middleware are also registered as OSGi services to provide a way to dynamically find

56

a COPAL service during runtime. For example, publishers require the publishing service to be
able to publish context events. Thus, it uses the interface that defines the publishing service (see
Figure 4.7) to find the actual implementation, which can be in different COPAL module or even
change during runtime.

The COPAL middleware is separated into eight modules — three essential modules and five
extension modules — that allow us to deploy a COPAL instance that only provides functionality
that is required in a particular use-case.

«module»

API

«module»

Esper
«module»

Core

«service»

ContextTypeRegistry
«service»

PublisherRegistry
«service»

PublishingService

«service»

QueryFactory
«service»

ProcessorRegistry

«interface»

Marshaller
«interface»

Unmarshaller

«class»

ContextEvent
«class»

ContextType

«interface»

Publisher
«interface»

Processor

«class»

Query
«interface»

Listener

Figure 5.9: Essential COPAL Modules

Three essential modules (Figure 5.9) in the COPAL middleware are: API, core, and Esper
integration. They are mandatory in every deployment of the COPAL middleware as they provide
us with basic functionality like registering context types, publishing context events, and creating
queries.

• API. The API module creates the core domain model that all other modules use and de-
pend on. The task of the API module is to decouple all other modules from each other by
containing all classes that are reused between the modules. First, the API module holds
all interfaces and classes that define component in the COPAL middleware as discussed in
the previous chapter (Chapter 4). Additionally, this modules also provides: (1) implemen-

57

tation of the observer pattern that is used throughout the COPAL middleware to provide
mechanism to observe changes in mutable classes like registries, (2) the marshaling and
unmarshaling mechanism to transform COPAL components to and from an XML DOM
tree, and (3) helper classes for the OSGi framework to automatically find and bind to
registered COPAL services.

• Core. The core module implements context type, publisher, and processor registries and
query factory. It registers them with the OSGi framework as OSGi services, as they need
to be used by other modules. Thus, interfaces for these implementations are defined in the
API module to decouple the actual implementation of registries and query factory from
their clients. This separation allows the core module to be implemented using different
requirements like transient storage versus persistent, local storage versus remote, and so
forth. The default version of this modules stores context types, publishers, processors and
queries only locally in-memory and does not persist them between application executions.

• Esper integration. The Esper integration module is a mediator between the Esper frame-
work and the COPAL middleware. It provides us with transportation of context events
from publishers to processors and listeners. First, it observes the context type registry and
query factory to respectively register new context types with Esper and to create Esper
statements from COPAL queries. Second, it provides an implementation of the publishing
service (see Figure 4.7) that allows us to publish new context events from publishers us-
ing the Esper framework. The publishing service is registered as an OSGi service and the
interface is defined in the API module to decouple clients of the publishing service from
the actual implementation.

Five extension modules (Figure 5.10) in the COPAL middleware are: REST API, REST
server, REST Client, distributed API, and distributed REST. They are optional in deployments
of the COPAL middleware as they provide us with additional functionality like using the COPAL

middleware as a web service or creating a distributed hierarchy of COPAL instances that share
environmental information.

• REST API. The REST API module defines the REST interface for the COPAL middleware
and provides implementations of JAX-RS message providers and consumers that use CO-
PAL marshaling and unmarshaling mechanism. The task of the REST API module is to
decouple the REST clients from the REST server implementation.

• REST Client. The REST client module defines the remote COPAL proxy classes that can be
used to invoke REST operations on a remote instance of COPAL. It uses REST interface
defined in the REST API module together with the JAX-RS to create a seamless client
library to be used by COPAL REST clients.

• REST Server. The REST server module implements REST interface that is defined in the
REST API modules; i.e. it is a mediator between the REST interface and COPAL services.
It uses an OSGi’s built-in web server and Apache CXF library to deploy RESTful services.

58

«module»

API

Extensions

«module»

DREST

«class»

RESTNode

«module»

REST Client

«class»

RemoteCOPAL

«module»

REST Server

«class»

RESTService

«module»

REST API

«interface»

RESTInterface

«module»

DAPI

«interface»

UpstreamNode
«interface»

DownstreamNode

«class»

LazyDistribution
«class»

EagerDistribution

Figure 5.10: Extensions COPAL Modules

• Distributed API (DAPI). The DAPI module defines interfaces for upstream and down-
stream nodes in the distributed hierarchical deployment of COPAL instances (see Sec-
tion 4.3). These interfaces define proxy classes that should hide the actual transportation
layer for distributing information about the environment between the nodes. Furthermore,
they allow usage of both eager and lazy mechanisms to distribute the environmental infor-
mation in a transportation-agnostic way.

• Distributed REST (DREST). The DREST module implements the proxy interfaces for
downstream and upstream nodes that are defined in the DAPI module. It uses the REST
modules to define the transportation layer to transfer COPAL components and to share the
environmental information between distributed COPAL nodes.

5.5 Deployment

Because each module in the COPAL middleware is a valid OSGi bundle, we can create different
deployment options depending on which bundle is installed and started in the OSGi framework.
In the COPAL middleware, we use Equinox4 that is an OSGi-compliant container used by the
Eclipse IDE5 (Integrated Development Environment) for its plug-in runtime. We separate three
deployment options: local-only, client/server, and distributed.

4http://www.eclipse.org/equinox/
5http://www.eclipse.org/

59

Local-only

Application

COPAL

Sensor Sensor

Figure 5.11: Local-only Deployment

The local-only deployment (Figure 5.11) only requires the API, core, and Esper integration
modules to be deployed. In this scenario, the COPAL middleware is bundled together with
context-aware application and the application does all necessary work to gather, process and
react to context changes. Thus, format of context events, publishers, processors, and listeners are
specific to the application and the application has to be implemented using the Java programming
language and bundled with the COPAL middleware. This deployment does not support any type
of remote communication out-of-the-box and context events are passed in-memory only.

Client/Server

Server

COPAL

Sensor Sensor

«REST»

Client Client

«REST»

Figure 5.12: Client/Server Deployment

The client/server deployment (Figure 5.12) requires all modules from the local-only deploy-
ment to be deployed together with the REST API and REST server modules. In this scenario,

60

the COPAL middleware is a server and remote publishers, processors, and listeners are clients.
The COPAL clients communicate with the COPAL server using its REST interface and can be
implemented in any programming language that supports HTTP invocations. This scenario re-
quires developers to define a common format for context events because the COPAL server may
be shared between multiple context-aware applications that can have different use-cases and
requirements from the context events.

Distributed

Node

COPAL

Sensor Sensor

«DREST»

Application Application

«REST»

Node

COPAL

Node

COPAL

Sensor

«REST»

Application

«REST»«REST» «REST»

Figure 5.13: Distributed Deployment

The distributed deployment (Figure 5.13) requires all modules from the client/server de-
ployment to be deployed together with the DAPI and DREST modules. In this scenario, we
have multiple instances of COPAL middleware deployed in a hierarchical tree-like structure (see
Section 4.3) where each instance can have many downstream COPAL nodes and only one up-
stream node. Publishers are deployed locally on leaf nodes (i.e. most-downstream nodes) or
communicate with them over their REST interface. Processors and listeners can be deployed
on any node in the hierarchy depending on how much information about the environment they
require. This scenario also requires that developers define a common format for context events
because multiple context-aware applications may use any of the COPAL nodes.

61

CHAPTER 6
Evaluation

This chapter presents two evaluations of the COPAL middleware. First, we investigate in Sec-
tion 6.1 the performance of the COPAL middleware. Then, Section 6.2 demonstrates the usage
of the COPAL middleware in the SM4ALL project.

6.1 Performance

For the performance evaluation, we have decided on two separate tests:

• The latency test was designed to measure the responsiveness of the COPAL middleware.
We measured it as a time delay between publishing a context event and receiving the event
in a listener including any intermediate processing steps.

• The throughput test was designed to measure the scalability of the COPAL middleware.
We measured it as number of context events per second that the COPAL middleware could
handle under peak workload.

Furthermore, as we have seen in Section 5.5, the COPAL middleware can be used in three
different ways: local-only, client/server, and distributed. Accordingly, we have tested each de-
ployment option separately for both the responsiveness and scalability.

Setup

For the evaluation purposes, we have used two test machines, a personal computer (Machine A)
and a dedicated server (Machine B), that were connected in a 100 Mbit LAN. Table 6.1 shows
the system profiles of both machines. Because Machine B is more powerful and was at the
time only used for the evaluation purposes, most CPU intensive tasks were executed on it and
Machine A was used to generate the workload for Machine B.

For each deployment option, we have developed a separate test setup. In each setup, we
have used one or more concurrent publishers, one or more processors, and only one listener that

63

Machine 1 Machine 2

Operating System
Type Mac OS Ubuntu

Version 10.6.7 8.04 LTS
Kernel Darwin 10.7.0 (32bit) Linux 2.6.32 (64bit)

Java
Runtime Java SE 1.6.0_26 OpenJDK 1.6.0_20

Virtual Machine Java HotSpot (64bit Server) OpenJDK (64bit Server)

Processor
Type Intel Core 2 Duo Intel Xeon

Cores 2 4
Core Speed 2.4 Ghz 3.2 GHz

Main Memory

Type DDR3 DDR2
Modules 2 6

Module Size 2 Gb 2 Gb
Module Speed 1067 MHz 400 MHz

Table 6.1: Test Machines

was recording the performance metrics. In the local-only setup, we ran one COPAL instance
with publishers, processors, and listeners on Machine B. In the client/server setup, a COPAL in-
stance with processors and listeners was running on Machine B and stand-alone publishers were
running on Machine A. The publishers used the REST interface to publish context events. In
the distributed setup, Machine A was running downstream COPAL instance with publishers and
Machine B was running the upstream COPAL instance with processors and listeners. The trans-
fer of context events between the machines was handled using the DREST interface. Table 6.2
summarizes characteristic of each setup.

Local-only Client/Server Distributed
COPAL Machine B Machine B Both
Publishers Machine B Machine A Machine A
Processors Machine B Machine B Machine B
Listener Machine B Machine B Machine B
Communication Memory REST DREST

Table 6.2: Test Setups

Latency

The latency test was separated into six test runs. In each consecutive test run, we increased,
from 0 to 5, the number of processing actions that were required in context events. Each test run
consisted of 5000 context events that were published in consecutive order.

64

The primary measurement that we were interested in was latency in milliseconds between
publishing and receiving a context event with respect to how many processing actions were re-
quired. This measurement can give us the estimation of how responsive the COPAL middleware
is.

Furthermore, we additionally measured the average time in milliseconds to publish, process,
and query a context event. Publishing time was measured from when publisher first created
a context event up to time when the event was handed over to the COPAL middleware. The
processing time was measured from end of publishing up to when last processor finished its
processing of the event. Finally, querying time was measured from end of processing up to
when the event was delivered to the listener.

The results of the test runs are shown in Table 6.3. From the test results we can make these
observations:

• Publishing of context events increases with each deployment option: 0.02ms for local-
only, 2.29ms for client/server, and 4.983ms for distributed setup. The difference in times
is due to the fact that in the client/server and distributed setups, a context event has to be
transferred over the network and parsed by the COPAL middleware before it is published.
Furthermore, in the distributed setup, a context event has to be processed in the down-
stream node before it is published in the upstream node, which furthermore increases the
publishing time.

• Processing of context events increases linearly with respect to number of action that need
to be processed. Average time to process a single action was 2.923ms. Time needed to
process a single action does not significantly very between the test setups because in each
setup processing is handled locally by the COPAL middleware.

• Querying of context was almost identical between the test setups (1.851ms), because, as
in processing, querying is handled locally by the COPAL middleware.

• Overall latency increases linearly with respect to number of actions in each setup due to
longer processing time. Furthermore, overall latency in the client/server setup is in average
3.625ms slower than in the local-only setup due to longer publishing time. Analogously,
overall latency in the distributed setup is in average 6.395ms slower than in the local-only
setup and 2.77ms slower than in the client/server setup.

Throughput

The throughput test was also separated into six test runs. In each consecutive test run, we
increased, from 1 to 6, the number of concurrent publishers in the COPAL middleware that
were competing between each other to publish context events. Each test run consisted of 5000
context events that were published in parallel by all publishers. Context events did not require
any processing.

The measurement that we were interested in was throughput that was measured as average
number of events that were published in a second (eps for short). This measurement gave us
the estimation of how scalable the COPAL middleware is with respect to number of parallel

65

Local-only Client/Server Distributed

0 actions

Publishing (ms) 0.018 2.057 4.231
Querying (ms) 1.497 1.864 1.452∑

1.515 3.921 5.683
σ 1.507 0.858 1.292

1 action

Publishing (ms) 0.02 2.205 4.751
Processing (ms) 2.468 3.064 3.088

Querying (ms) 1.566 1.939 1.437∑
4.054 7.208 9.276

σ 5.911 1.478 0.958

2 actions

Publishing (ms) 0.018 2.357 5.025
Processing (ms) 4.953 5.863 6.056

Querying (ms) 1.646 1.892 2.028∑
6.617 10.112 13.109

σ 1.647 0.844 1.84

3 actions

Publishing (ms) 0.02 2.298 5.188
Processing (ms) 7.655 9.039 9.465

Querying (ms) 1.759 2.021 1.879∑
9.434 13.358 16.532

σ 1.967 1.341 1.764

4 actions

Publishing (ms) 0.021 2.355 5.357
Processing (ms) 10.7 12.379 12.901

Querying (ms) 1.828 2.05 2.043∑
12.549 16.784 20.301

σ 5.134 1.821 1.265

5 actions

Publishing (ms) 0.022 2.541 5.346
Processing (ms) 13.868 15.737 15.751

Querying (ms) 1.945 2.092 2.375∑
15.835 20.37 23.472

σ 2.963 1.45 1.786

Table 6.3: Latency Test Results

publishers. Furthermore, this test can also be considered as a stress test to see the behavior of
the COPAL middleware under peak workload, because publishers are competing with each other
to publish context events.

The results of the test runs are shown in Table 6.4. From the test results, we can see that
in the local-only and client/server setups the highest throughput was recorded when four pub-
lishers were used: 1154.76eps for local-only and 498.1eps for client/server. This number of
publishers corresponds to number of cores on Machine B. In that situation, each thread that was
handling context events was able to execute on separate core on Machine B. Thus, they were
able to publish highest number of events per second because they could work in parallel without

66

Local-only Client/Server Distributed

1 publisher
Throughput (eps) 680.57 258.14 143.46

σ 4.419 4.18 0.86

2 publishers
Throughput (eps) 1040.56 428.43 239.14

σ 7.284 2.6 3.214

3 publishers
Throughput (eps) 1111.38 489.98 316.47

σ 4.888 3.42 1.767

4 publishers
Throughput (eps) 1154.76 498.1 367.02

σ 6.358 1.93 1.837

5 publishers
Throughput (eps) 1131.74 483.86 389.61

σ 4.406 0.92 1.4

6 publishers
Throughput (eps) 1127.46 485.3 405.7

σ 9.672 1.97 1.67

Table 6.4: Throughput Test Results

competing with each other for processor time. When fewer publishers were used, the processor
was not utilized to its fullest power. When more publishers were used, the threads started to
compete for processor time and throughput decreased slightly because of scheduling required to
leverage utilization of cores between threads. Interestingly, in the distributed setup, the highest
throughput was with six publishers (405.697eps). This number corresponds to sum of cores
on Machine A and Machine B. In that situation, both machines could process context events in
parallel, which corresponds to six threads that handle context events in total. This shows that a
distributed network of COPAL instances can increase its throughput gradually by adding more
machines into the network.

Furthermore, we carried out an additional test that wanted to measure the influence of pro-
cessing on throughput. We separated the test into six test runs where we increased the number
of processing actions that were required in context events from 0 to 5. Each test run consisted
of 5000 context events that were published in parallel by four publishers for local-only and
client/server setups and six for the distributed setup. We chose four and six publishers as they
provided the highest performance in the previous throughput test. This measurement gave us
the estimation of how scalable the COPAL middleware is with respect to number of processing
actions.

The results of the test runs are shown in Table 6.5. In this test, the worst scalability with
respect to number of processing actions had the local-only setup, for which throughput decreased
tenfold from 0 to 5 processor actions. For the client/server setup, the throughput decreased by
the factor of 0.7 for each processor action. In the distributed setup, the throughput from 0 to
1 processor action only decreased by the factor of 0.9, because Machine A had enough time to
handle a context event while Machine B was processing other context events. Afterwards, the
processing of actions became a bottleneck on Machine B and Machine A had to wait longer
periods of time until Machine B could receive a context event. Thus, the whole system started to
behave like the client/server setup and throughput started to decrease by the same factor of 0.7.

67

Local-only Client/Server Distributed

0 actions
Throughput (eps) 1154.76 498.1 405.69

σ 6.358 1.931 1.202

1 action
Throughput (eps) 428.6 269.35 364.61

σ 1.936 3.1 3.117

2 actions
Throughput (eps) 258.33 181.13 225.81

σ 0.539 1.477 1.517

3 actions
Throughput (eps) 182.56 135.37 158.19

σ 0.756 1.28 0.608

4 actions
Throughput (eps) 139.25 107.99 120.65

σ 0.303 0.281 0.146

5 actions
Throughput (eps) 111.9 88.95 96.35

σ 0.248 0.247 1.143

Table 6.5: Throughput with Processing Test Results

This test shows the importance of distributing processor over the whole distributed network,
because it can lead to throughput that is much less influenced by the processing of context
events.

6.2 SM4ALL Deployment

The COPAL middleware is part of the embedded and pervasive platform for smart houses de-
veloped in the SM4ALL project. The platform’s aim is to provide support for inter-working
of smart embedded devices in immersive and person-centric environments. The platform is ap-
plied for the scenario of private apartments/homes/buildings in presence of users with different
abilities and needs (e.g. children, adults, seniors, and disabled people). Users of the platform
can interact with services provided by different domotic devices, appliances and sensors through
basic and advanced user interfaces like computers, tablets, and brain-computer interaction (BCI)
devices. The project vision was to provide users with simple interfaces that allow them to select
a goal among a set of possible ones. Goals are proactively offered by the SM4ALL platform
on the basis of the available services and the user’s current context. Once user specified a de-
sired goal, a composition technique defines the most suitable way of coordinating the available
services to satisfy the user’s goal.

As part of the SM4ALL project, a prototype housing unit, known as “Casa Agevole”1 (“Ac-
cessible House” in Italian language) has been made available. It is located at Fondazione Santa
Lucia in Rome, Italy. The size of Casa Agevole is 60m2 and includes: entrance lounge-dining-
kitchen, two bedrooms, and two bathrooms. It provides an easy and safe accommodation for

1http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/
index.html

68

http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html
http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html

people with different abilities and needs. Figure 6.2 shows the floor plan of Casa Agevole with
all installed devices.

Platform Architecture

The platform architecture is separated into the user interface, composition, and pervasive layers.
The user interface layer provides users with ability to interact with the smart home and the
platform through different kinds of user interfaces like touch screens, PDAs and BCI devices.
The composition layer is in charge of providing the user layer with complex services by suitably
composing already available ones. The pervasive layer constitutes of set of proxies that are
software components offering services to the composition layer by “wrapping” and abstracting
the real devices in the smart house that offer the functionality.

Pervasive Layer

Composition Layer

Devices

«server»

COPAL

«publisher»

Proxy
«publisher»

Proxy
«publisher»

Proxy

«sensor»

Presence
«sensor»

Smoke Detector
«actuator»

Motorized Bed

«listener»

Composition
Engines

«listener»

Orchestration
Engine

«listener»

Rule Maintenance
Engine

User Interface Layer

«listener»

PDA
«listener»

BCI
«listener»

PC

Figure 6.1: SM4ALL Platform Architecture

The COPAL middleware (Figure 6.1) is part of the composition layer in the platform. It
provides context-awareness to the user interface layer, the composition engines, the orchestra-
tion engine and the rule maintenance engine by communicating with the pervasive layer. It
is deployed as a context-awareness server that offers synchronous and asynchronous delivery
of changes in context. Context consists of environmental variables that are “sensed” through
two types of devices: actuators and sensors. Actuators are devices that are able to make some
modifications in the environment like open a window, or turn on lights in a room. Sensors are

69

devices that are able to detect the modifications in the environment. Both actuators and sensors
communicate with the COPAL middleware through proxies that are part of the pervasive layer.

Example Use Case

The localization service in Casa Agevole is provided by the Ekahau Positioning Engine. The
Ekahau Positioning Engine is a stand-alone real-time location solution that uses WLAN tech-
nology to track people or objects. It runs on a server as a service and receives data from Ekahau
tags over the WLAN network. Using the WLAN signal strength, the engine creates a probabilis-
tic estimate of each tag location as an x-y coordinate. A Java SDK allows the Ekahau Positioning
Engine to integrate with 3rd party solutions.

In the SM4ALL platform, the COPAL middleware is responsible for integration with the
Ekahau Positioning Engine. It polls the Ekahau server periodically to determine coordinates of
each monitored Ekahau tag and publishing them as location context events. After publishing,
processing steps include determining which location event corresponds to which person in the
house, and determining from which room in the house the location event originated from. Af-
terwards, the user layer can use the location information to provide the user with services that
are appropriate for that specific room. For example, if user is in the living room, the user layer
would provide him with services to turn on television, home-audio system, or lights in the living
room.

70

1 Motorized Courtain

1

1

1

2 Presence

2

2

2

2

3 Motorized Window

3

4 Motion

4

4

4

4

4

5 Light On/Off

6 Motorized Door

7 Motorized Bed

9 Smoke Detector

8 Smart Fridge

5

5

5

5

6

7

8

9

Figure 6.2: Floor Plan of Casa Agevole

71

CHAPTER 7
Conclusions and Future Work

The paradigm of personal computing is currently in the transition from using stationary, per-
sonal computer to having a ubiquitous presence of computing resources. In a ubiquitous system,
human environment is thoroughly fitted with computing power and the whole system is inter-
connected into one coherent computing environment. Humans interact with many machines in
the environment simultaneously without even being aware of it. Context-awareness, as a funda-
mental quality of ubiquitous system, uses “context to provide task-relevant information and/or
services to a user.” [27]

This thesis presented the design and implementation of the COPAL middleware — a context-
aware service platform for context-provisioning. It introduced a context model based on context
events, which provide a flexible mechanism to represent and customize context information.
Based on context-events, context provisioning is separated into three tasks: publishing, process-
ing, and reacting to context events. For each task, a suitable component was designed. The
component design of the COPAL middleware allows the system to be progressively extended
to support new types of context information and to build various context-aware services. Pro-
cessing has been designed to dynamically bind context events with its patterns. Five processing
patterns that can be used to create complex processing schemes have been explained. The CO-
PAL middleware has been implemented as a set of loosely-coupled modules, which enabled
customized deployment for various use-cases. Distributed version of the COPAL middleware
has addressed how multiple COPAL instances can be deployed on multiple machines, and how
to form a hierarchical network to share context information. Distributed COPAL allows the sys-
tem to scale across many heterogeneous context sources and context-aware applications. The
performance evaluation has shown high responsiveness and throughput of context events. The
deployment evaluation has demonstrated usefulness of the COPAL middleware in a real-world
system.

The COPAL middleware is already a powerful solution to build context-aware applications.
However, the implementation could be enhanced with additional functionality that would make
the system even more useful in wider variety of situations. Thus, we plan to further extend the
COPAL middleware in several directions:

73

• Predicate logic. Query criteria can be further extended from current model that uses
prepositional logic to model that supports predicate logic. One benefit of this is that it
would allow creation of queries that use universal quantifier like “when all lights are on”
or a Boolean function like “when it is midday” where midday is a function that is defined
by a user.

• Mobile devices. Interesting future extension of the COPAL middleware will be to deploy
it on mobile devices. Today’s mobile devices are equipped with multitude of sensors
and the COPAL middleware could use them as context sources to support other devices.
For example, we could use GPS sensor in a mobile device to provide the user location
information to a nearby personal computer. This would provide the personal computer
with same level of location-awareness as the mobile device and allow users to use location-
aware service on the computer.

• Ad-hoc peer-to-peer network. Current distributed network of COPAL instances uses a
static tree-like hierarchy to connect the nodes. This model will be further extended to sup-
port a true dynamic peer-to-peer network of COPAL instances. One benefit of this model
is that it will allow creation of ad-hoc networks of COPAL nodes. Ad-hoc networks would
permit the COPAL nodes to automatically create groups that are merged and dissolved as
the topology of the network changes. One example where ad-hoc networks could be used
is to dynamically connect mobile devices to share their environmental information based
on their proximity.

• Cloud deployment. The biggest benefit of cloud systems is its elasticity. Elasticity allows
the system to automatically assign and release resources as they are needed, i.e. to auto-
matically scale up and down. Under heavy workload, the COPAL middleware can use the
elastic nature of cloud system to adaptively start new virtual machines in the cloud and
redistribute the workload among them. This will provide the COPAL middleware with a
self-adaption mechanism that would allow it to be even more scalable.

• Distributing processors. In current COPAL architecture, we can already use the distributed
COPAL middleware to deploy processors on different nodes in a distributed network and
thus maximize the processing capabilities. The problem with this approach, as we iden-
tified it in the evaluation section, is when one node is under heavy processing workload,
the whole distributed network may suffer, because other nodes have to wait to be able
send new context events. This creates a possibility for processing to be further extended
with solutions like replication of processors and/or decomposition of processor actions
into smaller units that can be distributed among the nodes. This would allow the COPAL

middleware to distribute processors over the network to increase processing capacity.

74

APPENDIX A
Tutorials

During the development of the COPAL middleware, we wrote three tutorials that were used in
the SM4ALL project to get the developers familiar with the COPAL middleware. This appendix
contains these tutorials, which should be used as exercises for readers who want to use the
COPAL middleware to develop context-aware applications.

A.1 Hello World

In this tutorial we will create one publisher and one listener. The publisher will create multi-
ple EHello events that listener will receive and print out on the standard output. This tutorial
will explain: (1) creating a publisher, (2) creating a listener, (3) defining a simple event, and
(4) defining a “catch-all” query.

The preferred way of completing this tutorial is to download the skeleton project from the
COPAL home page and use it to implement functionality of this tutorial.

Publisher

First, we will create a publisher for the EHello event. The easiest way is for the publisher to
extend the BasePublisher class. This class implements the ContextPublisher interface, which
COPAL expects for all publishers to implement and it abstracts away the boilerplate code for
registration and unregistration process with COPAL and finding the required OSGi services. If
you need more control during this process or the BasePublisher class does not behave as you
want it to, you can always implement ContextPublisher interface and use it instead of BasePub-
lisher.

Lets move forward with our implementation task, BasePublisher contains two abstract meth-
ods, which our publisher needs to implement:

protected abstract boolean start(ContextEventType type);
protected abstract void stop(ContextEventType type);

75

http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/sources/tutorials/hello-world-skeleton.zip

These two methods notify the publisher when it should respectively start and stop publishing
the events of specified type. If we try to publish an event of some type for which the start method
was not called, a ContextException will be thrown. The result of the start methods should return
the Boolean value telling the underlying BasePublisher if the publisher has successfully started
publishing events of specified type. The stop method will be invoked only when the start method
returns true for specified type.

As first step we create a publisher in the publishers subproject that just print a message on
the standard output when these methods were invoke:

import at.ac.tuwien.infosys.sm4all.copal.api.event.ContextEventType;
import at.ac.tuwien.infosys.sm4all.copal.api.publisher.BasePublisher;

public class HelloPublisher extends BasePublisher {

public HelloPublisher() {
super("HelloPublisher", "EHello");

}

@Override
protected boolean start(final ContextEventType type) {

System.out.println("publisher started for events: " + type.getName());
return true;

}

@Override
protected void stop(final ContextEventType type) {

System.out.println("publisher stopped for events: " + type.getName());
}

}

In the constructor, we must pass two values ”HelloPublisher” and ”EHello” to underlying
BasePublisher‘s constructor. The first value tells the source ID, which will be associated with
every published event from this publisher. You can think of it as a name of the publisher, because
it has to be unique within the namespace of all publisher source IDs. The second value tells all
types of published events. To distinguish any other names in the system from event names, we
made a simple, unenforced convention that it should start with a letter ’E’. We could have easily
just named the event ”Hello” and it would not clash with the source ID of the publisher. Con-
textPublisher can specify that it is publishing more than one type of events, but in our example
we are publishing only EHello events. The start method will be invoked separately for each
published type.

We also need to register the publisher with COPAL. We can do this by extending the Publish-
ersActivator class that implements the OSGi’s BundleActivator interface and override its start
method. The PublishersActivator class provides us with the mechanism to automatically regis-
ter and unregister BasePublishers whenever the ContextPublisherRegistry becomes available, or
unavailable respectively, as a service to underlying OSGi. Its start method is called when the
bundle is activated, so we can use it to tell the activator which publisher to automatically register
and unregister with COPAL.

76

import at.ac.tuwien.infosys.sm4all.copal.api.publisher.PublishersActivator;

public class Activator extends PublishersActivator {

@Override
protected void start() {

System.out.println("publishers activator started");
register(new HelloPublisher());

}
}

If you used the skeleton project for this tutorial, you have to set the full path to this activator
in the publishers subproject’ pom.xml file as the value of the bundle.activator property. We can
run the bundles with mvn install pax:run and you should see only this message on the
standard output:

Publishers activator started
osgi> close

You should notice that our publisher’s start method was never invoked. The publishers was
never invoked because COPAL does not know anything about the EHello event, which our pub-
lisher claims to publish, and waits for somebody to register the EHello event before it allows the
publishing of it. This is where the publishers.cfg.xml file is used, because it allows us to define
the published events. The PublishersActivator class will automatically read this file and register
all events that are defined in it with COPAL. In the skeleton project, an empty publishers.cfg.xml
file is located in the src/main/resources directory of the publishers subproject.

Defining EHello Event

To define the EHello event, the publishers.cfg.xml file should look like this:

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Event name=’EHello’ />

</Context>

The EHello event does not carry any information within itself that COPAL should be aware of
and therefore it does not need any additional configuration elements. This configuration does not
tell that EHello event cannot carry any additional information, it just tells that COPAL should not
care about the content of the EHello event, e.g. if the EHello event contained a Message element
the COPAL system would just ignore it.

The above definition of the EHello event is actually an abbreviated version of this definition:

<Event name=’EHello’ rootElement= ’EHello’ />

We can remove rootElement whenever the name of the event and the name of the root ele-
ment are same value. If we wanted to define an EHello event, which has a different name of the
root element (e.g. HelloWorld), we would need to explicitly state the name of the root element
using rootElement. COPAL requires that each event has configured name of its root element, but

77

in special cases we can use the COPAL default behavior that name of the event and name of the
root element are same value.

As we can see, the minimal definition of event is to give it a name, and only requirement is
that name must be unique in the namespace of all event names. There would be no sense if there
were two different EHello events, because how would listener state in which one it is interested.

If we run the bundle now, we would see the expected messages:

publishers activator started
publisher started for events: EHello
osgi> close
publisher stopped for events: EHello

From this output, we can also see that the publisher’s stop method is invoked when the
bundle is stopped. This is what one should expect, because when OSGi is stopping, it will
invoke the stop method in the PublishersActivator class, which automatically stops all registered
publishers. This makes the stop method good place for any cleanup code that publisher needs to
do before it stops publishing events of specified type.

Publishing EHello Event

Now is time to actually publish EHello events. We will need to instantiate an XML Document-
Builder class because all events in COPAL are published as XML documents, and then we will
create a simple Timer that publishes an EHello event every two seconds in the start method and
stop it in the stop method. We use the BasePublisher’s publish(ContextEvent) method to publish
created EHello events.

import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

import at.ac.tuwien.infosys.sm4all.copal.api.ContextException;
import at.ac.tuwien.infosys.sm4all.copal.api.event.ContextEventType;
import at.ac.tuwien.infosys.sm4all.copal.api.event.xml.XMLEvent;
import at.ac.tuwien.infosys.sm4all.copal.api.event.xml.XMLEventType;
import at.ac.tuwien.infosys.sm4all.copal.api.publisher.BasePublisher;

public class HelloPublisher extends BasePublisher {

private Timer timer;

public HelloPublisher() {
super("HelloPublisher", "EHello");

}

@Override
protected boolean start(final ContextEventType type) {

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

78

try {
final DocumentBuilder builder = factory.newDocumentBuilder();
this.timer = new Timer();
this.timer.schedule(new TimerTask() {

@Override
public void run() {

final Document event = builder.newDocument();
event.appendChild(event.createElementNS(null, "EHello"));
try {
publish(new XMLEvent((XMLEventType) type, getSourceID(), event));
System.out.println("EHello event published");

} catch (final ContextException ex) {
System.out.println("Something went wrong");
ex.printStackTrace();

}
}

}, 0, 2000);

System.out.println("publisher started for events: " + type.getName());
return true;

} catch (final ParserConfigurationException ex) {
return false;

}
}

@Override
protected void stop(final ContextEventType type) {

this.timer.cancel();
System.out.println("publisher stopped for events: " + type.getName());

}
}

When we run the bundle, we should see something like this on the standard output:

publishers activator started
publisher started for events: EHello
EHello published
EHello published
EHello published
...

The creation of same event over and over again can be very tedious, so we provided you
with a helper method createEvent(DocumentBuilder) in the XMLEventType class. This method
creates an instance of XML document with a root element that has local name set to value of
rootElement from event’s definition. Remember that if the rootElement is missing than it has
same value as name of the event. The createEvent method plus the fact that the XML document
is cloned before it is published means that we can reuse one XML document when publishing.
Each invocation of publish will actually publish a cloned instance of specified XML document,
therefore, any change to the XML document after it is published will not change the published
event, because it is a different instance of XML document. The improved version of the start
method looks like:

79

@Override
public boolean start(final ContextEventType type) {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

try {
final DocumentBuilder builder = factory.newDocumentBuilder();
final Document event = ((XMLEventType) type).createEvent(builder);

this.timer = new Timer();
this.timer.schedule(new TimerTask() {

@Override
public void run() {
try {
publish(new XMLEvent((XMLEventType) type, getSourceID(), event));
System.out.println("EHello event published");

} catch (final ContextException ex) {
System.out.println("Something went wrong");
ex.printStackTrace();

}
}

}, 0, 2000);

System.out.println("publisher started for events: " + type.getName());
return true;

} catch (final ParserConfigurationException ex) {
return false;

}
}

If we run this example we should see the same result as in previous run.

Query & Listener

Now we can focus on receiving published EHello events. We do this by creating a query that
receives all EHello events and registering a listener with it. You can register more than one
listener with each query, and each listener can be registered to more than one query. The listeners
subproject will hold the listener.

We define queries in the listeners.cfg.xml file (similarly to how we defined EHello event in
the publisher.cfg.xml file). In our case, listener wants to be notified whenever an EHello event
is published, therefore, the listeners.cfg.xml file looks like:

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Query name=’EHello.All’ event="EHello’ />

</Context>

When defining events, each query must have an unique name in the namespace of query
names and the name of the event for which it receives notifications. The name of the event
is the same name that is used in the publishers.cfg.xml to name the event. This query will be

80

notified whenever an EHello event is published, because it does not have any other configuration
elements.

A listener can be implemented either by implementing the ContextListener interface or ex-
tending the BaseListener class. The BaseListener is very simple and only implements the get-
Name() method from the ContextListener interface. BaseListener and the interface also require
subclasses to implement the onEvent(ContextEvent) method, which is called by the query, to
which the listener is registered, whenever an event is received. Our listener will just print out a
message when it receives an event:

import at.ac.tuwien.infosys.sm4all.copal.api.event.ContextEvent;
import at.ac.tuwien.infosys.sm4all.copal.api.listener.BaseListener;

public class SimpleListener extends BaseListener {

public SimpleListener() {
super("SimpleListener");

}

@Override
public void onEvent(final ContextEvent event) {

System.out.println(event.getType().getName() + " received");
}

}

In the constructor, we pass the name of this listener to underlying BaseListener‘s constructor.
The name of the listener must be unique within each query i.e. we can have two different listeners
with same name as long as they are not registered to same query.

To register this listener with the query defined in the listeners.cfg.xml file, we use the Lis-
tenersActivator that also implements the OSGi’s BundleActivator interface and override its start
method. Similarly to the PublishersActivator class, the ListenersActivator class provides us with
the mechanism to automatically create queries defined in the listeners.cfg.xml file and to register
and unregister ContextListeners with it. Same as before, if you used the skeleton project for this
tutorial, you have to again set the full path to this activator in the listeners subproject’ pom.xml
file.

import at.ac.tuwien.infosys.sm4all.copal.api.listener.ListenersActivator;

public class Activator extends ListenersActivator {

@Override
protected void start() {

System.out.println("listeners activator started");
register("EHello.All", new SimpleListener());

}
}

As you can see we use the name of the query to register our listener. If we run the listener
and publisher bundles, we would see something similar to this on the standard output:

81

publishers activator started
publisher started for events: EHello
listeners activator started
EHello received
EHello event published
EHello received
EHello event published
EHello received
EHello event published
...

This finishes the tutorial that implements a simple Hello World program using COPAL to
pass the EHello events between publisher and listener.

82

A.2 Advance Event & Query Configuration

In this tutorial we will create one publisher and two listeners. The publisher will publish current
temperature in Celsius. The first listener will receive each temperature event and print out on
standard output the values of temperature in Celsius. The second listener will only receive the
temperature events that are below zero degrees Celsius. This tutorial will explain: (1) defining
an event with namespace and XML Schema, and (2) defining a query with logical criteria.

The preferred way of completing this tutorial is to download the skeleton project from the
COPAL home page and use it to implement functionality of this tutorial.

Publisher & Listener

First step is to define an ETemperature event and create publisher and listener that receives all
ETemperature events. We start by defining the ETemeprature event in the publishers.cfg.xml
file.

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Event name=’ETemperature’ />

</Context>

The publisher will simulate a temperature sensor by publishing a random temperature be-
tween -20 and 35 ◦C every 5 seconds. Its structure is similar to the EHello publisher we created
in the Hello World tutorial:

public class TemperatureSensor extends BasePublisher {

private final Random random = new Random(System.currentTimeMillis());
private Timer timer = null;

public TemperatureSensor() {
super("TemperatureSensor", "ETemperature");

}

@Override
protected boolean start(final ContextEventType type) {

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

try {
final DocumentBuilder builder = factory.newDocumentBuilder();
final Document event = ((XMLEventType) type).createEvent(builder);

this.timer = new Timer();
this.timer.schedule(new TimerTask() {

@Override
public void run() {

// temperature in Celsius is between -20 and 35.
int temperature = TemperatureSensor.this.random.nextInt(56) - 20;
event.getDocumentElement()

83

http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/sources/tutorials/temperature-skeleton.zip

.setAttribute("celsius", String.valueOf(temperature));

try {
publish(new XMLEvent((XMLEventType) type, getSourceID(), event));

} catch (final ContextException ex) {
System.out.println("Something went wrong");
ex.printStackTrace();

}
}

}, 0, 5000);

return true;
} catch (final ParserConfigurationException ex) {
return false;

}
}

@Override
protected void stop(final ContextEventType eventType) {
this.timer.cancel();

}
}

When the publisher is started, it creates an ETemperature XML document using the cre-
ateEvent(DocumentBuilder) method in the XMLEventType class. Remember that a XML docu-
ment is cloned before publishing, therefore we can reuse the XML document that we created at
the beginning and just update the celsius attribute whenever we want to publish new temperature.

The OSGi Activator for the bundle looks identical to the publisher’s Activator in the Hello
World tutorial:

public class Activator extends PublishersActivator {

@Override
protected void start() {
register(new TemperatureSensor());

}
}

The second bundle will hold a listener that will receive the published ETemperature events.
The listener just prints the value of the celsius attribute on the standard output:

import at.ac.tuwien.infosys.sm4all.copal.api.listener.Events;
import at.ac.tuwien.infosys.sm4all.copal.api.listener.Event;
import at.ac.tuwien.infosys.sm4all.copal.api.util.Name;

@Name("TemperatureListener")
public class TemperatureListener {

@Event(type = "ETemperature")
public void onTemperature(final XMLEvent event) {
final Document document = event.getDocument();

84

final String temperature = document.getDocumentElement()
.getAttribute("celsius");

System.out.println("New temperature");
System.out.println("Celsius: " + temperature);

}
}

The difference between EHello listener developed in the Hello World tutorial and this one is
that we not extending a BaseListener and instead are using the annotations to define the listener.
First the class must be annotated with the @Name annotation that specifies the name of the
listener and it must have at least one method annotated with the @Event or @Events annotation.
The @Event annotation can optionally specify which type of event the method should be invoked
with and when type is not used than the method is invoked with any event type. The @Events
annotation is just a composition annotation when you need to annotate the method with multiple
@Event annotations and it is not used in this example.
The rules for method to be annotated with @Event or @Events annotation are:

• The method must be public.

• The method must have exactly one parameter.

• The parameter must be ContextEvent or a subclass (in our example it is the XMLEvent).

The rules, for which methods are invoked when an event is received, are:

• The event must have class equal to or a subclass of the method parameter.

• If the method is annotated with the @Event annotation that specifies a type than the event
must be of that type.

• If the method is annotated with the @Event annotation that does not specify a type than
the event can be of any type.

• If the method is annotated with the @Events annotation than the event must match any
@Event annotation.

• All methods for which above rules hold will be invoked with the event.

Example of a method that catches all events (because we don’t specify any type in the
@Event annotation and the parameter is ContextEvent that is the superclass of all events) would
be:

@Event
public void onAnyEvent(final ContextEvent event) {
//do something

}

Finally we define the query for the ETemperature events in the listeners.cfg.xml file and
register the listener to it using the OSGi Activator. The listener.cfg.xml file looks like:

85

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Query name=’ETemperature.All’ event=’ETemperature’ />

</Context>

And the activator should look like (do not forget also to set bundle.activator property in the
listeners subproject’s pom.xml file). Notice that we must wrap the TemperatureListener with the
AnnotatedListener because it doesn’t implement the ContextListener interface:

import at.ac.tuwien.infosys.sm4all.copal.api.listener.AnnotatedListener;

public class Activator extends ListenersActivator {

@Override
protected void start() {

register("ETemperature.All",
new AnnotatedListener(new TemperatureListener()));

}
}

If we run the example now, we would see something similar to this on the standard output:

New temperature
Celsius: 28
New temperature
Celsius: 0
New temperature
Celsius: -4
...

Namespace

Next step is to put the ETemperature into its own namespace. The configuration of the names-
pace for an event is not mandatory, but having events in their own namespaces has advantage
like preventing name clashes of the root elements between events.

Adding a namespace to the ETemperature event is very simple. In the publishers.cfg.xml
we add a namespace attribute to the ETemperature’s Event element, which specified the event’s
default namespace. Only consequence is that your root element must be in this namespace; the
root’s child element does not have to be in same namespace, but it is preferable.

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Event name=’ETemperature’

namespace=’http://www.sm4all-project.eu/COPAL/Tutorial’ />
</Context>

Only difference in the publisher is that DocumentBuilderFactory must be aware of names-
paces. Here we can see the advantage of using the createEvent(DocumentBuilder) method,
because it automatically will define the default namespace of the created XML document to be
the event’s namespace and use it when creating the root element.

86

@Override
protected boolean start(final ContextEventType type) {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

try {
final DocumentBuilder builder = factory.newDocumentBuilder();
final Document event = ((XMLEventType) type).createEvent(builder);

...

return true;
} catch (final ParserConfigurationException ex) {

return false;
}

}

There should be no change in the output if we run the example now. The advantage when
we implement publishers and listeners in this way is that we can change the event’s namespace
in the publishers.cfg.xml and we do not have to recompile the example. We can even remove the
namespace configuration and it should still work. This also holds for changing the name of the
root element, because we used the createEvent(DocumentBuilder) method; it would just create
the XML Document with new name for the root element. You should play with the definition
of the ETemperature event, changing the name of the root element and event’s namespace, and
the example should always work without touching the implementation of the publisher and the
listener.

Schema

The last configuration for events we can use is to define the XML Schema for the ETempera-
ture event. First we have to create the XML Schema file that defines the ETemperature XML
element and we put it into the publishers subproject src/main/resource directory and name it
ETemperature.xsd:

<xsi:schema
xmlns=’http://www.sm4all-project.eu/COPAL/Tutorial’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema’
targetNamespace=’http://www.sm4all-project.eu/COPAL/Tutorial’
elementFormDefault=’qualified’>

<xsi:element name=’ETemperature’>
<xsi:complexType>

<xsi:attribute name=’celsius’ type=’xsi:decimal’ use=’required’ />
</xsi:complexType>

</xsi:element>
</xsi:schema>

If you are familiar with the XML Schema you will see that this schema file is simple. We
define that the root element has name ETemperature and it has one and only one attribute named

87

celsius, which is of decimal type. Root element is in its own namespace: http://www.sm4all-
project.eu/COPAL/Tutorial.

In the publishers.cfg.xml we have to tell the location of this XML Schema file for the ETem-
perature event. We do this with Schema element, which has one of these children: URL or
ClassPath. The URL is used when we have an URL location for the schema file like a web
address. The ClassPath contains the name of the schema file that can be located in the bundle’s
classpath and can be read using standard Java class loading facilities. Both URL and ClassPath
elements require a location argument, which respectively specifies URL and classpath location
where to look for the XML Schema file. In our example, we have put the ETemperatude.xsd file
into the publishers subproject, and we need to use the Schema with ClassPath in the publish-
ers.cfg.xml:

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Event name=’ETemperature’

namespace=’http://www.sm4all-project.eu/COPAL/Tutorial’>
<Schema>
<ClassPath location=’ETemperature.xsd’ />

</Schema>
</Event>

</Context>

If you rerun the example, you should see the same output as before.

Logical Criteria

You will probably wonder what is advantage of defining XML Schema files for our event. Ba-
sically, it helps COPAL know about the structure of your events and their types and provides
the facility to create more advance queries using logical criteria to select events that listeners
are interested in. In our example, we can now use the celsius attribute to only receive tempera-
ture events that are below zero degrees Celsius. This is all possible because we defined that the
ETemperature event has celsius attribute that is of decimal type.

First let us create a simple listener for our minus temperature events that prints out a message
on the standard output just to show that it works:

public class MinusTemperatureListener extends BaseListener {

public MinusTemperatureListener() {
super("MinusTemperatureListener");

}

@Override
public void onEvent(final ContextEvent event) {

System.out.println("Too cold!");
}

}

We can now proceed with definition of the below zero degrees Celsius ETemperature query
in the listeners.cfg.xml and if we register this listener with it same way we registered the Tem-
peratureListener with the ETemperature.All query and it will work, but we will create a query

88

and register this listener programmatically to show that you can also define queries and register
listeners dynamically inside bundles at runtime. You do not need to use the listeners.cfg.xml
file at all, but you should because it hides a lot of boilerplate code as we will see now. Just
for the sake of demonstration the configuration of the ETemperature.BelowZero query in the
listeners.cfg.xml would look like and notice that less-than sign has to be escaped for the listen-
ers.cfx.xml to be valid XML file:

<Query name=’ETemperature.BelowZero’
event=’ETemperature’
criteria=’celsius < 0’ />

The programmatic way of creating queries in COPAL is to override the ListenersActivator’s
start(ContextQueryFactory) method and use the provided factory to create queries. Both start
methods can be overridden simultaneously as we will see in our example. This start method is
called when an OSGi service is registered which implements the ContextQueryFactory interface
and it comes in a pair with the stop() method that is called when the ContextQueryFactory
service becomes unavailable and should be used to destroy all queries that we created in the start
method.

The listeners’ activator now looks like:

public class Activator extends ListenersActivator {

private ProcessedEventQuery belowZeroQuery;

@Override
protected void start() {

register("ETemperature.All",
new AnnotatedListener(new TemperatureListener()));

}

@Override
protected void start(final ContextQueryFactory queryFactory) {

try {
this.belowZeroQuery = queryFactory.create("ETemperature.BelowZero",

"ETemperature",
"celsius < 0");

this.belowZeroQuery.register(new MinusTemperatureListener());
} catch (final RedefinitionOfQueryException ex) {

System.out.println("ETemperature.BelowZero query is already defined!");
} catch (final AlreadyRegisteredException ex) {

System.out.println("Listener with same name is already registered");
} catch (final QueryDestroyedException ex) {

System.out.println("Below zero ETemperature query is destroyed");
}

}

@Override
protected void stop() {

if (this.belowZeroQuery != null)
try {

89

this.belowZeroQuery.destroy();
} catch (final QueryDestroyedException ex) {
System.out.println("Below zero ETemperature query is destroyed");

} finally {
this.belowZeroQuery = null;

}
}

}

Now you can see why it is so much easier define queries in the listeners.cfg.xml file and use
the start() method to register listener.

The first line in the try-catch block of the start method creates the query with name ETem-
perature.BelowZero that receives ETemperature events that have celsius attribute less than 0.
The create method can throw a RedefinitionOfQueryException if there is already a query with
same name that receives different events or has different logical criteria, therefore, it is mean-
ingful to put the name of the event in the name of the query, as we have done in all queries
that we have previously defined. This ensures that if we create another temperature event with
different name, the queries for the second temperature event would not clash with queries for
the ETemperature event. The second line registers the listener with the query. The registration
can throw AlreadyRegisteredException or QueryDestroyedException. The AlreadyRegistere-
dException is thrown when there is a listener with same name already registered with the query,
and the QueryDestroyedException is thrown when the query has been previously destroyed.

The first line in the try-catch block of the stop method destroys the query. It can throw also
the QueryDestroyedException, which in this case can be ignored, because it was already our
intention to destroy the query.

When we run the example, we can see that the “Too cold” message is only printed when a
temperature is below zero:

New temperature
Celsius: 11
New temperature
Celsius: -11
Too cold
New temperature
Celsius: 32
New temperature
Celsius: -5
Too cold
...

This finishes the tutorial that explains the more advance configurations for the events and
queries.

90

A.3 Processors

In this tutorial we will reuse the code for publisher and listener from the Advance Event &
Query Configuration tutorial to create two processors on top of it. The first processor will add
fahrenheit attribute into ETemperature events and set its value to temperature in Fahrenheit by
calculating it from Celsius. The second processor will add kelvin attribute in the ETemperature
event and set its value to temperature in Kelvin. This tutorial will explain: (1) defining required
and optional default actions for an event, and (2) creating a processor that can handle an event
action.

The preferred way of completing this tutorial is to reuse your implementation for the Ad-
vance Event & Query Configuration tutorial to implement functionality of this tutorial.

Defining Default Actions

The TemperatureSensor publishes ETemperature events in celsius and we would also like to
have the published temperature in fahrenheit and kelvin. One solution is to change the publisher
and calculate these values for each published ETemperature event. The better and more flexible
solution is to create two processors, which will calculate Fahrenheit and Kelvin temperature for
each published ETemperature event. The publisher is not aware of the processors and processors
are not aware of each other; we separate the task of reading the sensor and publishing the event,
and computing temperature in Fahrenheit and Kelvin from Celsius in their own implementations.
Only the listener will be aware of the consequence of processor action, but not their existence,
because it can now read the temperature in Celsius, Fahrenheit and Kelvin.

First task is to define the default actions for ETemperature event. We do this in the publish-
ers.cfg.xml file:

<Context xmlns=’http://www.sm4all-project.eu/COPAL’>
<Event name=’ETemperature’

namespace=’http://www.sm4all-project.eu/COPAL/Tutorial’>
<Actions>

<Action name=’AddFahrenheit’ required=’true’ />
<Action name=’AddKelvin’ required=’false’ />

</Actions>
<Schema>

<ClassPath location=’ETemperature.xsd’ />
</Schema>

</Event>
</Context>

Difference between the ETemperature event definition in the Advance Event & Query Con-
figuration tutorial and this definition is in the Actions element. This element has one or more
Action elements. Each Action defines one action. Each separate event instance actually carries
its own actions but in the event definition we can define which actions it will each event in-
stance carry by default. In our case we define two actions: AddFahrenheit and AddKelvin. The
AddFahrenheit action is required and the AddKelvin action is optional. If an action is required
or optional is set using the required attribute where true means the action is required and false
that action is optional.

91

When we run the example we should not see any output from the TemperatureListener
and instead we will get error messages telling us that there is no processor for the required
AddFahrenheit action. If the event is missing a processor for the required action, that this event
will be dropped by COPAL because it is considered uncompleted. To fix this error we have to
create at least one processor that can handle the AddFahrenheit action.

The output of running the example should look something like this:

ERROR ... - Dropped event ’ETemperature’! No processor for the required
’AddFahrenheit’ action.

ERROR ... - Dropped event ’ETemperature’! No processor for the required
’AddFahrenheit’ action.

ERROR ... - Dropped event ’ETemperature’! No processor for the required
’AddFahrenheit’ action.

...

Before we go any further we must also extend the XML Schema file for the ETemperature
event. We have to define two additional attributes: fahrenheit and kelvin. These attributes will
hold the value of the temperature in fahrenheit and in kelvin and the ETemperature.xsd file
should now look like:

<xsi:schema
xmlns=’http://www.sm4all-project.eu/COPAL/Tutorial’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema’
targetNamespace=’http://www.sm4all-project.eu/COPAL/Tutorial’
elementFormDefault=’qualified’>

<xsi:element name=’ETemperature’>
<xsi:complexType>
<xsi:attribute name=’celsius’ type=’xsi:decimal’ use=’required’ />
<xsi:attribute name=’fahrenheit’ type=’xsi:decimal’ use=’optional’ />
<xsi:attribute name=’kelvin’ type=’xsi:decimal’ use=’optional’ />

</xsi:complexType>
</xsi:element>

</xsi:schema>

Both elements must be optional, because when an ETemperature event is published it does
not have either of them and the validation of the event against this schema file would fail and
COPAL would just drop the event and never publish it.

Calculate Fahrenheit

A processor is a combination of publisher and listener in one. The difference from publisher is
that it has an input event and can publish new events only as a result of processing an action
on the input event. It can publish same event modified or not, it can publish new events, or it
does not have to publish any event. If it does not publish a new event and this processor is only
processor for this action than the input event will be lost. The difference between a processor and
listener is that listener does not publish new events and that listener receives events for which at
least all required actions are already processed.

92

The actions are, as we mentioned before, carried by the events. This makes possible to route
each event instance differently at runtime. The event definition only tells which actions are in
each event instance by default. It does not mean that the action will be executed on an event,
because we can change or even remove actions at runtime for each event instance. The final
thing worth mentioning is that multiple processors can be registered for same action and all
registered processors will be executed if an event instance requires this action.

First step for us is to create a processor for the AddFahrenheit action. We start by creating a
new processors subproject (you can copy processors from the generic skeleton project from the
COPAL home page and modify its pom.xml file). The processors can extend the BaseProcessor
class, implement the ContextProcessor interface, or use annotations. The simplest way to imple-
ment the AddFahrenheit processor is to use annotations and just relay the input ETemperature
event unchanged to output. It does not do what is expected, but for now we just need to see how
to define and register a processor with COPAL.

The code for this simple AddFahrenheit processor looks like:

import at.ac.tuwien.infosys.sm4all.copal.api.processor.Action;
import at.ac.tuwien.infosys.sm4all.copal.api.util.Name;

@Name("CelsiusToFahrenheitCalculator")
public class FahrenheitCalculator {

@Action(name = "AddFahrenheit",
input = "ETemperature",
output = "ETemperature")

public XMLEvent calculate(final XMLEvent event) {
return event;

}
}

First we specify the name of the processor with the @Name annotation. Same as with the
annotated listeners, the processor must have at least one method annotated with the @Action
or @Actions annotation.The @Action annotation specifies the name of action the processor can
handle, the type of input event and optionally types of output events. In our case, this processor
can process the AddFahrenheit action on an ETemperature event and the output can only be an
ETemperature event. We can also specify more than one type of output event telling COPAL that
output can be any of specified events (i.e. output can be one or more events of any specified
output types). We can also omit the output argument, which means that processor will never
publish any event. If we do not want to produce any output for some specific input, we just return
null or an empty array from the process method. The @Actions annotation is just a composition
annotation when you need to annotate the method with multiple @Action annotations and it is
not used in this example.
The rules for method to be annotated with @Action or @Actions annotation are:

• The method must be public.

• The method must have one or two parameter.

93

• The required parameter must be ContextEvent or a subclass (in our example it is the
XMLEvent).

• The other (optional) parameter must be of type ProcessorAction (used when the method
must know which action it must do on the event).

• The method must be void or return ContextEvent (or a subclass), an array of Contex-
tEvents (or an array of any ContextEvent’s subclass), or a java.util.Collection of Contex-
tEvents (or a collection of ContextEvent’s subclass).

The rules, for which methods are invoked when an event is received, are:

• The event must have class equal to or a subclass of the method parameter.

• The name of event’s current action must be equal to the name of processed action.

• The type of event must be equal to the input type.

• If the method is annotated with the @Actions annotation than the event must match any
@Action annotation.

• All methods for which above rules hold will be invoked with the event.

The final step for us is to create the OSGi Activator that will register this processor with CO-
PAL. This activator looks almost identical to the activator for publishers and only difference is
that it knows how to register processor and not publishers. Notice that we must wrap the Fahren-
heitCalculator with the AnnotatedProcessor because it doesn’t implement the ContextProcessor
interface.

import at.ac.tuwien.infosys.sm4all.copal.api.processor.AnnotatedProcessor;
import at.ac.tuwien.infosys.sm4all.copal.api.processor.ProcessorsActivator;

public class Activator extends ProcessorsActivator {

@Override
protected void start() {
register(new AnnotatedProcessor(new FahrenheitCalculator()));

}
}

If we run the example, we should receive the expected output from the TemperatureListener
telling us the temperature in Celsius:

ERROR ... - Dropped event ’ETemperature’! No processor for the required
’AddFahrenheit’ action.
New temperature
Celsius: 21
New temperature
Celsius: 16
...

94

First thing you should notice is that the TemperatureListener receives the event, even though
an AddKelvin processor was never created nor registered, and this is because the AddKelvin
action is optional. If COPAL finds an event that needs an action that is optional and there is no
processor registered for this action, it will just pass the event unchanged to next action. In our
case, there are no further actions and listeners receive the event.

The output also has one error message. The error message is because the OSGi system
started the publishers before it started the processors and when the publisher started publishing
there was no processor for the AddFahrenheit action. We can see that for second and third
ETemperature event the processor was registered and therefore the listener was able to receive
the ETemperature event. We cannot do much about this except perhaps tell the OSGi system
to start the publishers after the processors using the higher start level for publishers then for the
processors.

Now is also good time to extend the TemperatureListener to print out the temperature in
Fahrenheit and Kelvin. The new onEvent(Document) method in the listener now looks like this:

@Event(type = "ETemperature")
public void onTemperature(final XMLEvent event) {
final Document document = event.getDocument();
final Element rootElement = document.getDocumentElement();
final String celsius = rootElement.getAttribute("celsius");
final String fahrenheit = rootElement.getAttribute("fahrenheit");
final String kelvin = rootElement.getAttribute("kelvin");

System.out.println("New temperature");
System.out.println("Celsius: " + celsius);
if (fahrenheit != null) {

System.out.println("Fahrenheit: " + fahrenheit);
}
if (kelvin != null) {

System.out.println("Kelvin: " + kelvin);
}

}

Notice that we are printing the text content of the fahrenheit and kelvin attributes only if they
are present because they are defined as optional in the ETemperature XML Schema file. If we
run the example now, we should get only the temperature in Celsius, because the AddFahrenheit
processor never calculated the temperature in Fahrenheit.

Only missing part is to actually calculate the temperature in Fahrenheit. For this task we first
need to extract the temperature in Celsius and use the formula Fahrenheit = Celsius · 95 + 32 to
get the temperature in Fahrenheit. After that, we add a new attribute with name fahrenheit that
has the temperature in Fahrenheit as its value.

@Override
@Action(name = "AddFahrenheit",

input = "ETemperature",
output = "ETemperature")

public XMLEvent calculate(XMLEvent event)
throws MalformedDocumentException {

95

final Document document = event.getDocument();
final Element rootElement = document.getDocumentElement();

BigDecimal celsius = new BigDecimal(rootElement.getAttribute("celsius"))
.setScale(1, RoundingMode.UNNECESSARY);

// fahrenheit = celsius * 9 / 5 + 32
final BigDecimal fahrenheit = celsius.multiply(BigDecimal.valueOf(9))

.divide(BigDecimal.valueOf(5))

.add(BigDecimal.valueOf(32));

rootElement.setAttribute("fahrenheit", fahrenheit.toPlainString());
return new XMLEvent(event.getType(), document);

}

Finally, the TemperatureListener should print the temperature in Fahrenheit beside the tem-
perature in Celsius:

New temperature
Celsius: 4
Fahrenheit: 39.2
New temperature
Celsius: -8
Fahrenheit: 17.6
...

Calculate Kelvin

A processor should not care if the event action is required or optional. This can be easily under-
stood: some event instances will have this action as required and some not. We already men-
tioned that it is single event instance that carries the information about the actions that should be
processed on it. The processor should only care how to do its processing of events it receives.

The AddKelvin processor looks almost identical to the AddFahrenheit processor and only
difference is in name, which action it can process and how to calculate the temperature in Kelvin
from temperature in Celsius:

@Name("CelsiusToKelvinCalculator")
public class KelvinCalculator {

@Action(name = "AddKelvin",
input = "ETemperature",
output = "ETemperature")

public XMLEvent calculate(XMLEvent event)
throws MalformedDocumentException {

final Document document = event.getDocument();
final Element rootElement = document.getDocumentElement();

BigDecimal celsius = new BigDecimal(rootElement.getAttribute("celsius"))
.setScale(2, RoundingMode.UNNECESSARY);

// kelvin = celsius + 273.15
final BigDecimal kelvin = celsius.add(new BigDecimal("273.15"));

96

rootElement.setAttribute("kelvin", kelvin.toPlainString());
return new XMLEvent(event.getType(), document);

}
}

Next we register the AddKelvin processor in the bundle activator:

@Override
protected void start() {
register(new AnnotatedProcessor(new FahrenheitCalculator()));
register(new AnnotatedProcessor(new KelvinCalculator()));

}

And when we run the example the TemperatureListener should print the temperature in
Celsius, Fahrenheit and Kelvin.

New temperature
Celsius: -13
Fahrenheit: 8.6
Kelvin: 260.15
New temperature
Celsius: 6
Fahrenheit: 42.8
Kelvin: 279.15
...

This finishes the tutorial that explains how define the default actions for an event and create
processor that can process these actions.

97

APPENDIX B
Query Criteria EBNF

Listing B.1 defines the EBNF for criteria in COPAL queries. Criteria is a logical expression
(line 1) that consists of logical terms, tests and predicates connected with a ’and’, ’or’ and ’not’
operators (lines 2–4). Predicate is either a new logical expression or a comparison (line 5).
Comparison is a ’=’, ’!=’, ’<’, ’<=’, ’>’, or ’>=’ operation between two values, or a ’is null’ or
’is not null’ test for an event field (line 6). Values can either be a numeric expression or a string
expression (line 7). Numeric expression consists of terms and factors connected with a ’+’, ’-’,
’*’, ’/’, or ’%’ operation (lines 8–9). Factors are either an event field, number or a new numeric
expression (line 10). String expression consists of string terms connected with a ’||’ operation
(line 11). String term is either an event field, string, or a new string expression (line 12).

Listing B.1: Query Criteria EBNF

1 criteria = [logical-expression] ;

2 logical-expression = logical-term | (logical-expression , ’or’ , logical-term) ;
3 logical-term = logical-test | (logical-term , ’and’ , logical-test) ;
4 logical-test = [’not’] , predicate ;
5 predicate = comparison | (’(’ , logical-expression , ’)’) ;

6 comparison = (value , (’=’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’) , value) | (? field ? , (’is null’ |
’is not null’)) ;

7 value = numeric-expression | string-expression ;

8 numeric-expression = numeric-term | (numeric-expression , (’+’ | ’-’) , numeric-term) ;
9 numeric-term = factor | (numeric-term , (’*’ | ’/’ | ’%’) , factor) ;

10 factor = ? field ? | ? number ? | (’(’ , numeric-expression , ’)’) ;

11 string-expression = string-term | (string-expression , ’||’ , string-term) ;
12 string-term = ? field ? | ? string ? | (’(’ , string-expression , ’)’) ;

99

Bibliography

[1] ISO 8879: Standard generalized markup language (SGML), October 1986.

[2] ISO/EIC 14977: Extended BNF (1st edition), 1996.

[3] WAG UAProf. Technical report, Wireless Application Forum (WAP), October 2001.

[4] Unified modeling language (UML): Superstructure (version 2.3). Specification, Object
Management Group (OMG), May 2010.

[5] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and
Mike Pinkerton. Cyberguide: A bobile context-aware tour guide. Wireless Networks —
Special Issue: Mobile Computing and Networking: Selected Papers from MobiCom ’96,
3(5):421–433, October 1997.

[6] The OSGi Alliance. OSGi service platform: Core specification release 4 (version 4.3).
Specification, April 2011.

[7] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Looking up data in p2p systems. Communications of the ACM, 46(2):43–48, February
2003.

[8] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–277, June
2007.

[9] Tim Berners-Lee. Uniform resource locators (URL). RFC 1738, Internet Engineering Task
Force (IETF), December 1994.

[10] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986, Network Working Group, January 2005.

[11] Tim Berners-Lee, Roy Thomas Fielding, and Henrik Frystyk Nielsen. Hypertext transfer
protocol — HTTP/1.0. RFC 1945, Network Working Group, May 1996.

[12] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed
systems. ACM SIGOPS Operating Systems Review, 21(5):123–138, November 1987.

101

[13] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and Letizia
Tanca. A data-oriented survey of context models. ACM SIGMOD Record, 36(4):19–26,
December 2007.

[14] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Exten-
sible markup language (XML) 1.0 (5th edition). W3C recommendation, World Wide Web
Consortium (W3C), November 2008.

[15] Martin Brown. Supporting user mobility. In IFIP World Conference on Mobile Communi-
cations, pages 69–77. Chapman and Hall, 1996.

[16] Peter J. Brown. The stick-e document: A framework for creating context-aware applica-
tions. In Electronic Publishing ’96, pages 259–272, June 1996.

[17] Peter J. Brown. Triggering information by context. Personal and Ubiquitous Computing,
2(1):18–27, March 1998.

[18] Peter J. Brown, John D. Bovey, and Xian Chen. Context-aware applications: From the
laboratory to the marketplace. IEEE Personal Communications, 4(5):58–64, October 1997.

[19] Jay Budzik and Kristian J. Hammond. User interactions with everyday applications as
context for just-in-time information access. In 5th International Conference on Intelligent
User Interfaces, pages 44–51. ACM Press, New York, New York, USA, January 2000.

[20] Maher Chebbo. Eu smartgrids framework “electricity networks of the future 2020 and
beyond”. In Power Engineering Society General Meeting, 2007. IEEE, pages 1–8. IEEE
Computer Society, Washington, DC, USA, June 2007.

[21] Guanling Chen, Ming Li, and David Kotz. Data-centric middleware for context-aware
pervasive computing. Pervasive and Mobile Computing, 4(2):216–253, April 2008.

[22] Peter Pin-Shan Chen. The entity-relationship model — toward a unified view of data.
ACM Transactions on Database Systems — Special Issue: Papers from the International
Conference on Very Large Data Bases, 1(1):9–36, March 1976.

[23] Ekaterina Chtcherbina and Marquart Franz. Peer-to-peer coordination framework (P2PC):
Enabler of mobile ad-hoc networking for medicine, business, and entertainment. In In-
ternational Conference on Advances in Infrastructure for Electronic Business, Education,
Science, Medicine, and Mobile Technologies on the Internet, January 2003.

[24] Jeremy R. Cooperstock, Koichiro Tanikoshi, Garry Beirne, Tracy Narine, and William
Buxton. Evolution of a reactive environment. In SIGCHI Conference on Human Factors in
Computing Systems, pages 170–177. ACM Press, New York, New York, USA, July 1995.

[25] Douglas Crockford. The application/json media type for javascript object notation (JSON).
RFC 4627, Network Working Group, July 2006.

102

[26] Anind K. Dey. Context-aware computing: The cyberdesk project. In AAAI 1998 Spring
Symposium on Intelligent Environments, pages 51–54. AAAI Press, March 1998.

[27] Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context and
context-awareness. In 1st International Symposium on Handheld and Ubiquitous Comput-
ing, pages 304–307. Springer-Verlag, London, UK, 1999.

[28] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction, 16(2):97–166, December 2001.

[29] Anind K. Dey, Gregory D. Abowd, and Andrew Wood. Cyberdesk: A framework for
providing self-integrating context-aware services. In 3rd International Conference on In-
telligent User Interfaces, pages 47–54. ACM Press, New York, New York, USA, January
1998.

[30] Scott Elrod, Gene Hall, Rick Costanza, Michael Dixon, and Jim Des Rivières. Responsive
office environments. Communications of the ACM — Special Issue: Computer Augmented
Environments: Back to the Real World, 36(7):84–85, July 1993.

[31] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall, 2005.

[32] EsperTech. Esper: Reference Documentation (Version 3.3.0), 2009.

[33] Patrick Fahy and Siobhan Clarke. CASS — middleware for mobile context-aware applica-
tions. In 2nd International Conference on Mobile Systems, Applications, and Services —
Workshop on Context Awareness, June 2004.

[34] Stephen Fickas, Gerd Kortuem, and Zary Segall. Software organization for dynamic and
adaptable wearable systems. In 1st International Symposium on Wearable Computers,
pages 56–63, October 1997.

[35] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Dissertation, University of California, Irvine, 2000.

[36] Roy Thomas Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol — HTTP/1.1.
RFC 2616, Network Working Group, June 1999.

[37] Lev Finkelstein, Evgeniy Gabrilovich andYossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. ACM
Transactions on Information Systems, 20(1):116–131, January 2002.

[38] David Franklin and Joshua Flachsbart. All gadget and no representation makes jack a
dull environment. In AAAI 1998 Spring Symposium on Intelligent Environments, pages
155–160, 1998.

103

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Professional Computing. Addison-Wesley
Professional, 1st edition, November 1994.

[40] Richard M. Gustavsen. Condor — an application framework for mobility-based context-
aware applications. In Workshop on Concepts and Models for Ubiquitous Computing,
September 2002.

[41] Hugo Haas and Allen Brown. Web services glossary. W3C working group note, World
Wide Web Consortium (W3C), February 2004.

[42] Marc Hadley and Paul Sandoz. JAX-RS: JavaTM API for RESTful web services (version
1.1). Specification, Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054
USA, September 2009.

[43] Terry A. Halpin. Information Modeling and Relational Databases: From Conceptual Anal-
ysis to Logical Design. Morgan Kaufmann, 1st edition, April 2001.

[44] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Altmann Leonhartsberger, and
Werner Josef Retschitzegger. Context-Awareness on Mobile Devices — the Hydrogen
Approach. In 36th Annual Hawaii International Conference on System Sciences, pages
292–302, Washington, DC, USA, January 2003. IEEE Computer Society.

[45] Arnaud Le Hors and Philippe Le Hégaret. Document object model (DOM): Core spec-
ification (level 3). W3C recommendation, World Wide Web Consortium (W3C), April
2004.

[46] Richard Hull, Philip Neaves, and James Bedford-Roberts. Towards situated computing. In
1st International Symposium on Wearable Computers, pages 146–153, October 1997.

[47] Cédric Kiss. Composite capability/preference profiles (cc/pp): Structure and vocabularies
(version 2.0). W3C working draft, World Wide Web Consortium (W3C), April 2007.

[48] Michael Knappmeyer, Nigel Baker, Saad Liaquat, and Ralf Tönjes. A context provisioning
framework to support pervasive and ubiquitous applications. In 4th European Conference
on Smart Sensing and Context, pages 93–106, Guildford, UK, September 2009. Springer-
Verlag, Berlin, Heidelberg.

[49] Fei Li, Sanjin Sehic, and Schahram Dustdar. Copal: An adaptive approach to context
provisioning. In 6th International Conference on Wireless and Mobile Computing, Net-
working and Communications, pages 286–293. IEEE Computer Society, Washington, DC,
USA, October 2010.

[50] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Boston, MA, USA, 1st
edition, May 2002.

104

[51] Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions.
In 4th International Conference on Web Information Systems Engineering, pages 3–12.
IEEE Computer Society, Washington, DC, USA, December 2003.

[52] Jason Pascoe. Adding generic contextual capabilities to wearable computers. In 2nd Inter-
national Symposium on Wearable Computers, pages 92–99, October 1998.

[53] Elin R. Pedersen and Tomas Sokoler. AROMA: Abstract representation of presence sup-
porting mutual awareness. In SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 51–58. ACM Press, New York, New York, USA, 1997.

[54] Paul Prekop and Mark Burnett. Activities, context and ubiquitous computing. Computer
Communications — Special Issue: Ubiquitous Computing, 26(11):1168–1176, March
2003.

[55] Jun Rekimoto, Yuji Ayatsuka, and Kazuteru Hayashi. Augment-able reality: Situated com-
munication through physical and digital spaces. In 2nd IEEE International Symposium on
Wearable Computers, pages 68–75. IEEE Computer Society, Washington, DC, USA, Oc-
tober 1998.

[56] Tom Rodden, Keith Chervest, Nigel Davies, and Alan Dix. Exploiting context in HCI
design for mobile systems. In 1st Workshop on Human Computer Interaction with Mobile
Devices, May 1998.

[57] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. A middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74–83, October 2002.

[58] Nick S. Ryan. Mobile computing in a fieldwork environment: Metadata elements, 1997.

[59] Nick S. Ryan, Jason Pascoe, and David R. Morse. Enhanced reality fieldwork: The context-
aware archaeological assistant. In Computer Applications in Archaeology 1997, British
Archaeological Reports. Tempus Reparatum, October 1998.

[60] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. Ubiquitous computing: Defining
an HCI research agenda for an emerging interaction paradigm. Technical report, Georgia
Tech, 1998.

[61] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding the
development of context-enabled applications. In Conference on Human Factors in Com-
puting Systems, pages 434–441. ACM Press, New York, New York, USA, May 1999.

[62] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
Communications, 8(4):10–17, August 2001.

[63] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In 1st
Workshop on Mobile Computing Systems and Applications, pages 85–90, December 1994.

105

[64] Bill N. Schilit and Marvin M. Theimer. Disseminating active map information to mobile
hosts. IEEE Network, 8(5):22–32, September 1994.

[65] Guy Sharon and Opher Etzion. Event-processing network model and implementation. IBM
Systems Journal, 47(2):321–334, April 2008.

[66] Thomas Strang and Claudia L. Popien. A context modeling survey. In 6th International
Conference on Ubiquitous Computing — Workshop on Advanced Context Modelling, Rea-
soning and Management, September 2004.

[67] Chen Wang, Martin de Groot, and Peter Marendy. A service-oriented system for optimizing
residential energy use. In 7th International Conference on Web Services, pages 735–742.
IEEE Computer Society, Washington, DC, USA, July 2009.

[68] Roy Want, Andy Hopper, Veronica Falc ao, and Jonathan Gibbons. The active badge
location system. ACM Transactions on Information Systems, 10(1):91–102, January 1992.

[69] Andy Ward and Alan Jones. A new location technique for the active office. IEEE Personal
Communications, 4(5):42–47, October 1997.

[70] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing
and Communications Review, 3(3):3–11, July 1999.

106

	Introduction
	Motivation
	Challenges
	Approach
	Contribution
	Organization

	Context-Awareness
	Context
	Context-Aware
	Summary

	Related Work
	Context Toolkit
	CASS
	Gaia
	Solar
	C-CAST
	Summary

	Design
	Context
	Processing Patterns
	Distribution

	Implementation
	Technologies
	Publishing, Querying, & Processing
	Distribution
	Modules
	Deployment

	Evaluation
	Performance
	SM4ALL Deployment

	Conclusions and Future Work
	Tutorials
	Hello World
	Advance Event & Query Configuration
	Processors

	Query Criteria EBNF
	Bibliography

