
A Framework for Blockchain
Interoperability and Runtime

Selection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Ing. Philipp Frauenthaler, BSc
Matrikelnummer 01225901

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dr.-Ing. Stefan Schulte

Wien, 5. November 2018
Philipp Frauenthaler Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

A Framework for Blockchain
Interoperability and Runtime

Selection

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Ing. Philipp Frauenthaler, BSc
Registration Number 01225901

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.-Ing. Stefan Schulte

Vienna, 5th November, 2018
Philipp Frauenthaler Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Ing. Philipp Frauenthaler, BSc
Allachweg 311, 8250 Vorau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. November 2018
Philipp Frauenthaler

v

Acknowledgements

At this place I want to use the opportunity to thank my advisor Stefan Schulte for the
excellent support, constructive and fast feedbacks, and precise comments throughout the
last eight months.

Furthermore, I want to thank my friend Marten Sigwart for the valuable discussions
about blockchain technologies.

Finally, I would like to express my deepest gratitude to my family and especially my
girlfriend Corinna Pölzler for their moral encouragements and support.

vii

Kurzfassung

In den letzten Jahren erlangten kryptographische Währungen, auch Kryptowährungen
genannt, enorm an Popularität. Die erste und zugleich prominenteste Kryptowährung
ist Bitcoin. Bitcoin wurde im Jahr 2008 von Satoshi Nakamoto vorgestellt. In den
darauffolgenden Jahren wurden zahlreiche weitere Kryptowährungen gegründet. Im
ersten Quartal 2018 existierten bereits über 1.000 kryptographische Währungen. Viele
dieser unterschiedlichen Währungen funktionieren ohne eine zentrale Instanz. Stattdessen
wird häufig eine Blockchain eingesetzt. Eine Blockchain ist ein verteiltes Bestandsbuch,
das von anonymen, über ein Peer-to-Peer-Netzwerk miteinander verbundenen, Benutzern
verwaltet wird.

Neben dem Aufzeichnen von Transaktionen in zahlreichen Kryptowährungen ist die
Blockchain auch in einer Vielzahl weiterer Anwendungsfälle einsetzbar. Populäre An-
wendungsfälle der letzten Jahre sind z. B. die digitale Stimmabgabe, Notariatsdienste,
Supply Chain Management, Auditierung und Kontrolle von Eigentumsrechten.

Die Eignung einer bestimmten Blockchain für einen gegebenen Anwendungsfall hängt von
mehreren Kriterien ab, z. B. den Kosten für das Schreiben von Daten in diese Blockchain,
der Zeit, die es benötigt, bis ein Datensatz permanent in der Blockchain festgeschrieben ist,
der Verteilung der Hashpower unter Minern oder Mining Pools oder der Netzwerkhashrate.
Diese Kriterien können sich im Laufe der Zeit ändern. Daher kann es passieren, dass
eine bestimmte Blockchain in Zukunft für einen gegebenen Anwendungsfall nicht mehr
geeignet ist. Derartige Unsicherheiten verringern den praktischen Wert von Blockchains.

Um die Auswirkungen dieser Einschränkung in der praktischen Anwendung zu begren-
zen, entwickeln wir in dieser Diplomarbeit ein Framework, das es ermöglicht, zwischen
Blockchains zu wechseln. Das Framework überwacht mehrere Blockchains, berechnet
den jeweiligen Nutzen und ermittelt auf Basis dieser Berechnungen die nutzbringendste
Blockchain. Weiters kann das Framework auf verschiedene Ereignisse wie einer rapiden
Abnahme der Netzwerkhashrate oder einen signifikanten Kostenanstieg reagieren. Die Be-
wertung mehrerer Blockchains, die Reaktion auf verschiedene Ereignisse und das Wechseln
zwischen Blockchains ermöglichen es Benutzern, zu einer für sie günstigeren Blockchain
zu wechseln, um von niedrigeren Kosten, besserer Performanz oder erhöhter Sicherheit zu
profitieren. Die Referenzimplementierung des Frameworks unterstützt Bitcoin, Ethereum,
Ethereum Classic und Expanse. Aufgrund des modularen Aufbaus kann das Framework
im Bedarfsfall erweitert werden, um bspw. weitere Blockchains zu integrieren.

ix

Abstract

In the past few years, cryptographic currencies, also referred to as cryptocurrencies, gained
much popularity. The first and most prominent cryptocurrency is Bitcoin, announced
in 2008 by Satoshi Nakamoto. In the first quarter 2018, there have been more than
1,000 cryptocurrencies in existence. The common property of cryptocurrencies is that
they are not owned or controlled by a single authority, e.g., by a central bank. In order
to eliminate the need for a central entity, many cryptocurrencies use a blockchain for
keeping track of payment transactions and state changes. The blockchain is a distributed
ledger that is maintained by anonymous users connected via peer-to-peer networks.

Besides keeping track of payment transactions and state changes, blockchains are appli-
cable for a wide range of use cases. Popular use cases that came up in the last years are,
e.g., digital voting, notary services, Supply Chain Management, auditing and control of
ownership rights.

The suitability of a particular blockchain for a given use case depends on various criteria,
e.g., the costs for writing data into that blockchain, the time until a data record is
permanently included and thus remains unchanged with high probability, the distribution
of the network’s hash power among miners or mining pools, the network’s hash rate,
etc. These properties can vary over the time. Thus, a particular blockchain can become
unsuitable for a given use case over time. Such uncertainties can limit the practical value
of blockchains.

In order to overcome this limitation, we design and develop a framework that is capable
of switching back and forth between blockchains. The framework monitors several
blockchains, calculates their individual benefits and determines the most beneficial one.
Furthermore, the framework is able to react to various events such as a rapid decrease of a
network’s hash power or a steadily increase of the costs for writing data into a blockchain.
The assessment of several blockchains, the mechanism for reacting to various events and
the switchover functionality enable users to switch to another, more beneficial blockchain
in order to benefit from low costs, high performance or better security. The reference
implementation of the proposed framework supports Bitcoin, Ethereum, Ethereum Classic
and Expanse. The modular design of the framework allows future researchers to extend
the framework, e.g., to add support for further blockchains.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Aim of the Work . 1
1.2 Methodology and Approach . 5
1.3 Structure of this Thesis . 6

2 Background 7
2.1 Cryptographic Basics and Data Structures 7
2.2 Basic Concepts of Bitcoin . 12
2.3 Basic Concepts of Ethereum . 18
2.4 Bitcoin vs. Ethereum . 24

3 Related Work 25
3.1 Trading between Users of Different Cryptocurrencies 25
3.2 Atomic Swaps with the Lightning Network 32
3.3 Relays . 32
3.4 Pegged Sidechains . 33
3.5 Blockchain Interoperability besides Trading of Cryptocurrencies 33
3.6 Runtime Selection and Switchover . 34

4 Motivational Scenario 37

5 Solution Approach 41
5.1 Requirements . 41
5.2 Technical Design . 50
5.3 Implementation . 68

6 Framework Evaluation 75
6.1 Evaluation Setup . 75

xiii

6.2 Measured Blockchain Metrics . 76
6.3 Evaluation Scenarios and Results . 83

7 Conclusion and Future Work 105
7.1 Discussion of Research Questions . 106
7.2 Future Work . 108

List of Figures 109

List of Tables 111

Listings 113

Acronyms 115

Bibliography 117

CHAPTER 1
Introduction

1.1 Motivation and Aim of the Work

In the past few years, cryptographic currencies, also referred to as cryptocurrencies,
gained much popularity [Dzi15]. The first and most prominent cryptocurrency is Bitcoin,
announced in 2008 by Satoshi Nakamoto [BMC+15a, Nak08, TS16]. At the end of 2017,
Bitcoin had a market capitalization of more than 200 billion USD [Mar18]. Figure 1.1
shows the growth of the market capitalization of Bitcoin between 2012 and the first
quarter 2018. After the launch of Bitcoin in 2009, further cryptocurrencies, such as
Litecoin, Namecoin and SwiftCoin have been emerged. In the first quarter 2018, there
have been more than 1,000 cryptocurrencies in existence. About 40 of them had a market
capitalization of more than one billion USD, respectively [Cor18, Fra18].

The common property of cryptocurrencies is that they are not owned or controlled by a
single authority, e.g., a central bank [Dzi15]. In order to eliminate the need of a central
entity, they are maintained by anonymous users connected via peer-to-peer networks.
Bitcoin’s design eliminates centralized banks in a sense, that everyone is the bank, i.e.,
every participant keeps a copy of records that would normally be stored at a bank. This
decentralized approach of recording financial information is known as distributed ledger.
The distributed ledger keeps track of all payment transactions and ownerships [TS16]. Its
distributed architecture, where multiple copies of the entire data are stored on different
participating nodes, opens up new possibilities to cheat. In order to prevent users from
double spending, i.e., sending the same coin to multiple recipients, the entire network
verifies the legitimacy of the transactions. In Bitcoin (and other cryptocurrencies as
well), the so-called blockchain takes the role of the distributed ledger [NBF+16, TS16].

The blockchain is a linked list composed of several blocks that include a pointer to the
previously validated block in the chain. The pointer is implemented by holding the hash
of the preceding block, thus such a pointer is also called hash pointer. Besides the hash

1

1. Introduction

M
a
rk
e
t	
c
a
p
it
a
liz
a
ti
o
n
	i
n
	b
ill
io
n
	U
.S
.	
d
o
lla
rs

0.040.04 0.130.13 1.021.02 1.481.48 5.755.75 5.15.1 3.43.4 3.493.49 6.416.41 9.729.72
17.5617.56

40.6840.68

71.9571.95

237.62237.62

117.56117.56

Market	capitalization	of	Bitcoin	from	1st	quarter	2012	to	1st	quarter	2018	(in

billion	U.S.	dollars)

Additional	Information:

Worldwide;	Blockchain;	Q1	2012	to	Q1	2018

Q
1	
'1
2

Q
2	
'1
2

Q
3	
'1
2

Q
4	
'1
2

Q
1	
'1
3

Q
2	
'1
3

Q
3	
'1
3

Q
4	
'1
3

Q
1	
'1
4

Q
2	
'1
4

Q
3	
'1
4

Q
4	
'1
4

Q
1	
'1
5

Q
2	
'1
5

Q
3	
'1
5

Q
4	
'1
5

Q
1	
'1
6

Q
2	
'1
6

Q
3'
	1
6

Q
4'
	1
6

Q
1	
'1
7

Q
2	
'1
7

Q
3	
'1
7

Q
4	
'1
7

Q
1	
'1
8

Source

Blockchain

©	Statista	2018

0

50

100

150

200

250

300

Figure 1.1: Market capitalization of Bitcoin from first quarter 2012 to first quarter 2018
(in billion U.S. dollars) [sta18].

pointer and meta data, a block stores also a certain amount of payment transactions.
Overall, the blockchain is a linked list in which each block holds a hash pointer to the
previously inserted block and some of the transactions that have been published to the
network by cryptocurrency users [NBF+16, TS16]. New blocks are inserted by so-called
miners. Miners maintain the blockchain and get paid for their service with a mining
reward and transaction fees.

An important aspect of a blockchain is the tamper-evident property. If somebody alters
data that is stored in the chain, this alteration can be detected. Due to the utilization of
hash pointers, any alteration of a block implies the hash pointers in succeeding blocks to
be changed to a new value in order to be compliant with the altered chain. As long as
the root hash of the blockchain is stored in a secure place, any alteration can be detected.
Assuming an adversary changes the data of some block k, the hash pointer in block k+1,
which is a hash of the entire block k, is not going to match up. In order to match up
with the hash of the previous block, the adversary must change the hash pointer included
in block k+1 to the new hash value of block k. Then, the hash pointer of block k+2 is
not going to match up. Thus, the adversary must change every block that succeeds the
altered block in the chain. Since the root hash of the entire blockchain is stored in a
secure place, the adversary cannot change it. Therefore, the adversary will be unable to
alter any block without being detected [NBF+16].

According to their features and applications, blockchains are categorized into three

2

1.1. Motivation and Aim of the Work

generations. Blockchain 1.0 is the oldest class of blockchain applications mainly used
to store payment transactions. Bitcoin’s blockchain belongs to this class. Blockchains
of the second generation are characterized by their support for decentralized applica-
tions (DApps). They provide a Turing-complete language for writing so-called smart
contracts. Smart contracts are programs which are automatically executed by the miners
whenever their encoded conditions are triggered. A popular representative of this class is
Ethereum. Blockchain 3.0 applications involve the industry and public sector. Further-
more, blockchains belonging to this class are likely to interact with the physical world
and therefore applicable for the Internet of Things [ZJ18].

Besides keeping track of payment transactions, blockchains are applicable for a wide
range of use cases. Popular use cases that came up in the last years are digital voting,
notary services, Supply Chain Management (SCM), auditing, control of ownership rights,
cloud storage and many more [Dou18].

A major drawback of the utilization of a blockchain are exchange rate fluctuations1

that can increase the price for publishing data to a particular blockchain. At some
time, the utilization of a certain blockchain (e.g., Bitcoin or Ethereum) might be very
cheap and thus a suitable approach. Over the time, this can change very quickly due
to the sensitivity of cryptocurrencies for price fluctuations [Kle18, Mon17]. Another
important aspect is the duration needed to store data permanently in the blockchain,
i.e., how long it takes for a certain piece of data to get mined. This aspect depends
highly on the workload and the underlying blockchain technology [The18b]. Since it
is difficult to predict the workload a blockchain is confronted with, the growth of the
time needed for data to get included in the blockchain is unclear. Furthermore, people
might lose trust in a particular blockchain at some time. For instance, this might be
the case if many miners switch to another blockchain that is more lucrative for them.
The stability of a blockchain and especially a cryptocurrency is not guaranteed in case
a single non-compliant miner controls the majority of computational power, since this
miner could simply ignore blocks found by other miners and build her own blockchain.
If the number of miners decreases, it will become easier to control the majority of the
computational power, since the overall computational power decreases as well. Even in
the absence of a single miner that controls the majority, smaller miners could collude and
form a cartel controlling a majority of the mining power and make use of any strategy
that is available to a single majority miner. Mining pools could be a technical mechanism
for forming such a cartel [BMC+15b]. A mining pool is a group of miners that attempt
to mine a block. Regardless which miner actually finds a block, the pool manager will
receive the rewards and will distribute them to all miners of the pool based on the amount
of work each miner has performed [NBF+16]. Blockchain technologies such as Ethereum
are constantly extended with new features, e.g., Ethereum developers plan to replace the
proof-of-work consensus algorithm with the proof-of-stake mechanism [com18b, Ros17].
Consequences of future changes that are fundamental to a system’s architecture might
be unclear. Furthermore, it is not known if there will be consensus in the community

1https://blockchain.info/charts/market-price

3

https://blockchain.info/charts/market-price

1. Introduction

about future changes. If no community consensus can be reached, the result might be
a fork as in the case of Ethereum and Ethereum Classic [Mos17]. On the other side,
developers of a particular blockchain might come up with new sophisticated features that
are not supported on the currently used blockchain, e.g., Ethereum enables users to write
arbitrarily powerful functions, whereas the abilities in Bitcoin are limited, since Bitcoin’s
scripting language is not Turing-complete [Min17, NBF+16].

Due to the outlined tentativenesses, a solution is required in order to switch to another
blockchain on the basis of certain criteria. Since the suitability of a blockchain for a
given use case can change rapidly, the solution should be capable of switching back and
forth between various blockchains. The amount of data that should be transferred to the
destination blockchain might depend on the cause of the intended blockchain switchover.
For instance, if the switchover should be performed due to increased costs, it might be
sufficient to transfer no data or only a small amount of data to the destination blockchain.
In case people are losing trust in the currently used blockchain, it might be essential to
transfer all data or at least data of a specific period of time to the destination blockchain.
Furthermore, various blockchains should be monitored, operating numbers gathered and
according to calculated metrics a suitable destination blockchain should be chosen at
runtime. Examples of metrics are storage costs, the average or median block time (i.e.,
the time it takes to mine a block), and the transaction throughput. Once a suitable
blockchain has been selected, the switchover should be initiated.

The goal of this thesis is to address the following research challenges:

RQ1. Which approaches can be used for blockchain interoperability?

The first research challenge aims to provide an overview of various approaches
for establishing interoperability between multiple blockchains. This includes
an explanation of basic concepts regarding blockchain interoperability and of
protocols that enable users of different cryptocurrencies to exchange their tokens
in an atomic fashion. Furthermore, we highlight several promising projects in
the area of blockchain interoperability and especially atomic cross-chain swaps.

RQ2. Which blockchain metrics are relevant for the runtime selection
algorithm?

The second research challenge aims to provide a definition of expressive criteria
for selecting a blockchain as destination for the data movement. Furthermore, a
parameterizable and weighted ranking specifying the priority of each criterion,
and methods for measuring the required criteria are described in this thesis.

RQ3. How can the runtime selection of an appropriate blockchain and the
switchover between blockchains be performed?

The third research challenge aims to provide a mechanism for selecting a suitable
blockchain on the basis of gathered blockchain metrics and for the switchover
between multiple blockchains. We provide a reference implementation that

4

1.2. Methodology and Approach

supports the monitoring of several blockchains in order to gather relevant
blockchain operating numbers, the calculation of expressive metrics that serve
as a basis for the blockchain selection, the selection of an appropriate blockchain
and the movement of data to the selected chain.

RQ4. What are the benefits of using the proposed solution?

The fourth research challenge aims to provide an evaluation of the proposed
framework in the context of different evaluation scenarios. We report on the
benefits of the proposed solution in terms of costs, performance and security.

1.2 Methodology and Approach

The methodological approach followed in this thesis can be structured roughly into five
parts that are mostly followed in a linear manner. The following paragraphs summarize
these parts:

Literature study In a first step, literature in the area of blockchain interoperability,
atomic cross-chain swaps and blockchain metrics will be studied in order to gain a deeper
understanding of these fields.

Overview of different approaches suitable for blockchain interoperability On
the basis of the gained knowledge, an overview of related work and state-of-the-art
methods in the area of blockchain interoperability and cross-chain swaps will be presented.
Furthermore, several promising projects will be described.

Definition of blockchain selection criteria and their measurement A definition
of expressive criteria will serve as a basis for selecting a suitable blockchain. Furthermore,
methods for measuring the required criteria will be described in this thesis.

Development of a framework for blockchain selection and data movement
On the basis of the defined selection criteria and a mechanism for switching back and
forth between several blockchains, a reference implementation of the proposed solution
will be provided.

Evaluation of the developed framework Within the scope of this thesis, it is
analyzed whether the developed framework serves the aimed purpose and fulfills the
specified requirements. The evaluation will range from the analysis of features and
mechanisms (e.g., the selection of the most beneficial blockchain, data movement to
another chain, etc.) to more specific assessments of resource consumption and switchover
times. The evaluation will conclude with an analysis of the benefits of the developed
framework in terms of costs, performance and security.

5

1. Introduction

1.3 Structure of this Thesis
This thesis is structured as follows. Chapter 2 presents background knowledge that
is needed to understand the full extent of the proposed solution. The chapter starts
off with basic information about the blockchain technology and continues with more
advanced topics, e.g., Simplified Payment Verification (SPV). Chapter 3 covers relevant
work, state-of-the-art methods and projects in the area of blockchain interoperability.
Chapter 4 describes a use case that will be used as reference for further analysis and
evaluation of the proposed framework. Chapter 5 introduces the requirements, the design
and the implementation of the proposed framework. In Chapter 6, the framework is
analyzed and evaluated in the context of different evaluation scenarios. Finally, Chapter 7
concludes the thesis with an overview of the work done and gives an outlook of future
work in this area.

6

CHAPTER 2
Background

The following chapter covers preliminary concepts and theoretical foundations that serve
as a basis for the subsequent chapters in this thesis. Section 2.1 gives a brief introduction
into cryptographic basics and data structures that are used in Bitcoin or Ethereum.
Section 2.2 presents basic concepts of Bitcoin. In Section 2.3, a brief overview of the
basic concepts of Ethereum is given. The chapter concludes with a technical comparison
between Bitcoin and Ethereum.

2.1 Cryptographic Basics and Data Structures
This section covers basic knowledge about methods for cryptographically securing
blockchains and cryptocurrencies.

2.1.1 Cryptographic Hash Functions

The first cryptographic primitive that needs to be introduced is the cryptographic hash
function. In general, a hash function is a mathematical function that is defined by the
following three properties [NBF+16]:

• The input can be any string of arbitrary size.

• The function generates a fixed-sized output, e.g., 256-bit values.

• The output is efficiently computable, i.e., for a given n-bit input string, the
computation of the hash should have a running time that is O(n).

Thus, a general hash function is a function that maps input strings of any size to
fixed-sized outputs that can be computed efficiently. For a hash function to be crypto-
graphically secure, it must fulfill additional properties: collision resistance, hiding and

7

2. Background

puzzle friendliness. A hash function with these additional properties is also referred
to as cryptographic hash function. The puzzle-friendliness property is not a general
requirement for cryptographic hash functions, but is very useful for cryptocurrencies and
blockchains specifically [NBF+16].

Property 1: Collision Resistance

The first property of a cryptographic hash function is the collision resistance. A collision
occurs if two distinct input strings produce the same output. A hash function H(·) is
collision resistant if it is infeasible to find two input values x and y (x 6= y), such that
H(x) = H(y). Obviously, it is not impossible to find two distinct inputs that produce
the same output, since the input space of the hash function contains all strings of all
lengths and the output space contains only strings of a specific fixed length. Because the
size of the input space exceeds the size of the output space, it is guaranteed that there
must be two distinct inputs that generate the same output. The hash functions used in
modern computer systems have a very large input space which makes it infeasible to find
a collision. It is still a question of research whether there exists an efficient algorithm to
detect collisions for large input spaces. Hash functions that are used in practice have
not been proven to be collision-resistant. People have tried very hard to find collisions
efficiently and have not yet succeeded. Therefore, engineers assume that cryptographic
hash functions are collision resistant [NBF+16].

Property 2: Hiding

The second property of a cryptographic hash function asserts that for a given output of
a hash function y = H(x), it is unfeasible to figure out what the input string x was. An
important aspect is that this property can only be true if the input strings are spread
out. This means that if values from a spread-out set are sampled, there is no certain
value that is likely to occur. In order to achieve the hiding property even if the inputs
are not spread out, the input strings are concatenated with other inputs that come from
a spread-out set [NBF+16].

This property plays an important role in the atomic cross-chain swap (ACCS) protocol
outlined in Section 3.1.1. If the hiding property would not hold for the used hash function,
a trading participant could steal the other’s funds.

Property 3: Puzzle Friendliness

A hash function satisfies the puzzle-friendliness property if for every possible n-bit output
y, it is infeasible to find x such that H(k||x) = y in time significantly less than 2n. k is
a value that is chosen from a spread-out set and the double vertical bar || denotes the
concatenation of two values. If someone wants to target a hash function that satisfies the
puzzle-friendliness property to produce some particular output string y, and if a part
of the input has been chosen in a sufficiently randomized way, it is very difficult to find
another input string that maps exactly to the target y [NBF+16].

8

2.1. Cryptographic Basics and Data Structures

An application that shows the utilization of this property is the search puzzle. This is a
mathematical problem that requires to find a particular value in a very large space and
there is no other solution than searching this large space. The search puzzle consists of

• a hash function H(·),

• the puzzle-ID (abbreviated as id) that is chosen from a spread-out set, and

• a target set Y.

A solution to this puzzle is a input value x, such that H(id||x) ∈ Y . Solving this puzzle
means to find an input value such that the produced output falls within Y. The size of Y
determines the difficulty of the puzzle. The smaller the size of Y becomes, the harder it
is to find a solution. If Y contains only one element, then the puzzle is maximally hard.
If the utilized hash function satisfies the puzzle-friendliness property, there is no better
solution than just trying random values of x. This mathematical problem plays a key
role in the mining of cryptocurrencies such as Bitcoin [NBF+16].

2.1.2 Hash Pointers

Analogous to regular pointers, hash pointers store the location at which some information
resides. Additionally, hash pointers contain a cryptographic hash of the information.
Due the cryptographic hash, hash pointers also allow to verify that the information
has not been changed, whereas a regular pointer only locates the information (Figure
2.1) [NBF+16].

H()

Field_1

Field_2
...

Field_n

Figure 2.1: A hash pointer is a pointer to the location where a data node is stored
together with a cryptographic hash of this node.

2.1.3 Blockchain

In a regular linked list that is composed of a series of blocks, each block contains data
and a pointer to the previous block in the list. A blockchain is a linked list that utilizes
hash pointers instead of regular pointers (Figure 2.2).

An application of the blockchain is a tamper-evident log, where new data is appended at
the end of the log. If somebody alters data that is stored in the chain, this alteration can

9

2. Background

H()

 Prev: H()

Data of block k+2

 Prev: H()

Data of block k+1

 Prev: H()

Data of block k

Figure 2.2: A blockchain is a linked list that utilizes hash pointers instead of regular
pointers.

be detected. The blockchain achieves the tamper-evident property due to the utilization
of hash pointers. Any alteration of a block implies the hash pointers in succeeding blocks
to be changed to a new value in order to be compliant with the altered chain. As long as
the root hash of the blockchain is stored in a secure place, any alteration can be detected.
Assuming an adversary changes the data of some block k, the hash pointer in block k+1,
which is a hash of the entire block k, is not going to match up, since the cryptographic
hash function is collision-resistant (Figure 2.3). In order to match up with the hash of
the previous block, the adversary must change the hash pointer included in block k+1
to the new hash value of block k. Then, the hash pointer of block k+2 is not going to
match up. Thus, the adversary must change every block that succeeds the altered block
in the chain. Since the root hash of the entire blockchain is stored in a secure place, the
adversary cannot change it. Therefore, the adversary will be unable to alter any block
without being detected [NBF+16].

 Prev: H()

Data of block k+2

 Prev: H()

Data of block k+1

 Prev: H()

Data of block k

H()

Figure 2.3: If block k is modified, the hash pointer in block k+1 will be incorrect.

2.1.4 Merkle Trees

A Merkle tree is a binary tree that is built on hash pointers instead of regular pointers.
The data blocks are grouped into pairs of two and make up the leaves of the tree. For
each pair, a node containing two hash pointers, one for each block of the pair, is created.
These nodes constitute the next level of the tree. In a further step, these nodes are also
grouped into pairs of two and for each pair a node that contains also two hash pointers,
one for each child, is created. This procedure is continued until a single node is left. This
node is the root of the tree. Figure 2.4 shows an example of a Merkle tree [NBF+16].

Due to the utilization of hash pointers, any alteration of a node or a leave can be detected,
as long as the root hash is stored in a secure place. The tamper-evident property is

10

2.1. Cryptographic Basics and Data Structures

Data Data

H() H()

Data Data

H() H()

H() H()

H() H()

Data Data

H() H()

Data Data

H() H()

H() H()

Figure 2.4: An example of a Merkle tree.

achieved in the same way as in the blockchain. Analogous to the blockchain, it is
sufficient to remember only the hash pointer at the top in order to detect changes in the
tree [NBF+16].

Proof of Membership

Unlike a blockchain, a Merkle tree allows a concise proof of membership, i.e., a proof
that a certain data block is a member of the Merkle tree. As stated above, only the root
hash has to be stored. If someone needs to show the membership of a certain block, it is
sufficient to provide the data block and the nodes on the path from the data block up
to the root. All other nodes that are not on this path can be ignored, since the nodes
on the provided path are enough to verify the hashes all the way up to the root of the
tree. Thus, it becomes possible to verify the membership of a particular data block in
logarithmic time [NBF+16].

2.1.5 Radix Trees

A radix tree or prefix tree is an ordered tree data structure that is optimized for searching
and is typically used to store dynamic sets or associative arrays. In a radix tree, a key
represents the path to reach the value associated with that key. Figure 2.5 shows a radix
tree that is constructed from the data set listed in Table 2.1. In order to avoid many
nodes with null values, the branch of house and houses is degraded. If the value of a
particular key should be retrieved, the path represented by the key determines the node
in the tree that stores the corresponding value. For instance, if the value of the key dodo
is needed, it is sufficient to start from the root and keep descending the entire path. The
final result is the node with value 4 [T1.8a].

11

2. Background

Table 2.1: Data set that is used to construct the radix tree illustrated in Figure 2.5.

Key Value

do 0
dog 1
dax 2
dogu 3
dodo 4
house 5
houses 6

root

null 5

2 0 6

14

3

d house

sax o

do g

u

Figure 2.5: An example of a radix tree that is constructed from the data set listed in
Table 2.1.

2.2 Basic Concepts of Bitcoin

As mentioned in Section 1.1, Bitcoin is the most prominent cryptocurrency today. First
attempts in the area of blockchain interoperability have been made between Bitcoin
and other Bitcoin-derived blockchains (e.g., Litecoin). Thus, this section gives a brief
introduction to basic concepts of Bitcoin in order to understand protocols and approaches
described in Chapter 3.

12

2.2. Basic Concepts of Bitcoin

Bitcoin’s blockchain belongs to the first generation of blockchains. It is mainly used
to store payment transactions in a distributed and decentralized way [ZJ18]. With the
stack-based scripting language Script, there can be realized some powerful applications
such as efficient micropayments and lock times. But Script is not Turing-complete which
leads to the consequence that people do not have the possibility to build arbitrarily
powerful functions. Script was designed to be a simple and compact language that offers
native support for cryptographic operations such as instructions for calculating hash
values and for computing and verifying signatures. [NBF+16].

Bitcoin addresses

Bitcoin’s identity management is completely decentralized. Users can generate as many
identities as they want, and there is no central authority involved. Bitcoin uses a digital
signature scheme known as the Elliptic Curve Digital Signature Algorithm (ECDSA).
The scheme uses a key pair that consists of a private key and a public key. The idea
behind addresses in Bitcoin is to equate the public key to the identity of a person or an
actor. This allows every user to create a new identity by generating a fresh key pair. A
Bitcoin address is derived from the public key. The public key is hashed with SHA-256
first and RIPEMD-160 subsequently. In a further step, a version number is prepended
and a checksum is appended for error detection. Finally, the result gets base58-encoded
in order to eliminate ambiguous characters. The purpose of these steps is to shorten and
obfuscate public keys [NBF+16, TS16].

Bitcoin Blocks

As described above, a blockchain is a linked list that is composed of a series of blocks.
Figure 2.6 shows a simplified structure of the Bitcoin blockchain and its blocks.

In Bitcoin, transactions are grouped into blocks and arranged in a Merkle tree. This
grouping is an optimization, since miners have to reach consensus on each block and
not on each transaction individually [NBF+16]. Furthermore, a chain of blocks is much
shorter than a chain of transactions would be. Besides a set of transactions, a block
contains a header that includes the following meta data [bit17]:

• version: The block version number specifies the block validation rules to follow.

• previousBlockHeaderHash: This value is a SHA-256 hash of the previous block’s
header.

• merkleRootHash: This value is a SHA-256 hash of the Merkle root.

• time: The block time specifies when the miner started hashing the header and is a
Unix epoch time.

• nBits: This value defines the difficulty of the mining puzzle by specifying the
encoded version of target threshold this block header’s hash must be less than or
equal to.

13

2. Background

 prevBlockHeaderHash: H()

 version time

 nBits nonce

 merkleRootHash: H()

 prevBlockHeaderHash: H()

 version time

 nBits nonce

 merkleRootHash: H()

 prevBlockHeaderHash: H()

 version time

 nBits nonce

 merkleRootHash: H()

H() H()

H() H()

H() H()

transaction transaction transaction transaction

Merkle tree of
transactions in each block

Blockchain

Figure 2.6: A simplified structure of the Bitcoin blockchain and its blocks.

• nonce: The nonce is an arbitrary number that is changed by the miners to modify
the block header’s hash in a way such that the produced hash is less than or equal
to the target threshold.

In case transactions in the Merkle tree are modified, the hashes in higher level nodes are
not going to match up. Therefore, a single change of a transaction has to be propagated
to the root node of the Merkle tree. Since the Merkle root hash is included in the block
header, the header’s hash is not going to match up. Further, the previous block header
hash included in the succeeding block is not going to match up. Thus, any change in the
Merkle tree of each block or any modification of a block’s header can be detected. In
summary, the Bitcoin blockchain combines two data structures: A blockchain that links
the blocks to one another and a Merkle tree that is internal to each block and arranges
the block’s transactions [NBF+16].

Besides the tamper-evident property, the combination of these two data structures
provides another useful feature. It is possible to verify payments without running a full
node, i.e., a node that stores the entire blockchain. For the verification of payments, it
is sufficient to keep only a copy of the block headers of the longest chain. As described
above, a block header contains the Merkle root hash. In order to verify the membership
of a particular transaction in the block’s Merkle tree, only the branch of the Merkle tree
starting at the root node and ending at the data node is required. All hash values of this
branch are calculated and at the end the hash value of the branch’s root node is compared
with the block’s Merkle root hash. If the hash values are equal, the transaction is a
member of the block’s Merkle tree. Thus, it can be verified that a particular transaction

14

2.2. Basic Concepts of Bitcoin

Table 2.2: An example of transactions in a transaction-based ledger [NBF+16].

1
Inputs: ∅
Outputs: 25.0 → Alice

2
Inputs: 1[0]
Outputs: 17.0 → Bob, 8.0 → Alice SIGNED (Alice)

3
Inputs: 2[0]
Outputs: 8.0 → Carol, 9.0 → Bob SIGNED (Bob)

4
Inputs: 2[1]
Outputs: 6.0 → David, 2.0 → Alice SIGNED (Alice)

is included in a block by simply comparing a single branch of the Merkle tree against
the block header’s Merkle root hash [NBF+16]. The availability of all block headers
enables to verify that a particular block has enough confirmations in the blockchain. This
verification mechanism is called Simplified Payment Verification (SPV) [Nak08].

Bitcoin Transactions

Bitcoin does not support an account-based system, because someone would have to keep
track of all account balances. Instead, the distributed ledger keeps track of transactions.
Transactions specify inputs and outputs. If a user wants to transfer coins to another, a
transaction is created. The new transaction refers to at least one unspent transaction as
input. An exception are transactions that generate new coins, these transactions do not
reference any input transaction. Input transactions specify where the coins come from,
since there are no account balances in Bitcoin. The outputs of a transactions specify the
receivers of the coins. In order to authorize a transaction, the sender must sign it. Table
2.2 illustrates this concept by an example [NBF+16].

Transaction 1 does not reference any input transactions, because this transaction creates
new coins. It has an output of 25 coins that are going to Alice. Since this transaction
creates new coins, no signature is required. In Bitcoin, transactions that create new
coins are called coinbase transactions and are used to reward the miners for successfully
mining a block. In order to send some of the coins of transaction 1 to Bob, Alice creates
transaction 2 that refers to transaction 1 as input. Alice refers to output 0 of transaction 1
(outputs are indexed beginning with 0) which assigned 25 coins to Alice. Furthermore,
Alice must specify the outputs of the new transaction. She specifies two outputs, 17 coins
to Bob and eight coins to Alice. In Bitcoin, all or none of a referenced transaction’s
output must be consumed. Thus, Alice creates the second output, where eight bitcoins
are sent back herself. In order to authorize the transaction, Alice signs the entire content
of the transaction [NBF+16].

It is also possible to create a transaction with multiple inputs. Assuming Alice and
Bob want to pay David. They can create a single transactions with two inputs and one

15

2. Background

output. Due to the involvement of inputs that are owned by two different users, the
transaction has to be signed by both Alice and Bob. This type of transactions is also
called a 2-out-of-2 multi-signature transaction, since the transaction requires two out of
two possible signatures to become valid [NBF+16].

Outputs of transactions can only be used as input in new transactions if they are unspent,
i.e., they have not already been used as inputs in other transactions. Such outputs are
referred to as Unspent Transaction Outputs (UTXOs) [TS16].

Listing 2.1 shows a low-level representation of a Bitcoin transaction.

Listing 2.1: The low-level representation of a Bitcoin transaction [NBF+16].
1 {
2 " hash " :

"5 a42590fbe0a90ee8e8747244d6c84f0db1a3a24e8f1b95b10c9e050990b8b6b "

3 " ver " : 1 ,
4 " vin_sz " : 2 ,
5 " vout_sz " : 1 ,
6 " lock_time " : 0 ,
7 " s i z e " : 404 ,
8 " in " : [
9 {

10 " prev_out " : {
11 " hash " :

"3 be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260 " ,
12 "n " : 0
13 } ,
14 " s c r i p t S i g " : " 3 0 4 4 0 . . . "
15 } ,
16 {
17 " prev_out " : {
18 " hash " :

"7508 e6ab259b4df0 fd5147bab0c949d81473db4518f81afc5c3 f52 f91 f f6b34e " ,
19 "n " : 0
20 } ,
21 " s c r i p t S i g " : "3 f3a4 . . . "
22 }
23] ,
24 " out " : [
25 {
26 " va lue " : " 10 . 12287097 " ,
27 " scriptPubKey " : "OP_DUP OP_HASH160

69 e02e18b5705a05dd6b28ed517716c894b3d42e
28 OP_EQUALVERIFY OP_CHECKSIG"
29 }
30]
31 }

16

2.2. Basic Concepts of Bitcoin

The metadata section (line numbers 2-7 in Listing 2.1) includes the hash of the entire
transaction that serves as a unique ID, a version number, the number of inputs, the
number of outputs and the size of the transaction in bytes. In the example illustrated
in Listing 2.1, the input array references two previous transactions (line numbers 8-23).
The field n specifies the index of a transaction’s output. scriptSig contains a script
written in Bitcoin’s scripting language Script and provides the signature that is needed
to claim the transaction’s output. Furthermore, the transaction has one output (line
numbers 24-30). An output contains two fields. The value specifies the number of coins
that should be spent to this output and scriptPubKey specifies a script that dictates
under which conditions the output’s coins can be redeemed [NBF+16]. Bitcoin scripts
are discussed in the next section.

Bitcoin Scripts

Transaction outputs in Bitcoin do not just specify a public key. They actually specify
a script. The most common case is to redeem a transaction output by providing the
correct signature. In other words, a transaction output can be redeemed by a signature
from the owner of address X. As outlined above, a Bitcoin address is a hash of the public
key. Therefore, merely specifying the address X does not reveal the corresponding public
key and it does not provide a way to verify the signature. Thus, a transaction’s output
must state that it can be redeemed by providing a public key that hashes to X, along
with a signature from the owner of this public key [NBF+16].

Not only transaction outputs specify a script. Inputs contain also scripts instead of
signatures. To confirm that a transaction redeems the coins of a previous transaction
output correctly, the new transaction’s input script is combined with the earlier trans-
action’s output script. These two scripts are called scriptPubKey and scriptSig. They
are simply concatenated by appending the scriptPubKey of the referenced transaction
output to the scriptSig of the redeeming transaction, and the result must run without
errors for the transaction to be valid. Examples of scriptPubKey and scriptSig are shown
in Listing 2.1 [NBF+16].

Bitcoin’s scripting language Script is stack-based. It was built specifically for Bitcoin and
has many similarities with the stack-based programming language Forth. An important
aspect is that Script is not Turing-complete. Table 2.3 shows common Script instructions
and their functions [NBF+16].

Mining

Miners are connected to the Bitcoin network and listen for incoming transactions. In-
coming transactions are validated, i.e., their signatures are verified and it is checked that
the referenced transaction outputs have not been already spent. Miners maintain the
blockchain. They listen for new blocks and verify them by checking all included transac-
tions to be valid and whether there is a correct nonce in the block’s header. Furthermore,
miners build also their own blocks by grouping received and valid transactions to a block

17

2. Background

Table 2.3: Common Script instructions and their functions [NBF+16].

Instruction Function

OP_DUP Duplicates the top item on the stack.
OP_HASH160 Hashes twice: first using SHA-256 and then a different hash

function called RIPEMD-160.
OP_EQUALVERIFY Returns true if the inputs are equal. Returns false and marks

the transaction as invalid if they are unequal.
OP_CHECKSIG Checks that the input signature is valid using the input

public key for the hash of the current transaction.
OP_CHECKMULTISIG Checks that the t signatures on the transaction are valid

signatures from t of the specified public keys.

and by trying to find a nonce that makes the entire block valid. Finding a valid nonce
requires the most work. Miners keep trying different nonces until the block’s hash is
below the target, i.e. the hash begins with the required number of zeros. In this step, the
puzzle-friendliness property of a cryptographic hash function comes into play. It ensures
that there is no solving strategy other than just trying random values for the nonce. This
kind of consensus algorithm is called proof-of-work. Once a valid solution is found, the
miner publishes the block to the network. Only if the other miners accept the new block,
it is included permanently in the blockchain [NBF+16].

2.3 Basic Concepts of Ethereum

A further, very popular cryptocurrency is Ethereum. Its underlying blockchain technology
belongs to the second generation of blockchains. Ethereum and Bitcoin have many
similarities, but there are also significant differences between them. The main difference
between Bitcoin and Ethereum is that Bitcoin is a currency and Ethereum is a computing
platform that has a rich programming language. Further differences between these two
systems are discussed in Section 2.4. In the following, fundamental principles of Ethereum
and its underlying blockchain are highlighted.

2.3.1 Merkle Patricia Tree

The Merkle Patricia tree is a combination of the radix tree and the Merkle tree with
some optimizations. It is the main data structure used in Ethereum, e.g., for storing
transactions, the global state and an account’s storage. In Ethereum, a tree node is
stored as a key-value pair. The key is the hash of the node and the value is an array
with 17 elements. The first 16 elements are indexed by a hex number from 0 to f, and
contain hash pointers to descendant nodes. The 17th element stores the data of the node.
This type of node is called branch [com14a, T1.8b]. Figure 2.7 illustrates the structure
of a branch node in the Merkle Patricia tree. The key (i.e., the hash of the node) is

18

2.3. Basic Concepts of Ethereum

merkleHash data

0 1 2 3 4 5 6 7 8 9 a b c d e f

key value

Figure 2.7: The structure of a branch node in the Merkle Patricia tree [T1.8b].

Table 2.4: Data set that is used to construct the Merkle Patricia tree illustrated in
Figure 2.8.

Path Value

cab8 dog
cabe cat
39 chicken
395 duck
56f0 horse

used to locate a node, whereas a path is used to find data in the tree by descending the
entire path. In order to overcome inefficiency issues, two other types of nodes have been
introduced in the Merkle Patricia tree. The first one is called leaf and the second one’s
name is extension. Both types of nodes have only two elements in their array. A leaf
node stores a partial path in the first array element and the data in the second element.
An extension node holds the partial path in the first array element just as the leaf node,
but the second element contains the hash pointer to a descendant node. These two node
types shrink the number of nodes with empty values in the tree and thus reduce also
the number of steps that are needed to get the data associated with a particular path
[com14a, T1.8b]. Figure 2.8 shows an example of a Merkle Patricia Tree that is created
from the data set listed in Table 2.4. The nodes hashE, hashK and hashL are leaf nodes,
whereas the nodes hashA and hashB are extension nodes [T1.8b].

Assuming the data located at path 395 is needed. In order to retrieve the correct data,
the following steps have to be performed:

1. First, the path 395 is split into three parts 3, 9 and 5.

2. The root node can be found with rootHash, which is a hash pointer referencing the
root node of the tree.

3. Since the first part of the path is 3, the element at index 3 is retrieved. This
element contains hashA.

4. In the next step, a lookup for hashA is performed in order to get the associated
node. Furthermore, the value of the element indexed by 9 is retrieved. The value
is hashC.

19

2. Background

hashA hashE hashBrootHash

0 1 2 3 4 5 6 7 8 9 a b c d e f

hashB hashJab

hashA hashC9

hashDhashC chicken

0 1 2 3 4 5 6 7 8 9 a b c d e f

hashD duck

hashE horse6f0

hashK hashLhashJ

0 1 2 3 4 5 6 7 8 9 a b c d e f

hashL cat

hashK dog

branch
node

branch
node

branch
node

leaf
node

leaf
node

leaf
node

leaf
node

extension
node

extension
node

Figure 2.8: A Merkle Patricia tree that is constructed from the data set listed in Table 2.4.

5. A lookup for hashC leads to the next node. The value at array position 5 is hashD.

6. After the lookup of the node referenced by hashD, the value of the array’s data
element is retrieved. The result is duck.

An important aspect of Merkle Patricia trees is that they are fully deterministic, i.e.,
a Merkle Patricia tree with the same key-value bindings is guaranteed to be exactly
the same down to the last byte and thus has the same root hash. Furthermore, Merkle
Patricia trees enable insertions, lookups and deletions to be performed in logarithmic
time [com16].

2.3.2 Ethereum Accounts

Unlike Bitcoin which uses the concept of UTXOs, Ethereum utilizes the account balance
model, i.e., the Ethereum blockchain tracks how many coins each account has. When
someone wants to spend coins, the system verifies the account’s balance to make sure
that the sender has enough coins before approving a transaction [Sun18]. In Ethereum,
there are two types of accounts [com14b, Kas17, Ken18]:

20

2.3. Basic Concepts of Ethereum

• Externally owned accounts, that are controlled by private keys. These accounts
have no code associated with them. Externally owned accounts can send messages
to other externally owned accounts or to contract accounts. In order to send a
message, a transaction is created and signed with the private key that controls the
account.

• Contract accounts are controlled by their associated contract code. Unlike
externally owned accounts, contract accounts cannot initiate new transactions
on their own. They can only create a new transaction in response to another
transaction they have received from another contract account or from an externally
owned account. The contract’s code can perform various actions, such as transfer
tokens, write to internal storage, perform some calculation, create new contracts,
etc.

Both account types store the following information [Woo14]:

• nonce: In case the account is an externally owned account, the nonce specifies
the number of transactions that have been sent from the account’s address. If the
account is a contract account, the nonce represents the number of contracts created
by this accounts.

• balance: The balance represents the number of Wei owned by this address. One
Ether is equal to 1018 Wei.

• storageRoot: This field represents the hash of the root node of a Merkle Patricia
tree that encodes the storage contents of the account and is empty by default.

• codeHash: This field specifies the hash of the Ethereum Virtual Machine (EVM)
code of the account. In case the account is an externally owned account, the
codeHash field contains the hash of the empty string.

As Bitcoin, Ethereum uses the ECDSA. Thus, a new identity can be created by generating
a new key pair. Each account has an address that is constructed from the public key. An
address is defined “as the right most 160-bits of the Keccak hash of the corresponding
ECDSA public key” [Woo14].

2.3.3 Transactions and Messages

Ethereum is a transaction-based state machine, i.e., transactions that occur between
different accounts cause the global state of Ethereum to move from one state to the
next. Each action that occurs on the Ethereum blockchain is always triggered by a
transaction fired from an externally owned account. A transaction is a signed data
package that is created by an externally owned account, serialized and sent to the
blockchain. A transaction represents either a message call or a contract creation which
results in the creation of a new account with associated code [Kas17]. A message between

21

2. Background

two externally owned accounts is simply a value transfer. A message that is sent from
an externally owned account to a contract account activates the contract account’s
code [Ken18]. Contracts can talk to other contracts by sending messages (also called
internal transactions). In case a message is received, the associated code that exists
on the recipient contract account is executed. The main difference between internal
transactions and other transactions is that internal transactions are not generated by
externally owned accounts. They are generated by contracts and are not serialized, i.e.,
they exist only in the Ethereum execution environment [com14b, Kas17].

A transaction contains [com14b, Kas17, Woo14]:

• gasPrice: This value specifies the number of Wei the sender is willing to pay per
unit of gas. Gas is the fundamental unit of computation. Typically, a computational
step costs one gas, but there exist operations that require higher amounts of gas
because they are more computationally expensive.

• gasLimit: The gas limit represents the maximum amout of gas that should be
used for the execution of the transaction.

• recipient: This value contains the address of the message call’s recipient or, in
case the transaction represents a contract creation, the field is empty.

• value: This value is equal to the number of Wei that should be transferred to the
message call’s recipient. In case the transaction is a contract creation transaction,
this value is the starting balance of the contract account.

• signature: This information identifies the sender of the transaction.

• init: This field only exists for contract creation transactions and specifies the EVM
code for the account initialization procedure. It returns the body of the account
code that is permanently associated with the contract account.

• data: This field exists only for message call transactions and contains the input
data (i.e., parameters) of the message call.

Since messages (internal transactions) are like transactions, except they are generated
by contracts, they contain similar information such as the sender of the message, the
recipient, the value to transfer, an optional data field and a gas limit [com14b].

2.3.4 Ethereum Blocks

As in Bitcoin, transactions are grouped into blocks that are published to the blockchain.
This is done by the miners. The Ethereum blockchain has many similarities with the
Bitcoin blockchain, but there are also differences. Unlike Bitcoin (which only stores a
copy of the transaction list), Ethereum keeps track of both the transaction list and the
entire, most recent state (e.g., account balances) [com14b]. Therefore, Ethereum blocks

22

2.3. Basic Concepts of Ethereum

contain hashes referencing root nodes of Merkle Patricia trees instead of hashes that are
pointing to root nodes of simple Merkle trees. In the following, some interesting header
fields are described briefly [Kas17, Woo14]:

• parentHash: This value is the hash of the parent block’s header.

• ommersHash: This field contains a hash of the block’s list of ommers. An ommer
is a block whose parent is equal to the current block’s parent’s parent. Due to the
low block times in Ethereum (approximately 15 seconds) there are more competing
blocks found by miners. The purpose of ommers is to reward miners for including
these competing blocks. Ommer blocks are rewarded with a smaller amount than
full blocks.

• beneficiary: beneficiary stores the address of the account that receives the fees
for mining the block.

• stateRoot: This field stores the hash of the root node of the Merkle Patricia tree
that is made up of the state after all transactions are executed.

• transactionsRoot: This field stores the root hash of the Merkle Patricia tree that
contains all transactions of the block.

• receiptsRoot: This value is equal to the root hash of the Merkle Patricia tree
that contains all receipts of all transactions listed in the block.

• difficulty: This field specifies the difficulty of the block and is used to enforce
consistency in the time it takes to mine a block.

• number: This value is equal to the number of ancestor blocks connected in the
blockchain and is increased for every new block.

• gasLimit: This field specifies the maximum number of gas expenditure per block.

• gasUsed: This value is equal to the number of gas used in transactions listed in
the block.

• mixHash and nonce: These two values are combined and prove that a sufficient
amount of computation has been carried out on the block.

At a first glance, storing the entire state in each block might be highly inefficient. Since
the state is stored in a Merkle Patricia tree, only a small part of the tree needs to be
changed after a block. In general, the vast majority of the tree should be the same
between two adjacent blocks. To gain efficiency, the data are stored once and referenced
multiple times using pointers (i.e., hashes of subtrees) [com14b].

23

2. Background

2.3.5 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the runtime environment for contracts in
Ethereum and is completely isolated, i.e., the code running inside the EVM has no access
to the network, filesystem or other processes [Com18c]. The EVM is a quasi-Turing-
complete machine, since the computation is bounded through the gas limit. The virtual
machine has a stack-based architecture, i.e., it uses a last-in, first-out stack to store
temporary values [Kas17, Woo14]. Smart contracts that should be executed on the EVM
must be encoded in EVM bytecode. Typically, programmers write their smart contracts
in a higher-level language such as Solidity and compile their programs down to the EVM
bytecode [Kas17].

Mining

Currently, Ethereum’s mining process is almost the same as Bitcoin’s. For each new block,
miners have to solve a cryptographic puzzle. This method is called proof-of-work. To find
a solution is very hard, but to verify an existing solution takes almost no time [com18b].
Ethereum developers plan to replace the proof-of-work algorithm with the proof-of-stake
consensus algorithm, where a set of validators take turns at proposing and voting on the
next block and the weight of each validator’s vote is determined by the size of its deposit
(i.e., stake) [com18b, Ros17].

2.4 Bitcoin vs. Ethereum
This section gives a brief overview of some important differences between Bitcoin and
Ethereum. As stated above, Bitcoin is a decentralized currency, whereas Ethereum is a
computing platform allowing users to build their own decentralized applications [Min17].
Bitcoin keeps only track of transactions, while Ethereum’s blockchain stores both the
transaction list and the entire, most recent state [com14b]. Unlike Bitcoin which uses
the concept of UTXO, Ethereum utilizes the account balance model, i.e., the Ethereum
blockchain tracks how many coins each account owns [com14b, Sun18]. In order to
efficiently store the global state, Ethereum uses a modified version of the Merkle Patricia
tree, whereas Bitcoin stores information in simple Merkle trees [com14b]. A further
difference between Bitcoin and Ethereum is that unlike Ethereum’s programming language,
Script is not Turing-complete, i.e., it does not have the ability to compute arbitrarily
powerful functions [Min17, NBF+16]. Furthermore, the block time for Bitcoin is about
ten minutes and for Ethereum 12 to 15 seconds [Min17].

24

CHAPTER 3
Related Work

This chapter describes related work and state-of-the-art methods in the area of blockchain
interoperability and atomic cross-chain swaps. Section 3.1 presents the basic concept
and limitations of the ACCS protocol proposed by TierNolan. Furthermore, different
solutions focusing on the implementation of exchange and auction systems are outlined.
Sections 3.2, 3.3, 3.4 and 3.5 summarize the concepts and ideas of the Lightning Network,
relays, pegged sidechains and contributions regarding blockchain interoperability besides
trading of cryptocurrencies. Section 3.6 concludes the chapter with a brief discussion
about limitations of the related work.

3.1 Trading between Users of Different Cryptocurrencies

This section outlines contributions that focus on the exchange of coins between users of
different cryptocurrencies, on real-time exchange services and on decentralized auction
systems.

3.1.1 The Atomic Cross-chain Swap Protocol

First attempts in the area of blockchain interoperability have been made in 2013. A
forum user with the pseudonym TierNolan proposed at https://bitcointalk.org
the ACCS protocol that allows two or more users of different cryptocurrencies to swap their
assets in an atomic and secure fashion [BJZ+17, Tie13]. In its original version, the protocol
can be used directly for trading between users of Bitcoin-derived blockchains [acc13].
Since the ACCS protocol has been used in other projects (e.g., BarterDEX) as well and
detailed knowledge regarding the original version proposed by TierNolan is widely spread
over the WWW (e.g., blogs, forum threads, etc.), this section addresses the protocol in
depth in order to get a deeper understanding of the underlying concept.

25

https://bitcointalk.org

3. Related Work

The steps involved in the protocol are illustrated by an example, where Alice owns
bitcoins, Bob owns litecoins and they want to swap a certain amount of coins based
on the current exchange rates. Since there are two different blockchains involved, both
parties need an address for both cryptocurrencies, such that Alice can send bitcoins
to Bob’s Bitcoin address and Bob can send litecoins to the Litecoin address of Alice.
According to the protocol rules, Alice and Bob have to perform the following steps in
order to redeem each other’s funds [BJZ+17, Tie13, xHi15]:

1. Alice and Bob exchange their public keys.

2. Alice generates a random number x and computes the hash commitment y =
hash(x).

3. Alice creates a transaction Tx1 with a scriptPubKey which dictates that b bitcoins
under the control of Alice can be redeemed

• by supplying Bob’s signature and a preimage z of y such that y = hash(z) or

• by supplying both the signature of Alice and the signature of Bob.

4. In order to get back possession of her b bitcoins in case of trade cancellation, Alice
creates a time-locked (e.g., locked for 48 hours) transaction Tx2 that uses Tx1 as
input transaction, and must be signed by Alice and Bob to claim the coins of
Tx1 (i.e., the second condition of the scriptPubKey of Step 3 must be fulfilled).
Therefore, Alice sends Tx2 to Bob, Bob signs it and returns the signed transaction
to Alice. If Bob aborts the trade at any step, Alice can get back her spent coins by
signing and publishing Tx2.

5. Alice broadcasts Tx1 to the network.

6. Bob creates a transaction Tx3 with a scriptPubKey which dictates that l litecoins
under the control of Bob can be redeemed

• by supplying the signature of Alice and a preimage z of y such that y = hash(z)
or

• by supplying both the signature of Alice and the signature of Bob.

7. In order to get back possession of his l litecoins in case of trade cancellation, Bob
creates a time-locked (e.g., locked for 24 hours) transaction Tx4 that uses Tx3
as input transaction, and must be signed by Alice and Bob to claim the coins of
Tx3 (i.e., the second condition of the scriptPubKey of Step 6 must be fulfilled).
Therefore, Bob sends Tx4 to Alice, Alice signs it and returns the signed transaction
to Bob. If Alice aborts the trade at any step, Bob can get back his spent coins by
signing and publishing Tx4.

26

3.1. Trading between Users of Different Cryptocurrencies

8. If Tx1 has enough confirmations in the blockchain (i.e., the block that contains Tx1
is buried under enough blocks in order to become irreversible with high probability),
Bob broadcasts Tx3 to the network.

9. If Tx3 has enough confirmations in the other blockchain, Alice creates and broadcasts
a transaction Tx5 that redeems Bob’s litecoins from transaction Tx3 by supplying
the secret number x in the transaction’s scriptSig.

10. Since Alice has revealed x in transaction Tx5, Bob can create a transaction Tx6
that redeems the bitcoins of Alice from transaction Tx1 by supplying x in the
transaction’s scriptSig.

The basic idea of the protocol is that Alice can only redeem Bob’s litecoins by revealing
the secret number x, thereby enabling Bob to use x in order to redeem the bitcoins of
Alice on the other blockchain [BJZ+17]. This lock is called hashlock, since the output
script only transfers ownership of coins from one party to another if a preimage of the
hash is provided. The second lock mechanism used in this protocol is called timelock.
A timelock restricts the spending of some coins until a specified future time or block
depth. This time limit ensures that a party should be able to get back possession of the
spent coins in case the other party aborts the trade. In the example outlined above, the
bitcoins of Alice should be locked for a longer time than Bob’s litecoins. This should give
Bob enough time to find out x and redeem the coins of Alice. A contract that utilizes
both locking mechanisms is called Hashed Time-Locked Contract (HTLC) [BH17, htl16].
The concrete timelocks depend on the involved cryptocurrencies respectively blockchain
technologies. For instance, many exchanges accept a Bitcoin transaction after it is buried
under six blocks, whereas a Litecoin transaction is considered to be confirmed after it
is buried under twelve blocks. Furthermore, the block creation rate of Litecoin is four
times faster than in Bitcoin [BJZ+17, TS16].

Further discussions regarding the ACCS protocol can be found in [acc16, ato16].

Properties of ACCS

According to [xHi15], the ACCS protocol should satisfy the following two properties:

• Liveness: “There always eventually exists a step each party can do either to make
progress within the protocol or to revert its effects.”

• Safety: “The protocol never deadlocks and neither party can steal the other party’s
coins.”

xHire provides a proof in order to show the satisfaction of the previously mentioned
properties [xHi15]. In this proof, both properties are shown separately. Deviations
from the protocol might result in losing coins, but do not harm the other party [xHi15].
Furthermore, Bentov et al. provide a proof of security for the steps involved in the ACCS
protocol [BJZ+17].

27

3. Related Work

Limitations of ACCS

According to [BJZ+17], it would require users to wait for many minutes or even hours
until a trade is completed, since transactions involved in the trade need to be confirmed
by a safe number of blocks. For instance, in the Bitcoin system a transaction needs to be
buried under six blocks in order to become irreversible with high probability. This can
take up to one hour.

Furthermore, ACCS does not enable participants to respond to price fluctuations in a
rapid manner, such that users can alter their trading positions within seconds. Since
ACCS does not support this kind of real-time exchange, price discovery, where traders
observe alterations in the bid and ask orders on the exchange and thus modify their
trading positions, is also not possible [BJZ+17].

Mercury

In 2015, a forum user with the pseudonymmappum announced at https://bitcointalk.
org an early alpha preview of “the world’s first trustless cryptocurrency exchange”
[map15] service called Mercury. The Mercury Wallet implements the ACCS protocol.
There are binaries for Windows, Mac OS X and Linux available. The alpha preview sup-
ports Bitcoin, Litecoin and Dogecoin. mappum stated that many more cryptocurrencies
and assets will be added in the future if they are highly demanded by Mercury users.
But Mercury became defunct because of missing popularity [BJZ+17]. The source code
can be found at https://github.com/mappum/mercury.

3.1.2 Tesseract

Tesseract is a secure real-time cryptocurrency exchange service proposed by Bentov et al.
[BJZ+17]. In order to achieve security and performance, Tesseract relies on a trusted
execution environment (TEE), specifically Software Guard Extensions (SGX) developed
by Intel. Intel SGX are a set of x86 hardware instructions enabling the execution of user
programs in guarded, tamper-resistant memory areas. This memory areas are called
enclaves. Enclaves are isolated from other processes, i.e., only the enclave can access its
own memory region, any other attempt to access the enclave is blocked by the CPU. SGX
do not need to rely on the security of operating systems or a cloud provider’s hardware.
Even if a malware has gained kernel privileges, enclaves are not vulnerable to attacks
performed by such privileged software [SWG+17]. Furthermore, Intel SGX provides a
mechanism called attestation. Attestation means that Intel SGX can confirm that an
output represents the result of an execution. Remote users can verify that an attestation
is correct [BJZ+17].

In Tesseract, the enclave code is hard-coded with the hash of Bitcoin’s genesis block
or any other checkpoint of the blockchain. On startup, the enclave loads the most
recent block headers, each header is validated and added to a FIFO queue stored inside
the enclave. For each cryptocurrency that is supported by Tesseract, the enclave will
maintain such a queue. In a next step, a key pair (secret key, public key) for each

28

https://bitcointalk.org
https://bitcointalk.org
https://github.com/mappum/mercury

3.1. Trading between Users of Different Cryptocurrencies

supported cryptocurrency is created. Tesseract maintains for each cryptocurrency a
deposit, therefore it will attest that the public key is the deposit address. The attestation
of the public key should be published through different services like websites or even
blockchains.

In order to open a Tesseract account, users first need to spend a “significant enough
amount” into a deposit address of the exchange by creating a deposit transaction. The
output script of this transaction dictates that after a specified time limit the user can get
back control over the spent coins. Before the time limit is reached, only the enclave can
redeem the coins by creating a signature with its secret key. After the deposit transaction
has been buried under enough blocks in the blockchain, the user sends an evidence of
the confirmed deposit to the enclave. If the deposit transaction is valid, Tesseract will
credit the user’s deposited amount into her account entry in the array of users that is
kept inside the enclave. Now, the user can trade in real-time with other Tesseract users
by transmitting bid or ask orders to the Tesseract server. Tesseract matches bids and
asks. User requests are recorded in the order book that is stored inside the enclave.
Tesseract broadcasts an anonymized version of this book allowing anyone to observe the
price spread. For each successful trade, Tesseract collects a proportional fee.

The Tesseract exchange service overcomes the limitations of ACCS outlined in Sec-
tion 3.1.1. Bentov et al. provide a reference implementation that supports Bitcoin,
Ethereum and similar cryptocurrencies. It is crucial to note that researchers at Austria’s
Graz University of Technology developed a proof-of-concept that can extract RSA keys
from SGX enclaves running on the same system within five minutes [SWG+17].

3.1.3 Komodo’s BarterDEX

BarterDEX, currently (March 2018) in BETA phase of development, is a technology of
the Komodo platform [kom18] enabling users to trade cryptocurrencies directly from
one party to another without the need of a trusted third party. The Komodo platform
focuses on providing end-to-end blockchain solutions for developers. Komodo’s objective
is to offer blockchain solutions that can be customized to meet desired needs and are easy
to deploy. The developers of Komodo focus on blockchain entrepreneurs and average
cryptocurrency investors with the objective to form an economic ecosystem. The main
parts of Komodo platform are

• BarterDEX, an atomic swap-powered decentralized exchange,

• Jumblr, an open-source and decentralized cryptocurrency anonymizer,

• Delayed Proof-of-Work (dPoW), a consensus algorithm to maintain the network
and

• the decentralized initial coin offering.

29

3. Related Work

BarterDEX is a decentralized auction system and combines three key components: order
matching, trade clearing and liquidity provision. The first component is responsible for
pairing an user’s offer to buy with another user’s offer to sell. Bids and offers placed by
users on the network are recorded in a decentralized order book. Trade clearing is the
process of swapping assets between the trading parties using a variation of the atomic
cross-chain protocol proposed by TierNolan. “In addition, the trading happens in real-
time, through automation, on a decentralized peer-to-peer network, supporting a countless
number of separate blockchain projects, while providing a speed and (eventually) liquidity
comparable to that of a centralized exchange. BarterDEX also automatically calculates the
appropriate mining and transaction fees for the blockchains involved” [kom18]. In order
to overcome the problem of low liquidity, BarterDEX creates Liquidity Provider Nodes.
Liquidity Provider Nodes are trading parties that provide liquidity to the exchange by
buying and selling assets. They gain their profit from the spread between bid and ask
orders and bring price stability.

BarterDEX relies on the concept of UTXO that can be spent as an input in a new
transaction.

As of February 2018, the public Komodo community has already performed 21,000 atomic
swap trades on BarterDEX [kom18].

3.1.4 Republic Protocol

The Republic protocol [rep18] is a decentralized open-source dark pool exchange enabling
users to trade assets across the Bitcoin and Ethereum blockchains through atomic swaps.
A dark pool is a type of trading system that allows investors to place orders and make
trades without publicly revealing their intentions during the search for a trading partner.
Orders are recorded in a hidden order book and matched by an engine. Republic ensures
that market-sensitive information such as price and volume at a certain position are not
exposed to the public. Therefore, each order is broken down into a large number of order
fragments that are distributed throughout the network. Orders can only be reconstructed
by combining a majority of the order fragments. Republic utilizes a decentralized peer-to-
peer network in order to initiate an atomic swap between two traders after a successful
order match. Peer-to-peer nodes race to discover order matches. In order to incentivize
participants to run order matching nodes, the Republic protocol introduced so-called
REN tokens that are paid as order fees. Found matches are registered such that other
nodes can recognize which orders have been closed. Furthermore, the associated traders
are notified. This is done on the Ethereum network, acting as trusted third party that
will always behave honestly (assumption on which Republic is built on) [ZW17].

3.1.5 Atomic Cross-chain Swap Protocol with Directed Graphs

Herlihy describes a protocol for atomic cross-chain swaps using HTLCs [Her18]. The
author’s approach relies on a strongly connected directed graph G = (V, E), where each
vertex v ∈ V represents a party and each edge (v, w) ∈ E represents an asset transfer

30

3.1. Trading between Users of Different Cryptocurrencies

from v to w. The hash-locked secrets are generated by so-called leaders. The set of leaders
L ⊂ V forms a feedback vertex set. L is a feedback vertex set for G if its deletion leaves
the graph acyclic. Finding a minimal feedback vertex set for G is NP-complete [Her18].
However, there exists an efficient 2-approximation [BG96]. The author shows that the
protocol does not satisfy necessary requirements if G is not strongly connected or if G is
strongly connected but L is not a proper feedback vertex set.

For simplicity, the author assumes that the directed graph, that represents the swap, is
constructed by a (possibly centralized) clearing service. Each trading party creates a
secret with the corresponding hash-lock and sends the hash-lock along with its trading
position to the clearing service. The service combines the received hash-locks and trading
offers and creates the corresponding directed graph along with the set of leaders forming
a feedback vertex set. Furthermore, the clearing service creates a vector of the leader’s
hash-locks and a global deadline. If not all contracts are triggered at or before the
deadline, the parties’ assets will be refunded. For each edge (v, w) ∈ E, a smart contract
is created and initialized with the asset to be transferred, the involved parties v and w,
a time-lock vector depending on the position of that edge in the graph and with the
hash-lock vector. Assets are only transfered if no time-lock of the time-lock vector has
expired and all secrets have been revealed. Starting at the leaders, instances of the smart
contract are propagated through the swap graph in the direction of the edges. In contrast
to the contract propagation, secrets are propagated in the opposite direction. Thus, a
network of smart contracts is established in order to ensure that all requirements of an
atomic cross-chain swap are satisfied [Her18].

3.1.6 Further Projects in the Area of Atomic Swaps

This section gives a brief overview of further projects experimenting with atomic swaps:

• Lykke [lyk18] is a semi-decentralized exchange for trading cryptocurrencies and
fiat currencies.

• Bisq [bis18] is a fully decentralized exchange application utilizing a custom peer-
to-peer network that relies on Tor.

• Blocknet [blo18] is a peer-to-peer protocol enabling the transfer of assets between
nodes on different blockchains.

• Decred [dec17] community completed a cross-chain atomic swap between Decred
and Litecoin in September 2017.

• Altcoin.io [alt17] is developing an atomic swap wallet focusing on bringing atomic
swaps to the masses.

31

3. Related Work

3.2 Atomic Swaps with the Lightning Network
The Lightning Network is a decentralized system for instant micropayments and was
proposed by Joseph Poon and Thaddeus Dryja in 2016 [PD16]. It was designed to solve
some technical limitations of the Bitcoin blockchain, especially the scalability problem.
To reduce the load on the main Bitcoin blockchain, assets are transferred off-chain.
Two parties open a so-called bidirectional payment channel that enables them to move
assets in both directions without waiting for each transaction to be confirmed on the
main blockchain. In order to open such a payment channel, they create a 2-out-of-2
multi-signature transaction on the blockchain and at least one of them spends coins
into the 2-out-of-2 ledger entry. The coins can only be redeemed if both parties provide
a signature. After this transaction has been confirmed on the blockchain, the parties
can create signed transactions that spend the funds of the initial transaction. This
transactions are exchanged using direct peer-to-peer communication. They are not
broadcasted to the network and thus are not recorded by the ledger. After the parties
have finished transacting with each other, the most recently exchanged transaction
signature is broadcasted to the network in order to get the final balance recorded by
the ledger. Thus, only the first transaction opening a payment channel and the last
transaction representing the last balances of the participants are mined in the blockchain.
All intermediate transactions happening in the payment channel are not recorded in
the blockchain. Participants of the Lightning Network can also exchange off-chain
transactions in case they are not connected directly via a payment channel. If no direct
channel has been established between two participants, transactions can be exchanged
via other participants in the network acting as nodes. In order to prevent intermediate
nodes to steal funds of exchanged transactions, HTLCs are used [PD16, Sta16].

Speeding and scaling up the Bitcoin blockchain is not the only use case for which the
Lightning network is applicable: In November 2017, Lightning Labs released a YouTube
video showing an atomic cross-chain swap between Bitcoin and Litecoin [Tom17].

3.3 Relays
A relay is a smart contract that is interested in particular events occurring on another
blockchain. For instance, a smart contract running on the Ethereum blockchain verifies
Bitcoin transactions, thus enabling Ethereum accounts to receive Bitcoin payments.
Relays are relying on the concept of SPV that is described in Section 2.2 [But16].

Relay contracts have been already implemented. BTCRelay [btc18] is a Bitcoin light-
client in the form of a smart contract running on Ethereum. It enables Ethereum smart
contracts to verify Bitcoin transactions. Another project is PeaceRelay [Luu17] that
allows interactions between the two different Ethereum forks Ethereum and Ethereum
Classic. In contrast to BTCRelay, relay contracts are running on both blockchains, i.e.,
PeaceRelay enables a two-way-relay.

Assuming Alice wants to exchange 50 ETH for one BTC, an atomic cross-chain swap can

32

3.4. Pegged Sidechains

be established by a relay contract running on the Ethereum blockchain and specifying
that whoever provides a proof that they sent one BTC to Alice’s Bitcoin address X, can
redeem the 50 ETH. The proof can be of the form of a Merkle proof of membership
[But16].

If a blockchain’s consensus algorithm works slowly, it takes a long time to verify for one
blockchain that another blockchain achieved consensus on some operation. This limits
the speed of cross-chain trades. In practice, where exchange rates may change rapidly,
this limitation is a weakness for cross-chain swaps [But16].

3.4 Pegged Sidechains

Back et al. propose the concept of pegged sidechains that enable users to transfer assets
between multiple blockchains. “A sidechain is a blockchain that validates data from other
blockchains.” [BCD+14]. Furthermore, “a pegged sidechain is a sidechain whose assets
can be imported from and returned to other chains” [BCD+14]. An important property
of the proposed technology is that assets, which are transferred between sidechains,
can be moved back by the current owner. In order to avoid the need for nodes that
maintain the target chain to track the sending chain, the asset transfers are performed by
providing proofs of possession in the transferring transaction. The assets are locked on
the first blockchain. In a further step, a transaction on the second blockchain is created.
The transaction’s input contains the cryptographic proof that the assets are correctly
locked. This cryptographic proof is provided as SPV proof. While the assets on the
first chain are locked, the assets can be freely moved within the second chain without
further communication with the first chain. To move back the assets to the first chain,
i.e., unlock the coins, the same principle is applied. The coins on the second blockchain
are locked and a SPV proof is used in order to unlock the coins on the first chain. If
the users of a blockchain are full validators of the other chain, a SPV proof has only to
be provided in one direction, since the full validators are aware of the state of the other
blockchain [BCD+14].

3.5 Blockchain Interoperability besides Trading of
Cryptocurrencies

In November 2017, a project with the name Crowd Machine has been unveiled. The
software platform aims to allow programmers, application developers and even non-
developers to build decentralized applications that run on a peer-to-peer network computer
made up of mobile devices and PCs. This peer-to-peer network computer is referred to as
the Crowd Computer. The decentralized applications are locked into a specific blockchain.
Overall, the Crowd Machine consists of three components: The already mentioned Crowd
Computer, the Crowd App Studio and the Crowd Share. The Crowd App Studio provides
developers with the ability to model their application requirements as a diagrammatic
presentation of logic, rather than writing code. This diagrammatic presentation is called

33

3. Related Work

a pattern. An application is formed by combining multiple patterns. Further features of
the Crowd App Studio are a form design environment for the creation of user interfaces,
a mechanism for integrating an application with external systems such as third party
APIs or databases, and a built-in release management including a complete application
lifecycle management functionality. The Crowd Share is a GitHub-like source repository,
where developers can publish their code and are rewarded if their published code is used
and executed by other applications. Applications created with the Crowd Machine can
be migrated from one blockchain to another, if required [Bri18, Low17, Spr18].

Another project in the area of blockchain interoperability is Polkadot. Polkadot was
founded by Gavon Wood, the co-founder of the Ethereum network. Similar to the
intranet/internet synergy allowing open and closed networks to have trust-free access to
each other, Polkadot focuses on a network of blockchains, “where private and consortium
chains can be firewalled from open and public chains like Ethereum without losing the
ability to communicate with them on their own terms” [wf17]. Polkadot’s design aims
to enable applications and smart contracts on one blockchain to communicate with
applications on other chains [Woo17].

A further project that aims to connect multiple blockchains is the decentralized Cosmos
Network. It is designed to allow various independent public and private blockchains
to communicate and exchange value with one another. Further aspects addressed by
Cosmos are scalability and a developer-friendly interface for building blockchains [KB18].

Block Collider is a “high-speed distributed ledger built on sets of blocks from other
blockchains, integrating those chains together and enabling many cross-chain features” [ct17].
The basic idea of the Block Collider multi-chain is the integration of the current state of
each connected blockchain into the multi-chain, i.e., the most recent Block Collider block
references the most current block in each of the supported chains [ct17].

Another contribution worth to be mentioned is the Blocknet Protocol, a peer-to-peer
protocol between nodes on different blockchains. The decentralized protocol enables cross-
chain swaps and cross-chain data transfer in order to create a ecosystem for blockchain
microservices [CM16, The18a].

3.6 Runtime Selection and Switchover

In the last years, many projects in the area of blockchain interoperability and especially
atomic cross-chain swaps have been started. The discussed approaches focus on inter-
operability between predefined blockchains, i.e., on the asset transfer between two or
more blockchains that are known in advance. To the best of our knowledge, there are
no contributions in the field of runtime selection of blockchains, and there is no general
solution that enables users to store data in a most-suitable blockchain that is selected at
runtime based on certain criteria, such as storage costs and the average time needed for
storing a piece of data. The suitability of a blockchain should be defined on the basis of
certain blockchain metrics. Briefly summarized, the current state-of-the-art approaches

34

3.6. Runtime Selection and Switchover

do not integrate a mechanism for selecting the most beneficial blockchain at runtime and
the switchover between selected blockchains in a single solution.

35

CHAPTER 4
Motivational Scenario

Due to the variety of blockchain applications, this section highlights a use case that will
be used as reference for further analysis and evaluation of the proposed framework. As
described in Section 1.1, there are various use cases for which blockchains are applicable.
Cryptocurrencies such as Bitcoin, Litecoin and Namecoin have been the first popular
systems that utilize the blockchain technology as decentralized bookkeeper in which all
payment transactions are securely recorded. Besides holding of financial information,
future applications of the blockchain technology are still a subject of research. Popular
use cases that came up in the last years are digital voting, notary services, SCM,
auditing, control of ownership rights, cloud storage and many more [Dou18]. A promising
experiment utilizing the blockchain technology has been started in Brooklyn, New
York. Dozens of solar-panel arrays spread across rowhouse rooftops are connected to
a network, called the Brooklyn Microgrid. The project allows energy producers to sell
excess electricity to other participants in the network. In 2017, the project had about
50 participants. The main focus of this experiment is to create a peer-to-peer energy
trading system that is built on a blockchain and enables neighbors to trade energy
among themselves. The possibility of energy sharing would allow participants to bypass
traditional energy supply, and to sell their spare electricity, rather than give it away
[Car18].

The motivational scenario outlined in the following addresses the collaboration between
multiple business partners that aim to increase their competitive and collaborative advan-
tage through the exchange of information. A key aspect of such an inter-organizational
collaboration is the involvement of independent and even competing companies that do
not trust each other. Figure 4.1 illustrates an example of information flows between
multiple organizations. Inter-organizational Information Systems (IOISs) are automated
systems that enable the flow of information between two or more enterprises. One
popular example of an IOIS is an SCM system, where the sharing of information with

37

4. Motivational Scenario

suppliers and customers focuses on decreasing costs and on improving customer service
[CPPRPM14, HF10, LSST06].

Contract
Manufacturer

ManufacturerSupplier

Logistic Provider

Virtual
Manufaturer

Retailer

Bank

Wholesale
Distributor

Customers

Supplier-
oriented

Exchanges

Logistic
Exchanges

Customer-
oriented

Exchanges

Financial
Market
Plan

Returned Items

Goods Flow
Information Flow

Figure 4.1: An example illustrating the information flows between multiple organiza-
tions [based on [kno11]]. The icons have been provided by vectorpocket (Freepik) and
Vecteezy.com.

The growing awareness that exposing information to other companies can be beneficial
to all involved parties led to an increased adoption of IOISs [LSST06]. In the last years,
service-oriented computing gained much popularity in software development [HF10]
[RD05]. Haki and Forte describe an inter-organizational information system architecture
that utilizes the service-oriented approach [HF10]. A service-oriented architecture (SOA)
is composed of loosely coupled and isolated services with limited dependencies on other
shared resources, such as databases or APIs. It enables software developers to modularize
complex systems by integrating services created and adopted by different vendors. One
important advantage of SOA is that services can be consumed by different clients.
Furthermore, different services composing an SOA can be developed with different
languages and technologies. Two popular representatives for accessing web services are

38

Vecteezy.com

SOAP and REST [SHG14].

Since various services developed and operated by different vendors can be involved in
SOAs, quality and reliability of services become key aspects. Thus, Service Level Agree-
ments (SLAs) are negotiated between service providers and service consumers [SBS18].
SLAs define functional and non-functional requirements, such as response time, data
throughput or availability. In order to detect SLA violations, a monitoring approach
can be implemented. A major difficulty in adopting a monitoring of services is that
business partners have contradicting interests. For instance, a service consumer might
be interested in revealing SLA violations in order to claim a penalty charge, while a
service provider’s objective might be the concealment of a violation [SBS18]. Schubert,
Borkowski and Schulte proposed a solution for measuring and arbitrating SLA violations
relying on a trusted third party [SBS18]. This approach does not require the involved
parties to trust each other. The trusted third party component of their solution must be
hosted by a neutral provider.

Similar to service invocations in SOAs, where different service providers and consumers
are involved, transactions in cryptocurrencies take place between independent participants
and must be secure enough to be considered indisputable. As mentioned in Section 1.1,
Bitcoin and other cryptocurrencies are utilizing the blockchain technology as distributed
ledger for securely recording payment transactions. The ledger replaces a trusted third
party, and is operated by hundreds or thousands of miners distributed all over the world.
Due to the fact that there is no central controlling entity and due to the tamper-evident
property, a promising technology to get as a trusted third party for measuring SLA
violations might be a blockchain. In an SOA, a blockchain acting as trusted third party
can record various kinds of data and metrics, such as timestamps, memory usage and
CPU utilization provided by both service consumers and service providers. The recorded
data can be used for detecting SLA violations, for monitoring service invocation paths and
thus serve as a basis for revealing performance bottlenecks, erroneous services, availability
issues, insufficient throughput, etc.

Since the costs for storing data in a certain blockchain can increase in a rapid manner due
to the sensitivity of cryptocurrencies for price fluctuations, the utilization of a predefined,
static blockchain might not be a suitable approach. In order to overcome this limitation,
the most beneficial blockchain should be selected at runtime based on certain blockchain
criteria, such as average storage costs, and the average or median block time (i.e., the
time it takes to mine a block). Furthermore, old data that is needed on the selected
blockchain for further analysis or computation should be moved autonomously from the
previously used blockchain to the currently selected chain.

To sum up, the motivational scenario focuses on an SOA that is made up of different
services adopted and operated by several independent organizations. In order to ensure
a certain level of service quality, the organizations agree on several service aspects such
as availability, throughput, average time to answer, etc. in the form of an SLA. Due
to the involvement of different and possibly competing organizations, the blockchain
technology is used as bookkeeper that securely records various kinds of data, especially

39

4. Motivational Scenario

service quality aspects, published by the different service providers and consumers. If
necessary, the blockchain compensates possible SLA violations, e.g., by collecting penalty
charges through smart contracts. To keep the costs low, the most beneficial blockchain
should be used as storage for the log data. In case another blockchain is more beneficial,
this chain should be used as ledger for holding future log data. If old data located on the
previously used blockchain is needed on the selected chain, the required data fragments
should be moved towards this chain.

The challenge of this thesis and its proposed framework is to address the runtime selection
of an appropriate blockchain and the movement of data between the former and another,
more beneficial blockchain. The solution will not be restricted to the requirements of
the described use case. The scenario outlined in this section merely serves as context in
which the proposed framework will be analyzed and evaluated.

40

CHAPTER 5
Solution Approach

This chapter presents concrete requirements of the proposed framework followed by
design decisions and implementation details. As mentioned above, the framework should
monitor several blockchains. In case a blockchain is more beneficial than the chain that is
currently used, a switchover should be initiated. The concrete criteria for the monitoring
and the switchover are outlined in Section 5.1. Technical design decisions are discussed
in Section 5.2. The chapter concludes with implementation details that are highlighted
in Section 5.3.

5.1 Requirements

5.1.1 Monitoring

In order to select the most beneficial blockchain for the switchover, several metrics have
to be gathered and analyzed by the framework for each supported blockchain. In the
following section, metrics that are relevant for the runtime selection algorithm of the
framework are described. Each metric is assigned to one of the following categories:

• Costs: This category includes all metrics that are used to observe the costs for
interactions with a particular blockchain.

• Security and Trust: Metrics regarding trust in a particular blockchain, commu-
nity consensus and controversies, security concerns and reputation belong to this
category.

• Performance: This category covers all performance-related metrics, e.g., transac-
tion throughput, inter-block time, etc.

41

5. Solution Approach

Furthermore, each metric has an associated type:

• Automatic: Metrics of this type are automatically collected by the framework.
There is no manual action or input required. Examples are transaction throughput,
inter-block time, etc.

• Predefined: It is hard to measure metrics of this type automatically, since these
metrics depend on the assessment of the user. Similar to approaches that acquire
also consumer or user input for assessing and selecting service implementations in
SOAs [BHMS05, WV07], the framework expects manual user inputs for quantifying
metrics of this type. An example of a predefined metric is the reputation of a
particular blockchain.

Figure 5.1 provides an overview of the metrics that are gathered by the proposed
framework.

Supported Blockchain Metrics

Costs Performance Security and Trust

M1. Costs for
writing data

M2. Costs for
retrieving data

M3. Data storage
fees

M4. Exchange rates

Automatic

M5. Inter­block
time

M6. Transaction
throughput

Automatic

M7. Level of
decentralization

M8. Hash rate of
the network

Predefined

M9. Required
number of blocks

M10. Reputation

Automatic

Figure 5.1: Metrics that are gathered by the proposed framework.

42

5.1. Requirements

In the following, each metric is described in detail:

M1. Costs for writing data into the blockchain
Description: This metric is an estimated value of the costs for writing one kilobyte

of data into the blockchain. In some blockchains (e.g., Bitcoin),
the storage costs might vary, since users can choose a priority for
their submitted transactions. The priority affects the time until
a transaction gets included in the blockchain and can be specified
with transaction fees. In order to maximize their profit, miners
include transactions with higher fees more likely than those with
lower fees. Thus, transactions with higher fees will be included in
the blockchain faster than those with lower fees. In order to address
the interdependency between transaction fees and the time it takes
until a transaction gets included in the blockchain, the framework
user can specify custom fees. In case no custom fees are provided
to the framework, the framework automatically estimates fees that
will cause submitted transactions to get included within the next
six blocks. The framework calculates the estimated storage costs on
the basis of the provided or estimated transaction fees.

Category: Costs
Unit: EUR or USD per kilobyte
Type: Automatic

M2. Costs for retrieving data
Description: This value is an estimation of the costs for retrieving one kilobyte

of data from the blockchain.
Category: Costs
Unit: EUR or USD per kilobyte
Type: Automatic

M3. Data storage fees
Description: The idea behind data storage fees is to charge users a fee to rent

space in the blockchain. The longer a user wants some data records
to be stored in the blockchain, the more expensive the charged fees
will become. In March 2018, Vitalik Buterin suggested rental or
storage fees for the Ethereum blockchain and outlined how such fees
might work [Cos18].

Category: Costs
Unit: EUR or USD per kilobyte and hour
Type: Automatic

43

5. Solution Approach

M4. Exchange rates
Description: This metric represents the current exchange rate between EUR or

USD and the cryptocurrency of a particular blockchain. These
values are useful for monitoring the growth of the exchange rates
and for calculating costs that have to be paid for interactions with
a particular blockchain.

Category: Costs
Unit: EUR or USD (e.g., the value of one bitcoin in EUR)
Type: Automatic

M5. Inter-block time
Description: The inter-block time specifies the rolling average of the time it

takes to mine a block and is calculated from the blocks that have
been mined during the last 24 hours. For instance, in Bitcoin a
new block is mined approximately every ten minutes, whereas in
Ethereum it takes 12 to 15 seconds until a new block is included
in the blockchain [Min17]. The inter-block time is an important
indicator of a blockchain’s performance.

Category: Performance
Unit: Seconds
Type: Automatic

M6. Transaction throughput
Description: This value specifies the rolling average of the number of transactions

that are processed per second by the system and is calculated from
the transactions that have been mined during the last 24 hours.

Category: Performance
Unit: Number of transactions per second
Type: Automatic

44

5.1. Requirements

M7. Level of decentralization
Description: This metric specifies the distribution of the network’s hash power

among miners, especially mining pools. The framework provides a
mapping between miners and their proportion of mined blocks. The
proportion is specified in percentage and calculated from the recent
blocks that have been inserted into the blockchain during the last
24 hours. This mapping allows the user to make conclusions about
the distribution of the network’s hash power among miners. E.g.,
those miners that own or at least control a large proportion of the
network’s hash power can be easily identified.

Category: Security and Trust
Unit: For each address the proportion in percentage
Type: Automatic

M8. Hash rate of the network
Description: This metric specifies the estimated hash rate the network has per-

formed in the recent 24 hours. The estimated hash rate is computed
from the current difficulty and from the blocks that have been mined
during the last 24 hours. The hash rates can be used to observe the
growth of the overall network’s hash power.

Category: Security and Trust
Unit: Hashes per second
Type: Automatic

M9. Required number of subsequent blocks
Description: This value specifies the number of blocks that should confirm a

newly inserted block in the blockchain. The more blocks there are
on top of a new block, the safer it is to assume that the new block
is immutable and thus remains permanently in the blockchain. For
instance, in the Bitcoin system a new block needs to be buried
under six subsequent blocks in order to become irreversible with
high probability [BJZ+17]. With an inter-block time of about ten
minutes, this can take up to one hour.

Category: Security and Trust
Unit: Number of blocks
Type: Predefined

45

5. Solution Approach

M10. Reputation
Description: This metric is a value between 0 and 10 and indicates the degree

of reputation a blockchain is associated with. The reputation can
include various properties such as trust, frequency of new feature
releases, number of forks, community consensus and controversies,
security concerns, etc. The value 0 indicates the worst reputation,
whereas the value 10 represents an excellent reputation.

Category: Security and Trust
Unit: Positive integer between 0 and 10
Type: Predefined

The list of supported metrics is not restricted to the outlined metrics and can be extended,
if desired.

5.1.2 Runtime Selection and Switchover

Based on the metrics that are gathered by the monitoring component of the framework,
the runtime selection algorithm decides whether a switchover to another blockchain
should be suggested. In general, a switchover should be suggested in the following two
cases:

1. Too many metrics (the concrete number depends on the settings provided by the
user) fall below specified thresholds or exceed them, i.e., they violate user-defined
thresholds. In such a case, the most beneficial blockchain of the other supported
chains is selected and a switchover is suggested, regardless of whether the currently
used blockchain is the most beneficial chain.

2. The runtime selection algorithm detects a more beneficial blockchain and no metric
has fallen below a threshold or has exceeded a specified limit.

Switchover Suggestions

On the basis of the provided settings and the gathered metrics, the framework automati-
cally suggests the most beneficial blockchain. The user can subscribe to these switchover
suggestions and define user-specific actions which are triggered for each new suggestion.
For instance, the user can define to start a switchover to the suggested blockchain imme-
diately after a switchover suggestion is received. Another possible action would be the
suppression of subsequents suggestions.

Thresholds

For each gathered metric, an optional upper limit and an optional lower limit can be
defined by the user. If a metric falls below the lower limit or exceeds the upper limit, the
metric is considered as violated.

46

5.1. Requirements

Metric-specific Timespans for Threshold Validations

Furthermore, the user can define a timespan for each metric. In case such a timespan is
defined and a metric violates some thresholds, the metric is only considered as invalid if
the particular metric has fallen below the lower limit or has exceeded the upper limit
for the entire timespan. If no timespan is defined, a metric is considered as invalid
immediately after a violation of a limit has been detected.

Switchover Condition for Threshold Validations

The framework allows users to define a condition that dictates whether a switchover
should be suggested or not. This condition is evaluated on the basis of the threshold
validation results of the supported metrics. A threshold validation result is a boolean
value that indicates whether a metric is considered as valid or not. True means that
the validation of a particular metric has been successful and no threshold has been
violated. If a metric’s value has fallen below or has exceeded user-defined limits for the
entire timespan (if defined), the threshold validation result is false. Any new data input
(e.g., a new block) will trigger a new threshold validation that computes fresh validation
results for each metric. These validation results are applied to the specified switchover
condition. Only if the condition evaluates to true, a switchover to another blockchain
is suggested. The switchover condition can be any boolean expression composed of the
threshold validation results. For example, a user can define that the condition evaluates
to true and therefore suggests a switchover only if both the transaction throughput and
the storage fees are considered as invalid (i.e., their threshold validation results evaluate
to false). In the mentioned example, the condition is a simple logical conjunction of
the negated threshold validation results and therefore only suggests a switchover if both
threshold validation results evaluate to false.

Weighted Ranking

The framework calculates for each supported blockchain the benefit on the basis of the
gathered metrics. For the calculation of a blockchain’s benefit and the comparison of
multiple blockchains, a weighted ranking is introduced. The user specifies for each metric
a weight that indicates the degree of importance. Table 5.1 shows six weights that are
offered by the framework. Each metric gets assigned one of five different scores by the
framework. These scores are listed in Table 5.2. For each metric, the user has to provide
an assignment that specifies which score is assigned to a metric on the basis of the
metric’s value. For instance, a user might define that inter-block times between 100 and
200 seconds are rewarded with a score of 2.

47

5. Solution Approach

Table 5.1: Weights that are offered by the framework and their meaning.

Weight Meaning
0 No importance
1 Very low importance
2 Low importance
3 Medium importance
4 High importance
5 Very high importance

Table 5.2: The score definitions.

Score Meaning
0 Does not satisfy
1 Partly satisfies
2 Substantially satisfies
3 Almost satisfies
4 Fully satisfies

The framework performs the following computation steps for each supported blockchain
in order to reveal the most beneficial chain:

• For each gathered metric, the metric’s score is multiplied with the user-defined
weight.

• The multiplication results (i.e., the weighted scores) are summed up.

• The blockchain with the highest weighted score is considered as the most beneficial
chain and, if no metric is invalid due to threshold violations, is therefore selected for
the switchover. In case two or more blockchains have the same score, one blockchain
is selected in a random way. If the blockchain with the highest weighted score is
not selected due to the violation of user-defined limits, the algorithm verifies the
blockchain with the second highest score and so forth.

Table 5.3 shows an example of a weighted ranking, where two blockchains are evaluated.
Blockchain A has a weighted score of 119, whereas Blockchain B has a weighted score of
124 and is therefore selected as destination chain for the switchover (under the assumption
that no metric is invalid due to threshold violations).

Timespan for the Weighted Ranking

In case another blockchain is more beneficial, i.e., it has a higher weighted score in
the ranking than the currently used chain, the user-defined timespan specifies the time

48

5.1. Requirements

Table 5.3: An example of a weighted ranking, where two blockchains are evaluated.

Blockchain A Blockchain B

Metric Weight Score Weighted Score Score Weighted Score

M1 5 4 20 3 15

M2 3 4 12 4 12

M3 4 4 16 2 8

M4 2 2 4 4 8

M5 3 3 9 3 9

M6 3 2 6 3 9

M7 5 3 15 4 20

M8 4 3 12 2 8

M9 5 4 20 3 15

M10 5 1 5 4 20

Total 39 30 119 32 124

that has to elapse until a switchover is suggested. This timespan prevents immediate
switchovers between blockchains. For instance, if the scores of multiple blockchains
are very close together, it is possible that for one moment another blockchain is more
beneficial and a few seconds later, a third chain is the preferred one. If no timespan
is defined, the framework starts the switchover immediately after a more beneficial
blockchain has been detected.

Amount of Data

The framework allows the user to define that the amount of data records which should be
transferred from the currently used blockchain to the new one depends on the metric(s)
that caused the switchover suggestion. For instance, if people are losing trust in the
currently used blockchain, it might be essential to transfer all data or at least data of
a specific period of time to the destination blockchain. Therefore, the framework will

49

5. Solution Approach

provide each metric’s weighted score and threshold validation result in the returned
switchover suggestions. On the basis of this information, the user can define a custom
strategy specifying the period of time that determines the amount of data which should
be moved towards the destination blockchain.

5.1.3 Resource Consumption

The framework should perform as efficiently as possible in terms of CPU utilization and
memory consumption.

5.1.4 Supported Blockchains

Since Bitcoin and Ethereum are very popular blockchains, the proposed framework
supports these blockchains by default. Furthermore, also Ethereum Classic and Expanse
are integrated by default.

5.1.5 Extensibility

The list of supported blockchains is not static, i.e., new blockchains can be added later
on, if desired. Adding new blockchains to the framework does not require to change the
framework itself.

5.2 Technical Design
In the second part of this chapter, the technical design of the proposed framework is
introduced. The technical design defines how the specified requirements can be solved
by the means of concrete design and technology decisions. In the following sections, a
general overview of the framework architecture, the most important design decisions, the
technology stack, and concrete APIs between the involved components are described.

5.2.1 Architecture Overview

In Figure 5.2, the most important components of the framework’s architecture are
illustrated. The involved components are described in the subsequent sections.

External Data Sources

External data sources are components that provide relevant information for the framework
but they are not part of the framework itself. The Blockchain Manager does not care
about where the data come from, i.e., it is irrelevant if data is requested from public
services, from public nodes or from a network node that runs on a private infrastructure,
since the Metric Collector translates the received data into a neutral format that can be
processed by the Blockchain Manager. We decide to run for each blockchain a private
network node, since public services or public nodes have insufficient rate limits or can
become temporarily unavailable in case too many other users call these services or nodes.

50

5.2. Technical Design

Bitcoin NetworkBitcoin Node

Bitcoin Blockchain

Bitcoin Metric Collector

Bitcoin Data Access
Service

Insight API (HTTP)

Ethereum NetworkEthereum Node

Ethereum Blockchain

Ethereum Metric Collector

Ethereum Data Access
Service

JSON­RPC API

Ethereum Classic
Network

Ethereum Classic
Node

Ethereum Classic Blockchain

Ethereum Classic Metric
Collector

Ethereum Classic Data
Access Service

JSON-RPC API

Expanse NetworkExpanse Node

Expanse Blockchain

Expanse Metric Collector

Expanse Data Access
Service

JSON-RPC API

Blockchain Manager

Weighted Ranking

Threshold Validation

Switchover Component

IMetricCollector

IMetricCollector

IMetricCollector

IMetricCollector

IDataAccessService

IDataAccessService

IDataAccessService

IDataAccessService

Decentralized Network

Component

Required Interface

Exposed Interface

Interaction

Figure 5.2: An overview of the framework’s architecture.

The Blockchain Component

The Blockchain component represents a blockchain that has been registered at the
Blockchain Manager. As illustrated in Figure 5.2, each registered blockchain contains
the following subcomponents:

• Metric Collector

• Data Access Service

A blockchain’s Metric Collector is responsible for downloading new blocks from the
network, for calculating the values of the metrics M1 - M8 and for exposing these values
through data outputs. The values of the metrics M9 and M10 are not computed by the
Metric Collector, since these values must be provided by the framework user.

The design of the Metric Collector incorporates the reactive programming paradigm. In
the reactive programming paradigm, data flows and the propagation of changes play a

51

5. Solution Approach

key role [Pat16]. If a data source changes its value, the change is propagated through
the entire topology, i.e., each operator or observer that is part of the topology or is
registered to receive notifications is informed about changes. Thus, reactive programming
is well-suited for developing event-driven and interactive applications [BCC+13].

Each new block that is integrated into the blockchain affects the calculation of the metric
values, and changes of metric values affect the weighted ranking system and the threshold
validation mechanism of the Blockchain Manager. Therefore, every time a new block is
received by the network node, the information is propagated through all computation
steps that are internal to the Metric Collector and to the Blockchain Manager. For that
reason, the reactive programming paradigm is an integral element of the technical design
of both the Metric Collector and the Blockchain Manager. Figure 5.3 illustrates the
design of the Metric Collector. The depicted stream topology is the same for all four
Metric Collectors, merely some operators perform different calculations.

CryptoCompare
Public API

Network
Node

Get Exchange
Rates

Get Recent
Blocks

Calculate
Storage Fees

Calculate
Reading Costs

Calculate
Writing CostsM1

M2

M3

M4

Evict Outdated
Blocks

Calculate
Miner Proportion

Calculate
Hash Rate

Calculate
Tx Throughput

Calculate
Inter­block Time M5

Network

M6

M7

M8

Data Outputs Internal Operators External Data Sources

Data output automatically computed by the Metric
Collector
Operator that subscribes to input streams,
transforms data and generates an output stream
A network node (e.g., a Bitcoin node) that interacts
with a decentralized network

Decentralized network

Figure 5.3: A simplified illustration of the stream topology that is utilized by the Metric
Collector in order to calculate the metric values.

The operator Get Exchange Rates continuously requests the current price in EUR or
USD for the cryptocurrency that is associated with the Metric Collector’s blockchain.
The exchange rates are propagated to the subsequent operators Calculate Writing Costs,
Calculate Reading Costs, Calculate Storage Fees and to the data output M4.

52

5.2. Technical Design

The operator Calculate Writing Costs estimates the costs in EUR or USD that have to
be paid for writing one KB of data into the Metric Collector’s blockchain. A common
practice to store data in the Bitcoin blockchain is to use the script operation code
OP_RETURN. OP_RETURN marks a transaction output as invalid and accepts a
user-defined sequence of up to 40 bytes [Apo17, Com18a]. In order to write data to
the Bitcoin blockchain, a transaction with one input and two outputs (one output that
spends the remaining coins and another one that holds the data) is sufficient. Such a
transaction that stores 40 bytes of data in its second output has an overall size of 242
bytes. To store one KB of data, 26 transactions are required. The overall size of these
26 transaction is 25 · 242 + 227 = 6, 277. 227 bytes is the size of the transaction that
stores the remaining 24 bytes. The overall size of 6,227 bytes is multiplied with the
user-defined transaction fees. If the user does not provide transaction fees, an estimation
of transaction fees is requested from external services. Ethereum-based blockchains offer
two possibilities for storing data into the blockchain. The first possibility is to deploy
a smart contract that manages the data. Read and write operations are handled by
the smart contract. The second possibility is to store the data in the input field of a
transaction. Every transaction costs 21,000 gas, every non-zero byte that is stored in a
transaction’s input field costs 68 gas [Woo14]. The number of bytes that can be stored in
a transaction is bounded by the current block gas limit. At the time of writing this thesis,
more than one KB of data can be stored in an Ethereum transaction. Thus, only one
transaction with a maximum gas usage of 21, 000 + 68 · 1024 = 90, 632 is required to store
one KB of data in a transaction. Saving a 32-byte word to a smart contract’s storage
costs 20,000 gas [Woo14]. In case one KB of data should be stored in the contract’s
storage, 21, 000 + 20, 000 · 1024

32 = 661, 000 gas has to be paid. 21,000 gas have to be
paid for the transaction that contains the smart contract call. Therefore, storing data
in transactions is the cheaper option. If the user does not set a preferred gas price, the
Metric Collector requests the median gas price from the network node (Ethereum node,
Ethereum Classic node or Expanse node). The result is propagated to the data output
M1.

The operator Calculate Reading Costs computes the price in EUR or USD for retrieving
one KB of data from the Metric Collector’s blockchain. In the current design, no fees
have to be paid for reading data located at Bitcoin, Ethereum, Ethereum Classic or
Expanse. Thus, this operator returns always 0. This operator has been introduced if data
is requested via smart contract calls that might cost some gas. The result is propagated
to the data output M2.

At the time of writing this thesis, there are no rental fees that have to be paid for storing
data in the Bitcoin, Ethereum, Ethereum Classic or Expanse blockchain. Since Vitalik
Buterin proposed data storage fees for Ethereum, this metric is included in the Metric
Collector’s design in order to be on the safe side [Cos18]. The corresponding operator is
Calculate Storage Fees. This operator returns always 0 and the result is propagated to
the data output M3.

53

5. Solution Approach

The operator Get Recent Blocks continuously receives new blocks from the network node
depicted as rectangle in Figure 5.3. For interactions with the network node, the exposed
interfaces are used. Detailed information about interfaces are described in Section 5.2.3.
Each new block is propagated to the next operator Evict Outdated Blocks. This operator
stores all received blocks in a list and continuously checks the creation dates of the blocks.
If a block is older than 24 hours, it is removed from the list. Thus, the operator ensures
that only those blocks that have been mined during the last 24 hours affect subsequent
computation steps.

The operator Calculate Inter-block Time computes the average time (in seconds) between
two blocks by applying the formula

24 · 3600
blockcount

. (5.1)

The result is propagated to the data output M5. The same formula is used by the
Metric Collectors of all supported blockchains (Bitcoin, Ethereum, Ethereum Classic and
Expanse).

The transaction throughput is computed by the operator Calculate Tx Throughput.
This operator applies the following formula in order to calculate the average number of
transactions that are processed per seconds:∑n

i=1 txcounti

24 · 3600 . (5.2)

n denotes the total number of blocks and txcounti denotes the number of transactions of
block i. The result is propagated to the data output M6.

The calculation of the distribution of the hash power (i.e., the calculation of metric
M7) is performed in two different ways due to fundamental differences between Bitcoin
and Ethereum-based blockchains. The operator Calculate Miner Proportion of Bitcoin’s
Metric Collector just needs to count the number of blocks for each miner that has mined
at least one block during the last 24 hours. In a further step, each miner’s number of
blocks is divided by the overall number of blocks in order to get each miner’s proportion.
In order to compute the distribution of the hash power of the Ethereum, Ethereum
Classic or Expanse network, uncle blocks must also be taken into account, since miners
are also rewarded for the integration of these blocks. The result is propagated to the
data output M7.

The operator Calculate Hash Rate computes the estimated number of hashes per seconds
the network has performed in the last 24 hours. In order to calculate the overall hash
rate of the Bitcoin network, the formula

blockcount

144 · D · 232

600 (5.3)

is applied. blockcount denotes the number of blocks that have been mined during the last
24 hours and D specifies the network’s current difficulty that must be taken into account

54

5.2. Technical Design

by miners for solving the cryptographic puzzle. 144 is the number of blocks that are

expected to get mined during 24 hours. D · 232

600 specifies the expected number of hashes
that have to be calculated in order to find a block with difficulty D. Every 2016 blocks
the difficulty is changed such that the previous 2016 blocks should have been found at the
rate of one every ten minutes (600 seconds) [Com17]. The hash rate of Ethereum-based
networks is calculated by summing up the difficulty field of each block and each uncle
block that have been included into the blockchain during the last 24 hours. The result is
propagated to the data output M8.

The second subcomponent of the Blockchain component is the Data Access Service. The
Data Access Service hides internal blockchain-specific implementation details and exposes
interface methods for read and write operations. The Blockchain Manager stores data to
or reads data from the blockchain through these interface methods. Thus, the Blockchain
Manager does not need to care about blockchain-specific details.

The Blockchain Manager

The central component of the framework is the Blockchain Manager. The Blockchain
Manager has a list of all supported blockchains. Each blockchain must be registered
at the Blockchain Manager in order to get recognized by the selection and switchover
algorithm. Furthermore, the Blockchain Manager exposes methods enabling the user

• to specify settings that affect the weighted ranking system and the threshold
validation mechanism,

• to register a blockchain,

• to preselect a blockchain that is considered as the most beneficial chain for the
startup phase,

• to write data to the current blockchain,

• to subscribe to switchover suggestions and

• to initiate a switchover to another blockchain.

The settings for the weighted ranking system include

• a defined weight for each metric,

• a score function for each metric that specifies which score is assigned to the metric
based on its value (e.g., an inter-block time lower than 30 seconds results in a score
of 4) and

• a switchover timespan that specifies the time that has to elapse until a new
switchover is suggested.

55

5. Solution Approach

Table 5.4: The data type of each metric.

Metric ID Data type

M1 Positive Decimal incl. 0
M2 Positive Decimal incl. 0
M3 Positive Decimal incl. 0
M4 Positive Decimal incl. 0
M5 Positive Decimal incl. 0
M6 Positive Decimal incl. 0
M7 Mapping (key: String, value: Positive Decimal incl. 0)
M8 Positive Decimal incl. 0
M9 Positive Integer incl. 0
M10 Positive Integer ≥ 0 and ≤ 10

Each score function takes a metric value as input and returns an integer value between 0
and 5. The concrete data types of the metrics are outlined in Table 5.4.

The threshold validation settings contain

• for each metric a threshold validation function that takes the metric’s value as
input and returns true if a given value is valid or false, if the value violates at least
one threshold,

• for each metric a timespan that defines how long a metric’s value must fall below a
lower limit or exceed an upper limit until the metric is considered as violated, and

• a switchover decision function.

The switchover decision function takes the latest threshold validation result of each
metric and decides whether a switchover should be suggested. In case a switchover should
be suggested, the function returns true, otherwise false. This function addresses the
switchover condition for threshold validations introduced in Section 5.1.2. A threshold
validation result of a particular metric is computed by applying the metric’s value to the
metric’s threshold validation function with simultaneous consideration of the specified
timespan. Only if the metric’s threshold validation function continuously returns false
and the timespan has elapsed, the threshold validation result is false. Each time, the
threshold validation function of a metric evaluates to true, the counter for the elapsed
timespan is reset.

The outlined configuration settings have to be provided by the framework user and they
directly affect the internal logic of the Blockchain Manager. The internal structure of the
Blockchain Manager is presented in Figure 5.4.

56

5.2. Technical Design

Co
mb

ine

La
tes
t

Se
lec

t m
os
t

be
ne
fic
ial
 ch

ain

Sw
itc
ho
ve
r

Su
gg
es
tio
n

Da
ta
ou
tpu

t a
uto

ma
tic
all
y c

om
pu
ted

 by
 th
e M

etr
ic

Co
lle
cto

r o
r t
he
 B
loc

kc
ha
in
M
an
ag
er

Da
ta
ou
tpu

t m
an
ua
lly
 se
t b
y t
he

fra
me

wo
rk
 us

er

Op
era

tor
 th
at
su
bs
cri
be
s t
o i
np
ut
str
ea
ms

,
tra
ns
fo
rm
s d

ata
 an

d g
en
era

tes
 an

 ou
tpu

t s
tre
am

Co
mb

ine

La
tes
t

Ca
lcu

lat
e

W
eig

hte
d S

co
re

Va
lid
ate

Th
res

ho
lds

Co
mb

ine

La
tes
t

M
9

M
10

Co
mb

ine

La
tes
t

Ca
lcu

lat
e

W
eig

hte
d S

co
re

Va
lid
ate

Th
res

ho
lds

Co
mb

ine

La
tes
t

M
9

M
10

M
1

M
2

M
3

M
4

Ca
lcu

lat
e

M
ine

r P
ro
po
rti
on

Ca
lcu

lat
e

Ha
sh
 R
ate

Ca
lcu

lat
e

Tx
 T
hr
ou
gh
pu
t

Ca
lcu

lat
e

In
ter
­b
loc

k t
im
e

M
5

M
6

M
7

M
8

Da
ta
 O
ut
pu
ts

M
etr

ic
Co

lle
cto

r o
f B

loc
kc
ha
in
 N

M
1

M
2

M
3

M
4

Ca
lcu

lat
e

M
ine

r P
ro
po
rti
on

Ca
lcu

lat
e

Ha
sh
 R
ate

Ca
lcu

lat
e

Tx
 T
hr
ou
gh
pu
t

Ca
lcu

lat
e

In
ter
­b
loc

k t
im
e

M
5

M
6

M
7

M
8

Da
ta
 O
ut
pu
ts

M
etr

ic
Co

lle
cto

r o
f B

loc
kc
ha
in
 1

Fi
gu

re
5.
4:

A
sim

pl
ifi
ed

ill
us
tr
at
io
n
of

th
e
in
te
rn
al

st
re
am

to
po

lo
gy

th
at

is
ut
ili
ze
d
by

th
e
B
lo
ck
ch
ai
n
M
an

ag
er

in
or
de

r
to

de
te
rm

in
e
th
e
m
os
t
be

ne
fic

ia
lc

ha
in
.

57

5. Solution Approach

The operator Combine Latest subscribes to all exposed data outputs of a Metric Collector
and aggregates the latest value of each data output. Each time a new value arrives at any
data output, the aggregation logic is performed. Thus, the emitted result of this operator
reflects always the newest values of each data output and is propagated to the operators
Calculate Weighted Score and Validate Thresholds. The operator Combine Latest is
applied for each supported blockchain’ Metric Collector as depicted in Figure 5.4.

The operator Calculate Weighted Score computes the weighted score for each metric as
well as an overall blockchain score. In order to get each metric’s score, the metric’s score
function provided with the weighted ranking settings is applied to the metric’s value. In
a further step, the metric scores a multiplied with the corresponding weights.

The operator Validate Thresholds applies each metric value to the metric’s threshold
validation function with simultaneous consideration of the specified timespan. Only if
the threshold validation function continuously returns false during the entire timespan,
the metric is considered as invalid. The operator’s result contains for each metric the
threshold validation result.

The results of the operators Calculate Weighted Score and Validate Thresholds are
combined by a further application of the operator Combine Latest and the combined
result is propagated to the next step which is also an application of the Combine
Latest operator. This application combines the results of all registered blockchains and
propagates the combination of all blockchain results to the operator Select Most Beneficial
Blockchain. This operator evaluates the switchover decision function provided with the
threshold validation settings for each blockchain’s threshold validation results and selects
those blockchain that has the highest weighted score and is considered as valid, i.e. the
switchover decision function evaluates to false (no threshold violations).

The data output Switchover Suggestion enables the user to subscribe to switchover
suggestions containing the current blockchain, the suggested blockchain and the weighted
ranking and threshold validation results. The framework user can add custom logic to
this subscription that determines on the basis of the switchover suggestion whether a
switchover should be initiated and how many data records should be moved to the new
chain.

In order to initiate a switchover, the exposed method for starting a switchover has to
be called. This method accepts the new blockchain and a timespan (start date and end
date) as inputs. On the basis of the timespan, the amount of data is selected that is
moved to the new blockchain. During the switchover process, there are no restrictions
regarding write operations. In case a switchover is still processing, all new data strings
that should be stored into the current blockchain are buffered and written to the new
blockchain after the switchover process has finished.

Due to the reactive nature of the framework design, any new data input is immediately
propagated through the entire topology and the Blockchain Manager is able to react on
new inputs by reevaluating the blockchains.

58

5.2. Technical Design

Table 5.5: The technology stack.

Technology Usage

Java SE 101 (Oracle Java SE
Development Kit 10)

Programming language

Apache Maven2 3.2.1 Build and dependency management
Spring Boot3 2.0.3.RELEASE Consume HTTP services with Spring’s RestTem-

plate
Jackson Datatype JSR3104

2.9.7
JSON serialization and deserialization

RxJava5 2.2.0 Building an asynchronous stream topology
web3j6 3.5.0 Communication with nodes on Ethereum

blockchains
Logback-classic7 Logging
Apache Commons Codec8 1.11 Hex encoding and decoding
JUnit Jupiter9 5.1.0 Unit testing
mockito-core10 2.21.0 mocking framework for unit tests
gerba11 1.5.0 Bitcoin offline transaction generator

5.2.2 Technology Stack

Table 5.5 provides an overview of the programming language, the technologies and the
libraries that are used to implement the proposed framework.

The framework is developed with Java SE 10 (Oracle Java SE Development Kit 10) as
programming language, since Java has a huge community and there are many frameworks
written for Java. Dependencies and the build lifecycle are managed with Apache Maven.
Apache Maven loads required software libraries from a central repository and integrates
them into the build of the framework. Spring’s RestTemplate is used to consume HTTP
services. In order to convert Java objects to JSON and vice versa, Jackson is used.
RxJava is a library for composing asynchronous and event-based software components by
using observable sequences. The stream topology is developed with RxJava. web3j is
a modular, reactive, type safe Java and Android library for communicating with nodes

1https://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-
4416644.html

2https://maven.apache.org/
3https://spring.io/projects/spring-boot
4https://github.com/FasterXML/jackson
5https://github.com/ReactiveX/RxJava
6https://web3j.io/
7https://logback.qos.ch/
8https://commons.apache.org/proper/commons-codec/
9https://junit.org/junit5/

10https://site.mockito.org/
11https://github.com/aafomin/gerbera

59

https://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644.html
https://maven.apache.org/
https://spring.io/projects/spring-boot
https://github.com/FasterXML/jackson
https://github.com/ReactiveX/RxJava
https://web3j.io/
https://logback.qos.ch/
https://commons.apache.org/proper/commons-codec/
https://junit.org/junit5/
https://site.mockito.org/
https://github.com/aafomin/gerbera

5. Solution Approach

Table 5.6: The software clients used for running network nodes.

Software Blockchain

Bitcore12 4.1.1 Bitcoin node
Parity13 2.0.1 Ethereum and Ethereum Classic node
Gexp14 1.7.2 Expanse node

of the Ethereum network via JSON-RPC. Logback is used to format and categorize log
output. Apache Commons Code comes into play if hex encoding and decoding is required.
Unit tests are written with JUnit Jupiter and mockito. gerba is an offline transaction
generator that provides helper methods to generate raw hex Bitcoin transactions.

The software clients that are used for running network nodes (external data sources) are
listed in Table 5.6.

These nodes are used by the Metric Collector and by the Data Access Service for retrieving
data and for broadcasting new transactions. All nodes expose API endpoints as depicted
in Figure 5.2. Those API endpoints that are relevant for this thesis are discussed in
Section 5.2.3.

5.2.3 Interface Descriptions

In the following sections, Java interfaces and node API endpoints that are relevant for
the implementation of the proposed are described.

IMetricCollector

This interface has to be implemented by each Metric Collector. The following tables
provide an overview all interface methods:

Table 5.7: The method getBlockObservable of the Java interface IMetricCollector.

getBlockObservable

Description Returns an Observable that emits a stream of block lists,
where each list contains all blocks that have been mined
during the last 24 hours.

Parameters None

Return type Observable<List<Block�

12https://bitcore.io/api/
13https://www.parity.io/ethereum/
14https://github.com/expanse-org/go-expanse

60

https://bitcore.io/api/
https://www.parity.io/ethereum/
https://github.com/expanse-org/go-expanse

5.2. Technical Design

Table 5.8: The method getAvgBlockTimeObservable of the Java interface
IMetricCollector.

getAvgBlockTimeObservable

Description Returns an Observable that emits a stream of inter-block
times.

Parameters None

Return type Observable<Double>

Table 5.9: The method getTransactionThroughputObservable of the Java interface
IMetricCollector.

getTransactionThroughputObservable

Description Returns an Observable that emits a stream of values that
represent the number of transactions processed per second.

Parameters None

Return type Observable<Double>

Table 5.10: The method getBlockPercentagePerMinerObservable of the Java interface
IMetricCollector.

getBlockPercentagePerMinerObservable

Description Returns an Observable that emits a stream of mappings
between miner addresses and the corresponding proportions
of mined blocks.

Parameters None

Return type Observable<Map<String, Double�

61

5. Solution Approach

Table 5.11: The method getNetworkHashrateObservable of the Java interface
IMetricCollector.

getNetworkHashrateObservable

Description Returns an Observable that emits a stream of values repre-
senting the network’s hash rate.

Parameters None

Return type Observable<Double>

Table 5.12: The method getExchangeRateObservable of the Java interface
IMetricCollector.

getExchangeRateObservable

Description Returns an Observable that emits a stream of values repre-
senting the actual price for the underlying cryptocurrency.

Parameters None

Return type Observable<BigDecimal>

Table 5.13: The method getCostsForWritingDataObservable of the Java interface
IMetricCollector.

getCostsForWritingDataObservable

Description Returns an Observable that emits a stream of values rep-
resenting the costs for writing one KB of data into the
blockchain.

Parameters None

Return type Observable<BigDecimal>

62

5.2. Technical Design

Table 5.14: The method getCostsForRetrievingDataObservable of the Java interface
IMetricCollector.

getCostsForRetrievingDataObservable

Description Returns an Observable that emits a stream of values rep-
resenting the costs for reading one KB of data from the
blockchain.

Parameters None

Return type Observable<BigDecimal>

Table 5.15: The method getStorageFeeObservable of the Java interface IMetricCollector.

getStorageFeeObservable

Description Returns an Observable that emits a stream of values repre-
senting the rental fees that have to be paid for one KB of
data per hour.

Parameters None

Return type Observable<BigDecimal>

IDataAccessService

The IDataAccessService interface provides methods for writing data to and reading
data from the underlying blockchain. The following tables describe the methods of the
interface:

Table 5.16: The method getData of the Java interface IDataAccessService.

getData

Description Returns a list of all data strings that have been written to
the underlying blockchain within the given date range.

Parameters ZonedDateTime from, ZonedDateTime to

Return type List<String>

63

5. Solution Approach

Table 5.17: The method writeData of the Java interface IDataAccessService.

writeData

Description Writes the given string into the underlying blockchain.

Parameters String data

Return type void

Table 5.18: The method writeDataList of the Java interface IDataAccessService.

writeDataList

Description Writes all strings of the given list into the underlying
blockchain.

Parameters List<String>

Return type void

Bitcore

Bitcore supports the Insight API. The Insight API is a Bitcoin HTTP and web socket
API service for requesting blockchain information and for submitting transactions. A
detailed description of the API endpoints is given at https://github.com/bitpay/
insight-api. The following tables merely list those API endpoints that are relevant
for the implementation of the proposed framework.

Table 5.19: Insight API endpoint for requesting the block hash by its height.

Get Block Hash By Height

Description Returns the hash of the block that has the given block number
(height).

Request GET http://node-ip/insight-api/block-index/{height}

Response JSON object holding the hash of the block.

64

https://github.com/bitpay/insight-api
https://github.com/bitpay/insight-api

5.2. Technical Design

Table 5.20: Insight API endpoint for requesting a transaction by hash.

Get Transaction By Hash

Description Returns the transaction with the given id (hash).

Request GET http://node-ip/insight-api/tx/{txid}

Response JSON object representing the requested transaction.

Table 5.21: Insight API endpoint for requesting basic network information.

Get Network Information

Description Returns basic information about the Bitcoin network such
as protocol version, number of blocks, difficulty, etc.

Request GET http://node-ip/insight-api/status?q=getInfo

Response JSON object representing the network information.

Table 5.22: Insight API endpoint for requesting a block by its hash.

Get Block By Hash

Description Returns the block with the given hash.

Request GET http://node-ip/insight-api/block/{hash}

Response JSON object representing the requested block.

Table 5.23: Insight API endpoint for requesting transactions by address.

Get Transactions By Address

Description Returns a list of transactions sent from the given address.

Request GET http://node-ip/insight-api/txs?address={address}

Response JSON object representing the list of transactions.

65

5. Solution Approach

Table 5.24: Insight API endpoint for requesting unspent transaction outputs.

Get Unspent Transaction Outputs By Address

Description Returns a list of unspent transaction outputs belonging to
the given address.

Request GET http://node-ip/insight-api/addr/{address}/utxo

Response JSON object representing the list of unspent transaction
outputs.

Table 5.25: Insight API endpoint for sending transactions.

Send Transaction

Description Broadcasts the given transaction to the network.

Request POST http://node-ip/insight-api/tx/send

Request Body The signed transaction as hex string.

Response JSON object containing the transaction’s hash.

Parity and Gexp

Both Parity and Gexp support common JSON-RPC APIs such as eth, net and web3. A
detailed description of these APIs is given at https://wiki.parity.io/JSONRPC.
The following tables merely list those API endpoints that are relevant for this thesis.

Table 5.26: JSON-RPC endpoint for requesting the transaction count.

eth_getTransactionCount

Description Returns the number of transactions sent from an address.

Parameters An address and a default block parameter.

Response Integer representing the number of transactions.

66

https://wiki.parity.io/JSONRPC

5.2. Technical Design

Table 5.27: JSON-RPC endpoint for requesting an uncle by block hash and index.

eth_getUncleByBlockHashAndIndex

Description Returns the uncle at the given index position of the block
identified by the given hash.

Parameters The hash of a block and the uncle’s index position.

Response Information about the uncle at the given index position of a
block.

Table 5.28: JSON-RPC endpoint for requesting a block by its number.

eth_getBlockByNumber

Description Returns the block with the given number.

Parameters Block number and a boolean value indicating whether full
transaction objects should be included.

Response Information about the requested block. In case the boolean
parameter is set to true, the block’s information structure
contains also full transaction objects.

Table 5.29: JSON-RPC endpoint for requesting the current block number.

eth_blockNumber

Description Returns the number of the most recent block.

Parameters None.

Response The block number as integer.

Table 5.30: JSON-RPC endpoint for requesting the current gas price.

eth_gasPrice

Description Returns the current gas price in wei.

Parameters None.

Response An integer representing the current gas price.

67

5. Solution Approach

Table 5.31: JSON-RPC endpoint for sending a transaction.

eth_sendRawTransaction

Description Broadcasts a message to the network.

Parameters The signed transaction data.

Response The new transaction’s hash.

Table 5.32: Parity JSON-RPC endpoint for retrieving pending transactions.

parity_pendingTransactions

Description Returns all pending transactions that are known to the node.
This API endpoint is only supported by Parity.

Parameters None.

Response A list of all pending transactions known to the node.

Table 5.33: Gexp JSON-RPC endpoint for retrieving pending transactions.

eth_pendingTransactions

Description Returns all pending transactions sent from one of the ad-
dresses that are known to the Gexp node. This API endpoint
is only supported by Gexp.

Parameters None.

Response A list of pending transactions.

5.3 Implementation
In this section, we will present details about the implementation of the previously designed
framework. The next pages cover installation and deployment instructions in order to
get the developed framework up and running. These steps include the setup of VMs in
the Google Cloud Platform, and the installation and configuration of each network node.
The section concludes with Java examples that illustrate how to get the framework up
and running.

5.3.1 Deployment and Setup of the Network Nodes

For each supported blockchain, we run a network node that is used by the blockchain’s
Metric Collector and Data Access Service to interact with the network. These nodes

68

5.3. Implementation

Table 5.34: Allocated VM resources.

VM (Network Node) CPU Memory Storage

Bitcoin 1 vCPU 4 GB RAM 500 GB HDD
Ethereum 1 vCPU 4 GB RAM 100 GB HDD
Ethereum Classic 1 vCPU 4 GB RAM 50 GB HDD
Expanse 1 vCPU 4 GB RAM 30 GB HDD

are deployed on the Google Cloud Platform. For each node, a separate VM instance
with a fresh Ubuntu 18.04.1 LTS installation is created. Table 5.34 shows the resources
allocated to each VM instance.

An important aspect to clarify is the reason why we allocated only 100 GB HDD storage to
the Ethereum VM and 500 GB HDD storage to the Bitcoin VM. As described in previous
sections, we use the Parity software to run an Ethereum network node. Parity offers
a flag that is called warp and instructs the node to perform the warp synchronization.
The warp synchronization allows for an extremely fast synchronization that skips almost
all of the block processing and injects downloaded snapshots directly into the database.
This mechanism is very fast and needs much less storage than a full synchronization
where the entire Ethereum blockchain is downloaded and processed.

It is recommended to allocate more resources in order to accelerate the synchronization
phase, e.g., 4 vCPUs and 15 GB RAM. Later on, it is sufficient to allocate those resources
that are listed in Table 5.34.

Installation and Configuration of the Bitcoin Node

In order to run a Bitcoin network node, we use the software Bitcore. Listing 5.1 shows
the required installation instructions.

Listing 5.1: Installation instructions of Bitcore.
1 cu r l −o−

https : // raw . g i thubuse rcontent . com/ c r e a t i o n i x /nvm/v0 . 3 3 . 1 1/ i n s t a l l . sh
| bash

2 nvm i n s t a l l v4
3 apt−get i n s t a l l l ibzmq3−dev bui ld−e s s e n t i a l
4 npm i n s t a l l −g b i t c o r e
5 b i t c o r e c r e a t e mynode

In line 1, the Node Version Manager is installed. The Node Version Manager makes it
simple to switch between different Node.js versions. The instruction in line 2 installs
Node.js v4. In line 3, ZeroMQ is downloaded and installed. Bitcore is installed in line 4.
Finally, a new Bitcore node is created in line 5.

69

5. Solution Approach

In order to run the node, the command bitcored is called as shown in Listing 5.2. It is
import to change to the mynode directory that contains relevant information for running
the node.

Listing 5.2: Start instructions of Bitcore.
1 cd mynode
2 b i t co r ed

Listing 5.3 presents the content of the node’s configuration file mynode/bitcore-node.json.

Listing 5.3: Start instructions of Bitcore.
1 {
2 " network " : " l i v e n e t " ,
3 " port " : 3001 ,
4 " s e r v i c e s " : [
5 " b i t c o ind " ,
6 " i n s i gh t−api " ,
7 " i n s i gh t−ui " ,
8 "web"
9] ,

10 " s e r v i c e sCon f i g " : {
11 " b i t c o ind " : {
12 " spawn " : {
13 " datad i r " : "/home/ p_frauentha ler / . b i t c o r e /data " ,
14 " exec " :

"/home/ p_frauentha ler / .nvm/ ve r s i on s /node/v4 . 9 . 1 / l i b /node_modules/
b i t c o r e /node_modules/ b i t co r e−node/bin / b i t c o ind "

15 }
16 } ,
17 " i n s i gh t−api " : {
18 " d i sab l eRateL imi t e r " : t rue
19 }
20 }
21 }

If the service insight-api is not listed in the configuration file, it must be installed via the
command bitcore install insight−api. The configuration setting in line 18 disables the
rate limiter, otherwise it might be the case that requests sent from the Metric Collector
are rejected due to a violation of a rate limit.

Installation and Configuration of the Ethereum Node and Ethereum Classic
Node

For running an Ethereum and an Ethereum Classic node, we use Parity. On Ubuntu,
Parity can be installed with a single command: bash <(curl https://get.parity . io −L)

After the successful installation the node can be started without further configuration. A
node can be started with the following command:

70

5.3. Implementation

Table 5.35: Relevant flags for starting an Ethereum or Ethereum Classic node.

Flag Meaning

chain Specifies the blockchain to use. mainnet is the main Ethereum
network and classic specifies the Ethereum Classic network.

warp Instructs the node to perform the warp synchronization. The
warp synchronization allows for an extremely fast synchroniza-
tion that skips almost all of the block processing and injects
downloaded snapshots directly into the database.

cache-size Sets the total amount of discretionary memory (in MB) to use.
jsonrpc-apis Specifies the APIs available through the HTTP JSON-RPC

interface.
jsonrpc-interface Specifies the hostname portion of the HTTP JSON-RPC API.

This flag accepts an interface’s IP address, all (all interfaces)
or local. Default is local.

parity −−chain=mainnet −−warp −−cache−size 1024 −−jsonrpc−apis "eth,parity" −−jsonrpc−interface
all

In order to run an Ethereum Classic node, the argument parameter classic must be used
instead of mainnet.

In Table 5.35, the relevant flags are listed and their meaning is explained.

Installation and Configuration of the Expanse Node

In order to setup and run an Expanse node, Gexp, an official golang implementation of
the Expanse protocol, is used. Building Gexp requires both a Go installation (version 1.7
or later) and a C compiler. Gexp can be built with make gexp. After the compilation
process has been completed successfully, the binary for running Gexp is located in the
directory build/bin/. An Expanse node is started with the following command:

gexp −−cache=2048 −−rpc −−rpcport 9656 −−rpcaddr "0.0.0.0" −−rpcapi "eth,net,web3"

Explanations of the used flags are given in Table 5.36.

Instructions for Running the Framework

As described in Section 5.2.2, the framework is developed with Java. Thus, Java must be
installed on the system in order to get the framework running. Listing 5.4 shows how an
instance of the Blockchain Manager is configured and created.

71

5. Solution Approach

Table 5.36: Relevant flags for starting an Expanse node.

Flag Meaning

cache Bumps the memory allowance of the database to the specified
size (in MB).

rpc Enables the HTTP-RPC server.
rpcport Sets the port of the HTTP-RPC server.
rpcapi Specifies the APIs available through the HTTP-RPC interface

(default: eth, net, web3).
rpcaddr Specifies HTTP-RPC server listening interface (default: "local-

host").

Listing 5.4: Instructions for building an instance of the Blockchain Manager.
1 blockchainManager = BlockchainManager
2 . newInstance ()
3 . s e tRank ingSet t ings (r ank ingSe t t i ng s)
4 . s e tThr e sho ldVa l i da t i onSe t t i ng s (v a l i d a t i o nS e t t i n g s)
5 . p r eSe l e c tB lockcha in (currentBlockcha in)
6 . addBlockchain (b i t co inB lockcha in)
7 . addBlockchain (ethereumBlockchain)
8 . addBlockchain (ethereumClass i cBlockcha in)
9 . addBlockchain (expanseBlockchain)

10 . bu i ld () ;

In lines 3 - 4, the settings that affect the weighted ranking system and the threshold
validation mechanism are set. A blockchain is registered to the Blockchain Manager
by calling the method addBlockchain(). The method build() initializes and starts the
Blockchain Manager. Listing 5.5 outlines how to create a blockchain.

Listing 5.5: Instructions for creating a blockchain.
1 IMe t r i cCo l l e c t o r b i t c o i nMe t r i cCo l l e c t o r = . . . ;
2 IDataAccessServ ice b i t co inDataAcce s sSe rv i c e = . . . ;
3 BlockchainMetaData b i t co inB lockcha in = new BlockchainMetaData () ;
4 b i t c o i n . s e t I d e n t i f i e r (" B i t co in ") ;
5 b i t c o i n . s e tMe t r i cCo l l e c t o r (b i t c o i nMe t r i cCo l l e c t o r) ;
6 b i t c o i n . s e tDataAcces sServ i ce (b i t co inDataAcce s sSe rv i c e) ;
7 b i t c o i n . setNumberOfRequiredConfirmations (6) ;
8 b i t c o i n . setReputat ion (8) ;

The methods setNumberOfRequiredConfirmations() and setReputation() are used to specify
metrics M9 and M10, since these metrics can not be computed automatically.

In order to retrieve switchover suggestions from the Blockchain Manager, a subscription
to the corresponding Observable as shown in Listing 5.6 is necessary.

72

5.3. Implementation

Listing 5.6: Instructions for receiving switchover suggestions.
1 blockchainManager
2 . getSwitchoverSuggest ionObservab le ()
3 . sub s c r i b e (sw i tchoverSugges t i on −> {
4 // l o g i c that should be executed f o r each switchover sugge s t i on
5 } ,
6 throwable −> LOG. e r r o r (throwable . getMessage () , throwable)
7) ;

In this chapter, functional requirements, the technical design and implementation details
of the proposed framework have been introduced. In the next chapter, the reference
implementation of the framework is analyzed and evaluated in the context of different
scenarios.

73

CHAPTER 6
Framework Evaluation

This chapter presents the evaluation of the designed and developed framework based on
an evaluation setup and defined evaluation scenarios. Evaluation is the process to assess
whether an outcome serves the aimed purpose and fulfills the specified requirements. The
chapter starts off with a specification of the evaluation setup in Section 6.1, followed by
evaluation results for the Bitcoin, Ethereum, Ethereum Classic and Expanse blockchains.
In Section 6.3, different evaluation scenarios for the analysis of the developed framework
are presented.

6.1 Evaluation Setup

The evaluation setup defines the infrastructure that is used to evaluate the developed
framework. As outlined in Section 5.2, the proposed framework relies on external
nodes that are used to communicate with the corresponding networks (e.g., the Bitcoin
network). For each network node, a separate VM is deployed on the Google Cloud
Platform. Table 6.1 lists the allocated VM resources. The nodes are started with the
instructions described in Section 5.3.

Table 6.1: Evaluation Setup: Allocated resources for VMs running on the Google Cloud
Platform.

VM (Network Node) CPU Memory Storage

Bitcoin 1 vCPU 4 GB RAM 500 GB HDD
Ethereum 1 vCPU 4 GB RAM 100 GB HDD
Ethereum Classic 1 vCPU 4 GB RAM 50 GB HDD
Expanse 1 vCPU 4 GB RAM 30 GB HDD

75

6. Framework Evaluation

The framework itself is executed on a MacBook Pro (Retina, 13-inch, Late 2013) with
the following hardware and software equipment:

• Processor: 2.4 GHz Intel Core i5

• Memory: 8 GB 1600 MHz DDR3

• Graphic Card: Intel Iris 1536 MB

• SSD: 256 GB

• OS: macOS High Sierra (version 10.13.6)

• Java Virtual Machine: Oracle Java SE Development Kit 10

The Blockchain Manager is initialized with the Bitcoin, Ethereum, Ethereum Classic
and Expanse blockchains. Furthermore, the Blockchain Manager can be configured
with arbitrary settings for the weighted ranking system (see Section 5.1), since the
weighted ranking is only relevant for the Scenarios 5 and 11 (see Sections 6.3.5 and
6.3.11). Concrete threshold validation settings are described in the Sections 6.3.7 and
6.3.8.

6.2 Measured Blockchain Metrics

In this section, we present metric values for Bitcoin, Ethereum, Ethereum Classic and
Expanse, since the developed framework supports these blockchains by default. The
values serve as basis for the evaluation scenario described in Section 6.3.11 and have
been measured on every second day between 25.09.2018 and 17.10.2018 by using the
developed framework. Since read operations are free and storage fees are not implemented
in Bitcoin, Ethereum, Ethereum Classic and Expanse at the time of writing this thesis,
the corresponding metrics are not listed in this section. Furthermore, a blockchain’s
reputation and the number of required block confirmations are not presented, because
these metric values have to be provided by the framework user.

Figure 6.1 illustrates the progression of the costs for writing one kilobyte of data into a
blockchain. As shown in the figure, storing data in Bitcoin is the most expensive option,
whereas the costs for storing data in Ethereum Classic or Expanse are very close to zero.
Table 6.2 presents for each blockchain the average value and the standard deviation.

76

6.2. Measured Blockchain Metrics

Figure 6.1: A depiction of the costs for writing one kilobyte of data into the Bitcoin,
Ethereum, Ethereum Classic and Expanse blockchain (measured between 25.09.2018 and
17.10.2018).

25
.09
.20
18

27
.09
.20
18

29
.09
.20
18

01
.10
.20
18

03
.10
.20
18

05
.10
.20
18

07
.10
.20
18

09
.10
.20
18

11
.10
.20
18

13
.10
.20
18

15
.10
.20
18

17
.10
.20
18

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

W
rit

in
g
co
st
s
[U

SD
]

Bitcoin
Ethereum

Ethereum Classic
Expanse

Table 6.2: The average value and standard deviation of the costs for writing one kilobyte
of data into the Bitcoin, Ethereum, Ethereum Classic and Expanse blockchain.

Blockchain Average Value [USD] Standard Deviation [USD]

Bitcoin 4.00798 0.10743
Ethereum 0.15776 0.08387
Ethereum Classic 0.00460 0.00620
Expanse 0.00038 0.00063

In Figure 6.2, the progression of each blockchain’s inter-block time is shown. The values
are shown on a logarithmic scale. With an average time of 10.15 minutes, Bitcoin has
the greatest block time. Ethereum and Ethereum Classic have almost the same average
block time of about 14 seconds. Expanse has an average inter-block time of 44 seconds.
The average values and the standard deviations are outlined in Table 6.3.

77

6. Framework Evaluation

Figure 6.2: A depiction of the inter-block times for Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018).

25
.09
.20
18

27
.09
.20
18

29
.09
.20
18

01
.10
.20
18

03
.10
.20
18

05
.10
.20
18

07
.10
.20
18

09
.10
.20
18

11
.10
.20
18

13
.10
.20
18

15
.10
.20
18

17
.10
.20
18

100

101

In
te
r-
bl
oc
k
tim

e
[m

in
]

Bitcoin
Ethereum

Ethereum Classic
Expanse

Table 6.3: The average value and standard deviation of each blockchain’s inter-block
times.

Blockchain Average Value [s] Standard Deviation [s]

Bitcoin 609.47 44.34
Ethereum 14.21 0.32
Ethereum Classic 14.30 0.27
Expanse 44.06 1.24

Figure 6.3 shows the progression of the exchange rates between USD and each blockchain’s
underlying cryptocurrency. Again, values are shown on a logarithmic scale. As shown in

78

6.2. Measured Blockchain Metrics

the figure, Bitcoin is the most expensive cryptocurrency, whereas Expanse is the cheapest
one. Table 6.4 presents for each blockchain the average value and the standard deviation.

Figure 6.3: A depiction of the exchanges rates for Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018).

25
.09
.20
18

27
.09
.20
18

29
.09
.20
18

01
.10
.20
18

03
.10
.20
18

05
.10
.20
18

07
.10
.20
18

09
.10
.20
18

11
.10
.20
18

13
.10
.20
18

15
.10
.20
18

17
.10
.20
18

10−1

100

101

102

103

104

Pr
ic
e
fo
r
on

e
cu

rr
en

cy
un

it
[U

SD
]

Bitcoin
Ethereum

Ethereum Classic
Expanse

Table 6.4: The average value and standard deviation of the exchange rates between USD
and each blockchain’s underlying cryptocurrency.

Blockchain Average Value [USD] Standard Deviation [USD]

Bitcoin 6,538.44 175.23
Ethereum 218.35 11.13
Ethereum Classic 10.64 0.60
Expanse 0.29 0.06

79

6. Framework Evaluation

The progression of each blockchain’s transaction throughput is presented in Figure 6.4.
As shown in the depiction, Ethereum has the highest transaction throughput, whereas
Expanse processes the lowest number of transactions per second. Each blockchain’s
average value and standard deviation are outlined in Table 6.5.

Figure 6.4: A depiction of the transaction throughputs for Bitcoin, Ethereum, Ethereum
Classic and Expanse (measured between 25.09.2018 and 17.10.2018).

25
.09
.20
18

27
.09
.20
18

29
.09
.20
18

01
.10
.20
18

03
.10
.20
18

05
.10
.20
18

07
.10
.20
18

09
.10
.20
18

11
.10
.20
18

13
.10
.20
18

15
.10
.20
18

17
.10
.20
18

0

1

2

3

4

5

6

7

N
um

be
r
of

tr
an

sa
ct
io
ns

pe
r
se
co
nd

Bitcoin
Ethereum

Ethereum Classic
Expanse

Table 6.5: The average value and standard deviation of each blockchain’s transaction
(abbr. tx) throughputs.

Blockchain Average Value [tx/s] Standard Deviation [tx/s]

Bitcoin 2.70 0.21
Ethereum 6.10 0.49
Ethereum Classic 0.52 0.06
Expanse 0.07 0.01

80

6.2. Measured Blockchain Metrics

Figure 6.5 presents the progression of each blockchain’s hash rate. The numbers are
given on a logarithmic scale. As outlined in the depiction, the Bitcoin network calculates
by far the most hashes per second, whereas the Expanse network has the lowest hash
rate. In Table 6.6, each blockchain’s average value and standard deviation are presented.

Figure 6.5: A depiction of the network hash rates of Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018).

25
.09
.20
18

27
.09
.20
18

29
.09
.20
18

01
.10
.20
18

03
.10
.20
18

05
.10
.20
18

07
.10
.20
18

09
.10
.20
18

11
.10
.20
18

13
.10
.20
18

15
.10
.20
18

17
.10
.20
18

10−1

100

101

102

103

104

105

106

107

108

Te
ra

ha
sh
es

pe
r
se
co
nd

Bitcoin
Ethereum

Ethereum Classic
Expanse

Table 6.6: The average value and standard deviation of each blockchain’s hash rate in
tera hashes per second (abbr. TH/s).

Blockchain Average Value [TH/s] Standard Deviation [TH/s]

Bitcoin 51,868,630.60 3,102,978.96
Ethereum 258.36 5.95
Ethereum Classic 15.29 0.53
Expanse 0.07 0.01

81

6. Framework Evaluation

Figure 6.6 shows for each blockchain the distribution of the network’s hash power. For
a better overview, only the proportions of the three biggest miners of each network
are presented. A remarkable aspect is that the biggest miner of the Ethereum Classic
network controls more than 40 % of the overall hash power and the biggest Expanse
miner computes approximately 44.6 % of all hashes.

Figure 6.6: A depiction of the distribution of the hash power among the three biggest
miner (measured on 17.10.2018).

Bi
tco
in

Et
he
reu
m

Et
he
reu
m
Cl
ass
ic

Ex
pa
nse

0

20

40

60

80

40.6

59.8

72.1 72.8

28.5

47.7

63.7 61.5

16.4

25.8

41.9 44.6

M
in
in
g
pr
op

or
tio

n
[%

]

Biggest miner Second biggest miner Third biggest miner

82

6.3. Evaluation Scenarios and Results

6.3 Evaluation Scenarios and Results

In this section, eleven evaluation scenarios that serve as basis for a holistic evaluation of
the developed framework are presented. These experimental evaluation scenarios range
from the evaluation of features and mechanisms to more specific assessments of resource
consumption and switchover times. Furthermore, the results for the presented scenarios
are described and illustrated.

6.3.1 Scenario 1: Blockchain Manager – Concurrent Write
Operations

Description

As described in Section 5.2, the Blockchain Manager exposes a method for writing data
into the currently selected blockchain. The experiment of this evaluation scenario analyzes
the case when multiple threads simultaneously deliver data to the exposed method. All
threads hold a reference to the same Blockchain Manager instance. The configuration
of the Blockchain Manager that is described in Section 6.1 remains unchanged for
this experiment. Handling concurrent write operations is the Blockchain Manager’s
responsibility. Therefore, the experiment is independent from the preselected blockchain
(i.e., the blockchain that is used by the Blockchain Manager for write operations). Since
the gas price and thus write operations are very cheap, Expanse is used as the preselected
chain for the Blockchain Manager. In order to assess the Blockchain Manager’s reaction
to concurrent write operations, a thread pool of ten threads is created. Each thread
delivers its name to the Blockchain Manager through the exposed method. The expected
result is that the Blockchain Manager ensures that no data string gets lost, is corrupted
or mixed with characters of other data strings. It is expected that always only one thread
is allowed to write data into the preselected chain of the Blockchain Manager at the same
time. One conduction of this experiment is sufficient, since the deterministic functionality
of the framework is analyzed and the result is independent from gathered blockchain
metrics.

Result

Listing 6.1 shows an extraction of the framework’s log output. As shown in the listing,
only one thread is allowed to write data at the same time. There is no interleaving in the
log output indicating that a thread enters the write method before another thread has
exited it. Furthermore, for each input string (i.e., thread name), an Expanse transaction
is created, signed and sent to the network. The transaction data can be verified at
https://gander.tech/. Each transaction contains the correct thread name, no
characters got lost, corrupted or were mixed with others.

83

https://gander.tech/

6. Framework Evaluation

Listing 6.1: Log extraction that illustrates the handling of concurrent write operations.
1 10 :43 : 05 , 189 [pool−6−thread −1] − Entered wr i t e data method
2 10 :43 : 05 , 286 [pool−6−thread −1] − Store data : pool−6−thread−1
3 10 :43 : 05 , 373 [pool−6−thread −1] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x5ce800b5c083b1a3f304be6befc91cc3641e5acddefbb14bb0815bcd34829fae

4 10 : 43 : 05 , 374 [pool−6−thread −1] − Exit wr i t e data method
5
6 10 :43 : 05 , 374 [pool−6−thread −10] − Entered wr i t e data method
7 10 :43 : 05 , 432 [pool−6−thread −10] − Store data : pool−6−thread−10
8 10 :43 : 05 , 500 [pool−6−thread −10] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xe8958e9e0675aa3436e0000a46e5de19a710c093f655f3 fb9726f f5d5d297b40
9 10 :43 : 05 , 500 [pool−6−thread −10] − Exit wr i t e data method

10
11 10 :43 : 05 , 501 [pool−6−thread −9] − Entered wr i t e data method
12 10 :43 : 05 , 557 [pool−6−thread −9] − Store data : pool−6−thread−9
13 10 :43 : 05 , 621 [pool−6−thread −9] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xce790d4f6 fd41c7b1bcaf41a953c2b2c5b1f6 f3d2407f f188cbd53b37699c172
14 10 :43 : 05 , 621 [pool−6−thread −9] − Exit wr i t e data method
15
16 10 :43 : 05 , 621 [pool−6−thread −8] − Entered wr i t e data method
17 10 :43 : 05 , 680 [pool−6−thread −8] − Store data : pool−6−thread−8
18 10 :43 : 05 , 772 [pool−6−thread −8] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xbf0dd8f f9daf73fc902c844fc5426987306874aaf1710d9a8028612bb46e6ccb
19 10 :43 : 05 , 772 [pool−6−thread −8] − Exit wr i t e data method
20
21 10 :43 : 05 , 772 [pool−6−thread −7] − Entered wr i t e data method
22 10 :43 : 05 , 838 [pool−6−thread −7] − Store data : pool−6−thread−7
23 10 :43 : 05 , 906 [pool−6−thread −7] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xe21f1033de48576255f037159aa09ac0ce53e fbfbb0fab64324f6483a9bd288c
24 10 :43 : 05 , 906 [pool−6−thread −7] − Exit wr i t e data method

6.3.2 Scenario 2: Blockchain Manager – Write Operations with Large
Amounts of Data

Description

As stated in Section 5.2.1, data is stored in transactions rather than smart contracts
due to the lack of smart contracts in Bitcoin and because this is the cheaper option for
Ethereum-based blockchains. This scenario shows the developed mechanisms of how
the framework reacts when the input data string is too long in order to get stored in
a single transaction. For this purpose, each blockchain’s Data Access Service accepts
a user-defined string formatter function that decides how the input string should be
split up based on the maximum data length. The string formatter function used in this
experiment is shown in Listing 6.2. The function splits up the input string into chunks
of the maximum allowed length. Expanse is selected as the currently used blockchain for

84

6.3. Evaluation Scenarios and Results

the same reasons stated in the previous scenario. The maximum length is defined with
three bytes. The input string used for this experiment is MasterThesis2018.

Listing 6.2: String formatter function for Scenario 2.
1 (s t r i ng , maxLength) −> {
2 f i n a l i n t numberOfChunks = (i n t) Math . c e i l (((double)

s t r i n g . l ength ()) / maxLength) ;
3
4 re turn IntStream
5 . range (0 , numberOfChunks)
6 .mapToObj(index −> s t r i n g . sub s t r i ng
7 (
8 index ∗ maxLength
9 Math . min ((index + 1) ∗ maxLength , s t r i n g . l ength ())

10)
11)
12 . c o l l e c t (Co l l e c t o r s . t oL i s t ()) ;
13 }

The expected result is that the input string is split up into the following chunks: Mas, ter,
The, sis, 201, 8. It is expected that for each chunk an Expanse transaction is submitted.
One conduction of this experiment is sufficient, since the deterministic functionality of the
framework is analyzed and the result is independent from gathered blockchain metrics.

Result

Listing 6.3 shows that the the input string is split up into the expected chunks. For each
chunk, a separate transaction is created.

Listing 6.3: Log extraction that illustrates the handling of too large input strings.
1 11 :31 : 53 , 230 [main] − Store data : Mas
2 11 :31 : 53 , 335 [main] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xbbaeb87a73d2177e5b9c60a4b96825c100e78ae685ec0352fa74738d424d99f f
3 11 : 31 : 53 , 364 [main] − Store data : t e r
4 11 : 31 : 53 , 431 [main] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x f005a3 f204b f f2a f495435a19979cd0e f3e74a fa446e4cc2910703 fa974eed11
5 11 :31 : 53 , 459 [main] − Store data : The
6 11 :31 : 53 , 523 [main] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x66fe67d28f113e69c254726f9bf136312e08e34921c489b9c77a0d7267506df9
7 11 : 31 : 53 , 551 [main] − Store data : s i s
8 11 : 31 : 53 , 616 [main] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x0d64c89651b736addbffbaa833cb417249d6680e010809f182a7bd480b506825
9 11 :31 : 53 , 646 [main] − Store data : 201

10 11 :31 : 53 , 709 [main] − Su c c e s s f u l l y sent t r an sa c t i on :
0 x80200f f6272974facb10cc06b008be081be869efd0d980f846b33535457d32cd

11 11 :31 : 53 , 741 [main] − Store data : 8
12 11 :31 : 53 , 816 [main] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xb52f fa996fc2aa990c7f0873e fab105c0882b4682d5084fd8b6e28eee1299396

85

6. Framework Evaluation

6.3.3 Scenario 3: Write Operations during Switchover

Description

It might take some time until all data is moved to the destination blockchain during the
execution of a switchover. The time for a switchover strongly depends on the underlying
blockchain and the specified time span that defines the amount of data to transfer. This
scenario investigates the case when data is written to the currently used blockchain
during the execution of a switchover. In order to conduct this experiment, the Ethereum
blockchain is selected as the currently used blockchain (which is used by the Blockchain
Manager as destination chain for write operations and source chain for a switchover),
since the Ethereum blockchain contains a lot of data and the Ethereum node is not
capable of returning all transactions sent from a particular address. Thus, retrieving data
from Ethereum takes more time than for Bitcoin, Ethereum Classic and Expanse. With a
time span of one hour it is ensured that there is enough time for threads to execute write
operations until the switchover is finished. Furthermore, a thread pool of five threads
is created. Each of these threads writes its name into the currently used blockchain by
calling a method exposed by the Blockchain Manager. The Expanse blockchain is used
as destination blockchain due to its low costs for write operations. The expected result is
that no data string is written to the currently used blockchain (i.e., Ethereum). All data
inputs must be buffered and after the execution of the switchover has been finished, the
buffered input strings are written to the new blockchain (i.e., Expanse). One conduction
of this experiment is sufficient, since the deterministic functionality of the framework is
analyzed and the result is independent from gathered blockchain metrics.

Result

Listing 6.4 shows the buffering of write operations which are performed during the
execution of a switchover. After the switchover has been finished, the buffer is flushed
which results in five new Expanse transactions (lines 18 - 27). No data is written to the
Ethereum blockchain.
Listing 6.4: Log extraction that illustrates the handling of write operations during the
execution of a switchover.
1 18 :34 : 48 , 932 [Thread−36] − s t a r t swi tchover
2 18 : 34 : 53 , 925 [pool−6−thread −1] − Entered wr i t e data method
3 18 :34 : 53 , 934 [pool−6−thread −1] − wr i t e pool−6−thread−1 to bu f f e r
4 18 : 34 : 53 , 934 [pool−6−thread −1] − Exit wr i t e data method
5 18 :34 : 53 , 934 [pool−6−thread −5] − Entered wr i t e data method
6 18 :34 : 53 , 935 [pool−6−thread −5] − wr i t e pool−6−thread−5 to bu f f e r
7 18 : 34 : 53 , 935 [pool−6−thread −5] − Exit wr i t e data method
8 18 :34 : 53 , 935 [pool−6−thread −4] − Entered wr i t e data method
9 18 :34 : 53 , 936 [pool−6−thread −4] − wr i t e pool−6−thread−4 to bu f f e r

10 18 : 34 : 53 , 936 [pool−6−thread −4] − Exit wr i t e data method
11 18 :34 : 53 , 936 [pool−6−thread −3] − Entered wr i t e data method
12 18 :34 : 53 , 937 [pool−6−thread −3] − wr i t e pool−6−thread−3 to bu f f e r
13 18 : 34 : 53 , 937 [pool−6−thread −3] − Exit wr i t e data method

86

6.3. Evaluation Scenarios and Results

14 18 :34 : 53 , 937 [pool−6−thread −2] − Entered wr i t e data method
15 18 :34 : 53 , 937 [pool−6−thread −2] − wr i t e pool−6−thread−2 to bu f f e r
16 18 : 34 : 53 , 937 [pool−6−thread −2] − Exit wr i t e data method
17 18 :35 : 29 , 844 [Thread−36] − swi tchover f i n i s h e d
18 18 :35 : 29 , 906 [Thread−36] − Store data : pool−6−thread−1
19 18 :35 : 29 , 996 [Thread−36] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x9c6ae7f5d3e9a0c5bf1bdb74e5a14c636fe7ef9170cb951e26398b02913b3eb7
20 18 :35 : 30 , 053 [Thread−36] − Store data : pool−6−thread−5
21 18 :35 : 30 , 121 [Thread−36] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x1b820cc2f feab9cd7551f8ca41cd2b546e1b6ab67afbb372625cc4a535d44c30
22 18 :35 : 30 , 180 [Thread−36] − Store data : pool−6−thread−4
23 18 :35 : 30 , 249 [Thread−36] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x4eb2c5bb320c720f00b2b8f54dd762caf0ec4af4749df2 fb fd1da1586ce29c9c
24 18 :35 : 30 , 307 [Thread−36] − Store data : pool−6−thread−3
25 18 :35 : 30 , 374 [Thread−36] − Su c c e s s f u l l y sent t r an sa c t i on :

0 xd014689c19856935494b1849d97c94ed679dfa88f2d804707d2b20069cee5ce4
26 18 :35 : 30 , 431 [Thread−36] − Store data : pool−6−thread−2
27 18 :35 : 30 , 501 [Thread−36] − Su c c e s s f u l l y sent t r an sa c t i on :

0 x81e54d58fa71bce523e8d8c6880a34282012d12af0b2aa7446c2301a7a221969

6.3.4 Scenario 4: New Switchover during the Execution of a
Switchover

Description

The fourth experimental scenario evaluates the situation when a new switchover is
started during the execution of a current switchover. For this experiment, the settings
of Scenario 3 are used due to the reasons outlined in the previous scenario. The second
switchover is started from a different thread. The expected result is that the Blockchain
Manager starts the execution of the second switchover only after the execution of the first
switchover is finished. There can be only one switchover execution at the same time. One
conduction of this experiment is sufficient, since the deterministic functionality of the
framework is analyzed and the result is independent from gathered blockchain metrics.

Result

Listing 6.5 shows that the second switchover is blocked until the first one is finished.
Only one switchover is executed at the same time.

Listing 6.5: Log extraction that illustrates the handling of concurrent switchovers.
1 18 :53 : 01 , 356 [Thread−36] − f i r s t swi tchover c a l l
2 18 : 53 : 01 , 370 [Thread−36] − s t a r t swi tchover
3 18 : 53 : 06 , 357 [Thread−37] − second switchover c a l l
4 18 : 55 : 23 , 611 [Thread−36] − swi tchover f i n i s h e d
5 18 :55 : 23 , 612 [Thread−37] − s t a r t swi tchover
6 18 : 55 : 24 , 112 [Thread−37] − swi tchover f i n i s h e d

87

6. Framework Evaluation

6.3.5 Scenario 5: Frequent Changes in the Blockchain Ranking

Description

The experiment of this evaluation scenario analyzes the case when at least two blockchains
are very close together in the weighted ranking system, i.e., they have almost the same
weighted score. It is investigated how the framework reacts on frequent changes in the
blockchain ranking, i.e., frequent changes in the decision which blockchain is the most
beneficial one. In order to conduct this experiment, the weighted ranking algorithm is
manipulated such that Ethereum Classic and Expanse are alternating with each other in
the weighted ranking system, i.e., at one time Ethereum Classic is the most beneficial
chain and after at least five seconds Expanse is the most beneficial chain, and so forth.
The Blockchain Manager is configured with a weighted ranking timespan of 30 seconds.
Thus, it is expected that a switchover is suggested only every 30 seconds. One conduction
of this experiment is sufficient, since the deterministic functionality of the framework is
analyzed and the result is independent from gathered blockchain metrics.

Result

Listing 6.6 illustrates the handling of frequent changes in the weighted ranking. A
switchover suggestion is only received every 30 seconds, regardless of how many changes
in the weighted ranking system have been recognized since the last switchover suggestion.

Listing 6.6: Log extraction that illustrates the handling of frequent ranking changes.
1 10 :38 : 55 , 537 − Most b e n e f i c i a l b lockcha in : Expanse
2 10 : 39 : 00 , 677 − Switchover sugge s t i on r e c e i v ed : Expanse
3 10 : 39 : 05 , 367 − Most b e n e f i c i a l b lockcha in : Ethereum C l a s s i c
4 10 : 39 : 10 , 665 − Most b e n e f i c i a l b lockcha in : Expanse
5 10 : 39 : 23 , 642 − Most b e n e f i c i a l b lockcha in : Ethereum C l a s s i c
6 10 : 39 : 30 , 013 − Most b e n e f i c i a l b lockcha in : Expanse
7 10 : 39 : 30 , 679 − Switchover sugge s t i on r e c e i v ed : Expanse
8 10 : 39 : 35 , 557 − Most b e n e f i c i a l b lockcha in : Ethereum C l a s s i c
9 10 : 39 : 40 , 559 − Most b e n e f i c i a l b lockcha in : Expanse

10 10 :39 : 46 , 304 − Most b e n e f i c i a l b lockcha in : Ethereum C l a s s i c
11 10 : 39 : 53 , 820 − Most b e n e f i c i a l b lockcha in : Expanse
12 10 :40 : 00 , 031 − Most b e n e f i c i a l b lockcha in : Ethereum C l a s s i c
13 10 : 40 : 00 , 682 − Switchover sugge s t i on r e c e i v ed : Ethereum C l a s s i c

6.3.6 Scenario 6: Resource Consumption

Description

This scenario investigates the resource consumption of the designed and implemented
framework. External data sources are not analyzed, since they are not part of the
proposed framework. For conducting this experiment, a fresh instance of the Blockchain
Manager is created and started based on the evaluation setup. No further instances of
the Blockchain Manager are running. In order to get the entire internal stream topology

88

6.3. Evaluation Scenarios and Results

invoked, a subscription for receiving switchover suggestions is implemented as shown in
Listing 6.7. This experiment analyzes the CPU utilization, the Heap size and the number
of used threads. These metrics are gathered with VisualVM1. After the framework has
been started, the metrics are gathered for the next ten minutes (600 seconds). The
measurement is conducted five times.

Listing 6.7: Subscription to receive switchover suggestions.
1 blockchainManager
2 . getSwitchoverSuggest ionObservab le ()
3 . sub s c r i b e (sugge s t i on −> {
4 St r ing i d e n t i f i e r = sugge s t i on . getNextBlockchainResult ()
5 . getBlockcha in () . g e t I d e n t i f i e r () ;
6 LOG. i n f o (" Suggested b lockcha in : " + i d e n t i f i e r) ;
7 } ,
8 throwable −> LOG. e r r o r (throwable . getMessage () , throwable)
9) ;

Result

Figure 6.7 shows the progression of the framework’s average CPU utilization and Figure 6.8
presents the corresponding standard deviations. In the first minute, the framework’s
CPU utilization reaches about 52 %. Later on, the CPU utilization decreases and with
a few exceptions, remains under five percentage. The rapid increase during the first
minute occurs due to the initialization phase. Immediately after the framework has been
started, for each blockchain the blocks that have been mined during the last 24 hours
are downloaded and processed. For instance, there are approximately 6,000 blocks that
have to be downloaded and processed alone for Ethereum. After about 90 seconds, this
initialization phase is finished which results in a lower CPU utilization.

In Figure 6.9, the average allocated heap space along with the progression of the average
used space is presented. The corresponding standard deviations are shown in Figure 6.10.

Figure 6.11 highlights the average number of live threads and average the number of
daemon threads created during the executions of the implemented framework. The
corresponding standard deviations are presented in Figure 6.12. The rapid increase of
live threads during the first 90 seconds occurs due to the same reasons outlined above for
the CPU utilization. The green line shows that threads which are no longer needed for
the execution of subsequent tasks are killed in order to decrease the framework’s resource
consumption.

1https://visualvm.github.io/

89

https://visualvm.github.io/

6. Framework Evaluation

Figure 6.7: The graph shows the progression of the framework’s average CPU utilization
(measured on 28.10.2018).

0 30 60 90 120 150 180 210 240 270 3000
5

10
15
20
25
30
35
40
45
50
55

Time [s]

Av
er
ag

e
C
PU

U
til
iz
at
io
n
[%

] CPU Utilization [%]

Figure 6.8: The graph shows the standard deviations of the CPU utilization (measured
on 28.10.2018).

0 30 60 90 120 150 180 210 240 270 3000

5

10

15

Time [s]

St
an

da
rd

D
ev
ia
tio

n
of

C
PU

U
til
iz
at
io
n
[%

]

Standard Deviation of CPU Utilization [%]

90

6.3. Evaluation Scenarios and Results

Figure 6.9: The graphs show the progression of the average allocated heap size and of
the average heap usage.

0 30 60 90 120 150 180 210 240 270 3000
50

100
150
200
250
300
350
400
450
500

Time [s]

Av
er
ag

e
H
ea
p
Sp

ac
e
[M

B
]

Average Allocated Heap Space [MB]
Average Used Heap Space [MB]

Figure 6.10: The graphs show the standard deviations of the allocated heap sizes and of
the heap usage.

0 30 60 90 120 150 180 210 240 270 3000
10
20
30
40
50
60
70
80
90

100

Time [s]

St
an

da
rd

D
ev
ia
tio

n
of

H
ea
p
Sp

ac
e
[M

B
]

Standard Deviation of Allocated Heap Space [MB]
Standard Deviation of Used Heap Space [MB]

91

6. Framework Evaluation

Figure 6.11: The graphs show the progression of the average numbers of live and daemon
threads.

0 30 60 90 120 150 180 210 240 270 3000
15
30
45
60
75
90

105
120
135

Time [s]

Av
er
ag

e
N
um

be
r
of

T
hr
ea
ds

Average Number of Live Threads
Average Number of Deamon Threads

Figure 6.12: The graphs show the standard deviations of the number of live and daemon
threads.

0 30 60 90 120 150 180 210 240 270 3000

5

10

15

20

Time [s]

St
an

da
rd

D
ev
ia
tio

n
of

T
hr
ea
d
N
um

be
rs

Standard Deviation of Number of Live Threads
Standard Deviation of Number of Deamon Threads

92

6.3. Evaluation Scenarios and Results

6.3.7 Scenario 7: Rapid Decrease of the Network Hash Rate

Description

As outlined in Section 5.2, the Blockchain Manager accepts threshold validation settings
that affect the internal threshold validation mechanism. For each metric, a threshold
validation function along with a time span can be defined. The time span specifies how
long a metric’s threshold validation function must continuously evaluate to false until the
metric is considered as invalid. The experiment of this scenario analyzes the case when
the network hash rate of the currently used blockchain rapidly decreases and violates
a defined threshold for the entire time span. Expanse is selected as the currently used
blockchain. Since the experiment is conducted with emulated values and the Blockchain
Manager’s internal logic is analyzed, it can also be performed with Bitcoin, Ethereum or
Ethereum Classic without any restrictions. Furthermore, a threshold validation function
that returns true if the network hash rate is greater than or equal to 180 GH/s (giga
hashes per second) is provided for metric M8 (network hash rate). The time span for
metric M8 is set to 15 seconds. The switchover decision function returns true if metric
M8 is considered as invalid. The concrete settings are shown in Listing 6.8. The metric
M8 is emulated such that the Blockchain Manager is confronted with a rapid decrease of
its values. The expected result is that 15 seconds after the first threshold violation has
been detected, the Blockchain Manager suggests to switch to another blockchain. One
conduction of this experiment is sufficient, since the deterministic functionality of the
framework is analyzed and the result is independent from gathered blockchain metrics.

Listing 6.8: Threshold validation settings of Scenario 7.
1 Thre sho ldVa l ida t i onSe t t ing s v a l i d a t i o nS e t t i n g s = new

Thre sho ldVa l ida t i onSe t t ing s () ;
2 Met r i cVa l ida t i onSe t t ing s<Double> hash ra t eSe t t i ng s =
3 new Metr i cVa l ida t i onSe t t ing s <>(
4 hashrate −> hashrate >= (180 ∗ Math . pow(10 , 9)) , // >= 180 GH/ s
5 15 , ChronoUnit .SECONDS
6) ;
7 v a l i d a t i o nS e t t i n g s . s e tNetworkHashrateVa l idat ionSet t ings (ha sh ra t eSe t t i ng s) ;
8 v a l i d a t i o nS e t t i n g s . se tSwitchoverDec i s ionFn (
9 (m1, m2, m3, m4, m5, m6, m7, m8, m9, m10) −> !m8

10) ;

Result

Listing 6.9 shows the reaction of the framework in case the hash rate of the Expanse
network decreases rapidly. 15 seconds after the first threshold violation has been detected
(line 7), a switchover to another blockchain is suggested (line 14). The obtained result
matches exactly with the expected one.

93

6. Framework Evaluation

Listing 6.9: Log extraction that shows the reaction of the framework in case the network
hash rate of Expanse decreases rapidly.
1 13 :52 : 25 , 189 − Switchover sugge s t i on r e c e i v ed : Expanse
2 13 : 52 : 26 , 983 − Expanse network hash ra t e : 195 .0 GH/ s
3 13 :52 : 31 , 984 − Expanse network hash ra t e : 190 .0 GH/ s
4 13 :52 : 37 , 806 − Expanse network hash ra t e : 185 .0 GH/ s
5 13 :52 : 42 , 807 − Expanse network hash ra t e : 180 .0 GH/ s
6 13 :52 : 46 , 844 − Expanse network hash ra t e : 175 .0 GH/ s
7 13 :52 : 46 , 845 − Hash ra t e (175 . 0 GH/ s) v i o l a t ed
8 13 :52 : 51 , 847 − Expanse network hash ra t e : 170 .0 GH/ s
9 13 :52 : 51 , 847 − Hash ra t e (170 . 0 GH/ s) v i o l a t ed

10 13 :52 : 56 , 852 − Expanse network hash ra t e : 165 .0 GH/ s
11 13 :52 : 56 , 852 − Hash ra t e (165 . 0 GH/ s) v i o l a t ed
12 13 :53 : 01 , 854 − Expanse network hash ra t e : 160 .0 GH/ s
13 13 :53 : 01 , 854 − Hash ra t e (160 . 0 GH/ s) v i o l a t ed
14 13 :53 : 01 , 860 − Switchover sugge s t i on r e c e i v ed : Ethereum C l a s s i c

6.3.8 Scenario 8: Rapid Increase of the Costs for Write Operations

Description

This experimental scenario evaluates the situation when the costs for writing data into the
currently used blockchain rapidly increase and violate a defined threshold for the entire
time span. The time span specifies how long a metric’s threshold validation function must
continuously evaluate to false until the metric is considered as invalid. Expanse is selected
as the currently used blockchain. Since the experiment is conducted with emulated
values and the Blockchain Manager’s internal logic is analyzed, it can also be performed
with Bitcoin, Ethereum or Ethereum Classic without any restrictions. Furthermore, a
threshold validation function that returns true if the costs for write operations are lower
than or equal to 5 USD is provided for metric M1 (costs for writing one kilobyte of data
into the blockchain). The time span for metric M1 is set to 15 seconds. The switchover
decision function returns true if metric M1 is considered as invalid. The concrete settings
are similar to those illustrated in Listing 6.8. The metric M1 is emulated such that the
Blockchain Manager is confronted with a rapid increase of its values. The expected result
is that 15 seconds after the first threshold violation has been detected, the Blockchain
Manager suggests to switch to another blockchain. One conduction of this experiment
is sufficient, since the deterministic functionality of the framework is analyzed and the
result is independent from gathered blockchain metrics.

Result

Listing 6.10 shows the reaction of the framework if the costs for writing data into the
Expanse blockchain increase rapidly. 15 seconds after the first threshold violation has
been detected (line 8), a switchover to another blockchain is suggested (line 15), as
expected.

94

6.3. Evaluation Scenarios and Results

Listing 6.10: Log extraction that shows the reaction of the framework in case the costs
for writing data into the Expanse blockchain increase rapidly.
1 15 :19 : 03 , 471 − Switchover sugge s t i on r e c e i v ed : Expanse
2 15 : 19 : 05 , 915 − Expanse wr i t i ng c o s t s : 1 . 0 USD
3 15 :19 : 10 , 919 − Expanse wr i t i ng c o s t s : 2 . 0 USD
4 15 :19 : 15 , 921 − Expanse wr i t i ng c o s t s : 3 . 0 USD
5 15 :19 : 20 , 925 − Expanse wr i t i ng c o s t s : 4 . 0 USD
6 15 :19 : 25 , 927 − Expanse wr i t i ng c o s t s : 5 . 0 USD
7 15 :19 : 30 , 930 − Expanse wr i t i ng c o s t s : 6 . 0 USD
8 15 :19 : 30 , 931 − Costs (6 . 0) v i o l a t e d
9 15 :19 : 35 , 934 − Expanse wr i t i ng c o s t s : 7 . 0 USD

10 15 :19 : 35 , 934 − Costs (7 . 0) v i o l a t e d
11 15 :19 : 40 , 935 − Expanse wr i t i ng c o s t s : 8 . 0 USD
12 15 :19 : 40 , 935 − Costs (8 . 0) v i o l a t e d
13 15 :19 : 45 , 940 − Expanse wr i t i ng c o s t s : 9 . 0 USD
14 15 :19 : 45 , 940 − Costs (9 . 0) v i o l a t e d
15 15 :19 : 45 , 947 − Switchover sugge s t i on r e c e i v ed : Ethereum C l a s s i c

6.3.9 Scenario 9: Data Movement to another Blockchain

Description

This experimental scenario analyzes the data movement from one blockchain to another
during the execution of a switchover. As outlined in Section 5.2, the Blockchain Manager
exposes a method for starting a switchover. This method accepts input parameters for
specifying the destination blockchain and a date range indicating the amount of data that
should be transferred. Due to the low writing costs, we use Ethereum Classic as source
and Expanse as destination blockchain. Thus, the Blockchain Manager is configured
to select Ethereum Classic as the currently used blockchain. Furthermore, the strings
Master, Thesis and 2018 are written into the Ethereum Classic blockchain through the
Blockchain Manager. The date range is defined such that the all data records that have
been written into the source blockchain (i.e., Ethereum Classic) during the last hour are
moved to the destination blockchain (i.e., Expanse). The expected result is that all three
strings are written to the Expanse blockchain during the execution of the switchover. One
conduction of this experiment is sufficient, since the deterministic functionality of the
framework is analyzed and the result is independent from gathered blockchain metrics.

Result

As shown in Listing 6.11, all three strings have been moved from the Ethereum Classic
blockchain to Expanse during the execution of the switchover. Line 5 shows the number of
Ethereum Classic transactions that have been already mined (i.e., they are not pending)
and have been sent by the address used for the conduction of this experiment. As
expected, the framework has retrieved three transactions, one for each test string.

95

6. Framework Evaluation

Listing 6.11: Log extraction that shows the movement of data during the execution of a
switchover.
1 2018−10−28 19 : 03 : 55 , 490 − s t a r t swi tchover
2 2018−10−28 19 : 03 : 55 , 493 − Get pending t r an s a c t i on s sent by addr
3 2018−10−28 19 : 03 : 55 , 661 − Pending t r an s a c t i on s sent by t h i s addr : 0
4 2018−10−28 19 : 03 : 55 , 673 − Get mined t r an s a c t i on s sent by addr
5 2018−10−28 19 : 03 : 57 , 973 − Mined t r an s a c t i on s sent by addr : 3
6 2018−10−28 19 : 03 : 58 , 073 − Store data : Master
7 2018−10−28 19 : 03 : 58 , 216 − Su c c e s s f u l l y sent t r an sa c t i on :

0 x5282e84ce3af6126dfe047a9f5a5c97e8a3dd79e750adac3606a55a7a9e25a41
8 2018−10−28 19 : 03 : 58 , 257 − Store data : Thes i s
9 2018−10−28 19 : 03 : 58 , 357 − Su c c e s s f u l l y sent t r an sa c t i on :

0 x32598dcce61de4bb00b3003c27e8671fde76ece3272c1736cc28f7ec5ea5d8f6
10 2018−10−28 19 : 03 : 58 , 401 − Store data : 2018
11 2018−10−28 19 : 03 : 58 , 511 − Su c c e s s f u l l y sent t r an sa c t i on :

0 x319a2df fce077b2045d575316b764143592e1308477d824eb0ce16bf88636cf9
12 2018−10−28 19 : 03 : 58 , 511 − swi tchover f i n i s h e d

6.3.10 Scenario 10: Switchover Times

Description

This scenario shows how long it takes to move a specified amount of data from one
blockchain to another during the execution of a switchover. Most of the time that is
required for a switchover is spent for retrieving data from the source blockchain. Thus,
the switchover time strongly depends on this data acquisition process. The goal of this
experiment is to illustrate switchover times for diverse amounts of data in order to get a
rough overview how long switchovers might take for the specified evaluation setup. For
specifying the amount of data that should be moved to the destination blockchain, the
Blockchain Manager accepts a time span. For instance, a time span of one hour specifies
that all data records which have been mined during the last hour should be moved to
the destination chain. The outlined evaluation setup is used without any changes. The
Expanse blockchain is used as destination blockchain for all switchover executions, since
write operations are very cheap (as outlined in Section 6.3.1). Due to the selection of
Expanse as destination blockchain, there is one test case that retrieves data records
from Expanse and writes these records back to the same chain (since Expanse is used
as source chain as well as destination chain). This special case has no impacts on the
results, since the data acquisition process is the same as for other destination blockchains.
For conducting this experiment, each blockchain, that is supported by the framework, is
used as source blockchain for the switchover executions. Furthermore, the following time
spans are tested:

96

6.3. Evaluation Scenarios and Results

• 12 hours

• 1 day

• 3 days

• 1 week

• 1 month (30 days)

The measurement is conducted five times.

Result

The average values of the measured switchover times are presented in Table 6.7. The
corresponding standard deviations are shown in Table 6.8. Since the network nodes have
been deployed on the Google Cloud Platform and the framework is running on a local
MacBook, it is crucial to note that the framework needs to download relevant information
from these nodes in order to extract data that should be moved to the destination
blockchain. We performed the evaluation with a download speed of approximately
12 Mbit per second. The concrete switchover times might vary depending on the available
download speed. As shown in the table, extracting data from the Bitcoin blockchain
takes only a few seconds as opposed to Ethereum, Ethereum Classic and Expanse. These
short times can be reached because the Bitcore node stores for each address its unspent
transaction outputs and its sent transactions. The Data Access Service responsible for
interactions with the Bitcoin blockchain just needs to request these transactions and to
iterate over them in order to extract the data. Parity (used for running Ethereum and
Ethereum Classic nodes) and Gexp (used for running Expanse nodes) do not support this
feature. Thus, the framework must download each block including the full transaction
set and it must iterate over each transaction to filter those which have been sent from
a particular address. This process is very resource-intensive and time-consuming, since
also transactions sent from other addresses must be downloaded and analyzed. Ethereum
Classic and Expanse have shorter switchover times than Ethereum, since there are much
less transactions stored in these two blockchains.

Table 6.7: The average values of the switchover times measured on 27.10.2018 and
28.10.2018.

Source Blockchain 12 hours 1 day 3 days 1 week 30 days

Bitcoin 1.3 s 1.7 s 1.3 s 2.1 s 2.2 s
Ethereum 4.6 min 7.1 min 19.4 min 57.7 min 3.3 h
Ethereum Classic 16.0 s 54.5 s 2.7 min 6.1 min 25.5 min
Expanse 16.8 s 20.5 s 39.3 s 1.3 s 4.2 min

97

6. Framework Evaluation

Table 6.8: The standard deviations of the switchover times measured on 27.10.2018 and
28.10.2018.

Source Blockchain 12 hours 1 day 3 days 1 week 30 days

Bitcoin 0.72 s 1.28 s 0.13 s 0.99 s 1.28 s
Ethereum 33.51 s 53.37 s 5.02 min 9.65 min 24.58 min
Ethereum Classic 1.64 s 0.81 s 4.41 s 9.5 1.34 min
Expanse 1.20 s 0.96 s 2.14 s 2.60 s 5.08 s

6.3.11 Scenario 11: Changing User Preferences and Metrics

Description

This evaluation scenario analyzes the benefit of the framework’s selection and switchover
mechanism. The experiment is conducted in the context of the motivational scenario
outlined in Chapter 4, where multiple organizations exchange information in order to
increase their competitive and collaborative advantage. The scenario focuses on an SOA
that is made up of different services adopted and operated by several independent and
possibly competing business partners. In order to monitor the adherence of SLAs, services
publish relevant information to a blockchain. We assume the involved business partners
want to use a blockchain that is cheap, fast and has a high level of trust. The framework’s
Blockchain Manager is configured with the weighted ranking settings outlined in Table
6.9. Since we assume the demand for very cheap and fast write operations, and a high
level of trust, we set the weights of M1, M4, M5, M6, M7, M8 and M10 to five (highest
importance). The metrics M2 and M3 can be ignored (i.e., we set the corresponding
weights to zero), since Bitcoin, Ethereum, Ethereum Classic and Expanse do not charge
fees for read operations or for a permanent usage of the blockchain’s storage at the time
of writing this thesis. We further set the weight of M9 to zero, since in this scenario a
comparison of the number of required block confirmations is not expressive. For instance,
in Bitcoin a block is assumed to remain in the blockchain with high probability after it is
buried under six blocks. With an average inter-block time of about ten minutes, a block
is confirmed by six blocks after approximately one hour. Assuming, an Ethereum block
should be confirmed by 240 blocks, it would also take about one hour, since Ethereum
has an average inter-block time of about 15 seconds. In this example, both blockchains
have an average confirmation time of one hour but completely different numbers of
required block confirmations. In order to benefit from an accurate selection, we defined
the score assignments as granular as possible, e.g., by considering very low costs in the
score assignment.

98

6.3. Evaluation Scenarios and Results

Table 6.9: The weighted ranking settings used for the evaluation of Scenario 11 (metrics
with a weight of zero are not listed).

Metric Id Short description Weight Score Assignment

M1 Costs for writing one KB of data 5

[0; 10−4)→ 4
[10−4; 10−2)→ 3
[10−2; 10−1)→ 2
[10−1; 1)→ 1
[1;∞)→ 0

M4 Exchange rates 5

[0; 50)→ 4
[50; 100)→ 3
[100; 250)→ 2
[250; 500)→ 1
[500;∞)→ 0

M5 Inter-block time 5

[0; 20)→ 4
[20; 40)→ 3
[40; 60)→ 2
[60; 120)→ 1
[120;∞)→ 0

M6 Transaction throughput 5

[10;∞)→ 4
[5; 10)→ 3
[2; 5)→ 2
[0.45; 2)→ 1
[0; 0.45)→ 0

M7 Mining distribution 5

Proportion (%) of the biggest miner:
[0; 22)→ 4
[22; 27)→ 3
[27; 30)→ 2
[30; 38)→ 1
[38;∞)→ 0

M8 Network hash rate 5

Rates are denoted in tera hashes:
[1, 000;∞)→ 4
[700; 1, 000)→ 3
[400; 700)→ 2
[100; 400)→ 1
[0; 100)→ 0

M10 Reputation 5

[8; 10]→ 4
[6; 8)→ 3
[4; 6)→ 2
[2; 4)→ 1
[0; 2)→ 0

99

6. Framework Evaluation

We conduct this evaluation on the basis of the values presented in Section 6.2. Thus, the
time line used for this scenario ranges from 25.09.2018 to 17.10.2018. According to their
popularity and miner activity, we assume a reputation of ten for Bitcoin and Ethereum,
a reputation of nine for Ethereum Classic and a reputation of five for Expanse. In order
to emulate an execution on 25.09.2018, the framework is fed with the values measured
on this day. According to the weighted ranking settings (which reflects the current user
demands) outlined in Table 6.9, we expect Ethereum to be selected as the most beneficial
blockchain. The calculation results of the framework are presented in Table 6.10. As
expected, Ethereum has been chosen as the most beneficial blockchain. The key points
of this selection are as follows:

• By using Ethereum, the costs for writing one KB of data are approximately 24
times lower than the costs that have to be paid for writing the same amount of
data into the Bitcoin blockchain. The costs for writing data into the Ethereum
Classic and Expanse blockchains are about 154 times and about 96 times lower
than the costs that have to be paid in Ethereum.

• Compared to Bitcoin with a price of 6,394.25 USD per coin, the exchange rate of
Ethereum is about 30 times lower. The price in USD for one Ether is approximately
20 times greater than the price for one token on Ethereum Classic. With an
exchange rate of 0.36 USD, Expanse is the cheapest token.

• Ethereum’s inter-block time is about 38 times faster than those of Bitcoin and
about 3 times faster than the inter-block time of Expanse. Ethereum Classic has
almost the same inter-block time as Ethereum.

• With a transaction throughput of about 5.74, Ethereum processes by far the greatest
number of transactions per second, whereas Bitcoin has a rate of 2.57 transactions
per second, Ethereum Classic a rate of 0.47 transactions per second and Expanse
handles only 0.06 transactions per second.

• The network hash rate of Ethereum is about 16 times greater than those of Ethereum
Classic and about 1,275 times greater than the hash rate of Expanse. Bitcoin’s
hash rate is approximately 217,012 times greater than those of Ethereum.

• The biggest Ethereum miner controls about 24 % of the network’s hash power,
whereas the biggest Ethereum Classic and Expanse miners control about 42 % and
48 %, respectively. The biggest miner of the Bitcoin network controls about 20 %.

The framework has selected the most beneficial chain in terms of costs, performance
and trust, but the selected choice is not always optimal. For instance, Ethereum Classic
and Expanse have lower writing costs, but their mining distributions do not satisfy the
specified user needs. Thus, the framework has to make a compromise in order to satisfy
all user needs at best. Overall, Ethereum satisfies the specified weighted ranking settings
best.

100

6.3. Evaluation Scenarios and Results

Table 6.10: The calculation results for the weighted ranking (based on values measured on
25.09.2018). For each blockchain and each metric, the score and weighted score (denoted
as W. Score) are shown.

Bitcoin Ethereum Ethereum
Classic Expanse

Metric Score W.
Score Score W.

Score Score W.
Score Score W.

Score

M1 0 0 1 5 3 15 3 15

M2 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 0 0

M4 0 0 2 10 4 20 4 20

M5 0 0 4 20 4 20 2 10

M6 2 10 3 15 1 5 0 0

M7 4 20 3 15 0 0 0 0

M8 4 20 1 5 0 0 0 0

M9 0 0 0 0 0 0 0 0

M10 4 20 4 20 4 20 2 10

Total 14 70 18 90 16 80 11 55

We further assume that engineers of one business partner plan to run data-intensive tests
on their adopted services. Since there will be written a huge amount of data into the
blockchain, they prefer low costs. Furthermore, these written test data are not used for
further processing. The tests just focus on analyzing the write operations. Thus, the level
of trust can be neglected. In order to incorporate the changed demands in the weighted
ranking system, we set the weights for M7, M8 and M10 to zero. Furthermore, we assume
that the settings are changed on 07.10.2018. Due to the lack of significant variations
of blockchain metrics between 25.09.2018 and 07.10.2018, Ethereum has been the most
beneficial chain for the entire time span. Table 6.11 shows the calculation results based
on the changed settings and the metric values gathered on 07.10.2018. Since Ethereum
Classic has the highest score, it is considered as the most beneficial chain. Due to a
switchover from Ethereum to Ethereum Classic the costs for writing one KB of data

101

6. Framework Evaluation

Table 6.11: The calculation results for the weighted ranking (based on values measured on
07.10.2018). For each blockchain and each metric, the score and weighted score (denoted
as W. Score) are shown.

Bitcoin Ethereum Ethereum
Classic Expanse

Metric Score W.
Score Score W.

Score Score W.
Score Score W.

Score

M1 0 0 2 10 3 15 4 20

M2 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 0 0

M4 0 0 2 10 4 20 4 20

M5 0 0 4 20 4 20 2 10

M6 2 10 3 15 1 5 0 0

M7 4 0 3 0 0 0 0 0

M8 4 0 1 0 0 0 0 0

M9 0 0 0 0 0 0 0 0

M10 4 0 4 0 4 0 2 0

Total 14 10 19 55 16 60 12 50

have been decreased by a factor of 42. Furthermore, Ethereum Classic has almost the
same inter-block time as Ethereum (approximately 14 seconds). Since Expanse has an
inter-block time of 44 seconds, Ethereum Classic has been preferred.

Furthermore, we assume that an inter-block time between 30 and 60 seconds is completely
sufficient for conducting further service tests. Furthermore, the transaction throughput
becomes less important for further test executions. Due to the huge amount of test
data that is written to the blockchain, low costs have still high priority. We further
assume, that the weighted ranking settings are changed on 17.10.2018. Due to the lack of
significant variations of blockchain metrics between 07.17.2018 and 17.10.2018, Ethereum
Classic has been the most beneficial chain for the entire time span. The score assignment
for M5 is changed, such that inter-block times lower than 60 seconds yield a score of

102

6.3. Evaluation Scenarios and Results

Table 6.12: The calculation results for the weighted ranking (based on values measured on
17.10.2018). For each blockchain and each metric, the score and weighted score (denoted
as W. Score) are shown.

Bitcoin Ethereum Ethereum
Classic Expanse

Metric Score W.
Score Score W.

Score Score W.
Score Score W.

Score

M1 0 0 2 10 3 15 4 20

M2 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 0 0

M4 0 0 2 10 4 20 4 20

M5 0 0 4 20 4 20 4 20

M6 2 6 3 9 1 3 0 0

M7 4 0 3 0 0 0 0 0

M8 4 0 1 0 0 0 0 0

M9 0 0 0 0 0 0 0 0

M10 4 0 4 0 4 0 2 0

Total 14 6 19 49 16 58 14 60

four. Since the transaction throughput has a lower priority, the weight for M6 is set to
three. Based on the metric values measured on 17.10.2018 and the changed settings, the
framework selects Expanse as the most beneficial chain, since it has the highest score (as
shown in Table 6.12). A switchover from Ethereum Classic to Expanse enables a cost
reduction by a factor of approximately 45.

Due to the lack of significant variations of the measured values, we further simulate a
rapid increase of the costs for writing one KB of data into the Expanse blockchain, but
other values measured on 17.10.2018 remain unchanged. We set the writing costs to
two USD. In reaction to this change, the framework selects Ethereum Classic as the
most beneficial blockchain (M1 yields a score of zero in the weighted ranking). The
switchover from Expanse to Ethereum Classic enables a cost reduction by a factor of

103

6. Framework Evaluation

approximately 2,231.

To sum up, the assessment of several blockchains, the mechanism for reacting to various
events and the switchover functionality enable users to switch to another, more beneficial
blockchain in order to benefit from low costs, high performance or better security. The
framework is able to react to changed user demands as well as to variations of blockchain
metrics.

104

CHAPTER 7
Conclusion and Future Work

A blockchain is a distributed ledger used by many cryptocurrencies (e.g., Bitcoin or
Ethereum) to keep track of transactions and state changes. First blockchain applications
have been mainly used to store payment transactions, i.e., value transfers from one
party to another. With the advent of Ethereum, the second generation of blockchain
applications has become popular. Blockchains of this generation are characterized by
their support for smart contracts. The third generation of blockchain applications aims
to interact with the physical world. Blockchains of this generation are applicable for the
Internet of Things.

Applications of the blockchain technology are still a subject of research. Popular use
cases that came up in the last years are digital voting, notary services, SCM, auditing,
control of ownership rights, cloud storage and many more.

The suitability of a particular blockchain for a given use case depends on various criteria
such as costs for interactions with that blockchain, the time until a data record is
permanently included in the blockchain and the distribution of the network’s hash power
among miners or mining pools. These properties can vary over the time. Thus, a
particular blockchain can become unsuitable for a given use case in the future. Such
uncertainties can limit the practical value of blockchains.

In order to overcome this limitation, we designed and developed a framework that is
capable of switching back and forth between blockchains on the basis of configured settings
and measured metrics. The framework can be customized to the desired requirements. It
monitors several blockchains, calculates their individual benefits and determines the most
beneficial blockchain on the basis of the customization. The reference implementation of
the designed framework supports Bitcoin, Ethereum, Ethereum Classic and Expanse.

105

7. Conclusion and Future Work

7.1 Discussion of Research Questions
In Chapter 1, we introduced four concrete research questions that address existing
research gaps in the context of blockchain interoperability. We now present concrete
answers to these research questions.

RQ1. Which approaches can be used for blockchain interoperability?

The first research question aims to provide an overview of various approaches
for establishing interoperability between multiple blockchains. In Chapter 3, we
presented related work and state-of-the-art methods in the area of blockchain
interoperability and atomic cross-chain swaps. One of the first contributions
in this field is the ACCS protocol proposed by TierNolan in 2013. The ACCS
protocol allows two or more users of different cryptocurrencies to swap their
assets in an atomic and secure fashion. This protocol is also used by projects
such as BarterDEX. BarterDEX is a decentralized auction system that enables
users to trade cryptocurrencies from one party to another without the need of
a trusted third party. Another interesting project is Tesseract, an exchange
service that relies on a trusted execution environment. Furthermore, blockchain
interoperability can be achieved with the Lightning Network, relays or sidechains.
In later sections of Chapter 3, we presented projects that aim to connect multiple
blockchains such that a smart contract residing on a particular blockchain can
call smart contracts on other blockchains. These projects are the Crowd
Machine, Polkadot, Cosmos, Block Collider and Blocknet.

To the best of our knowledge, there are no contributions in the field of runtime
selection of blockchains. The current state-of-the-art approaches do not integrate
a mechanism for selecting the most beneficial blockchain at runtime and the
switchover between blockchains in a single solution.

RQ2. Which blockchain metrics are relevant for the runtime selection
algorithm?

The second research question’s goal is to provide a definition of expressive
criteria for measuring the benefit of blockchains at runtime. In Chapter 5, we
presented detailed requirements for the proposed framework. Ten metrics are
described, whereas eight of them are automatically gathered by the framework
and two of them have to be provided by the framework user. A detailed list of
all metrics is given in Section 5.1.

RQ3. How can the runtime selection of an appropriate blockchain and the
switchover between blockchains be performed?

This research question aims to provide a mechanism for selecting a suitable
blockchain on the basis of gathered blockchain metrics and an approach for
the switchover between multiple blockchains. In Chapter 5, we introduced a
weighted ranking system that is used by the framework to determine the most

106

7.1. Discussion of Research Questions

beneficial blockchain. The framework user has to assign a weight to each metric
that defines the metric’s importance. Furthermore, a score function is assigned
to each metric. The score function specifies the score that is assigned to a
particular metric based on its value. For each metric, the metric’s score is
multiplied with the corresponding weight. The multiplication results (i.e., the
weighted scores) are summed up and the blockchain with the highest sum is
considered as the most beneficial chain.

We presented a second mechanism for initiating a switchover. The user can
define thresholds and conditions. The conditions dictate whether a switchover
is suggested on the basis of detected threshold violations.

In case a switchover to another blockchain is performed, a defined amount of
data is moved from the currently used blockchain to the new one. The concrete
amount can be specified by the framework user on the basis of the switchover
cause (e.g., a particular metric has violated user-defined thresholds).

In Section 5.2, we presented the technical design of the proposed framework.
The framework relies on external network nodes that are used to communicate
with a blockchain’s network, and accesses data through defined interfaces.
Therefore, blockchain-specific implementation details are hidden by components
that implement these interfaces. Furthermore, the framework is designed to
incorporate the reactive programming paradigm, i.e., each new data record
affects the entire calculation and blockchain selection algorithm immediately
after it has been received by the framework.

RQ4. What are the benefits of using the proposed solution?

The fourth research question aims to provide an evaluation of the proposed
framework. In Chapter 6, we reported on the benefits of the framework’s
selection and switchover mechanism. The evaluation has been conducted in
the context of the motivational scenario outlined in Chapter 4. We showed
that the framework can achieve significant cost reductions and performance
enhancements due to the ability to switch to another blockchain in case of
changing user demands or variations of blockchain metrics.

Furthermore, we analyzed the framework in the context of ten further scenar-
ios. We reported on concurrent write operations, data movements between
blockchains, concurrent switchovers, write operations with large amounts of
data, switchover times, write operations during the execution of a switchover,
frequent changes in the blockchain ranking, the framework’s resource consump-
tion, rapid decrease of a network’s hash rate, and finally on the steadily increase
of the costs for writing data into a blockchain.

107

7. Conclusion and Future Work

7.2 Future Work
This section lists possibilities to extend the framework and some of the issues this thesis
leaves open for the future.

7.2.1 Adding Support for Further Blockchains

The reference implementation of the proposed framework supports Bitcoin, Ethereum,
Ethereum Classic and Expanse. In order to add support for a further blockchain, an
implementation of the interfaces IMetricCollector and IDataAccessService has to be
provided. Detailed interface descriptions are outlined in Section 5.2. Furthermore, the
new blockchain must be registered at the Blockchain Manager, the central component of
the developed framework.

7.2.2 Move Smart Contracts from one Blockchain to another

During a switchover, only data records are moved from the currently used blockchain
to another one. In case relevant smart contracts have been deployed to the currently
used blockchain, these contracts are not moved to the other chain, since the framework
implementation is not capable of moving smart contracts. Such a feature might be relevant
if data records are managed by smart contracts rather than stored in transactions. In
this case a movement of the data records along with the corresponding smart contract
might be a suitable approach.

7.2.3 Tracking of Transactions holding Data Records

The reference implementation stores data records that are written to Ethereum, Ethereum
Classic or Expanse in transactions rather than smart contracts. During a switchover,
the framework has to download all blocks that have been mined between a particular
date range and to iterate over each block’s transactions in order to extract the data
records which should be moved towards another chain. This process is resource-intensive
and time-consuming. A possible solution to improve this process might be a tracking
of transactions that hold data records. For instance, this tracking can be a simple data
structure that stores for each address the relevant transaction hashes. The tracking
mechanism should be integrated into a network node or should be deployed on a publicly
available VM, since the data records might need to be available to multiple instances of
the framework.

108

List of Figures

1.1 Market capitalization of Bitcoin from first quarter 2012 to first quarter 2018
(in billion U.S. dollars) [sta18]. 2

2.1 A hash pointer is a pointer to the location where a data node is stored together
with a cryptographic hash of this node. 9

2.2 A blockchain is a linked list that utilizes hash pointers instead of regular
pointers. 10

2.3 If block k is modified, the hash pointer in block k+1 will be incorrect. . . 10
2.4 An example of a Merkle tree. 11
2.5 An example of a radix tree that is constructed from the data set listed in

Table 2.1. 12
2.6 A simplified structure of the Bitcoin blockchain and its blocks. 14
2.7 The structure of a branch node in the Merkle Patricia tree [T1.8b]. 19
2.8 A Merkle Patricia tree that is constructed from the data set listed in Table 2.4. 20

4.1 An example illustrating the information flows between multiple organizations
[based on [kno11]]. The icons have been provided by vectorpocket (Freepik)
and Vecteezy.com. 38

5.1 Metrics that are gathered by the proposed framework. 42
5.2 An overview of the framework’s architecture. 51
5.3 A simplified illustration of the stream topology that is utilized by the Metric

Collector in order to calculate the metric values. 52
5.4 A simplified illustration of the internal stream topology that is utilized by the

Blockchain Manager in order to determine the most beneficial chain. . . . 57

6.1 A depiction of the costs for writing one kilobyte of data into the Bitcoin,
Ethereum, Ethereum Classic and Expanse blockchain (measured between
25.09.2018 and 17.10.2018). 77

6.2 A depiction of the inter-block times for Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018). 78

6.3 A depiction of the exchanges rates for Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018). 79

109

Vecteezy.com

6.4 A depiction of the transaction throughputs for Bitcoin, Ethereum, Ethereum
Classic and Expanse (measured between 25.09.2018 and 17.10.2018). . . . 80

6.5 A depiction of the network hash rates of Bitcoin, Ethereum, Ethereum Classic
and Expanse (measured between 25.09.2018 and 17.10.2018). 81

6.6 A depiction of the distribution of the hash power among the three biggest
miner (measured on 17.10.2018). 82

6.7 The graph shows the progression of the framework’s average CPU utilization
(measured on 28.10.2018). 90

6.8 The graph shows the standard deviations of the CPU utilization (measured
on 28.10.2018). 90

6.9 The graphs show the progression of the average allocated heap size and of the
average heap usage. 91

6.10 The graphs show the standard deviations of the allocated heap sizes and of
the heap usage. 91

6.11 The graphs show the progression of the average numbers of live and daemon
threads. 92

6.12 The graphs show the standard deviations of the number of live and daemon
threads. 92

110

List of Tables

2.1 Data set that is used to construct the radix tree illustrated in Figure 2.5. 12
2.2 An example of transactions in a transaction-based ledger [NBF+16]. . . . 15
2.3 Common Script instructions and their functions [NBF+16]. 18
2.4 Data set that is used to construct the Merkle Patricia tree illustrated in

Figure 2.8. 19

5.1 Weights that are offered by the framework and their meaning. 48
5.2 The score definitions. 48
5.3 An example of a weighted ranking, where two blockchains are evaluated. . 49
5.4 The data type of each metric. 56
5.5 The technology stack. 59
5.6 The software clients used for running network nodes. 60
5.7 The method getBlockObservable of the Java interface IMetricCollector. . 60
5.8 The method getAvgBlockTimeObservable of the Java interface IMetricCollector. 61
5.9 The method getTransactionThroughputObservable of the Java interface IMetricCollector. 61
5.10 The method getBlockPercentagePerMinerObservable of the Java interface

IMetricCollector. 61
5.11 The method getNetworkHashrateObservable of the Java interface IMetricCollector. 62
5.12 The method getExchangeRateObservable of the Java interface IMetricCollector. 62
5.13 The method getCostsForWritingDataObservable of the Java interface IMetricCollector. 62
5.14 The method getCostsForRetrievingDataObservable of the Java interface

IMetricCollector. 63
5.15 The method getStorageFeeObservable of the Java interface IMetricCollector. 63
5.16 The method getData of the Java interface IDataAccessService. 63
5.17 The method writeData of the Java interface IDataAccessService. 64
5.18 The method writeDataList of the Java interface IDataAccessService. . . . 64
5.19 Insight API endpoint for requesting the block hash by its height. 64
5.20 Insight API endpoint for requesting a transaction by hash. 65
5.21 Insight API endpoint for requesting basic network information. 65
5.22 Insight API endpoint for requesting a block by its hash. 65
5.23 Insight API endpoint for requesting transactions by address. 65
5.24 Insight API endpoint for requesting unspent transaction outputs. 66
5.25 Insight API endpoint for sending transactions. 66

111

5.26 JSON-RPC endpoint for requesting the transaction count. 66
5.27 JSON-RPC endpoint for requesting an uncle by block hash and index. . . 67
5.28 JSON-RPC endpoint for requesting a block by its number. 67
5.29 JSON-RPC endpoint for requesting the current block number. 67
5.30 JSON-RPC endpoint for requesting the current gas price. 67
5.31 JSON-RPC endpoint for sending a transaction. 68
5.32 Parity JSON-RPC endpoint for retrieving pending transactions. 68
5.33 Gexp JSON-RPC endpoint for retrieving pending transactions. 68
5.34 Allocated VM resources. 69
5.35 Relevant flags for starting an Ethereum or Ethereum Classic node. 71
5.36 Relevant flags for starting an Expanse node. 72

6.1 Evaluation Setup: Allocated resources for VMs running on the Google Cloud
Platform. 75

6.2 The average value and standard deviation of the costs for writing one kilobyte
of data into the Bitcoin, Ethereum, Ethereum Classic and Expanse blockchain. 77

6.3 The average value and standard deviation of each blockchain’s inter-block
times. 78

6.4 The average value and standard deviation of the exchange rates between USD
and each blockchain’s underlying cryptocurrency. 79

6.5 The average value and standard deviation of each blockchain’s transaction
(abbr. tx) throughputs. 80

6.6 The average value and standard deviation of each blockchain’s hash rate in
tera hashes per second (abbr. TH/s). 81

6.7 The average values of the switchover times measured on 27.10.2018 and
28.10.2018. 97

6.8 The standard deviations of the switchover times measured on 27.10.2018 and
28.10.2018. 98

6.9 The weighted ranking settings used for the evaluation of Scenario 11 (metrics
with a weight of zero are not listed). 99

6.10 The calculation results for the weighted ranking (based on values measured
on 25.09.2018). For each blockchain and each metric, the score and weighted
score (denoted as W. Score) are shown. 101

6.11 The calculation results for the weighted ranking (based on values measured
on 07.10.2018). For each blockchain and each metric, the score and weighted
score (denoted as W. Score) are shown. 102

6.12 The calculation results for the weighted ranking (based on values measured
on 17.10.2018). For each blockchain and each metric, the score and weighted
score (denoted as W. Score) are shown. 103

112

Listings

2.1 The low-level representation of a Bitcoin transaction [NBF+16]. 16
5.1 Installation instructions of Bitcore. 69
5.2 Start instructions of Bitcore. 70
5.3 Start instructions of Bitcore. 70
5.4 Instructions for building an instance of the Blockchain Manager. . . . 72
5.5 Instructions for creating a blockchain. 72
5.6 Instructions for receiving switchover suggestions. 72
6.1 Log extraction that illustrates the handling of concurrent write operations. 84
6.2 String formatter function for Scenario 2. 85
6.3 Log extraction that illustrates the handling of too large input strings. 85
6.4 Log extraction that illustrates the handling of write operations during the

execution of a switchover. 86
6.5 Log extraction that illustrates the handling of concurrent switchovers. 87
6.6 Log extraction that illustrates the handling of frequent ranking changes. 88
6.7 Subscription to receive switchover suggestions. 89
6.8 Threshold validation settings of Scenario 7. 93
6.9 Log extraction that shows the reaction of the framework in case the network

hash rate of Expanse decreases rapidly. 94
6.10 Log extraction that shows the reaction of the framework in case the costs

for writing data into the Expanse blockchain increase rapidly. 95
6.11 Log extraction that shows the movement of data during the execution of

a switchover. 95

113

Acronyms

ACCS atomic cross-chain swap. 8, 25, 27–29

DApp decentralized application. 3

ECDSA Elliptic Curve Digital Signature Algorithm. 13, 21
EVM Ethereum Virtual Machine. 23, 24

HTLC Hashed Time-Locked Contract. 27, 30, 32

IOIS Inter-organizational Information System. 35, 36

SCM Supply Chain Management. 3, 35
SGX Software Guard Extensions. 28
SLA Service Level Agreement. 37
SOA service-oriented architecture. 36, 37
SPV Simplified Payment Verification. 6, 15, 32, 33

TEE trusted execution environment. 28

UTXO Unspent Transaction Output. 16, 20, 24, 30

115

Bibliography

[acc13] Atomic cross-chain trading. https://en.bitcoin.it/wiki/
Atomic_cross-chain_trading, 2013. Last Access: 26.04.2018.

[acc16] ACCT using CLTV - More Effective than a sleeping pill! https:
//bitcointalk.org/index.php?topic=1340621.0, 2016. Last
Access: 26.04.2018.

[alt17] World’s first Atomic Swap Wallet from Altcoin.io released.
https://blog.altcoin.io/worlds-first-atomic-swap-
wallet-from-altcoin-io-released-6f1cfc52d1cc, 2017. Last
Access: 26.04.2018.

[Apo17] Rich Apodaca. OP_RETURN and the Future of Bitcoin.
https://bitzuma.com/posts/op-return-and-the-future-
of-bitcoin/, 2017. Last Access: 28.09.2018.

[ato16] Atomic swaps using cut and choose. https://bitcointalk.org/
index.php?topic=1364951, 2016. Last Access: 26.04.2018.

[BCC+13] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. A Survey on Reactive Pro-
gramming. ACM Comput. Surv., 45(4):52:1–52:34, 2013.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille.
Enabling Blockchain Innovations with Pegged Sidechains. https://
blockstream.com/sidechains.pdf, 2014. Last Access: 26.04.2018.

[BG96] Ann Becker and Dan Geiger. Optimization of Pearl’s method of condi-
tioning and greedy-like approximation algorithms for the vertex feedback
set problem. Artificial Intelligence, 83:167–188, 1996.

[BH17] Sean Bowe and Daira Hopwood. Hashed Time-Locked Contract transac-
tions. https://github.com/bitcoin/bips/blob/master/bip-
0199.mediawiki, 2017. Last Access: 26.04.2018.

117

https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://bitcointalk.org/index.php?topic=1340621.0
https://bitcointalk.org/index.php?topic=1340621.0
https://blog.altcoin.io/worlds-first-atomic-swap-wallet-from-altcoin-io-released-6f1cfc52d1cc
https://blog.altcoin.io/worlds-first-atomic-swap-wallet-from-altcoin-io-released-6f1cfc52d1cc
https://bitzuma.com/posts/op-return-and-the-future-of-bitcoin/
https://bitzuma.com/posts/op-return-and-the-future-of-bitcoin/
https://bitcointalk.org/index.php?topic=1364951
https://bitcointalk.org/index.php?topic=1364951
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

[BHMS05] Rainer Berbner, Oliver Heckmann, Andreas Mauthe, and Ralf Stein-
metz. Eine dienstgüte unterstützende webservice-architektur für flexible
geschäftsprozesse. Wirtschaftsinformatik, 47(4):268–277, 2005.

[bis18] Bisq. https://bisq.network/, 2018. Last Access: 26.04.2018.

[bit17] bitcoin.org. Bitcoin Developer Reference. https://bitcoin.org/
en/developer-reference#block-versions, 2017. Last Access:
07.06.2018.

[BJZ+17] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz Breiden-
bach, Philip Daian, and Ari Juels. Tesseract: Real-Time Cryptocurrency
Exchange using Trusted Hardware. Cryptology ePrint Archive, Report
2017/1153, 2017. https://eprint.iacr.org/2017/1153.
Last Access: 26.04.2018.

[blo18] Blocknet. https://blocknet.co/, 2018. Last Access: 26.04.2018.

[BMC+15a] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. SoK: Research Perspectives and Challenges for Bitcoin and Cryp-
tocurrencies. In 2015 IEEE Symposium on Security and Privacy, pages
104–121, May 2015.

[BMC+15b] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. SoK: Research Perspectives and Challenges for Bitcoin and Cryp-
tocurrencies. In 2015 IEEE Symposium on Security and Privacy, pages
104–121, 2015.

[Bri18] Adrian Bridgwater. Blockchains Are Verticalizing, So We Need Interop-
erability. https://www.forbes.com/sites/adrianbridgwater/
2018/02/07/blockchains-are-verticalizing-so-we-need-
interoperability/#6bed30df7ab9, 2018. Last Access: 05.05.2018.

[btc18] BTC Relay. http://btcrelay.org/, 2018. Last Access: 26.04.2018.

[But16] Vitalik Buterin. Chain interoperability. https://static1.
squarespace.com/static/55f73743e4b051cfcc0b02cf/
t/5886800ecd0f68de303349b1/1485209617040/Chain+
Interoperability.pdf, 2016. Last Access: 26.04.2018.

[Car18] Diane Cardwell. Solar Experiment Lets Neighbors Trade Energy Among
Themselves). https://www.statista.com/statistics/377382/
bitcoin-market-capitalization/, 2018. Last Access: 08.05.2018.

[CM16] Arlyn Culwick and Dan Metcalf. The Blocknet Design Specifica-
tion. https://www.blocknet.co/wp-content/uploads/2018/
04/whitepaper.pdf, 2016. Last Access: 05.05.2018.

118

https://bisq.network/
https://bitcoin.org/en/developer-reference#block-versions
https://bitcoin.org/en/developer-reference#block-versions
https://eprint.iacr.org/2017/1153
https://blocknet.co/
https://www.forbes.com/sites/adrianbridgwater/2018/02/07/blockchains-are-verticalizing-so-we-need-interoperability/#6bed30df7ab9
https://www.forbes.com/sites/adrianbridgwater/2018/02/07/blockchains-are-verticalizing-so-we-need-interoperability/#6bed30df7ab9
https://www.forbes.com/sites/adrianbridgwater/2018/02/07/blockchains-are-verticalizing-so-we-need-interoperability/#6bed30df7ab9
http://btcrelay.org/
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://www.blocknet.co/wp-content/uploads/2018/04/whitepaper.pdf
https://www.blocknet.co/wp-content/uploads/2018/04/whitepaper.pdf

[com14a] Ethereum community. Patricia Tree. https://github.com/
ethereum/wiki/wiki/Patricia-Tree, 2014. Last Access:
16.06.2018.

[com14b] Ethereum community. White Paper. https://github.com/
ethereum/wiki/wiki/White-Paper, 2014. Last Access: 16.06.2018.

[com16] Ethereum community. Ethereum Glossary. http://ethdocs.org/en/
latest/glossary.html, 2016. Last Access: 16.06.2018.

[Com17] Bitcoin Community. Difficulty. https://en.bitcoin.it/wiki/
Difficulty, 2017. Last Access: 28.09.2018.

[Com18a] Bitcoin Community. OP_RETURN. https://en.bitcoin.it/
wiki/OP_RETURN, 2018. Last Access: 28.09.2018.

[com18b] Ethereum community. Proof of Stake FAQs. https://github.
com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#further-
reading, 2018. Last Access: 17.06.2018.

[Com18c] Ethereum Community. The Ethereum Virtual Machine. http:
//solidity.readthedocs.io/en/v0.4.24/introduction-to-
smart-contracts.html#index-6, 2018. Last Access: 22.07.2018.

[Cor18] Chloe Cornish. Growing number of cryptocurrencies spark con-
cerns. https://www.ft.com/content/a6b90a8c-f4b7-11e7-
8715-e94187b3017e, 2018. Last Access: 10.05.2018.

[Cos18] Paul Costas. Vitalik Buterin Proposes Data Storage Fees for
Ethereum. https://cryptodisrupt.com/vitalik-buterin-
proposes-data-storage-fees-for-ethereum/, 2018. Last Ac-
cess: 11.07.2018.

[CPPRPM14] Julián Chaparro-Peláez, Antonio Pereira-Rama, and Félix José Pascual-
Miguel. Inter-organizational information systems adoption for service
innovation in building sector. Journal of Business Research, 67(5):673 –
679, 2014.

[ct17] Block collider team. Block collider white paper. https://s3.
amazonaws.com/blockcollider/blockcollider_wp.pdf, 2017.
Last Access: 05.05.2018.

[dec17] On-Chain Atomic Swaps. https://blog.decred.org/2017/09/
20/On-Chain-Atomic-Swaps/, 2017. Last Access: 26.04.2018.

[Dou18] Kevin Doubleday. Blockchain for 2018 and Beyond: A (growing) list of
blockchain use cases. https://medium.com/fluree/blockchain-
for-2018-and-beyond-a-growing-list-of-blockchain-
use-cases-37db7c19fb99, 2018. Last Access: 07.05.2018.

119

https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://ethdocs.org/en/latest/glossary.html
http://ethdocs.org/en/latest/glossary.html
https://en.bitcoin.it/wiki/Difficulty
https://en.bitcoin.it/wiki/Difficulty
https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/OP_RETURN
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#further-reading
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#further-reading
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#further-reading
http://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html#index-6
http://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html#index-6
http://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html#index-6
https://www.ft.com/content/a6b90a8c-f4b7-11e7-8715-e94187b3017e
https://www.ft.com/content/a6b90a8c-f4b7-11e7-8715-e94187b3017e
https://cryptodisrupt.com/vitalik-buterin-proposes-data-storage-fees-for-ethereum/
https://cryptodisrupt.com/vitalik-buterin-proposes-data-storage-fees-for-ethereum/
https://s3.amazonaws.com/blockcollider/blockcollider_wp.pdf
https://s3.amazonaws.com/blockcollider/blockcollider_wp.pdf
https://blog.decred.org/2017/09/20/On-Chain-Atomic-Swaps/
https://blog.decred.org/2017/09/20/On-Chain-Atomic-Swaps/
https://medium.com/fluree/blockchain-for-2018-and-beyond-a-growing-list-of-blockchain-use-cases-37db7c19fb99
https://medium.com/fluree/blockchain-for-2018-and-beyond-a-growing-list-of-blockchain-use-cases-37db7c19fb99
https://medium.com/fluree/blockchain-for-2018-and-beyond-a-growing-list-of-blockchain-use-cases-37db7c19fb99

[Dzi15] Stefan Dziembowski. Introduction to Cryptocurrencies. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1700–1701, New York, NY, USA, 2015. ACM.

[Fra18] Matthew Frankel. How Many Cryptocurrencies Are There?
https://www.fool.com/investing/2018/03/16/how-many-
cryptocurrencies-are-there.aspx, 2018. Last Access:
10.05.2018.

[Her18] Maurice Herlihy. Atomic Cross-Chain Swaps. eprint arXiv:1801.09515,
2018.

[HF10] Mohammad Kazem Haki and Maia Wentland Forte. Inter-Organizational
Information System Architecture: A Service-Oriented Approach. In Luis M.
Camarinha-Matos, Xavier Boucher, and Hamideh Afsarmanesh, editors,
Collaborative Networks for a Sustainable World, pages 642–652, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[htl16] Hashed Timelock Contracts. https://en.bitcoin.it/wiki/
Hashed_Timelock_Contracts, 2016. Last Access: 26.04.2018.

[Kas17] Preethi Kasireddy. How does Ethereum work, anyway? https:
//medium.com/@preethikasireddy/how-does-ethereum-
work-anyway-22d1df506369, 2017. Last Access: 16.06.2018.

[KB18] Jae Kwon and Ethan Buchman. Cosmos white paper. https://cosmos.
network/resources/whitepaper, 2018. Last Access: 05.05.2018.

[Ken18] Hu Kenneth. Ethereum account. https://medium.com/coinmonks/
ethereum-account-212feb9c4154, 2018. Last Access: 16.06.2018.

[Kle18] Jacob Kleinman. Why Bitcoin’s Price Is So Volatile. https:
//lifehacker.com/why-bitcoin-s-price-is-so-volatile-
1822143846, 2018. Last Access: 08.05.2018.

[kno11] knowledgesiam. B2B Exchanges & Electronic Hubs. https://
knowledgesiam.wordpress.com/2011/10/06/b2b-exchanges-
electronic-hubs/, 2011. Last Access: 11.05.2018.

[kom18] Komodo: An Advanced Blockchain Technology, Focused on Free-
dom. http://beta.phideas.info/en/whitepaper/2018-02-
14-Komodo-White-Paper-Full.pdf, 2018. Last Access: 26.04.2018.

[Low17] Janina Lowisz. Cashaa Will Power Financial Transactions
For The Zero-Code Blockchain App Development Environ-
ment. https://www.reuters.com/brandfeatures/venture-
capital/article?id=22110, 2017. Last Access: 05.05.2018.

120

https://www.fool.com/investing/2018/03/16/how-many-cryptocurrencies-are-there.aspx
https://www.fool.com/investing/2018/03/16/how-many-cryptocurrencies-are-there.aspx
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper
https://medium.com/coinmonks/ethereum-account-212feb9c4154
https://medium.com/coinmonks/ethereum-account-212feb9c4154
https://lifehacker.com/why-bitcoin-s-price-is-so-volatile-1822143846
https://lifehacker.com/why-bitcoin-s-price-is-so-volatile-1822143846
https://lifehacker.com/why-bitcoin-s-price-is-so-volatile-1822143846
https://knowledgesiam.wordpress.com/2011/10/06/b2b-exchanges-electronic-hubs/
https://knowledgesiam.wordpress.com/2011/10/06/b2b-exchanges-electronic-hubs/
https://knowledgesiam.wordpress.com/2011/10/06/b2b-exchanges-electronic-hubs/
http://beta.phideas.info/en/whitepaper/2018-02-14-Komodo-White-Paper-Full.pdf
http://beta.phideas.info/en/whitepaper/2018-02-14-Komodo-White-Paper-Full.pdf
https://www.reuters.com/brandfeatures/venture-capital/article?id=22110
https://www.reuters.com/brandfeatures/venture-capital/article?id=22110

[LSST06] Jingquan Li, Riyaz Sikora, Michael J. Shaw, and Gek Woo Tan. A strategic
analysis of inter organizational information sharing. Decision Support
Systems, 42(1):251 – 266, 2006.

[Luu17] Loi Luu. PeaceRelay: Connecting the many Ethereum Blockchains.
https://medium.com/@loiluu/peacerelay-connecting-the-
many-ethereum-blockchains-22605c300ad3, 2017. Last Access:
26.04.2018.

[lyk18] Lykke. https://www.lykke.com/, 2018. Last Access: 26.04.2018.

[map15] mappum. Mercury - Fully trustless cryptocurrency exchange - Looking for
testers! https://bitcointalk.org/index.php?topic=946174.
0, 2015. Last Access: 26.04.2018.

[Mar18] Jon Martindale. Bitcoin market cap has already dropped more than $80
billion in 2018. https://www.digitaltrends.com/computing/
bitcoin-market-cap-80-billion/, 2018. Last Access: 08.05.2018.

[Min17] MindMajix. Bitcoin vs Ethereum vs Blockchain. https://mindmajix.
com/bitcoin-vs-ethereum-vs-blockchain, 2017. Last Access:
20.06.2018.

[Mon17] Monetha. How we react to Ethereum’s price fluctuations. https:
//medium.com/@monetha/how-we-react-to-ethereums-
price-fluctuations-bb4d00b70cb7, 2017. Last Access:
08.05.2018.

[Mos17] Alex Moskov. Ethereum Classic vs Ethereum: What’s the dif-
ference? https://coincentral.com/ethereum-classic-vs-
ethereum/, 2017. Last Access: 30.06.2018.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. https://bitcoin.org/bitcoin.pdf, 2008. Last Access:
08.05.2018.

[NBF+16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and Cryptocurrency Technologies: A Compre-
hensive Introduction. Princeton University Press, Princeton, NJ, USA,
2016.

[Pat16] Keval Patel. The Ethereum Virtual Machine. https://medium.
com/exploring-code/what-is-reactive-programming-
da37c1611382, 2016. Last Access: 28.09.2018.

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. https://lightning.network/
lightning-network-paper.pdf, 2016. Last Access: 26.04.2018.

121

https://medium.com/@loiluu/peacerelay-connecting-the-many-ethereum-blockchains-22605c300ad3
https://medium.com/@loiluu/peacerelay-connecting-the-many-ethereum-blockchains-22605c300ad3
https://www.lykke.com/
https://bitcointalk.org/index.php?topic=946174.0
https://bitcointalk.org/index.php?topic=946174.0
https://www.digitaltrends.com/computing/bitcoin-market-cap-80-billion/
https://www.digitaltrends.com/computing/bitcoin-market-cap-80-billion/
https://mindmajix.com/bitcoin-vs-ethereum-vs-blockchain
https://mindmajix.com/bitcoin-vs-ethereum-vs-blockchain
https://medium.com/@monetha/how-we-react-to-ethereums-price-fluctuations-bb4d00b70cb7
https://medium.com/@monetha/how-we-react-to-ethereums-price-fluctuations-bb4d00b70cb7
https://medium.com/@monetha/how-we-react-to-ethereums-price-fluctuations-bb4d00b70cb7
https://coincentral.com/ethereum-classic-vs-ethereum/
https://coincentral.com/ethereum-classic-vs-ethereum/
https://bitcoin.org/bitcoin.pdf
https://medium.com/exploring-code/what-is-reactive-programming-da37c1611382
https://medium.com/exploring-code/what-is-reactive-programming-da37c1611382
https://medium.com/exploring-code/what-is-reactive-programming-da37c1611382
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

[RD05] Florian Rosenberg and Schahram Dustdar. Business rules integration
in BPEL - a service-oriented approach. In Seventh IEEE International
Conference on E-Commerce Technology (CEC’05), pages 476–479, 2005.

[rep18] Republic Protocol. https://republicprotocol.com/, 2018. Last
Access: 26.04.2018.

[Ros17] Ameer Rosic. Ethereum Mining 101: Your Complete Guide.
https://www.huffingtonpost.com/entry/ethereum-mining-
101-your-complete-guide_us_58b6e1eee4b02f3f81e44e9f?
guccounter=1, 2017. Last Access: 17.06.2018.

[SBS18] Christian Schubert, Michael Borkowski, and Stefan Schulte. Trustworthy
Detection and Arbitration of SLA Violations in the Cloud (under submis-
sion). 7th European Conference on Service-oriented and Cloud Computing,
2018.

[SHG14] N. Serrano, J. Hernantes, and G. Gallardo. Service-Oriented Architecture
and Legacy Systems. IEEE Software, 31(5):15–19, Sept 2014.

[Spr18] Craig Sproule. Crowd Machine white paper. https://www.
crowdmachine.com/wp-content/uploads/2017/11/Crowd-
Machine-Whitepaper.pdf, 2018. Last Access: 05.05.2018.

[Sta16] Elizabeth Stark. What is the Lightning Network and how can it help
Bitcoin scale? https://coincenter.org/entry/what-is-the-
lightning-network, 2016. Last Access: 26.04.2018.

[sta18] statista. Market capitalization of Bitcoin from 1st quarter 2012 to 1st
quarter 2018 (in billion U.S. dollars). https://www.statista.com/
statistics/377382/bitcoin-market-capitalization/, 2018.
Last Access: 08.05.2018.

[Sun18] Flora Sun. UTXO vs Account/Balance Model. https:
//medium.com/@sunflora98/utxo-vs-account-balance-
model-5e6470f4e0cf, 2018. Last Access: 16.06.2018.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Malware Guard Extension: Using SGX to Conceal Cache
Attacks. CoRR, abs/1702.08719, 2017.

[T1.8a] Phan Són Tú. . Data structure in Ethereum | Episode 2: Radix trie and
Merkle trie. https://medium.com/coinmonks/data-structure-
in-ethereum-episode-2-radix-trie-and-merkle-trie-
d941d0bfd69a, 2018. Last Access: 16.06.2018.

122

https://republicprotocol.com/
https://www.huffingtonpost.com/entry/ethereum-mining-101-your-complete-guide_us_58b6e1eee4b02f3f81e44e9f?guccounter=1
https://www.huffingtonpost.com/entry/ethereum-mining-101-your-complete-guide_us_58b6e1eee4b02f3f81e44e9f?guccounter=1
https://www.huffingtonpost.com/entry/ethereum-mining-101-your-complete-guide_us_58b6e1eee4b02f3f81e44e9f?guccounter=1
https://www.crowdmachine.com/wp-content/uploads/2017/11/Crowd-Machine-Whitepaper.pdf
https://www.crowdmachine.com/wp-content/uploads/2017/11/Crowd-Machine-Whitepaper.pdf
https://www.crowdmachine.com/wp-content/uploads/2017/11/Crowd-Machine-Whitepaper.pdf
https://coincenter.org/entry/what-is-the-lightning-network
https://coincenter.org/entry/what-is-the-lightning-network
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/coinmonks/data-structure-in-ethereum-episode-2-radix-trie-and-merkle-trie-d941d0bfd69a
https://medium.com/coinmonks/data-structure-in-ethereum-episode-2-radix-trie-and-merkle-trie-d941d0bfd69a
https://medium.com/coinmonks/data-structure-in-ethereum-episode-2-radix-trie-and-merkle-trie-d941d0bfd69a

[T1.8b] Phan Són Tú. . Data structure in Ethereum | Episode 3: Pa-
tricia trie. https://medium.com/coinmonks/data-structure-
in-ethereum-episode-3-patricia-trie-b7b0ccddd32f, 2018.
Last Access: 16.06.2018.

[The18a] TheBlocknet. The Blocknet Protocol: Enabling Blockchain In-
teroperability. https://medium.com/@theblocknetchannel/
the-blocknet-protocol-enabling-blockchain-
interoperability-c5766c2165ed, 2018. Last Access: 05.05.2018.

[The18b] Pascal Thellmann. Scalability issues plague Blockchain technol-
ogy. Meet Zilliqa. https://hackernoon.com/scalability-
issues-plague-blockchain-technology-meet-zilliqa-
32b57b1228aa, 2018. Last Access: 08.05.2018.

[Tie13] TierNolan. Alt chains and atomic transfers. https://bitcointalk.
org/index.php?topic=193281.msg2224949#msg2224949, 2013.
Last Access: 26.04.2018.

[Tom17] Matthew Tompkins. FIRST EVER CROSS CHAIN ATOMIC
SWAP BETWEEN BITCOIN AND LITECOIN A SUCCESS. http:
//bitcoinist.com/first-ever-cross-chain-atomic-swap-
between-bitcoin-and-litecoin-has-now-taken-place/,
2017. Last Access: 26.04.2018.

[TS16] Florian Tschorsch and Björn Scheuermann. Bitcoin and Beyond: A Tech-
nical Survey on Decentralized Digital Currencies. IEEE Communications
Surveys & Tutorials, 18:2084–2123, 2016.

[wf17] web3 foundation. Polkadot light paper. https://polkadot.network/
Polkadot-lightpaper.pdf, 2017. Last Access: 05.05.2018.

[Woo14] Gavin Wood. ETHEREUM: A SECURE DECENTRALISED GENER-
ALISED TRANSACTION LEDGER. https://ethereum.github.
io/yellowpaper/paper.pdf, 2014. Last Access: 16.06.2018.

[Woo17] Gavin Wood. Polkadot white paper. https://github.com/w3f/
polkadot-white-paper/blob/master/PolkaDotPaper.pdf,
2017. Last Access: 05.05.2018.

[WV07] Y. Wang and J. Vassileva. A Review on Trust and Reputation for Web Ser-
vice Selection. In 27th International Conference on Distributed Computing
Systems Workshops (ICDCSW’07), pages 25–25, 2007.

[xHi15] xHire. Atomic protocol #1. https://www.coincer.org/2015/01/
27/atomic-protocol-1/, 2015. Last Access: 26.04.2018.

123

https://medium.com/coinmonks/data-structure-in-ethereum-episode-3-patricia-trie-b7b0ccddd32f
https://medium.com/coinmonks/data-structure-in-ethereum-episode-3-patricia-trie-b7b0ccddd32f
https://medium.com/@theblocknetchannel/the-blocknet-protocol-enabling-blockchain-interoperability-c5766c2165ed
https://medium.com/@theblocknetchannel/the-blocknet-protocol-enabling-blockchain-interoperability-c5766c2165ed
https://medium.com/@theblocknetchannel/the-blocknet-protocol-enabling-blockchain-interoperability-c5766c2165ed
https://hackernoon.com/scalability-issues-plague-blockchain-technology-meet-zilliqa-32b57b1228aa
https://hackernoon.com/scalability-issues-plague-blockchain-technology-meet-zilliqa-32b57b1228aa
https://hackernoon.com/scalability-issues-plague-blockchain-technology-meet-zilliqa-32b57b1228aa
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
http://bitcoinist.com/first-ever-cross-chain-atomic-swap-between-bitcoin-and-litecoin-has-now-taken-place/
http://bitcoinist.com/first-ever-cross-chain-atomic-swap-between-bitcoin-and-litecoin-has-now-taken-place/
http://bitcoinist.com/first-ever-cross-chain-atomic-swap-between-bitcoin-and-litecoin-has-now-taken-place/
https://polkadot.network/Polkadot-lightpaper.pdf
https://polkadot.network/Polkadot-lightpaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/w3f/polkadot-white-paper/blob/master/PolkaDotPaper.pdf
https://github.com/w3f/polkadot-white-paper/blob/master/PolkaDotPaper.pdf
https://www.coincer.org/2015/01/27/atomic-protocol-1/
https://www.coincer.org/2015/01/27/atomic-protocol-1/

[ZJ18] Kaiwen Zhang and Hans-Arno Jacobsen. Towards Dependable, Scalable,
and Pervasive Distributed Ledgers with Blockchains. Technical report,
University of Toronto, 2018.

[ZW17] Taiyang Zhang and Loong Wang. Republic Protocol: A decentralized
dark pool exchange providing atomic swaps for Ethereum-based assets and
Bitcoin. https://republicprotocol.github.io/whitepaper/
republic-whitepaper.pdf, 2017. Last Access: 26.04.2018.

124

https://republicprotocol.github.io/whitepaper/republic-whitepaper.pdf
https://republicprotocol.github.io/whitepaper/republic-whitepaper.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Aim of the Work
	Methodology and Approach
	Structure of this Thesis

	Background
	Cryptographic Basics and Data Structures
	Basic Concepts of Bitcoin
	Basic Concepts of Ethereum
	Bitcoin vs. Ethereum

	Related Work
	Trading between Users of Different Cryptocurrencies
	Atomic Swaps with the Lightning Network
	Relays
	Pegged Sidechains
	Blockchain Interoperability besides Trading of Cryptocurrencies
	Runtime Selection and Switchover

	Motivational Scenario
	Solution Approach
	Requirements
	Technical Design
	Implementation

	Framework Evaluation
	Evaluation Setup
	Measured Blockchain Metrics
	Evaluation Scenarios and Results

	Conclusion and Future Work
	Discussion of Research Questions
	Future Work

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

