
Enabling the Blockchain in the
Internet of Things

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Simon Krejci, BSc.
Matrikelnummer 01227059

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr.-Ing Stefan Schulte

Wien, 8. August 2018
Simon Krejci Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Enabling the Blockchain in the
Internet of Things

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Simon Krejci, BSc.
Registration Number 01227059

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr.-Ing Stefan Schulte

Vienna, 8th August, 2018
Simon Krejci Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Simon Krejci, BSc.
Emil-Kralik-Gasse 4, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. August 2018
Simon Krejci

v

Danksagung

Ich möchte die Gelegenheit nutzen, um jenen Menschen meinen Dank auszudrücken, die
mich während meines Studiums und beim Schreiben dieser Diplomarbeit begleitet und
unterstützt haben. An erster Stelle möchte ich meinem Betreuer Herrn Stefan Schulte für
die regelmäßigen Treffen, das wertvolle Feedback und die gute Kommunikation während
der Entstehung dieser Diplomarbeit danken.

Des Weiteren möchte ich meine Studienkollegen erwähnen, die mich seit den ersten
Stunden an der TU Wien begleitet haben. Danke Daniel, Lukas und Lukas, dass wir die
Herausforderungen des Studiums zusammen bewältigen konnten.

Danken möchte ich auch meiner Familie für ihren Rückhalt. Danke Yvonne, für deine
stetige Unterstützung und die entspannenden Kaffeepausen. Danke Günter, für die
Versorgung mit Spezialitäten aus der Heimat und die väterlichen Ratschläge.

Zu guter Letzt möchte ich Lena danken, die mich während der letzten Jahre begleitet,
unterstützt und bei Herausforderungen angetrieben hat, mit 100% voranzugehen. Danke!

vii

Kurzfassung

Die Blockchain und das Internet der Dinge (IoD) sind aufkommende Technologien. Die
Blockchain kann als öffentliches, verteiltes Kontobuch beschrieben werden, welches auf
einem Peer-to-Peer-Netzwerk aufgebaut ist. Das IoD ist eine Verknüpfung von Sensoren
und Aktoren, in der Informationen über Plattformen hinweg ausgetauscht werden können.
Im Allgemeinen kann man sagen, dass die Technologien für verschiedene Anwendungs-
bereiche vorgesehen sind. Allerdings hat die Blockchain das Potential, Probleme im
IoD zu lösen. Trotz der Popularität hält sich die Anzahl der Versuche zur Integration
der Blockchain im IoD in Grenzen. Darüber hinaus konzentrieren sich die bestehenden
Ansätze auf grundlegende Fragen anstatt die Blockchain-Technologie in komplexeren
Anwendungen zu verwenden. Aus diesem Grund, beschäftigt sich diese Diplomarbeit mit
der Frage, wie die Blockchain aus softwaretechnischer Sicht im IoD verwendet werden
kann.

Im Laufe dieser Arbeit entwickeln und implementieren wir die Blockchain-IoD-Anwendung,
welche Ethereum verwendet. Die Anwendung kann Daten von Sensoren erfassen und
über zwei Kommunikationskanäle verteilen. Im Mittelpunkt der Anwendung steht eine
Middleware, die einen Sensortreiber, der die Sensordaten sammelt, mit Klienten verbindet,
welche die verschiedenen Kommunikationskanäle abonnieren. Darüber hinaus ist der
IoD Klient implementiert, der in der Lage ist, die Verzögerungen beider Kommunika-
tionskanäle zu überwachen und die relevanten Informationen der Blockchain für die
abschließende Auswertung zu verfolgen. Die entwickelte Anwendung wird schließlich
auf drei verschiedenen Geräten evaluiert, nämlich auf einem Intel Galileo Gen2, einem
Odroid-XU4 und einem Raspberry Pi 3.

Ein Ergebnis dieser Arbeit ist die Blockchain-IoD Anwendung und der IoD Klient. Das
gesamte Framework ist in der Lage, Daten von Sensoren zu sammeln und über einen
Echtzeitkanal und einen Kanal mit garantierter Integrität zu verteilen. Zusätzlich ist der
IoD Klient in der Lage, die Verzögerungen beider Kanäle und die Bestätigungszeiten von
Transaktionen in Ethereum zu überwachen. Unsere Ergebnisse zeigen, dass Ethereum auf
dem Intel Galileo Gen2 nicht anwendbar ist. Die Einrichtung der entwickelten Anwendung
auf den anderen Geräten funktioniert. Unterschiedliche Arbeitsauslastungen zeigen jedoch,
dass die Portabilität der Anwendung eingeschränkt ist. Die beste Leistung in Bezug auf
Verluste von Nachrichten in der Kommunikation erzielt der Raspberry Pi 3.

ix

Abstract

The blockchain and the Internet of Things (IoT) are emerging technologies. The
blockchain can be described as a public, distributed ledger, which is built on a peer-to-peer
(P2P) network. The IoT is an interconnection of sensing and actuating devices where
information can be shared across platforms. Generally, it can be said that these two tech-
nologies operate in different application fields. However, the blockchain has the potential
to solve challenges of the IoT. Despite of the popularity, the amount of approaches to
use the blockchain in the IoT is limited. Additionally, the existing approaches focus on
basic questions instead of using the blockchain technology in more complex applications.
Thus, this thesis deals with the question how to use the blockchain in the IoT from a
software engineering perspective.

During the course of this thesis we design and implement the blockchain-IoT application
which uses Ethereum. The application is able to collect data from sensors and distribute
the data via two communication channels. The core of the application is a middleware
which connects a sensor driver that collects the sensor data with clients that subscribe to
the different communication channels. Furthermore, the IoT client is implemented which
is able to monitor the delays of both communication channels and which tracks relevant
information of the blockchain for the final evaluation. The developed application is
evaluated on three different IoT devices, namely on an Intel Galileo Gen2, an Odroid-XU4
and a Raspberry Pi 3.

One result of this thesis is the blockchain-IoT application and the IoT client. The whole
framework is able to collect data from sensors and distribute it via a real-time channel
and a channel with guaranteed integrity. Additionally, the IoT client is able to monitor
the delays of both channels and the confirmation times of transactions in Ethereum.
The evaluation results show that enabling Ethereum on the Intel Galileo Gen2 is not
feasible. The setup of the developed application on the other devices is possible. However,
different workloads show that the portability of the application is restricted. The best
performance in terms of message losses is achieved on the Raspberry Pi 3.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 7
2.1 Systematic Literature Review . 7
2.2 Blockchain . 9
2.3 Internet of Things . 16

3 Related Work 23
3.1 Blockchain and IoT . 23
3.2 Blockchains . 30
3.3 Communication Protocols . 34
3.4 Storage . 35

4 Solution Approach 37
4.1 Research Challenges . 37
4.2 Requirements Specification . 39
4.3 Architecture . 43
4.4 Technology Decisions . 48

5 Implementation 51
5.1 Sensor Driver . 51
5.2 Middleware . 55
5.3 IoT Client . 66

6 Evaluation 73
6.1 Results . 78
6.2 Discussion . 94

xiii

7 Conclusion 97
7.1 Discussion of Research Questions . 98
7.2 Future Work . 99

List of Figures 101

List of Tables 103

List of Algorithms 105

Listings 105

Acronyms 107

Bibliography 111

CHAPTER 1
Introduction

Motivation
According to Gartner’s hype cycle [1] for emerging technologies in 2017, the IoT and the
blockchain are currently at the peak of inflated expectations. Generally it can be said
that these technologies are aiming at different application fields. Nevertheless, Dorri et
al. [2] and Christidis et al. [3] discuss that combining these two technologies is promising
for solving some challenges of the IoT. Especially the scalability and robustness of the
ever-expanding IoT device ecosystem shall be improved by the blockchain’s decentralized
architecture. The decentralization avoids a single point of failure and decreases delays by
eliminating many-to-one traffic flows. Additionally, the core functionality of the blockchain
as a digital ledger which stores in case of cryptocurrencies all money transactions is
beneficial. It can be used to conveniently add a billing layer to the IoT infrastructure.
Assuring secure money transfers demands for sophisticated cryptography and security
concepts like they are provided by the blockchain. Hence, this high standard of security
can also be of use for the IoT. Because of the named advantages, it makes sense to apply
these two technologies complementarily.

Besides the scientific point of view, combining the blockchain and IoT can also be interest-
ing for real world scenarios. An example is the regulation on a mechanism for monitoring
and reporting greenhouse gas emissions of the European Union [4]. Here, environmental
information is collected at national and Union level to track progress in reducing emissions
which contribute to climate change. Therefore, the quality, immutability and consistency
of data is important. Currently the data is transmitted to the European Commission in
form of an annual report. Implementing the blockchain and IoT in this scenario could
make this process more sophisticated. The environmental data could be collected by an
IoT sensor network which stores the data directly into the blockchain. Primarily, this
would guarantee tamper protection because once a transaction is added to the blockchain
it can not be changed any more. Another advantage is that the measured values would

1

1. Introduction

be immediately accessible and the European Commission could monitor data in nearly
real-time without waiting for the annual report. However, before doing so, apart from
the integration of these technologies, different issues have to be solved.

Aim of the Work

Despite the promising application of the blockchain in IoT, there are some challenges to
overcome. Dorri et al. [5] name resource restrictions, considering computational power
and bandwidth as a critical bottleneck of IoT devices. Furthermore, the poor scalability
of the blockchain, when the network contains too many nodes, is a drawback. This is
a real challenge because IoT networks are expected to have numerous nodes. Another
issue is that storing sensor data in the blockchain will bloat it with transactions and
data [6]. Because of the underlying P2P architecture, every node in the network is storing
the transactions and data. Thus, finding a strategy which decreases the data loads on
the blockchain is a challenge. Regarding the research community, the publications are
not that numerous and diverse as it might be expected from the current popularity of
the topic. A systematic literature review from Conoscenti et al. [7] in 2016 identifies
four use cases and five papers about combining the blockchain and the IoT. Futhermore,
the majority of blockchain research concentrates on Bitcoin [8]. However, the research
community seems to be engaged in these topics and continuously publishes new results.

The impression from the current publications is that a lot of papers deal with the topic
blockchain and IoT on a low level. This means that the papers focus on basic questions
instead of using the blockchain in more complex applications. Thus, the question rises
how the benefits of the blockchain can be used in an IoT application. Furthermore,
blockchain technologies need a lot of resources. Despite the existence of possiblities
to access the blockchain with lower resource usage, the question remains how does it
perform on resource-restricted devices. Therefore, another question is how to enable the
blockchain on resource-restricted devices and how does it perform. This thesis focuses on
the following topics:

Application Design

As it has already been mentioned, the research aiming at specific use cases is rather rare.
Furthermore, research in this domain focuses more on technical details than on software
engineering problems. Hence, the aim of this work is to develop an IoT application which
fits into the blockchain-IoT domain. Therefore, the application implements a use case
which is inspired by the scenario about the monitoring and reporting of greenhouse gas
emissions. Furthermore, sensors are a basic element of the IoT [6]. Thus, the application
has to be able to operate with sensors to fit in the IoT. The data which is generated
by the sensors has to be handled in the application. The resulting application is then
included in the final performance tests. Regarding the implementation, the core of the
blockchain-IoT application is a middleware. A middleware is an approach to hide the
complexity of an underlying infrastructure [9]. This software abstraction layer helps

2

MIDDLEWARE

Sensor

Sensor

Sensor

Sensor

CLIENT
Blockchain

Figure 1.1: Sketch of Solution Approach.

a developer to focus on his tasks without considering the underlying complexity. In
case of the work’s blockchain-IoT application, blockchain access and data collection
can be hidden. The service requirements for a complete middleware in the IoT are
resource discovery, resource management, data management, event management and code
management [9]. Nevertheless, the aim of this work is not to implement a complete IoT
middleware. The aim is to implement a middleware which contains data management
functionalities and enhances it with the blockchain technology. The approach is sketched
in Figure 1.1. Data is collected by the middleware from the connected sensors and
distributed via the blockchain. To retrieve the data, a client has to be connected with
the blockchain.

One important aspect of data management is context awareness. The issue with data in
IoT is the heterogenity of IoT devices and their data [9]. When a value is received from
a device, it can not be said if it describes the temperature or humidity without further
information. Storing this additional information, like type of measurement, enables a
context-aware handling of the measured values and therefore a targeted use. Thus, the
consideration of the context awareness is part of the development process.

Performance

As already has been explained, performance is critical because of the resource restrictions
of IoT devices. Besides the general duties of the IoT devices, which already consume
computing power, a client program must be executed to access a blockchain. This means
extra computations which may be a problem for the devices. Therefore, the aim is to
find a strategy to enable the blockchain or rather the client on the IoT device. However,
besides the blockchain, the IoT device shall also be able to run an application and provide
services for clients. With this setup, the performance is tested on different IoT devices.
A final evaluation will show the devices’ suitability for the participation in the blockchain

3

1. Introduction

network and the execution of an IoT application.

To sum up, the aim of this work is to enable the blockchain on IoT devices. For the
performance evaluation on different devices, an application is developed to test the
blockchain in action. This application aims to implement the monitoring use case of
Section 1. We expect that this work will show the feasibility of the blockchain on resource-
restricted devices. Furthermore, the development of the blockchain-IoT application shall
reveal how advantages of the blockchain can be used in the middleware data management.

Methodology and Approach

The results of this work are approached in several steps. First of all, a literature research
is performed, to develop an understanding of blockchains, IoT and how to combine those
two technologies. Furthermore, the literature research shows the state-of-the-art about
current solutions and challenges. The literature research is methodologically based on
the guidelines for systematic reviews and empirical research in software engineering by
Kitchenham et al. [10]. With the results of the literature research, the functional and
nonfunctional requirements for the blockchain-IoT application are defined. Based on the
requirements, the architecture is developed. Furthermore, a client is developed which
accesses the services of the middleware whereas the client is used to test and measure
the functionality.

After the implementation phase, the developed blockchain-IoT application is installed
with its required components on three different IoT devices. The three used devices are
the Intel Galileo Gen2, Raspberry Pi 3 Model B and ODROID-XU4. The motivation
behind this selection is to have devices with three different performance levels. The
ODROID-XU4 is the strongest device, the Raspberry Pi 3 Model B the second strongest
and the Intel Galileo Gen2 the weakest one. The goal of this phase is to test if it is
possible to setup the devices such that the blockchain-IoT application can be executed.

The final step is to evaluate the blockchain-IoT application and the devices where the setup
is successful. One part of the performance evaluation concentrates on the performance
of the IoT device itself like central processing unit (CPU) or memory utilization. The
second part focuses on the performance of the blockchain-IoT application. The metrics
for the blockchain-IoT application are determined in the design and development process.

Structure

The thesis is structured as follows. Chapter 2 presents basic information about the
blockchain and IoT. This chapter provides the introduction for the reader to the topics
which form the basis for the following chapters. Chapter 3 gives a deeper insight into
specific topics which are relevant for this work and for the solution approach. Therefore,
current solutions which combine the blockchain and IoT are described. Additionally,
different blockchains, storage possibilities and communication protocols, which are likely

4

to be used in the blockchain-IoT application, are discussed. Chapter 2 and 3 are based on
the results of the literature research. The following Chapter 4 deals with the requirements
analysis for the blockchain-IoT application and presents the design for the implementation.
The implementation itself is documented in Chapter 5. Chapter 6 documents the
performance evaluation approach. Furthermore, the results of the evaluation are presented.
Finally, Chapter 7 summarizes the work and gives an outlook for future work to answer
the question which raised during the current work.

5

CHAPTER 2
Background

This chapter provides elementary concepts and the theoretical background for the topics
which form the basis of this Diploma Thesis. To follow a structured approach for the
literature research, Section 2.1 defines the review protocol. Section 2.2 introduces the
blockchain domain. Using the example of Bitcoin, basic concepts and the architecture
of blockchains are explained. Furthermore, next-generation technologies, like smart
contracts and alternative consensus algorithms, are part of this overview. Section 2.3
focuses on IoT topics like architecture, elements of this network and challenges. In
addition, middleware approaches are discussed.

2.1 Systematic Literature Review

A literature review is used to create the content of the chapters “Background” and “Related
Work”. To improve the quality of the review by approaching it in a systematic and
structured way, we use the systematic literature review (SLR) approach of Kitchenham [10]
as orientation. An SLR is basically a secondary study, which answers specific research
questions in a certain field of interest. It follows a well-defined methodology, which
assures repeatability and transparency. This well-defined methodology causes a lot of
overload, which would be too much for the introductory Chapters 2 and 3. Therefore, we
adapt the approach in a way that the overload is reduced to a necessary minimum and
the repeatability is increased at the same time.

2.1.1 Review Protocol

For the structure and to avoid a bias on the study selection, a review protocol must be
defined before starting with the actual research. The protocol for this thesis is defined as
follows:

7

2. Background

(1) Background: The core topics of this thesis are blockchain technologies and the IoT.
Additionally, it is tried to combine both technologies and achieve an improvement
of specific use cases. So the two chapters “Background” and “Related Work” shall
provide an introduction and a basic overview to the current state-of-the-art in these
fields. The aim of the background chapter is to explain basics like terminology and
principles in the blockchain and IoT domain. The related work chapter focuses on
current solutions in terms of combining those two technologies.

(2) Research Questions: The aim of this SLR is to provide an overview. Thus, the
questions will not be as specific as they would be in other SLRs. Also the answers
will not claim completeness in terms of questions like which approaches do exist.
Nevertheless, they still provide a good structure for the research process. Because
we will discuss various topics in these chapters, three categories of research questions
are introduced. The abbreviation BQ is used for those which will be answered in
the background chapter for the blockchain and IoT domain. Specific blockchain
topics are indicated by BBQ. RWQ is used for the definition of specific questions in
Chapter 3.

(BQ1) What is the core of this domain? Explain basics, terminology and principles.
(BQ2) What are the current challenges?

(BBQ1) What are smart contracts?

(3) Research Strategy: In an SLR as described by Kitchenham, the research strategy
must be well-defined, and every step has to be documented. Defining study selection
criteria, quality assessment and data extraction strategies causes a lot of overhead.
To keep the research for the introduction chapters of this thesis within an appropriate
extend, these points will be held on a minimum.
For the search, Google Scholar1 is used. The results are mainly taken from well-known
digital libraries, e.g. IEEE2, ACM3, Springer4 and Elsevier5. Also, the recommenda-
tion service of Mendeley6 supports the research. This reference management tool
sends you now and then a list of suggestions with similar papers to them, which
are already in your Mendeley library. These suggestions will be reviewed. In case
they provide content to answer the defined research questions, they are added to the
bibliography. In the “Related Work” part actual blockchains are presented. Therefore,
the websites and whitepapers of the certain blockchains are accepted as valid sources.
In this review, also secondary studies like surveys are allowed. The reason for that is,
they provide the content to get an overview about the topics. To follow the guidelines

1https://scholar.google.at [Accessed: 2018-02-10]
2http://ieeexplore.ieee.org [Accessed: 2018-02-10]
3https://dl.acm.org [Accessed: 2018-02-10]
4https://link.springer.com [Accessed: 2018-02-10]
5https://www.elsevier.com [Accessed: 2018-02-10]
6https://www.mendeley.com [Accessed: 2018-02-10]

8

https://scholar.google.at/
http://ieeexplore.ieee.org
https://dl.acm.org/
https://link.springer.com/
https://www.elsevier.com/
https://www.mendeley.com/

2.2. Blockchain

of Kitchenham, the quality assessment comes after the study selection. Most of the
quality is assured by using well-known digital libraries. According to papers with
technical solutions, it will be checked if there are actual implementations provided
by the authors. The papers with existing implementations are rated with a higher
quality. For the data extraction no extra forms are used. The results are immediately
written down in the Chapters 2 and 3, which is at the same time the form in which
these results are disseminated. The extracted data will be reviewed by the advisor of
this thesis.

2.2 Blockchain

The blockchain came up in 2009 with the digital money Bitcoin proposed by Satoshi
Nakamoto [11]. Alltough the idea of digital money has already existed since the early
1980s [12], it took more than twenty years to develop a fully distributed solution in form
of Bitcoin and its underlying blockchain technology. The basic idea of the blockchain is
to get rid of a central authority. In terms of money transactions, banks are in the role
of a central authority these days. They are supervising the transactions and guarantee
their validity. On the one hand this creates security, on the other hand you have to
trust in the banks’ integrity. Another example for central authorities only for data are
social networks. According to Zyskind et al. [13], Facebook has gathered 300 petabytes
of personal data from the launch of the platform in 2004 [14] till 2014. Generally, it can
be said that we are living in a Big Data era, where intelligence is permanently collected,
analysed and used to improve companies’ services and profits [13]. That means, others
control your personal data and you have to trust that the data is used in the way you
want it to be used.

With its P2P architecture and the use of cryptography, a blockchain is able to avoid the
central authority. Originally it was developed to execute money transactions between
two parties without a trusted third party, but the concept can be extended and used for
other application scenarios like the protection of personal data [13].

2.2.1 Concepts and Terminology

Bitcoin was the first blockchain and was deployed in 2009. Hence, we present an
introduction to the blockchain based on the example of Bitcoin. The content for this
section relates to the work of Tschorsch et al., Xu et al. and Zheng et al. [12, 15, 16].

Generally, a blockchain can be described as a public, distributed ledger, which is built on
a P2P network where security is achieved by cryptography. All transactions, which are
executed in this network, are recorded on this ledger and stored on every node in the
P2P network. Basically, the ledger looks as depicted in Figure 2.1. As it can be seen
several blocks are linked to each other like a chain of blocks. This data structure is the
reason for the name blockchain.

9

2. Background

BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

Figure 2.1: Simplified Example of a Blockchain. (Source: [12])

Each block comprises a number of transactions. The transactions can be seen as an
abstract representation of coins in the blockchain. Every transaction has a hash to
identify it and a list of inputs and outputs. The input list is used to reference outputs of
previous transactions. However, an output can only be used as input once in the whole
chain. In case the output is used twice this would be like spending a coin twice, and
this is not allowed. Therefore, the transactions can be divided into the two categories
unspent transaction output (UTXO) and spent transaction output (STXO). An UTXO
is not referenced by a following transaction input at the moment. Due to the linking
of the transactions, the history of transactions can be traced back. The origin of every
transaction history is either the genesis block, which is the first block of the chain, or the
coinbase transaction. The coinbase transaction has only outputs and is used to rewarded
miners. Thus, coins are added to the system. Since for standard transactions the sum of
all inputs have to be equal to the sum of all outputs, coinbase transactions are the only
possibility to bring coins into the system. The genesis block supplies only once coins to
the system.

Besides the transactions, a block also contains the header which comprises several
elements. First, the BlockHash is the hash value of the block and the PrevBlockHash
refers to the BlockHash of the previous block. With the PrevBlockHash as a pointer
the data structure of the chain is like a linked list. Therefore, the order of the blocks
and transactions can be determined. Since the order is determined, also the current
ownership of a coin is determined. Furthermore, the blockchain is tamper-proof since
the hash depends on the block’s content. If something changes, the hash changes too
and thus the references are not correct anymore, which results in an invalid chain. Thus,
manipulations can not be done without recognition by other peers.

The next element is the nonce which is needed for the security of the system. To achieve
an infrastructure which gets along without a third party, the double spending problem
and the Sybil attack threat have to be solved. Spending a physical coin twice is not
possible. That seems trivial in the real world is not that easy with digital money in
a distributed environment. In a cryptocurrency, the double spending problem can be
controlled by consensus of the nodes in the network. To verify a transaction positively,
the majority has to agree on the correctness of the transaction. This only works under the
assumption that every node is honest. A dishonest node could start multiple instances
to manipulate the consensus vote (Sybil attack). To avoid this, nodes have to verify the

10

2.2. Blockchain

BlockHash

PrevBlockHash

TimeNonce

MerkleRoot = H()

H()

TXID0 TXID1

H()

TXID2 TXID3

Figure 2.2: Merkle Root. (Source: [12])

transactions using proof-of-work (PoW). The assumption of the PoW is that it is harder
for an attacker to dominate the majority of the network’s computing power than the
majority of instances. However, recent research by Eyal et al. [17] shows that only one
third of total computing power is needed to attack the blockchain.

When a new transaction is triggered, it is broadcast to the whole network. The nodes
verify the transaction. After that, the transaction is collected in a block together with
a number of other transactions. To generate the new block, which is called mining, a
computationally intensive puzzle has to be solved namely the PoW. The puzzle is solved
by calculating a hash of the block including the header and the transactions. The nonce
in the header is adjusted until the hash is equal to or lower than a specific target value.
Finally, the block with the correct hash is distributed in the network and added to the
blockchain by all nodes. Sometimes it can happen that two canonical blocks are mined at
the same time. In this case the blockchain forks and different versions of the blockchain
do exist. Thus, there might not be a consensus on the order of the transactions in the
network. The solution of Bitcoin is to continue mining on the longest fork whereas
“longest” means the fork where most of the computing power is involved [12]. Miners
decide locally which fork is the longest and continue mining on this fork and broadcast
the new mined block. Thus, one fork overtakes other forks and is then called the main
chain. Blocks which are not in the main chain are lost and subsequently the contained
transactions.

The last element in the header is the MerkleRoot which is the root node of a Merkle
tree [18]. Figure 2.2 shows the Merkle tree where hashes are calculated pairwise from the
leaf nodes. At higher levels, hashes are calculated pairwise from hashes. Hence, it can be
checked if a transaction is contained in the block or not by checking the root hash. The
MerkleRoot eases scalability issues of the blockchain because thin clients can be realized.
In contrast to full nodes, which store all blocks and their transactions, thin clients only
store the headers. To verify if a transaction is stored in the block, the transactions for
the pertaining block have to be downloaded. Then the Merkle tree can be built. If the

11

2. Background

root hashes are equal, the transaction is in the block.

2.2.2 Smart Contracts

A smart contract expands the functionality of the blockchain. Christidis et al. [3] describe
a smart contract as a script which is stored in the blockchain and can be accessed by its
own address. Its behavior is completely deterministic. When a transaction is sent to the
contract’s address, the contract is triggered. With these contracts, proper applications
can be implemented in the blockchain. A blockchain, which provides this functionality,
is the Ethereum blockchain [19]. In Ethereum, smart contracts run on an own virtual
state machine which is called the Ethereum Virtual Machine (EVM). This machine is
quasi-Turing-complete because a parameter limits the number of computations. Besides
that, there are no limitations considering scripting.

One problem with smart contracts is the data storage because blockchains are not
designed to persist a lot of data [20]. The second problem is the reachability of external
data because smart contracts have only access to data within the blockchain environment.
However, access to external data is necessary for real-world scenarios. A possible use
case is a flight delay insurance. To let a smart contract decide if a flight is delayed, it
must know the actual departure and arrival times. Hence, external data is essential to
provide a sound application. Therefore, developers use so-called oracles. These oracles
are external services which feed smart contracts with data. Such services are already
existent. For example, Zhang et al. [21] present an oracle that bridges smart contracts
and websites.

2.2.3 Consensus Algorithms

The PoW concept, like it is used in Bitcoin, is completely dependent on powerful hardware
which consumes a lot of energy. Although there exists special hardware, which is called
application-specific integrated circuit (ASIC), to find hashes more efficiently, the energy
consumption is still high. According to O’Dwyer and Malone [22], the total amount of
electricity which was used by the Bitcoin blockchain from January 2009 till January
2014 is approximately ten gigawatts. To get an impression about this value, it can be
compared to the power of one billion LED lamps [23]. Also quite impressive is that it is
a tenth of the United States of America’s solar photovoltaic and wind power (Oct. 2015).
The thing about the ten gigawatts is that is has been the consumption from the very
beginning. In the first year the consumption was nearly constant. Since the second year,
the consumption is rising and the trend is still going upwards [24].

Because of this huge waste of energy and the need for special hardware, other approaches
than PoW are appearing in the community. These approaches try to get rid of the
dependency on powerful hardware devices, to save energy and to avoid a centralization
of the computing power by a few rich stakeholders.

12

2.2. Blockchain

Proof of Stake

The aim of the proof-of-stake (PoS) approach is to secure the P2P network without
the dependency on energy consumption [25]. To establish security, it follows a proof
of ownership approach where the ownership is related to the coin age. The coin age is
defined as the product of the amount of coins and their holding period. For instance, if
Alice receives ten coins and holds them for ten days then the coin age is 100 coin-days. To
generate a new block, a hash target has to be found like in the PoW, but the difference is
that this proof has a limited search space. Thus, the PoS does not consume a significant
amount of energy. The proof is designed in a way, the more coin age is consumed in a
block the easier it is to meet the hash function. This can be related to the computing
power in the PoW where it is more likely to find the target hash the more computing
power is available. Because of the coin age, the stake is not only depended on the amount
of money but also on the holding period. In a nutshell, it can be said that the user with
a higher stake is more likely to generate a new block. In case there are two competing
chains, because of a conflict, the chain with the most consumed coin age wins.

In comparison to the Bitcoin’s PoW, the PoS is able to provide some security improve-
ments [25]. At first, it might be more expensive to acquire the significant fraction of stake
than acquiring enough mining power to reach the majority in the network. Additionally,
an attacker’s coin age is consumed during the attack. Hence, it will be harder for the
attacker to tamper the chain by providing a stake which is big enough.

Proof of Activity

Bentov et al. [26] describe proof-of-activity (PoA) approach as a combination of PoW
and PoS. The motivation is to make attacks more expensive by forcing the attacker to
dominate computing power and the stake. Another reason for this approach is that PoW,
according to the authors, has not the right incentive to secure the network. For instance,
if the earnings from a block generation is only accumulated by transaction fees, then
the motivation to invest more money into mining hardware and therefore secure the
network will drop. This issue is well known in economic and game theory under the name
“Tragedy of the Commons” by Hardin [27]. Centralization is another problem by PoW
and PoS. In terms of the computing power, huge data centers are able to outperform
private miners easily. Although PoS reduces the risk of computation power accumulation,
wealthy stakeholders can build enormous stakes. PoA aims to solve those issues.

For the protocol, a subroutine, called follow-the-satoshi, is used. This routine takes a
pseudorandom value as input and selects a satoshi with a pseudorandom index. A satoshi
is the smallest unit of cryptocurrency in Bitcoin. This selected satoshi is followed from
the block where it was minted until the current block. Thus, the owner of the coin can
be determined in the current block and therefore a pseudorandom stakeholder is found.
This procedure is a variant of a PoS. The only difference is that the stake relates to coins
instead of coin age. For example if Alice has four coins and Bob has eight coins, Bob is
double likely to be picked than Alice.

13

2. Background

At the beginning of the protocol each miner tries to generate an empty block by finding
the correct hash. If a miner generates a block, he broadcasts it to the whole network.
From this block, N pseudorandom stakeholders are derived. This is done by generating
N hashes and invoking the follow-the-satoshi subroutine with each of the hashes. Every
online stakeholder checks the validity of the block. During this validation, he can find
out if he is one of the N chosen stakeholders. If this is the case, he signs the block with
his private key and broadcasts it. This is done by N − 1 of the chosen stakeholders. The
N th stakeholder generates a wrapping block where he adds the empty block, arbitrary
many transactions, the signature of the other N − 1 stakeholders and his own signature.
After that, the block is broadcast. When the other nodes agree on the validity of the
block, it is added to the blockchain. The fees of the transactions are shared between the
miners and the N stakeholders.

Hence, by selecting N pseudorandom stakeholders, the validation of the transactions is
decentralized. Furthermore, the fees are shared which shall engage the community to be
active in the network and therefore improve the security.

Proof of Burn

In the whitepaper of Slimcoin [28] proof-of-burn (PoB) is described . Like the other
approaches, it also aims to get away from the dependency on powerful hardware and it
also combines PoS and PoW. Therefore, it follows the idea of burning coins. Burning
coins can be compared to purchasing hardware for the PoW. So to speak the more coins
are burnt the more computing power you have. In the blockchain, this destruction is
realized with a special transaction. By triggering the so-called burn transaction, coins
are sent to an address which has no owner. Thus, these coins can not be used any more
except for generating new blocks. All burn transactions are recorded separately from
the other transactions in the system. Nevertheless, they also have to gain some depth in
the blockchain to be seen as confirmed. When they are confirmed, burn hashes can be
calculated. These burn hashes are the same as the best solution of a hash computation
in the PoW. In the Slimcoin paper, the burn hash is calculated as Equation 2.1 shows.

BurnHash = multiplier ∗ InternalHash (2.1)

For each burn transaction, there is a different multiplier. This multiplier is inversely
proportional to the burnt coins. Because of that, a decay of the coins can be realized.
For instance, if a transaction burns 60 coins and the multiplier triples in 100 days then
there exists the same multiplier for 20 coins on the 100th day. The second part of the
equation is the internal hash. The hash is calculated only when a new PoW block is
found. This applies also to the burn hashes. Therefore, the PoB does not consume that
much energy. Another energy-saving method is the limitation of the search space for
PoB hashes, like in PoS.

To summarize, the PoB concept simulates the purchase of new hardware equipment by
burning coins. The more coins are burnt, the higher is the probability of mining a block

14

2.2. Blockchain

successfully. Furthermore, over time more and more coins have to be burnt because
the burn hash calculation contains a sort of decay. Thus, every miner must continue
burning to maintain the probability to mine a block. Therefore, the volume of burnt
coins increases and it is getting harder for an attacker to dominate more than 50% of the
volume, which makes the network more secure.

2.2.4 Challenges

This section gives an overview about the challenges which have to be faced when dealing
with the blockchain domain. Swan [29] identifies seven technical problems. To find out
the current research state of these problems, Yli-Huumo et al. [8] perform a systematic
review. The presentation of the seven technical problems, commented with the results of
the review from Yli-Huumo et al., is content of this section. A result of this review is
that 80% of the papers focus on Bitcoin. Furthermore, it can be said that Yli-Huumo
et al. identify no research papers for the topics throughput, latency, size, bandwidth,
versioning, hard forks and multiple chains.

Throughput: The throughput in the Bitcoin network has a maximum of seven transac-
tions per second (tps). Comparing this to other systems, like VISA with up to 10,000 tps
or Twitter with a maximum of 15,000 tps, it is rather slow. To provide a real alternative
to current currency systems, the performance has to be improved. Projects like the
Bitcoin Lightning Network [30] or Ethereum’s sharding approach [31] are working on
improving the throughput or rather the scalability in general.

Latency: Processing a block in Bitcoin takes approximately ten minutes. In the
Ethereum blockchain it takes a lot less time, namely twelve seconds [32]. However,
additionally to the processing effort some time has to pass to assure that the block is in
the main chain. In Bitcoin the duration is about an hour for a transaction. In comparison,
the confirmation with VISA only takes seconds.

Size and bandwidth: The size of the Bitcoin is nearly 159 GB (Feb. 2018) [33].
Allthough Ethereum provides a fast synchronization mode besides the full synchronization,
it still has 51 GB (Feb. 2018) [34]. If the throughput increases to the VISA average of
2,000 tps in Bitcoin, the annual growth is 1.42 PB or rather 3.9 GB/day. With this data
loads it is hard to make the blockchain feasible for the mainstream. Also conquering new
domains like the IoT with its resource-restricted devices is a challenge.

Security: One big threat to security is the 51% attack. According to recent research
results by Eyal et al. [17] even a third is enough, to make the network insecure. Another
issue is that mining methods tend to centralization. The importance of security is reflected
by the results of the review because it is the most researched challenge. The topics
are about trends and impacts of security incidents, the 51% attack, data malleability
problems, authentication and cryptography issues.

Wasted resources: As has already been stated in section 2.2.3, mining consumes a
lot of energy, which also costs a lot of money. However, the systematic review from

15

2. Background

Yli-Huumo et al. reveals that energy efficiency is not a handled problem. There are only
some papers which deal with topics related to wasted resources. For instance, Wang and
Liu [35] explore the evolution of miners in Bitcoin. Furthermore, an economic model is
introduced which calculates the miners’ profits by considering electricity prices and the
computation-over-power efficiency of the hardware.

Usability: The usability of the Bitcoin Application Programming Interface (API) is not
user-friendly compared to modern APIs. The found literature, which relates to this topic,
concentrates on the usability issues for cryptocurrency users. Usability for developers is
not considered.

Versioning, hard forks, multiple chains: The large number of different blockchains
is a threat because it is easier to execute a 51% attack on smaller chains. Also forking
chains due to administrative reasons is a challenge, since there are no solutions to easily
merge or cross-transact between the split chains.

2.3 Internet of Things

This section is mainly a summary of Al-Fuqaha et al. and Xu et al. [36, 37], except the
middleware subsection. For IoT, a classical application area is the food supply chain. The
current processes in the supply chain are complex and extremely distributed. Therefore,
quality management, operational efficiency and food safety are very hard to manage. The
IoT can help to deal with traceability, visibility and controllability challenges. A typical
solution for this has three parts. The first part are the field devices which are used to
collect the data. Furthermore, a backbone system and a communication infrastructure
are needed. With this solution, it is possible to track and monitor food production.
Additional technologies for Big Data help to analyze huge amounts of data which is
generated along the whole food supply chain. On this example it can be seen that IoT is
about enhancing physical objects, like food products, in a way that they can be identified
and integrated in a digital infrastructure. Hence IoT can be defined as

Interconnection of sensing and actuating devices providing the ability to
share information across platforms through a unified framework, developing
a common operating picture for enabling innovative applications. This is
achieved by seamless large scale sensing, data analytics and information
representation using cutting edge ubiquitous sensing and cloud computing.[38]

The rest of this section is organized as follows: Subsections 2.3.1 and 2.3.2 present
different architectures and according elements for different architecture layers. The
middleware Subsection 2.3.3 takes a closer look on middleware solutions in IoT. Finally
basic challenges are presented in Subsection 2.3.4.

16

2.3. Internet of Things

Applica�on Layer

Percep�on Layer

Network Layer

(a) Three-layer

Applica�on Layer

Middleware Layer

Coordina�on Layer

Backbone Network Layer

Existed alone

Applica�on

System Edge

Technology

Access

Layer

(b) Middleware-based

Applica�ons

Service Composi�on

Service Management

Object Abstrac�on

Objects

(c) SOA-based

Business Layer

Applica�on Layer

Service Management

Object Abstrac�on

Objects

(d) Five-layer

Figure 2.3: Different IoT architectures. (Source: [36])

2.3.1 Architecture

The IoT should be able to connect billions or trillions of devices trough the Internet [36].
Therefore, architectures must be flexible to cope with different requirements for various
use cases. There exists a number of different architectures which have not converged to a
reference model yet. Some of these approaches are shown in Figure 2.3. The basic model
is the three-layer architecture (2.3a). Other models (2.3b, 2.3c, 2.3d,) have added more
abstraction layers to the IoT architecture. In this section we will discuss the five-layer
model in more detail.

Objects Layer: The layer is also called perception layer. Here, the data, for example
temperature or humidity measurements, is collected with special hardware. Sensors and
actuators are the two types of hardware which are used. This layer digitizes the data
and transfers it to the Object Abstraction layer.

Object Abstraction Layer: The only function of this layer is to pass the data from
the Objects Layer to the Service Management Layer. In case cloud computing or specific
data management processes are required, it is handled by the Object Abstraction Layer.

Service Management Layer: It can also be seen as a middleware. The abstraction
in this layer enables programmers to work with different objects without considering
hardware details. Furthermore, it pairs services and their requesters according to the
address and name. In addition, this layer processes data, makes decisions and delivers
services.

Application Layer: In this layer, high-quality smart services are provided for the
customers. For instance, in a smart home application temperature data can be delivered
when a customers requests it. Thus, it can be seen as interface to the data which is
collected by the objects.

17

2. Background

Business Layer: On the highest level of the five-layer architecture all the activities and
services of the IoT system are managed. It uses the Application Layer as interface to
fetch the data and processes it to charts or business models. Hence, it can be used to
support decision making. Furthermore, it monitors and manages the underlying four
layers. Thus, basically the Business Layer unites all the components of the network and
prepares it for the end user.

2.3.2 Elements

Several elements are needed, to build an IoT network. The six elements identification,
sensing, communication, computation, services and semantics are the basic building
blocks. In the rest of this section these blocks are presented. After that, Table 2.1
provides a summary of the presented elements and their according technologies.

Identification: It is key, to clearly identify objects in the network and match services
to them. In the IoT, names and addresses are used for identification. Naming refers
to the ID or rather the name of an object whereas addressing is the identification of
an object within a network. Because of the different naming methods, like electronic
product codes or ubiquitous codes, which are not globally unique, addressing is used to
uniquely identify the objects.

Sensing: This is the very basis of the IoT. Objects collect all the data which is used
for further processing. Smart sensors, actuators or wearable sensing devices can be
objects. In comparison to sensors which sense the environment, actuators can affect the
environment [39]. The affection can be done by making a sound or flashing a light. Often,
sensors are used together with actuators. For instance, the sensor monitors the air in the
room. In case of a dangerous gas in the air, the actuator emits a loud sound. Typical
devices to realise an IoT product are single board computers with integrated sensors,
like a Raspberry Pi [36]. The advantages of these devices is that they combine sensing,
communication, and security functionalities on one board.

Communication: The connection of heterogeneous devices to form smart services is an
elementary part of the IoT. An important aspect for the communication technologies
is that they are able to cope with lossy and noisy links. At the same time, the power
usage has to be low, to enable it also on resource-restricted nodes. The first technology,
which was used for the communication in the machine-to-machine (M2M) concept, is the
radio-frequency identification (RFID) [36]. Other technologies followed like near field
communication (NFC), WiFi or Bluetooth.

Computation: Gathering data by sensors is only one part. It also needs processing units
and software applications to use the collected data intelligently. Thus, special hardware
and software is used to solve these tasks. In terms of software, operating systems play a
key role in the IoT network because they run on the devices for the whole activation time.
Also when it comes to measurements like temperature, it is sensible to provide them in
real-time at least for some use cases. Therefore, special real-time operating systems are

18

2.3. Internet of Things

Table 2.1: Summary of the IoT Elements and According Technologies. (Source: [36])

IoT Elements Samples

Identification Naming EPC, uCode
Addressing IPv4, IPv6

Sensing Smart Sensors, Wearable Sensing Devices,
Embedded Sensors, Actuators, RFID Tag

Communication RFID, NFC, UWB, Bluetooth, BLE, IEEE
802.15.4, Z-Wave, WiFi, WiFiDirect, LTE-A

Computation Hardware
SmartThings, Arduino, Phidgets, Intel
Galileo, Raspberry Pi, Gadgeteer, Beagle-
Bone, Cubieboard, Smart Phones

Software OS (Contiki, TinyOS, LiteOS, Riot OS, An-
droid); Cloud (Nimbits, Hadoop, etc.)

Service Identity-related, Information Aggregation,
Collaborative-Aware, Ubiquitous

Semantic RDF, OWL, EXI

developed. Besides that, clouds are also a rich resource for computing power. Therefore,
smart objects can send their data to the cloud where it is processed in real-time.

Services: A typical way to provide the collected IoT data and to process user interactions
are services. These services can be split into four categories namely Identity-Related,
Information Aggregation, Collaborative-Aware and Ubiquitous Services. The most
essential services are the Identity-Related services because they bring the real world
objects into the digital world by assigning an identity to the objects [36]. After that, these
objects are in the system and can be tracked. The second category is the Information
Aggregation Service. As the name says, it summarizes sensor data. Based on the
aggregated data, Collaborative-Aware Services make decisions and trigger reactions. The
fourth category are the Ubiquitous Services which aim to make Collaborative-Aware
Services as accessible as possible independent from time, persons or places.

Semantics: For this element, Semantic Web technologies, for example Web Ontology
Language (OWL) or Resource Description Framework (RDF), are used. These technolo-
gies are important to extract knowledge smartly from the network. Additionally, they
analyze the data to provide the right services.

2.3.3 Middleware

Ngu et al. [40] name middlewares as key technology for the IoT. Razzaque et al. [9] argue
that the structure of the IoT demands for middleware solutions to ease the development
process. To specify the requirements of a middleware, it is good to know the characteristics
of the IoT. First of all, the IoT is an ultra-large-scale network where a lot of interacting
devices are connected. Thus, the number of events which are exchanged is also very

19

2. Background

high. Some of these events can be triggered spontaneously when, for instance, mobile
objects come into the communication range of other objects. To keep track of the
generated events and data, context-awareness is key. When a value is received from a
device, it can not be said, if the value describes the temperature or humidity without
further information. Storing this additional information enables a context-aware handling
of the measured values and therefore a sensible use is possible. According to these
characteristics, Razzaque et al. derived five functional requirements which have to be
fulfilled by an IoT middleware. The five requirements are resource discovery, resource
management, data management, event management and code management. Besides
the functional requirements, also non-functional requirements are defined, for instance,
scalability, security and privacy, reliability and availability.

Middleware in IoT is currently an active research area. Therefore, many solutions are
implemented. According to Ngu et al. [40], these solutions can be divided into three types.
The first type is the service-based IoT middleware which is a three-layered architecture.
All the services like access control or event processing engines are located in the middle
layer. The architecture is high-performing, however, the provided tools are generally
simple. Furthermore, access restrictions can be set up but it is not designed to allow user
configurations. To achieve the needed computing power, the service-based middleware
is deployed in the cloud or on servers. Hence, resource-restricted devices do not have
enough computing power to run this middleware. The second type is the cloud-based
IoT middleware. All the available functionality is in the cloud, exposed as APIs. The
functionalities range from very simple to computation intensive tasks. Finally, the third
type is an actor-based IoT middleware which is also a three-layered architecture. This
middleware is designed to be light weight. Thus, it can be embedded in all layers no
matter if it is the sensory layer or the cloud. Because of this light weight design, the
computation units are distributed. For instance, an actor-based middleware is deployed
on a smart watch, which does not include a storage service. This missing storage service
can be added by downloading an actor from the cloud which provides storage access. The
light weight architecture achieves the best scalability and latency. Furthermore, as seen
in the example, the computational units can be extended by adding pluggable actors.

The main differences between these three middleware approaches lie in the support to
new device types, the offer of different middleware services and the location where they
can be embedded or deployed [40]. A disadvantage of the cloud-based middleware is
the dependency to the providers. Firstly, they determine the functionality range and
if they shut the service down, users do not have a middleware anymore. Additionally,
you have to trust the providers that the stored data is not misused. In the service- and
actor-based middleware it can be chosen how the data is used. According to security and
privacy all middlewares provide solutions. Nevertheless, there exists a weak link between
the physical objects in the service-based and cloud-based middleware because they can
not be embedded in the physical devices.

20

2.3. Internet of Things

2.3.4 Challenges

The IoT is currently in the phase of “Peak of Inflated Expectations” according to Gartner’s
Hype Cycle [1]. It is expected that it reaches the “Plateau of Productivity” in two to
five years. That means there exist still challenges which have to be solved. Hence, some
of them are presented in this section.

One challenge is the security of information and protection of privacy [37]. The IoT
devices, such as smart watches, make it possible to automatically collect personal data.
Thus, a lot of private data is collected all the time. In addition, the infrastructure
provides a lot more attack vectors than the traditional information and communication
technologies. For example, when a company monitors the temperature of food in a cold
store. In case the food deteriorates, the data is sent back to the company. By sending
this data, it is critical to assert the privacy. In case of a leak it may harm the reputation
of the company. Therefore, the protection of the privacy and the security of the data is
an issue. Although existent network security technologies provide basic protection, there
are still open topics. Thus, further research has to be done in fields like communication
security or trust and reputation mechanisms.

Another issue is the heterogeneity of the network [36, 37]. Hence, improving the interoper-
ability is a challenge. The cause for this problem is the lack of a platform which is widely
accepted. This platform could hide the majority of the heterogeneity. Furthermore, the
large amount of data, which is exchanged within the network causes delays, conflicts and
communication issues. Thus, the challenge is to develop technologies and standards to
transfer the data efficiently in the IoT network.

Regarding to services for customers, availability and reliability are key challenges [36].
Actually these two terms are related to each other. Reliability can be described as
availability of information and services over time. Hence, availability means that IoT
services are available anytime and anywhere. This is achieved by realizing it on the
hardware and software side. In terms of hardware, the existence of a device must be
guaranteed. This can be done by implementing redundancy in the system. Establishing
software availability means to provide the services to everyone at different places at the
same time. Also reliability has to be implemented in hardware and software. It aims
to improve the service delivery and to meet the system requirements. However, the
biggest bottleneck is the communication layer which has to be robust against failures. To
realize a reliable IoT the communication, with regards to perception layer, data gathering,
processing and transmissions, has to be reliable.

21

CHAPTER 3
Related Work

This chapter presents the related work which is relevant for this thesis. Based on the
results of Chapter “Background”, technologies, methods and approaches are introduced
which are worth to consider for using them in the proof-of-concept implementation in this
thesis. Furthermore, the state-of-the-art of use cases and existing approaches is explored.
Therefore, Section 3.1 gives an overview about current solutions which are aiming to
combine blockchain technologies and the IoT. Section 3.2 describes different blockchains
and compares them. Because of the distributed environment of the IoT, communication is
important, thus Section 3.3 presents different communication protocols. Finally, Section
3.4 gives an introduction about storing data in the blockchain and off-chain storage
possibilities.

To follow the SLR approach which is presented in Chapter 2, the research questions for
this chapter are as follows:

(RWQ1) Which different approaches exist to bring blockchain and the IoT together?

(RWQ2) What are the current issues?

(RWQ3) Which supportive technologies or principles also emerge?

(RWQ4) Which different blockchain approaches exist?

3.1 Blockchain and IoT

An alternative to its utilization as the ledger for cryptographic currency is the application
of blockchains for challenges in the IoT environment. For instance, Dorri et al. [2]
name privacy and security as features of the blockchain which are beneficial for the IoT.
Nevertheless, literature about combining the blockchain and IoT is rare, according to

23

3. Related Work

the systematic literature review from 2016 of Conoscenti et al. [7]. This review identifies
four use cases which are relevant for the IoT. These four use cases are: tamper-proof
log of events and management of access control data [41], purchase of assets, such as
sensor data, by devices or human beings [42], purchase of sensor data in IoT [6] and
public key infrastructures (PKIs) for management of updates, registration and revocation
of keys [43, 44]. In the last two years, more and more papers were published, and the
research community is active to achieve further progress. Besides the scientific community,
there are also industrial efforts to take advantage of these new technologies. The following
subsections will present some approaches in more detail.

3.1.1 Management of IoT Data

Huh et al. [45] introduce a proof-of-concept where policies for IoT devices are set on
Ethereum via smart contracts. For the approach, they use a smart phone and three
Raspberry Pis whereas the Raspberry Pis simulate a meter for electric usage, a light bulb
and an air conditioner. The smart phone is used to set the policies for the connected
devices. In the presented proof-of-concept the policy determines that the electricity
consuming devices switch into a power-saving mode, when a certain threshold of energy-
consumption is exceeded. To keep the air conditioner and light bulb up-to-date with
the latest policy, these devices are regularly polling the smart contract for changes.
Furthermore, the devices are also polling the meter contract. This contract is updated by
the meter with the current energy consumption. In case the energy consumption is too
high, the devices switch into a power-saving mode. As a result of this proof-of-concept,
the approximate twelve seconds transaction time is stated as too slow for some domains.
Also the lack of a light client for Ethereum is a problem for the restricted devices. In the
meantime this problem is solved because Ethereum [46] released in November 2016 the
first client application with a light client option. However, if this light client is suitable
for the presented scenario has to be tested.

Liu et al. [47] introduce a blockchain-based data integrity framework for IoT data. This
framework has four elements which are the Data Owners Application (DOA), Data
Consumer Applications (DCAs), Cloud Storage Service (CSS) and the Data Integrity
Service (DIS). Whereas, the DIS is implemented as a smart contract on the Ethereum
blockchain. An illustration of the framework can be seen in Figure 3.1. Basically, the
data is stored in form of data blocks on the CSS by the DOA. The integrity checking
procedures slightly differ, depending on whether the DOA or the DCAs want to check
the integrity. Furthermore, it is also considered if the CSS supports cryptographic
functionalities. However, the basic procedure is to retrieve the hash of a data block
from the CSS and from the DIS. In case these two hashes are equal, the integrity of the
data is successfully checked. An advantage is that this framework is fully decentralized
and therefore achieves a high efficiency and reliability of the DIS. One downside is that,
when this approach was tested, it took 16 to 18 seconds until the blockchain reached a
consensus and therefore, the hash of a data block is able to be checked.

24

3.1. Blockchain and IoT

DCAs
DOA

CSS

Blockchain

DIS

Figure 3.1: Data Integrity Service Framework (Source: [47])

Another approach [48] is the open-source software of the company Ubirch1. The aim is to
log data tamper-proof, secure the data’s origin and encrypt the data for the transmissions.
The application collects data from sensors and puts the hashes of the data into the
blockchain. Due to cost saving reasons, this procedure is done in two steps. In the first
step, the hashed data is stored into the company’s private blockchain. After that, hashes
in the private blockchain are collected as bunches and added to the Bitcoin blockchain.
Because of the bunches, more hashes can be added to a transaction. Bitcoin allows up
to 40 bytes of data per transaction. With the bunches the 40 bytes can be used more
efficiently. Hence, the transaction fee is split between all included hashes and therefore a
client only has to pay a fraction of the fee for a data point. Besides the cost saving, this
company focuses also on the security. To secure the data transmission and to determine
the origin of the data, public-private encryption is used. However, to enable this security
mechanism, every sensor has to own a private key. With this key, the data is encrypted
and sent to the company where it is decrypted and stored as a hash in the private
blockchain. Additionally, it can be verified which sensor has sent this data. Possible
application fields are insurances. For instance, sensors can be built into cars and track
the driving behavior. Depending on the driving habits, the payment for the insurance
can be adjusted.

3.1.2 Business Approaches

Traditional E-business models do not suit the requirements which are needed for business
models in the IoT world [49]. Since traditional E-business models need a third party,
the usually applied P2P architecture of the IoT can not be used as an advantage.
Zhang and Wen [42] propose an E-business model which uses the Bitcoin blockchain
to overcome these issues. In their further development [49], they use smart contracts
for the model and implement a prototype on Ethereum. The elementary components

1http://ubirch.de [Accessed: 2018-05-21]

25

http://ubirch.de

3. Related Work

Buyer Seller

Random Number

Smart

Property

Random Number Random Number

(a) Step 1

IoTcoin

Buyer Seller
Smart

Contract

crypto coin crypto coin

IoTcoin

(b) Step 2

Figure 3.2: Purchase of a Smart Property. (Source: [49])

of this model are decentralized autonomous corporations (DACs) which are transaction
entities. These DACs can offer paid services completely autonomously. To achieve the
independent operability, decisions have to be made without the involvement of humans.
Therefore, decisions are made based on basic rules which are supported by machine
learning techniques. The commodities of the new E-business are smart properties and
sensor data. A smart property is a property which can be secured with an access control
system or electronic lock. The trade of the commodities is not limited to the DACs only,
also humans can be part of the E-business model. Hence, four combinations of trading
relations are possible, namely seller and buyer are humans, both are DACs, the seller is
a DAC and the buyer a human or vice versa. Figure 3.2 shows how the transaction of a
smart property is handled. However, before this step, the buyer has to find the product
of interest and compare different prices. The seller has to release the product, set a price
and advertise the product. When buyer and seller have found each other, they have to
negotiate and agree on the contract conditions. In case they have an agreement, the
transaction can be issued. At first, the buyer challenges the seller to prove that he is the
owner of the smart property. This is done by sending a random number to the property,
where it is encrypted with the public key of the owner. In case the seller is the owner, he
is able to decrypt the random number and sends it to the buyer. When the received and
sent numbers are identical, the ownership is cleared and a smart contract is published
into the blockchain. The buyer sends the required sum of coins to the smart contract
and the seller sends an IoTcoin to the smart contract. Bitcoin is adapted as currency
for the payment. The IoTcoin works as a commodity exchange certificate. It is used to
exchange sensor data or smart properties. Hence, this coin indicates the ownership of
the smart property. When the smart contract has received the money from the buyer
and the IoTcoin from the seller, it disburses the coins to the corresponding parties. After
the disbursement, the buyer is the owner of the smart property. Additionally, the smart
property updates the ownership, when the block with the transaction, containing the

26

3.1. Blockchain and IoT

IoTcoin, has gained enough depth in the longest chain. After the update of the ownership,
the purchase of the commodity is completed. By storing the ownership in the smart
property like a car, it can be unlocked by the owner’s private key. Thus, buyer and seller
never have to meet for an exchange of physical keys. The whole purchase process is
completely digital.

Another approach which focuses on the purchase of sensor data in Bitcoin is done by
Wörner and Bomhard [6]. In this concept, a requester can directly purchase data from
sensors in the Bitcoin blockchain. Three drawbacks for this solution are stated. First,
the data sent in the transaction is visible to all. This can be solved rather easily by data
encryption with the public key of the purchaser. The second problem deals with the
validation mechanism of Bitcoin, where the approximate verification time of one block is
ten minutes. That means it is not possible to deliver the data immediately and guarantee
simultaneously no double spending. Finally, scaling is an issue. The blockchain will
have lots of transactions which contain small sensor data. These transactions are stored
forever on every node. Thus, each node has to provide a lot of resources.

Huckle et al. [50] propose to use the blockchain and IoT for shared economy applications
like Airbnb2. Furthermore, these technologies can help to automate daily routines. Since
the payment process is completely digital and it can be secured with smart contracts,
the connection with other services is possible. For instance, a service could create a
shopping list for groceries and send it automatically to the cheapest retailer. Another
possibility is the search and payment for the closest parking space. The music industry
is also a potential field of application. It can be used to make the value chain more
transparent and to disburse the earnings of streaming service faster, especially to the
artists. A company who has adopted the concept of using the blockchain and IoT in
the shared economny is slock.it [51]. They are developing an universal sharing network
which provides the infrastructure to deploy blockchain applications modules. This shall
make it easier to add objects to the network and access them.

Concrete projects, which try to use the blockchain, arise for smart grids [52]. One of them
is the “TransActive Grid” project in New York. The idea here is to manage efficiently
rooftop photovoltaic installations. This is achieved by installing smart meters which
report the current supply to the blockchain. Subsequently, also an automatic payment
process shall be implemented.

3.1.3 Security & Privacy

As has already been explained in Section 2.3.4, privacy and security are important topics
for the IoT. To use most of the security and privacy advantages of a blockchain for the
IoT, Dorri et al. [2] present a lightweight blockchain-based architecture. This approach
aims to eliminate the overheads of a blockchain, to improve the performance of the
network. Therefore, a three-tier architecture is proposed. Basically, this blockchain-
based architecture is designed for various use cases in the IoT. However, the approach

2https://www.airbnb.com [Accessed: 2018-03-28]

27

https://www.airbnb.com/

3. Related Work

is explained on the example of a smart home. Thus, the first tier is the smart home
environment. This environment comprises IoT devices, an immutable ledger and a local
storage. The immutable ledger is similar to a blockchain, but it is managed by a smart
home manager which controls all outgoing and incoming transactions. Furthermore, this
private and local ledger contains policy headers which authorize received transactions. In
case data of the smart home is requested by an authorized requester, the requested data
is encrypted by the smart home manager with the public key of the requester. The second
tier is a P2P overlay network. The nodes in the network can be the smart home managers,
smart phones or personal computers. The nodes are structured in clusters, to reduce
delays and the network overhead. Every cluster has a cluster head which maintains a list
of public keys where it is defined which nodes are allowed to access data and which nodes
are allowed to be accessed. All the cluster heads maintain a public blockchain where
every node’s transaction history is stored in the ledger. For performance reasons, the
validity of new blocks is checked with the concept of distributed trust. Every cluster head
stores a trust rating table of the other cluster heads. When a new block is generated,
the block and a multisig transaction is sent to neighbor cluster heads. The neighbors
check the trust rating of the issuing head or the cluster heads who signed the multisig
transaction. The higher the trust the less random transactions in the block have to be
validated. This decreases the validation time of a block. In case a block is generated
by more than one cluster head, the cluster head’s block with the highest trust rating is
selected. The third tier is the cloud storage. Besides the local storage, data can also be
stored in the cloud. Therefore, the data is stored in blocks with a unique block number.
For authentication, the smart home manager uses the number and the hash. Simulation
results with 50 nodes running for one minute show that traffic overhead is reduced by
approximately 73% in comparison to Bitcoin. Furthermore, the processing time with
distributed trust is roughly 50% of the processing time without the distributed trust
concept.

Another approach to increase privacy for personal data is the Enigma platform [41]. This
decentralized computing platform is not explicitly designed for the IoT, but the IoT is a
potential use case. Since privacy on the blockchain is a problem, the idea is to store the
data off-chain in a distributed hash table (DHT). Furthermore, a blockchain is not suitable
for heavy computations, hence, private and heavy computations are executed on an
off-chain network. To ensure the privacy, the computations are executed on the raw data
without having access to it. For instance, if someone wants to know the average duration
of study at a university, it is not necessary to know the duration of study for every single
student. To realize such applications, the concept of private contracts is introduced.
Basically, they are smart contracts with additional features. One difference is the keyword
“private”. The keyword allows developers to define private objects which means only the
reference not the data itself is available. For the execution of the contract, an interpreter
splits the code. The public part of the code is executed on the blockchain whereas
the private part runs on the Enigma network. This procedure improves the run-time
while maintaining privacy and verifiability. The approach is continuously developed
in the Enigma project [53]. One goal for 2018 is to release a private contract engine.

28

3.1. Blockchain and IoT

Furthermore, the private contracts shall be compliant with the Ethereum blockchain. The
aim is to have no difference between developing a smart contract or a private contract,
except of the syntax for private executions.

3.1.4 Discussion

Based on the results of this section, it can be said that the blockchain has several
advantages which are of use in the IoT domain. Additionaly, there has been further
research in this field since the SLR of Conoscenti et al. [7]. Nevertheless, there are still
many issues and challenges to be solved for more complex use cases and the improvement
of the software development process in this domain.

Low Level Approaches

A lot of the papers deal with the topic blockchain and IoT on a low level. It means that
the research is focused on basic questions of the blockchain and IoT. Thus, there is little
about integrating this technology in more complex applications. The challenges to make
a blockchain more suitable for IoT, may be a reason for the focus on the basic questions.
However, companies like slock.it or ubrich are currently working on integrating these
technologies in sophisticated software products. According to the science side, research on
exception handling and best practices would be beneficial for more complex applications
and the development on a higher abstraction level.

Hybrid Approaches

As has already been stated, the blockchain has some problems to overcome to be used in
the IoT. For instance, privacy and block generation times are some of the challenges. Our
research results show that hybrid architectures like off-chain storage or a combination
of private and public blockchain is a common solution. The challenge with this hybrid
approaches is the existing trade-off. On the one hand, blockchain problems can be
solved by off-loading certain operations, but on the other hand, the risk to interfere the
system too much and therefore lose advantages of the blockchain is omnipresent. The
combination of a private and public combination is a good example for the trade-off. The
private blockchain has a better performance but the data is not visible to the public.
Hence, some of the transparency of a public blockchain is lost. Therefore, the trade-off
has to be considered for the design of hybrid-based architectures.

Little Diversity

Besides a self developed blockchain-based architecture, the only used chains are Bitcoin
or Ethereum. One cause for this may be the existence of many blockchains which do not
have a reliable development community in the background. Nevertheless, it would be
interesting for a deeper understanding of the domain if there is a greater diversity on
blockchains which are used for research. At least, if the design decisions for a specific
blockchain are explained in more detail.

29

3. Related Work

3.2 Blockchains

According to CoinMarketCap [54], there exist 1591 (March 2018) cryptocurrencies. From
these 1591 cryptocurrencies, 916 can operate independently. The others rely on an already
existing cryptocurrency. Despite the huge offering, Nordrum [55] says that blockchains
do not really offer a benefit in comparison to current database or message solutions,
especially in the financial industry. An issue is the lack of an existing standard or rather
a widely accepted architecture of a blockchain network. Because of the miscellaneous
tools and techniques, it is quite hard to compare the different blockchain approaches.
Nevertheless, this section introduces three blockchains which give the impression to suit
as a blockchain in the IoT. The criteria for the selection are the defined objectives, the
maturity of the development community and the support by well-known companies. As
a result Ethereum3, Hyperledger Fabric4 and IOTA5 are presented in this section.

3.2.1 Ethereum

The Ethereum blockchain follows the same paradigm as Bitcoin but in a more general
way [19]. A central technology for the universality of Ethereum is a Turing-complete
programming language. It enables developers to build their own decentralized applications
which are called smart contracts [56]. As it has already been explained in Section 2.2.2,
the language is only theoretically Turing-complete because of a limiting parameter. This
parameter is part of the fee model in Ethereum where every programmable computation,
like contract creation or executing an operation on the EVM, creates costs. This shall
protect the network against abuses. Another technology for the security of the system is
the own algorithm for the PoW called Ethash. Ethash is based on the Dagger Hashimoto
algorithm which aims to be ASIC-resistant and for light clients easily verifiable [57].
The objective of the PoW is to find a nonce input for the algorithm where the output
is smaller than a certain threshold [32]. To enable a block generation approximately
every twelve seconds, the difficulty to find a certain hash is adjusted over time. For the
calculation of the hash, subsets of a data block are chosen dependent on the nonce and
the block header of the current block. The data is newly generated every 30,000 blocks.
Therefore, Ethash is memory hard and ASICs can not fully demonstrate their strengths.

The fast block generation is made possible by the Greedy Heaviest Observed Subtree
(GHOST) protocol [56]. GHOST is needed because fast block generations cause security
risks because of high stale rates. Since every block needs a certain amount of time
to be propagated through the network, it happens that, for instance, miner A mines
a block and miner B also mines another block before the block of A is propagated to
B. In this case the miner B’s block is staled and does not contribute to the security
of the network because it is not used. The second problem which results from staled
blocks, is centralization. Miners with high hashpower are more likely to produce less

3https://www.ethereum.org [Accessed: 2018-04-04]
4https://www.hyperledger.org/projects/fabric [Accessed: 2018-04-04]
5https://iota.org [Accessed: 2018-04-04]

30

https://www.ethereum.org/
https://www.hyperledger.org/projects/fabric
https://iota.org/

3.2. Blockchains

stale blocks. Thus, miners will try to join the largest mining pool. A mining pool is a
group of miners which combine their hashing power for the block generation to increase
the chance of finding the first valid nonce [12]. Every member searches a different part
of the nonce search space. In case of a successful block generation, the reward for the
block is shared within the mining pool. Joining the largest mining pool will result very
likely to a mining pool which owns enough percentage of the network to control it [56].
The GHOST protocol solves the security issue by considering the stale blocks for the
calculation of the main chain. The staled blocks which are not part of the main chain
but considered for the calculation are called uncles. The centralization problem is solved
by paying also a reward to the stale blocks.

3.2.2 Hyperledger Fabric

Before starting with the introduction of the Hyperledger Fabric blockchain, the terms
permission-less and permissioned ledger must be explained. Permission-less ledgers do
not have a restriction on users joining the network [15]. In contrast, permissioned ledgers
demand for permissions of authorities to join the network or trigger a transaction. The
granularity of the restrictions depends on the actual blockchain.

Due to the good manageability of permissioned blockchains, the financial industry is highly
interested in this kind of ledgers [55]. Banks, credit card providers and tech companies
form consortiums to explore the potential of the blockchain. One of the consortiums
is the Hyperledger consortium where Cisco, IBM, Intel, American Express and J.P.
Morgan are members. A part of Hyperledger is the Hyperledger Fabric project [58]. This
project is open-source and supervised by the Linux Foundation6. A special feature of this
blockchain is the modular and extensible architecture which aims to be flexible, scalable,
resilient and confidential. Furthermore, the concept of smart contracts is also supported,
however, it is different from other approaches. Other smart contracts, for example in
Ethereum, follow an order-execute architecture which has many limitations. One is
the sequential execution of the transactions. Since no parallelisation is possible, the
performance is suffering [58]. Another issue, in terms of confidentiality, is the execution
of the contract on all peers. To solve these problems, Hyperledger Fabric introduces the
execute-order-validate architecture which enables parallel execution and the execution on
a subset of peers. A feature which improves the development process is the support of
standard programming languages.

The success of this modular permissioned distributed ledger is reflected on 400 different
prototypes, proof-of-concepts and also production systems, which are using Hyperledger
Fabric [58].

3.2.3 IOTA

IOTA aims to be a cryptocurrency for the IoT industry [59, 60]. Therefore, it enables M2M
micropayments by not claiming fees on the transactions in the network. Furthermore,

6https://www.linuxfoundation.org [Accessed: 2018-04-16]

31

https://www.linuxfoundation.org/

3. Related Work

IOTA is designed to scale well and to operate in an environment with lossy connections.
In contrast to blockchains, like Bitcoin, the underlying structure is a directed acyclic graph
(DAG) which is called the tangle. In the graph, the vertices symbolize the transactions
and the edges are their approvals. When a node wants to issue a transaction, it has to
approve two other transactions which are not approved yet. In terms of the graph, this
means that the new vertex has to draw two edges to two different vertices which have
no incoming edges yet. The name of non-approved transactions is tip. Normally, there
exist more than two tips in the graph, therefore a special algorithm selects two vertices.
After that, a PoW has to be done, to protect the network against spam and Sybil attacks.
However, the puzzle is not as hard as in the Bitcoin network.

For achieving a consensus in the network, the method of the tip selection is very
important [61]. Basically, the selection algorithm is a biased random walk [62] which
starts at the genesis block, the first block of the graph. This type of algorithm is called
Markov Chain Monte Carlo. From the genesis block, the algorithm searches a way
through the graph to a tip vertex, by following the incoming edges in reverse order. In
case the current vertex has more than one incoming edge, the edge labeled with the
highest weight is more likely to be chosen. To avoid that tips are left behind, the bias
of the weight on the selection probability can be adjusted. After the tip selection and
establishment of approval edges, the confirmation confidence can be calculated which is
an important value for the consensus term in the network. This confirmation confidence
describes the percentage of tips which are approving a transaction. When the percentage
passes a certain threshold, for example 95%, it is very likely that this transaction stays
in the consensus. However, currently too few transactions are issued in IOTA to prevent
double-spending attacks properly. Therefore, a voluntary and temporary consensus
mechanism, the coordinator, is used [61]. The consensus works by issuing a milestone
transaction every two minutes. The transactions which are approved by the milestone
transaction have immediately a confirmation confidence of 100 percent. Issuer of the
milestone transaction is the IOTA Foundation. As soon as there are enough transactions
issued, the coordinator mechanism will be shut down [61].

An additional feature of IOTA is the Masked Authenticated Messaging [63]. It is a module
that provides access to encrypted data streams in the network. The advantage of this
service is that the integrity and tamper-proofness of the data can be guaranteed.

3.2.4 Comparison

The previous sections show that the projects are similar in terms of the basic idea of a
blockchain but the concrete aims and approaches are different. Table 3.1 summarizes
some facts about the presented projects. To categorize the blockchains, two types, namely
permission-less (PermL) and permissioned (Perm), are used. Furthermore, to get an
impression about the activity of the communities, the amount of commits in the official
repositories are documented. The rate is calculated by dividing the commits by the
amount of months, since the project has started. This makes the activity more comparable.
Another calculation has been done for Ethereum’s tps. For that, the maximum amount of

32

3.2. Blockchains

Table 3.1: Summary of the Blockchains’ Basic Facts.

Blockchain Performance Type Smart Community
tps Latency Contract Commits Rate

Bitcoin 4-10 10 min PermL ~ 16883 164[12, 15, 56, 64]
Ethereum 16 12 sec PermL X 9541 187[15, 19, 32, 65, 66]
Fabric >3500 <1 sec Perm X 5894 256[58, 67]
IOTA >100 <10 sec PermL - 1473 87[60, 61, 68]

transactions which has been recorded, 1,349,890 (4th Jan. 2018) [65], is taken and divided
by the amount of seconds of one day (86,400). Bitcoin is added to have a reference value.
The smart contract status of Bitcoin is only marked with a tilde because it does support
scripting. Scripting can only be seen as a weak version of a smart contract [56]. One
reason for that is the lack of Turing-completeness. Also the scripts are not able to read
blockchain data like nonces, timestamps or hashes of previous blocks.

At first glance, it is obvious that all blockchains achieve a better performance than Bitcoin.
The best performance has the Hyperledger Fabric blockchain. Additionally, the commit
rate is also the highest. This high rate in combination with the Linux Foundation as
supervisor [58] suggests a strong development community in the background. Depending
on the use case, the permissioned property can be an issue because of the existing
authorities in the network. Hence, it is not fully decentralized anymore. Therefore, the
risk of a single point of failure is higher [15] than on permissionless chains. Also Dinh et
al. [69] say that Hyperledger outperforms Ethereum but if it is scaled up to more than
16 nodes it fails. Additionally Ethereum is more resilient to node failures.

According to the performance, Ethereum is way better than Bitcoin and in terms of
latency only a little bit slower than IOTA. Considering the community, it has the second
highest commit rate which indicates that it has an active development community. An
advantage is the support of smart contracts with a Turing-complete language.

IOTA achieves the best performance of the permission-less blockchains. However, the
lack of a smart contract support is a disadvantage. Another downside is the low commit
rate. Although this does not have to be a bad sign, but the need of a coordinator, to
achieve consensus, is another indicator for little activity in the community.

To sum up, it can be said that IOTA seems currently not mature enough to be used
in projects. Hyperledger Fabric is interesting in terms of the performance, however,
the use of a permissioned ledger must suit the use case. Ethereum seems to be a
further development of Bitcoin. Therefore, it has the advantages of a fully decentralized
blockchain with a better performance and smart contracts.

33

3. Related Work

3.3 Communication Protocols
Communication plays a key role in the IoT, according to Talaminos-Barroso et al. [70].
Therefore, the decision of the right communication protocol is crucial to develop a
performant application. This section introduces the Constrained Application Protocol
(CoAP), Message Queuing Telemetry Transport (MQTT) and Data Distribution Service
(DDS) and discusses the advantages and disadvantages.

CoAP is a protocol based on Representational State Transfer (REST) [36]. However, it
is optimized to suit the requirements of an IoT environment. Thus, the protocol has a
low power consumption and is able to operate despite lossy and noisy links. It supports
two communication mechanisms, namely request/response and publish/subscribe. The
observing functionality of the publish/subscribe mechanism is ideal to monitor resources,
for instance sensors. Another specific functionality is the resource discovery. Therefore, a
client is able to request the available resources of the server. As a response, the client
receives different uniform resource identifiers (URIs) which can be requested.

MQTT is a protocol which works with the publish-subscribe pattern [36]. Like CoAP, it
is also optimized to operate on resource-restricted devices with lossy and low bandwidth
links. To enable this messaging protocol, three components are needed namely a publisher,
subscriber and broker. The publisher generates data and sends it to the broker where it is
forwarded to the subscribers. To receive only data of interest, subscribers assign to certain
topics. Hence, they get only data which is published to the assigned topics. Furthermore,
this protocol supports three levels of Quality of Service (QoS). The first level states that
a message is delivered at most once, no further acknowledge is required [71]. The next
option is to send the message at least once. It is not guaranteed that there does not exist
a duplicate of the message. This is solved on the last level.

DDS can be described as a publish-subscribe protocol [72]. The special feature about it
is, that it does not need a broker, like other publish-subscribe protocols. Furthermore,
DDS targets real-time systems and has an extensive support of QoS. For the basic
communication, five entities are needed. The Publisher is responsible for the dissemination
of the data whereas the DataWriter is the facade of the Publisher. The DataWriter is
used to communicate data values and changes. The Subscriber receives the data which
is accessible via the DataReader. A DataWriter and a DataReader are associated by a
Topic. The Topic defines a unique name, a data type and a QoS definition.

A general ranking of the protocols can not be made because the performance often
depends on the conditions. MQTT has a lower delay than CoAP when the package
loss is small [73]. In case the package loss increases, CoAP achieves better results. A
strength of both is the good retransmission scheme. The DDS protocol fits for real-time
applications [70]. Furthermore, it supports automatic discovery, has a sophisticated
QoS and scales well. The downside is the high memory consumption and regarding
development open source libraries are rare. In contrast, MQTT has an active developer
community and is lightweight in terms of memory and CPU consumption. CoAP is
lightweight as well but it has, like DDS, a deficit on libraries and tools. To sum up, it can

34

3.4. Storage

be said that DDS is perfect when real-time is crucial and a sophisticated support of QoS
is required. With a low sampling rate, MQTT also suits real-time applications but it is a
simpler implementation of the publish-subscribe pattern. Regarding the development,
CoAP has some deficits. However, the resource discovery, the lightweight design and
multicast functionality make it a useful protocol for the IoT.

3.4 Storage
Xu et al. [15] state that it is a common technique to store data off-chain. The payload
which is stored on-chain is kept small, like meta data or hash values of the raw data.
In Bitcoin, this approach is useful because the payload size for transactions is limited.
Besides the limitation it saves money. The reason for that is a fee charged for every byte
by Bitcoin and also Ethereum. For instance, 80 Bytes roughly cost 0.47$7 in Ethereum.
When the data is stored in a 32 byte variable of a smart contract, it is even more expensive.
For the 32 bytes, 0.76$7 have to be paid. A cheaper way to store the data into the smart
contract is the log event option. Choosing this option 32 bytes cost 0.38$7. In comparison,
Bitcoin charges 0.56$7 for a transaction with 80 bytes payload. Therefore, having a
technique which reduces data stored on the blockchain saves money and overcomes
storage limitations. Besides storing data in the cloud, P2P storage is a possibility. The
InterPlanetary File System (IPFS) is such a storage which suits blockchains.

The IPFS [74] is a P2P distributed file system. Among other existing technologies it
combines concepts of DHT, the filesharing system BitTorrent8 and the version control
system Git9. The aim of this project is to connect all computing devices with one common
file system. An advantage of this architecture is that it has no single point of failure.
Furthermore, the nodes in the network do not have to trust each other and no one is
privileged. This seems similar to the concept of permission-less blockchains. The unique
identification of the content is done by its multihash. The multihash is a specific format
which adds meta-information to the hash of the content. Hence, the multihash comprises
a function code which specifies the hash function, the digest length and the digest bytes.
Ali et al. [75] use this storage for a decentralized access model for IoT data. Therefore,
data is stored in IPFS and the hashes of the files are persisted in the blockchain.

7 Same calculation as in [15] only the current prices (US$ 9349.56/BTC, US$ 703.75/Ether) are taken
from https://coinmarketcap.com [Accessed: 2018-04-24]

8http://www.bittorrent.com [Accessed: 2018-04-24]
9https://git-scm.com [Accessed: 2018-04-24]

35

https://coinmarketcap.com/
http://www.bittorrent.com
https://git-scm.com/

CHAPTER 4
Solution Approach

One goal of this thesis is to evaluate the performance of different IoT devices. Therefore,
an application is developed which combines blockchain and IoT technologies. This
application represents a prototype of an application which can be adapted for real world
scenarios. Thus, the design of the application in this thesis combines, on the one hand,
the part which can be used for real-world use cases, on the other hand, the performance
evaluation is also considered. How this is realized in detail, is part of this and the
following chapter.

Section 4.1 summarizes the benefits and challenges of combing a blockchain and the IoT.
This forms the basis for the formulation of the concrete research questions. Consequently,
these research questions shall be answered by the implementation of the application
and the evaluation of the performance on the different IoT devices. The following
sections go into more detail about the design of the application. Section 4.2 analyzes the
requirements for the application and the performance evaluation. In the next Section 4.3,
the architecture of the application and the integration of the evaluation part is discussed.
Finally, Section 4.4 argues about the decisions for the used technologies.

4.1 Research Challenges
The blockchain provides promising opportunities for the IoT [76]. The public key
cryptography and hash algorithms can be used in the IoT to hide the identity of a
participant in the network. Another opportunity is the monetary exchange of data and
computing power. For instance, in smart cities these services can be provided with
the engagement of the community. To incite the community, rewards are paid for the
involvement. A further opportunity is the record of transactions on the blockchain for
account and audit. The blockchain is decentralized, hence the infrastructure is owned by
several organizations. This decentralization is beneficial for supply chain monitoring, since
traditional supply chain monitoring is done on a centralized architecture [76]. Storing

37

4. Solution Approach

the data in a decentralized ledger increases the trust. An additional opportunity for the
IoT are smart contracts. Smart contracts can be used as an alternative to paper-based
contracts. The reason for that is the possibility to exchange assets with non-trusted
parties whereas the smart contract ensures the validity of the deal.

Kshetri [77] also says that the blockchain is able to address some challenges of the IoT
in comparison to the cloud model. The cloud model comprises cloud servers which
identify, authenticate and connect IoT devices. Furthermore, storage and processing can
be done on the servers. The blockchain provides potential solutions to some challenges of
the IoT. One challenge is exponential growth of IoT devices. The costs to enable the
communication between this huge amount of devices will also increase exponentially when
it is realized with a centralized cloud model. Thus, the blockchain with its decentralized
architecture can be beneficial. The communication between the IoT devices can be
realized with smart contracts. Another disadvantage of the centralized cloud model is the
occasional downtime due to various reasons. The blockchain does not have this problem,
since there is no single point of failure in the blockchain’s P2P architecture. Furthermore,
the blockchain adds security to the message exchange between devices by signing the
transactions. Hence, the originators of transactions can be verified.

Besides the opportunities the blockchain may provide to the IoT, there are also challenges
when the blockchain is applied in the IoT [76]. IoT platforms have restricted resources in
terms of computation, communication and storage. However, the blockchain technologies
need a lot of resources. There exist light clients, like in Ethereum [78], which try to reduce
the overloads of the blockchain synchronization and consequently the resource utilization.
Nevertheless, the question remains if these light clients are able to overcome or rather ease
the resource constraints. Latency demands are another challenge [76]. IoT applications
can be described as a collection of data producers and consumers. Sometimes, data
consumers want to react to received events. This behavior is less responsive, if blockchain
technologies are used because of the long block times of contemporary blockchains. It can
be said that time-sensitive IoT applications which depend on fully confirmed transactions,
are not suitable with the current blockchain technologies [76]. Another issue is, that in
case sensors or actuators get hacked or used in a wrong way, the data is then logged in the
blockchain and can not be changed anymore. Furthermore, the intermittent connection of
devices is a challenge. Not every device is always connected, for instance, devices which
are used for supply chain monitoring or devices which run on battery and save energy,
have intermittent connections. To keep itself synchronized, it has to synchronize the
blockchain when the connection is established. However, the question is if this is worth
all the costs in terms of computation, bandwidth and storage. Distributed ledgers which
follow a DAG-based approach like IOTA [60] provide mechanisms to make transactions
in an offline environment and merge the partitions later on with the network in a less
costly way [76].

In the conducted research process during the course of this thesis, further challenges
are identified which are presented in Section 3.1.4. One noticeable result is that only a
small amount of papers deal with blockchain and IoT integration on a higher abstraction

38

4.2. Requirements Specification

level. Another discovery is that the diversity of blockchains used for the research is not
high. Based on the research results of Chapter 2, 3 and this section following research
questions are formulated for this thesis:

RQ-1 How can the integration of the blockchain in the IoT be realized from
a software engineering perspective?
This research question aims to show on a concrete example, how such an application
can be designed. Therefore, a middleware-based approach is used. Thus, the
application is not one centralized program, but it comprises several parts. The
first part deals with the collection of data from sensors and transferring data to
the middleware. In the second part, a middleware has to be designed which is
able to distribute the data via different channels.

RQ-2 What is needed to suit time-sensitive applications and take advantage
of blockchain properties?
This question aims to deal with the problem that current blockchains are not
suitable for time-sensitive applications [76]. Hence, a solution is developed which,
on the one hand, enables a time-sensitive handling of the data and, on the other
hand, takes advantage of blockchain properties.

RQ-3 How to store data while keeping the stored data volume in the blockchain
low?
The final question deals with the storage of the sensor data. As it has been said
in the previous chapters, especially in Section 3.4, unlimited data storage in the
blockchain is either not possible or it is expensive. Furthermore, it is a question
of scaling [6]. Therefore, this question aims to minimize the data which is stored
in the blockchain, whereas the P2P approach is maintained. The P2P approach
avoids a centralization of the system.

RQ-4 How does a blockchain-IoT application perform on different devices?
Since the IoT is an environment with heterogeneous devices, it is interesting to
explore how these different devices perform. Therefore, this question aims to test
the developed application on three different devices. The results shall show if and
how the performance of the application is affected by the executing device.

4.2 Requirements Specification

This section defines the requirements for the blockchain-IoT application of this thesis.
The aim of this requirements specification is to lay a foundation for a middleware which
can be used in general for IoT devices and applications which want to integrate the
blockchain. Since the application is used to find answers to the research questions, the
requirements are derived from the questions and the research results. Furthermore,

39

4. Solution Approach

Government Ins�tu�on

Stakeholder

Blockchain

Figure 4.1: Stakeholders of Motivational Scenario.

the regulation of the European Union [4] for monitoring and reporting greenhouse gas
emission is used as motivational scenario to specify the requirements.

4.2.1 Motivational Scenario

The regulation on a mechanism for monitoring and reporting greenhouse gas emissions
of the European Union is a framework which is established to evaluate the progress in
achieving greenhouse gas emission goals [4]. Member States must send annually a report
to the European Commission with an analysis about the current status of greenhouse
gas emissions. To achieve a proper evaluation of the progress, the quality, immutability
and consistency of data is important. Thus, the application of the blockchain in this
scenario could increase the transparency and guarantee immutability of the data. The
idea is that environmental data can be collected by an IoT sensor network which stores
the data directly into the blockchain. Primarily, this would guarantee tamper protection
because once a transaction is added to the blockchain, it can not be changed any more.
Another advantage is that the measured values would be accessible immediately and the
European Commission and other stakeholders could monitor data in nearly real-time
without waiting for the annual report. Figure 4.1 shows the stakeholders for this scenario.
The government feeds the blockchain with sensor values whereas the institution, like
the European Commission, retrieves the values and uses them for further processing.
The stakeholder can have different roles. For instance, he can access the public data to
establish own services or he installs an own control instance. Based on this idea and the
introduced stakeholders, specific use cases and requirements are derived in the following
sections.

4.2.2 Use Cases

In general, use cases describe the interaction between a system and an external actor [79].
The actor itself is not necessarily a person, but it can also be a software system or a
hardware device. The use-case approach focuses on the tasks of the actors. The aim is
to find out what the actors need to interact with the system.

40

4.2. Requirements Specification

To get a broad analysis of the system requirements, use cases are specified for the
application of this thesis. It helps to define the functional and non-functional requirements
in the following sections. The use cases are identified with regard to the opportunities of
the blockchain, the properties of the IoT and the motivational scenario of the European
Union. Thus, the use cases are placed in a governmental context or at least in an
environment of big organizations. However, the solution is not limited to these use cases.
The use cases support the requirements analysis and help to get a better understanding
of the usability and potential application areas.

Use Case 1: Access Data in Real-Time

• Scenario: The website of a weather station wants to publish the current
temperature of a specific region. Therefore, it has to know the endpoint from
where it wants to receive the data. If this is the case, the web server connects
to the endpoint and subscribes to a real-time data stream. After that, the
web server listens to incoming messages and publishes the latest temperature
data on the website.

• Actor: Can be anyone or anything which is interested in some public data,
for instance a web server of a weather station.

• Precondition: The actor knows the endpoint from where it wants to receive
the data.

• Postcondition: The actor has subscribed to the real-time data stream and
receives data.

Use Case 2: Access Data with Guaranteed Integrity

• Scenario: State authorities want to monitor the greenhouse gas emissions
and write an annual report about the current state. Therefore, the integrity
of the data shall be guaranteed. Hence, state authorities subscribe to a
communication channel where the integrity of the data can be guaranteed.

• Actor: State authorities/ Institution
• Precondition: The actor knows the endpoint where the data can be received
and which data is desired.

• Postcondition: The actor receives data for which the integrity can be guar-
anteed.

Use Case 3: Push Continuous Data Delivery

• Scenario: For monitoring, missing values are not desired. Furthermore, if
the monitoring party (data consumer) is used to control the data producer,
the data producer may have the motivation to miss sending values. This can
happen to hide the exceeding of certain thresholds. Thus, the data consumer
wants to ensure that the data is delivered by demanding penalties for missing

41

4. Solution Approach

values. An agreement is made between data producer and consumer. The
agreement is controlled automatically by an independent instance like a smart
contract to avoid tampering. In case of a breach of the agreement the penalty
is executed also automatically.

• Actor: Data consumer, Data Producer
• Precondition: The data producer and consumer have made an agreement. In

case of missing to deliver a value within a specified period, the data producer
has to pay a penalty.

• Postcondition: The penalty is paid.

4.2.3 Functional Requirements

Functional requirements describe which functionality shall be supported by the soft-
ware [79]. This functionality enables the user to fulfill its tasks.

For the application of this thesis, the following functional requirements are specified:

1. Collection of Sensor Data
The application shall be able to collect data from sensors. Furthermore, the collected
data shall be provided via an interface.

2. Access of Data in Real-Time
The sensor data shall be accessible in real-time. For this data access type, the
integrity has less priority.

3. Access of Data with Guaranteed Integrity
The data which is collected shall be accessible in a way where the integrity can
be ensured. For this data access type, the time-sensitivity has less priority. The
important thing is to guarantee the integrity.

4. Automatic Check on Update Frequency
The update rate of sensor data shall be checked automatically.

5. Penalty Payments
In case sensor data is not delivered in a defined period, a penalty is automatically
paid from the data producer to the data consumer.

4.2.4 Nonfunctional Requirements

Besides the functional requirements, there are also nonfunctional requirements [79].
These nonfunctional requirements can determine performance goals of described quality
attributes. Quality attributes extend the specification of a product’s functionality with

42

4.3. Architecture

its characteristic. These characteristics can be specified not only for the requirements of
the user but also for the developer’s needs.

For the application of this thesis, the following nonfunctional requirements are specified:

1. Usage of IoT Standards
Although, the heterogeneity of the IoT network and the lack of a standard is
mentioned in the literature, there are still technologies which have proven their
value. The usage of IoT standards shall help to fit the application into the
IoT environment. Furthermore, standard technologies implement already needed
features for the IoT, for instance the low power consumption of CoAP [36].

2. Extensibility
Extensibility is important because of the middleware-based approach. The mid-
dleware shall be extensible to add more communication technologies and to be
adaptable in general for the heterogeneous IoT environment.

3. Portability
The application shall not be limited to only one platform. Therefore, the portability
has to be considered during the development process. This requirement suits well
into the heterogeneous environment of the IoT.

4. Save Resources
The application shall consider the resource restrictions of IoT devices. These
requirements may be in conflict with other requirements. In case the application
would loose functionality, saving resources shall be prioritized less. As it has been
said, this nonfunctional requirement is already partly achieved by using specific
IoT technologies.

4.3 Architecture
In this section, the design of the application is presented, including the part which is used
to measure the performance metrics. The architecture is designed to fulfill the specified
function and nonfunctional requirements.

Figure 4.2 shows the design of the solution for this thesis. The drivers, sensor and
virtual driver, the middleware with its both channels form the blockchain-IoT application.
Thus, the specification of the requirements belongs to those elements. The IoT client
aims to handle the performance evaluation which is needed to test the application on
different devices. Different performance metrics like delays are observed on the IoT client.
Additionally, the activity of the blockchain is monitored. Thus, the IoT client does not
suit real-world scenarios, but it shows that the interfaces of the middleware work. Hence,
the client can be exchanged with another client which fulfills requirements which are
needed for real-world scenarios. The different elements of the solution are presented in
the following subsections, beginning with the sensor drivers.

43

4. Solution Approach

MIDDLEWARE

Sensor Driver

Sensor Driver

Sensor Driver

Sensor Driver

Sensor Driver

IOT CLIENT

Broker

Storage

Blockchain Client Smart Contract

R
E

A
L-

T
IM

E
 C

H
A

N
N

E
L

IN
T

E
G

R
IT

Y
 C

H
A

N
N

E
L

Figure 4.2: Architecture of the Solution Approach.

4.3.1 Sensor Driver

At first the terminology for this element has to be cleared. A sensor is the hardware
which does the sensing of environmental phenomena [80]. A phenomenon is the entity of
interest which is sensed like temperature or humidity. Additionally, another term is added
in this solution approach. Every phenomenon is managed in the driver by a data source
which collects the values of one phenomenon from the sensor. Furthermore, the data
source packs the measured values into messages and adds meta-data like timestamp and
type of measurement.

The sensor driver acts as an interface between the sensor and the middleware. Thus, it is
responsible to collect the data from a specific sensor. A sensor driver only implements the
collection mechanism for one sensor. That means every sensor has its own driver. However,
it may be the case that one sensor senses several phenomena. In such a case, the sensor
driver collects the values for all phenomena which the sensor supports. Furthermore,
the collected data must be provided via an interface to the middleware. Therefore, the
driver provides the phenomenon’s data via IoT-suitable communication channels. Every
phenomenon has its own channel. However, before the exchange between the driver and
the middleware can be realized, the driver has to register at the middleware. The idea
behind this process is that sensors can be added to the middleware dynamically. This
avoids a hard coding of driver connection into the middleware and therefore adds flexibility.
The workflow of the registration procedure is constituted in Figure 4.3. At first, the
driver sends a registry request to the middleware containing its own address. This address
is needed by middleware to know where it has to send the answer. When the registry

44

4.3. Architecture

register

discover

data source links

Loop

[All data sources are observed]

Loop

[Un�l one actor terminates]
no�fy

Sensor

Driver
Middleware

observe data source

Figure 4.3: Sensor Driver Registry.

request is received, the middleware responds with a discovery request. This request wants
to get the links for the different data sources of the driver. The driver responds with a
list of data source links. For every resource link, the middleware sends an observe request.
That means in case the observation is accepted by the driver, the middleware is notified,
if a new value is received. Depending on the driver’s implementation, there could also be
another reason. For instance, the middleware is only notified when the sensed value has
changed. Although, the operation is called notify, the middleware is not only notified
but the new value is already included in the notify message. As long as the middleware
or the driver is running, sensor data is delivered to the middleware.

Besides the dynamic adding of sensors to the middleware, the separation of the sensor
driver from the middleware has another advantage. Because of this strategy, the imple-
mentation of the driver is independent from the technology of the middleware. Thus,
an own programming language can be chosen to collect the data from the sensors in an
optimal way. This can be an advantage because different programming languages aim
at different application fields [81]. Since the driver and the middleware fulfill different
tasks, the independence makes sense. The only constraint for the driver is to support the
interface which enables the workflow of Figure 4.3.

Since the application also aims to execute performance tests, there are two types of
sensor drivers. The first type implements the collection of sensor data as it has been
explained before. However, the second driver does not have a real connection to a physical
sensor. Thus, the driver operates only as a virtual driver. The virtual driver is able

45

4. Solution Approach

to start a specified amount of data sources. The data sources create messages with
hard-coded values, which are sent to observers of the data sources. Since the amount of
data sources and consequently the amount of sent messages can be specified, the load of
communication on the system is controllable. Hence, different loads on the system can
be tested.

4.3.2 Middleware

The middleware is the core of the blockchain-IoT application. Therefore, it is responsible
to collect the sent data from registered sensor drivers. After the reception of the data,
the data is prepared for further distribution. The distribution follows a two channel
approach. The real-time channel ensures the timely distribution of the data, whereas the
integrity channel guarantees the data’s integrity.

The real-time channel uses a publish/subscribe mechanism. Thus, interested clients are
able to subscribe to different data sources. The middleware sends the data to a broker
which is responsible for the publication of the data and the subscriptions of interested
parties. An advantage of excluding the broker from the middleware is that in case of an
overload of the system, the broker can be outsourced to another server. Thus, system
resources can be saved. However, the outsourcing rises new risks like trust issues with
the external servers. These occurring problems have to be solved individually, when the
outsourcing option is used.

The second channel is the integrity channel. The aim of this channel is to store the data
in a way that the integrity can be assured. Thus, the blockchain with its tamper-proof
property comes into play. The simplest way of achieving tamper-proof data, is to save the
received data directly into the blockchain. Hence, the data’s integrity can be guaranteed.
The issue with this strategy is that storing all the data into the blockchain is not good
for scaling [6, 76]. Therefore, the middleware has to reduce the data which is stored
on the blockchain to a minimum. Because of that, only the data’s hash is stored in
the blockchain and the data itself is saved into a storage which is optimized to find the
data with its hash value. This is a basic explanation of the integrity channel. The exact
procedure of storing the data, adding it to the blockchain and finally distributing it to
the client is presented in Figure 4.4. At first, the middleware stores the data into the
storage via the storage client. The storage client is responsible for the storage process.
When the data is successfully persisted, the data’s hash is returned to the middleware.
Similar to the broker, the storage client, as well as the blockchain client, is not part of the
middleware and can be outsourced if needed. Also here, the arising risks which may occur
with the outsourcing, have to be considered. When the middleware receives the hash, the
middleware sends the hash to the blockchain client. The blockchain client calls a function
in the smart contract by sending a transaction containing the hash. The hash is passed
to the function as a parameter. The function is executed and an event is emitted. Part
of the event message is the hash. The IoT client listens to the smart contract. In the
background, it runs also a blockchain client, but this is not constituted in Figure 4.4. In
case the smart contract emits a new event, the IoT client is notified and is able to read

46

4.3. Architecture

Middleware
Storage

Client

Blockchain

Client

store

hash

hash

Smart

Contract

transac�on

event

IoT

Client

get data

data

Figure 4.4: Storage of Data via Integrity Channel.

the content of the event which contains the hash. Although the events are emitted, they
are also stored in the blockchain, therefore they are tamper-proof. With the hash, the
IoT client can retrieve the data from a storage client. Depending on the implementation,
the IoT client can share the same storage client with the middleware, but normally this
will not be sensible. The reason for not sharing is, that the middleware and its storage
client are supposed to run on an IoT device with restricted resources. Thus, causing
more traffic to access the storage client may not be good for the performance of the IoT
device. Sharing the storage client is only imaginable, when the client is outsourced to a
more powerful server. After the IoT client receives the data, it can compute the hash
and compare it with the received hash. In case the hashes are equal, the integrity of the
data is confirmed.

4.3.3 IoT Client

As it has already been mentioned, the IoT client is responsible for tracking the performance
of the two communication channels. Therefore, it is excluded from the functional and
nonfunctional requirements specification. The interesting metric for the communication
channel is the delay of the messages from sensing the value until the reception at the
IoT client. The monitoring of the delays for the real-time channel is simple. The IoT
client makes a timestamp when receiving the message and then calculates the difference
between the sensing timestamp and the reception timestamp. A more detailed description
of the performance evaluation process is available in Chapter 6. A little bit more complex
is the monitoring of the integrity channel because several things have to be tracked.
The first timestamp is taken when the IoT client is notified by the event of the smart
contract. Thus, the reception of the hash is tracked. The next timestamp is taken when

47

4. Solution Approach

the data from the storage is received. Finally, a timestamp is taken when the block in
the blockchain, which contains the transaction for the smart contract, is confirmed by a
specified amount of proceeding blocks. This is necessary because it needs a certain amount
of time or rather a certain amount of blocks until a transaction becomes immutable. The
number of blocks which are needed to consider a transaction as successfully executed is
six in Bitcoin and twelve in Ethereum [82]. Besides the monitoring of the communication
channels, documentation of the performance results is another task of the IoT client.
Therefore, the client runs only a certain amount of time until it stops listening to the
channels. After that, all the results are written into a file in a format which supports
further analysis in suitable programs.

Regarding the solution approach’s architecture, the IoT client can be easily exchanged
with another implementation of a client. This client could implement analysis features or
other services which are needed for real world scenarios.

4.4 Technology Decisions

The technology decisions are made, according to the architecture of the application.
The technology decisions shall support achieving the functional and nonfunctional re-
quirements. Furthermore, efforts are made to find technology which is popular in the
blockchain and IoT domain.

Regarding programming languages, Python is chosen as programming language for both
drivers. The reasons for Python are the portability and the simple and fast programming.
Regarding the middleware and the IoT client, a lot of functionality has to be supported.
Furthermore, the middleware shall be portable and extensible. To suit these requirements,
a higher programming language is searched. The decision is made for the object-oriented
programming language Java 8 1. Table 4.1 shows in detail the used Java packages and
their usage in both implementations.

After the programming languages are set, further technology decisions have to be made.
One is the communication technology, another the blockchain and the last technology
decision is the storage. The details are explained in the following sections.

4.4.1 Communication

Communication plays an important role in the blockchain-IoT application because of
the different interfaces between the software components. Communication is needed for
the interface between the sensor driver and the middleware. Another communication
technology is needed for the real-time channel. The integrity channel does not need
an extra communication technology because the communication is determined by the
used blockchain and storage technology. For the selection of the right communication
technology, several criteria are important. First, the technology shall be well-accepted in

1https://docs.oracle.com/javase/8/docs [Accessed: 2018-06-08]

48

https://docs.oracle.com/javase/8/docs/

4.4. Technology Decisions

Table 4.1: Usage and Description of Projects Used for the Java Implementations.

Middleware IoT Client Name Description
X X Maven Build-Management-Tool
X X Jackson JSON Library
X X Slf4j Logging
X X Log4j Logging
X X JUnit Testing
5 X Mockito Testing
X 5 Californium CoAP Framework
X X Paho MQTT Library
X X Web3j Ethereum Library
X X Ipfs-Api IPFS Libary
5 X Commons-Cli Command Line Library

the IoT domain. The foundation for this criterion is that the blockchain-IoT application
should be extensible. Furthermore, some issues like lossy links, low power consumption
or data source discovery are already handled by the technology. The last criterion is that
the communication technology supports the specified design from Section 4.3. Since the
communication between sensor driver and middleware as well as middleware and IoT
client is rather different, it is expected that two different communication technologies are
needed.

Based on the research results of Section 3.3, the communication protocols are chosen.
For the interface between sensor driver and middleware, CoAP is chosen because it
supports the workflow which is needed for this interface. On the one hand, it supports
the request/response mechanism which is needed for the registration and, on the other
hand, publish/subscribe is used for the value updates. Furthermore, it has a low power
consumption and provides data source discovery. An alternative for the CoAP protocol
can be a combination of two protocols. For the request/response communication, the
WebSocket protocol can be used. The protocol enables a full-duplex, bidirectional
communication between a client and a remote host [83]. For the publish/subscribe part
MQTT can be used. However, one big advantage of CoAP is the data source management
and the different mechanisms to interact with the data sources like observation or
discovery. When using WebSockets and MQTT, an own data source management has to
be implemented. REST can be the alternative to WebSockets. However, CoAP is based
on REST and optimized to meet the IoT requirements. Regarding the middleware’s
real-time channel, MQTT is the suitable technology because it provides the needed
publish/subscribe mechanism. Additionally, MQTT is optimized to operate on resource-
restricted devices. Alternative technologies which also support the publish/subscribe
mechanism are DDS and the Advanced Message Queuing Protocol (AMQP). However,
DDS uses a lot of memory which is difficult for resource-restricted devices and AMQP
is not suitable for real-time applications and lacks of open source libraries for resource-

49

4. Solution Approach

restricted devices [70].

To sum up, CoAP is chosen because different data sources can be added to the CoAP
server and clients are able to interact with the server and consequently with the data
sources in various ways. Therefore, registration, data source discovery and observation
can be done in one protocol which additionally is suitable for resource-restricted devices
because of its lightweight design. Regarding MQTT, it is chosen because it supports
the publish/subscribe mechanism and it is optimal for resource-restricted devices. The
alternatives are not suitable because of too resource-intensive requirements, lack of
real-time application support or a lack of open source libraries for resource-restricted
devices.

4.4.2 Integrity Channel

There are two technologies needed for the integrity channel. At first a blockchain and
second a storage technology. One important criteria is that the blockchain supports smart
contracts because the functionality of a smart contract is expected in the architecture of
the application. The smart contract is expected to support Turing-complete languages.
The second criteria is that the blockchain has to be permission-less. This is important for
the integrity of the data. In case of a permissioned blockchain not everyone has access to
the network [15]. Thus, not everyone is able to check the integrity of data. Therefore, the
blockchain for this solution has to be permission-less. Another criteria for the blockchain
selection is the maturity of the project. Since there are hundreds of blockchains and not
all of them are reliable, it is important to have a blockchain with a strong developer
community. If these three requirements are satisfied, the performance of the blockchain
is also considered. An important criteria for the storage is if it matches the needs of a
blockchain. Especially by finding the stored data with the data’s hash. Since the hash is
stored on the blockchain to keep the data low and to have at the same time the ability
to check the integrity, a fast handling of hash keys is preferable. In addition, a P2P
approach is preferred to avoid the centralization regarding the storage strategy.

Based on the defined criteria and on the research results in Section 3.2 and Section 3.4,
the following technologies are chosen: Ethereum is the blockchain for the solution
approach. Several reasons lead to the decision. First, it is a popular blockchain with an
active community. Second, the support of smart contracts with the support of Turing-
completeness is also given. Furthermore, Ethereum is a permission-less blockchain and is
a lot faster than Bitcoin. According to the storage technology, IPFS is the technology of
choice. Since every content is uniquely identified with its multihash, the multihash can
be used to be stored in the blockchain. Additionally, IPFS follows a P2P approach which
also suits into the IoT domain.

50

CHAPTER 5
Implementation

This chapter explains in detail how the solution approach is implemented with the chosen
technologies. Therefore, class diagrams, code snippets and precise explanations of the
code’s functionality are used to get an insight into the implementation. The deployment
of the code on the different IoT devices and the actual setup for the evaluation are part
of Chapter 6. The detailed explanation of the sensor driver implementation including
the virtual driver is part of Section 5.1. Section 5.2 focuses on the implementation of the
middleware with its two communication channels. Finally, the IoT client is presented in
Section 5.3.

5.1 Sensor Driver
As it has already been said in Section 4.3.1, there are two types of drivers. The first type
reads measured values from a physical sensor and is named sensor driver. The second
type is a driver with virtual data sources where the measured values are hard-coded
constants. Thus, it is called virtual driver. To start the sensor driver, the command,
shown in Listing 5.1, has to be executed. Several options have to be set. Option a
indicates the id of the sensor driver. This id shall be unique to identify the driver. Thus,
the Internet Protocol (IP) address including the port is suitable. The reason why the IP
address is not looked up in the code, is that a device can have several IPs, for instance,
Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6). Because
of that the id is set manually to decide which IP shall be used. The option r specifies
the port of the CoAP server which is started in the code. This server is used to handle
the observation requests and consequently the notification of the middleware. The IP
address of the CoAP server is hard coded and set to “0.0.0.0”. The next options s and p
indicate the IP address of the middleware’s registry server and the port.

51

5. Implementation

Listing 5.1: Sensor Driver Start Command
USAGE: hum_temp_sensor_driver . py −a <ip address with port> −r

<port f o r own coap server> −s <s e r v e r ip address> −p <port>

Listing 5.2: Virtual Sensor Driver Start Command
USAGE: v i r t ua l_d r i v e r . py −a <ip address with port> −r <port

f o r own coap server> −s <s e r v e r ip address> −p <port> −c
<number o f data sources>

Listing 5.2 shows the command to start the virtual driver. As it can be seen, there
is no difference to the sensor driver command except for the additional option c. The
option c specifies how many data sources shall be created in the virtual driver. The
specified data sources in the virtual driver are basically implemented like the sensor
driver’s data sources. The only difference is that the data sources of the virtual driver
are not interacting with a sensor.

The implementation of the sensor driver collects values from the Grove Temp&Humi
Sensor1. The sensor is connected to the Raspberry Pi with the GrovePi+2 bridge. An
advantage of this setting is that the sensor can be connected easily with the Raspberry
Pi and the Python library grovepi is provided by the producer which makes it handy
to retrieve values from the sensor. Since only one command is needed to retrieve values
from the sensor with the grovepi library, the main effort of the driver implementation is
the realization of the registration at the middleware and the notification of subscribed
clients. To achieve this, the driver has to work as a client for the registration and as a
server to receive observe requests and to push notifications. The used library for the
CoAP protocol is coapthon3. The first task which is done by the sensor driver after
the start, is the parsing of the command line arguments. After that, a CoAP client is
started. The client sends a POST -request to the registry server of the middleware. As
payload of the request, the address of the sensor driver’s CoAP server is transmitted.
The address scheme is “coap://<ip:port>”. When the registration is successful, the client
is closed and the CoAP server is started. Different data sources, where every data source
has its own path, can be added to the server. Every data source in the sensor driver
represents a sensed phenomenon. In case of the virtual driver, no phenomenon is sensed.
The added data sources only simulate a phenomenon whereas the amount of added data
sources depends on the command line argument c. The specified amount is added to the
server in a loop. In case of the Grove Temp&Humi sensor, two data sources are needed
because the sensor is able to sense temperature and humidity. The relative paths for

1http://wiki.seeedstudio.com/Grove-TemperatureAndHumidity_Sensor [Accessed: 2018-06-13]
2https://www.seeedstudio.com/GrovePi%2B-p-2241.html [Accessed: 2018-06-13]
3https://github.com/Tanganelli/CoAPthon [Accessed: 2018-06-19]

52

http://wiki.seeedstudio.com/Grove-TemperatureAndHumidity_Sensor/
https://www.seeedstudio.com/GrovePi%2B-p-2241.html
https://github.com/Tanganelli/CoAPthon

5.1. Sensor Driver

every data source are hard-coded. In case of the Grove Temp&Humi sensor the sub-paths
“/temperature” and “/humidity” are chosen. The names describe the data sources or
rather describe what the data sources are measuring. Since the full path including the
IP of the driver is used for the identification of the sensors, a meaningful naming of the
data sources helps for the semantic understanding.

A data source is implemented as a Python class, which extends the Resource class of the
coapthon library. To enable the observe option, the boolean value observable has to be
set to true in the constructor. The observe option can be included in a GET request [84].
Thus, the GET method of the Resource class has to be overwritten. When GET is called
on the data source’s path, a message in JavaScript Object Notation (JSON) format,
which contains the current measured value, is returned. If a client calls GET with the
observe option, not only the message is returned, but the client is also added to the list of
observers. To continuously notify the clients, which are contained in the list of observers,
a method is implemented which calls itself within a defined interval of five seconds. In
every call, the current value of the sensor is collected. Regarding the virtual driver, only
a hard-coded value is assigned. When the value is set, the CoAP server is notified. The
server takes over the control of distributing the new values to the clients, which are added
in the list of observers. The virtual driver has a limitation of 60 sent messages per data
source. This fixed amount of sent messages shall help in the analysis phase to detect
message losses. To find out, which data sources are available at a certain driver or rather
CoAP server, clients can send discover requests. In response to the request, a list of links
of the available data sources is returned. A more detailed explanation of the discover
functionality is part of Section 5.2.

Two things have to be mentioned concerning the observe option. The first thing is the
five second notification interval. In a resource-restricted environment, every message
which is not sent, saves resources, for instance bandwidth. Thus, another strategy to
send the values is that the server and consequently the clients are only notified when the
value changes. Another possibility can be the notification of the clients when a certain
threshold is exceeded. The disadvantage of a strategy which does not deliver values
continuously, is that a connection loss is less obvious. To distinguish a connection loss
from a long period of no value change, timeouts can be set. However, this needs a certain
amount of time until the timeout comes into play. Furthermore, this timeout has to be
propagated through all application levels properly. Hence, the risk is omnipresent that
the connection loss is never propagated to the user of the application. It can be assumed
that the values are part of the application’s feature, thus they are used somewhere. When
a continuous delivery of values is expected, the absence of new values is obvious. A
very simple example is when temperature is measured and displayed on a screen. In
the continuous delivery case, every n seconds the value is refreshed on the display. The
refreshing is visible to the user, hence, the absence of a new value can also be visible by
setting an error value, if no value is delivered. In the noncontinuous case, the displayed
value would not change and if the timeout is not propagated always the same temperature
is displayed. Therefore, it can not be said with certainty if the temperature is constant

53

5. Implementation

Listing 5.3: JSON Message from Driver to Middleware
1 {
2 value : <value >,
3 uni t : <value >,
4 timestamp : <value>
5 }

or if there is a connection problem. Besides the connection argument, the strategy is
also dependent on the sensed phenomena. Continuous notifications for a fire sensor
make less sense than for temperature. In general, it can be said that the choice of a
notification strategy is dependent on the sensor and on the preferred strategy. Therefore,
the implementation of drivers provides a lot of flexibility to meet the requirements.
For the performance evaluation, the continuous delivery is chosen because it is more
predictable and has a constant load of sent messages. The second consideration in the
driver implementation is the message format for the exchange between the driver and the
middleware. Listing 5.3 shows the message format which is used for the exchange. Also
for the format, the resource-restricted argumentation has to be considered. The first idea
to minimize the message size is to only send the value. However, only sending the value
is not desired because the interpretation of the value is hard without further information.
Thus, context-awareness is key in IoT [9]. Concatenating all the meta-information into
one string is also tricky in terms of interpreting the string. For the interpretation there
has to be a standard which defines the positions for certain information. Using an already
existing structured format is more sensible. Therefore, JSON is used for the exchanged
messages. Another advantage of JSON is that it is supported by various libraries for
various programming languages. Regarding development reasons, the messages can be
easily extended with further information if needed. As it is constituted in Listing 5.3, the
meta-information is kept at a necessary minimum. Since the type of the measurement
can be derived from the data source path, it is not added to the message format. The
unit of the measurement has to be added because one phenomenon can have different
units. For instance, temperature can have degree Celsius or Fahrenheit. The timestamp
is to uniquely identify the measured values in combination with the data source path.
Additionally, this timestamp is used to calculate the delays for the performance evaluation.

To sum up, it can be said that the implementation of the driver offers a lot of opportunities
for the blockchain-IoT application. Already on this low level a lot of design decisions
can be made. Furthermore, optimizations like notification frequency or additional
functionality, like dynamic adding of sensors to the middleware, can be implemented.
Regarding the virtual driver, it can be seen that the differences to the sensor driver are
minimal, hence the usage of the virtual driver is a legit option to test different sensor
loads. Figure 5.1 summarizes the explained workflow, on the example of the virtual
driver, in a sequence diagram. However, the sequence diagrams only shows the case with
a successful registration at the middleware. Additionally, the data sources are called

54

5.2. Middleware

CoAP

Client

Virtual

Driver
Middleware

CoAP

Server

new

post("register", "coap://"+address)

isRegistered = status

new

discover

resource links

status :true

Loop

[c resources are observed]

Loop

[60 values per resource are sent to middleware]

observe resource

Resource

new

Loop

[Itera�ons == c]

add_resource(name, Resource)

no�fy

no�fy

X

Figure 5.1: Workflow of the Virtual Driver in Case of a Successful Registration.

resources in this figure because in the sensor driver the data sources are implemented
with the Resource class.

5.2 Middleware

The middleware as the core of the application is responsible to transmit data from the
drivers to the IoT clients. In general, it can be said that the middleware is an event-driven
application. Event-driven applications continuously interact with their environment [85].
Furthermore, incoming events are processed and the corresponding tasks are executed.
For instance, a button press or a notification can be an event. The exchange of the
values between driver and middleware is push-based, since the sensor driver pushes the

55

5. Implementation

Main

BlockchainClient

CoAPClient

MQTTClient

IntegrityService

RegistryCoAPServer

RegistryResourceIntegrityWork�owReal�meWork�ow

<<create>> <<use>>

{abstract}

Work�ow

<<call>>

<<use>>

<<use>>

<<call>>

<<use>>

<<create>>

<<use>>

Figure 5.2: Middleware Class Diagram

notification to the clients from the list of observers. The architecture of this event-based
application is constituted in Figure 5.2. Before the discussion of the classes starts, two
classes have to be presented which are not part of Figure 5.2, but they are used in the
middleware and in the IoT client.

The Message and Measurement classes are a representation of the JSON messages which
are sent between driver and middleware as well as middleware and IoT client. Figure 5.3
shows how the classes are aggregated. The conversion from JSON to a Java object and
vice versa is done with the extra helper class JsonConverter. For the conversion, the
Jackson4 JSON library is used. Measurement is used for the messages of the sensor and
virtual driver. For the internal use in the middleware and for the further distribution,
Message is used. Message contains not only the measurement results but additional
information about the device where the values come from. This is necessary to determine
the origin of the data when it is propagated to different stakeholders. That means as

4https://github.com/FasterXML/jackson [Accessed: 2018-06-12]

56

https://github.com/FasterXML/jackson

5.2. Middleware

<<datatype>>

Measurement

<<enumera�on>>

MeasureType

<<enumera�on>>

Unit

<<datatype>>

Message

Figure 5.3: Message Objects

soon as Measurement is received in the middleware, a Message object is created and used
for the distribution over the different communication channels.

The Main class is the entry point for the middleware. It takes one optional argument
m. This determines the maximum inflight value for the MQTTClient. If the option is
not set, a default value is used. Further details are discussed in Section 5.2.1. After the
reading of the argument, the connections to the MQTT, blockchain and IPFS client are
tested by starting a connection. For MQTT, the MQTTClient and for the blockchain
the BlockchainClient is used. Regarding IPFS, the according class of the IPFS library
is used. In case of problems with the connections, these problems are detected at an
early stage and the middleware terminates. If the three connections are working, the
RegistryCoAPServer is started. All further activities of the application are started via
the RegistryCoAPServer, when new registry requests of drivers are received.

The RegistryCoAPServer contains the RegistryResource. The RegistryResource is accessi-
ble via the path “/register” and implements a POST method. Incoming POST-requests
are expected to contain the address of their CoAP server as payload. The driver is
registered by creating a new CoAPClient which is initialized with the received address.
After the creation, a new thread is started to run the CoAPClient.

The CoAPClient is the class which connects the driver with the middleware. For the
actual CoAP communication with the driver, the CoapClient of the Java CoAP framework
Californium is used by the CoAPClient. However, in favor of describing the workflow
in an understandable way, the communication is described from the perspective of
the implemented CoAPClient. Figure 5.4 constitutes the workflow of the CoAPClient.
Although the constituted driver in the figure is the virtual driver, it would make no
difference to name the sensor driver. After the creation of the CoAPClient by the
RegistryResource, the run-method is invoked. As soon as the run-method is invoked,
a connection to the sensor’s CoAP server is established. In the next step, the CoAP
discovery command is executed. There are two types of discovery in CoAP [86]. One is the

57

5. Implementation

CoAPClient
Virtual

Driver

discover

data source links

CoapHandler

Integrity

Work�ow

Real�me

Work�ow

Registry

Resource

observe

new

new

new

Loop

[For each data source link]

no�fy

new

Figure 5.4: Initialization and Observation of a New Virtual Driver.

service discovery, the other is the resource discovery. The term resource equals the term
data source of this thesis. The resource discovery is important in M2M applications where
no humans are involved because the discovery function increases the interoperability. To
get all available data sources of the driver, the middleware sends a discovery-request.
A list of the data sources’ links is returned. The list is iterated and for every link a
CoapHandler object is created. Furthermore, an observe-request is sent to the driver and
the created CoapHandler is used as a callback object for incoming notifications. The
CoapHandler object contains two methods, the onLoad- and the onError-method. In
case of an error, the onError-method is called. In case of a notification from the driver’s
CoAP server, the onLoad-method is called. Figure 5.4 only shows the case where a
notification is sent by the driver and the onLoad-method is called. The onLoad-method
parses the payload which is in JSON format and creates a Measurement object. Since
the information of the JSON message or rather the Measurement is too minimal for
further usage, a Message object is created. After that, the further processing of the
data is defined by passing the Message object to different Workflow objects. Every
distinct Workflow object defines an independent processing of the data. In the current
implementation RealtimeWorkflow and IntegrityWorkflow are used, which are subclasses
of Workflow. The Workflow class defines a constructor which takes a Message object
as input. For every new Message, a new Workflow has to be created. Regarding the
further development of the middleware, other workflows can be defined to implement
different processing strategies for the data. Theoretically, it is possible that workflows
contain other workflows. For example, the super workflow can filter events and pass the
filtered events to the subworkflow. As long as the CoAP server is delivering new values,

58

5.2. Middleware

the CoAPClient is executed. To enable constant listening to new incoming messages,
the two workflows RealtimeWorkflow and IntegrityWorkflow are executed in separated
threads. For a resource-efficient handling of the threads, an ExecutorService is used. This
ExecutorService is also used for the threads of the CoAPClient. The ExecutorService
is initialized with a cached thread pool which means that the size of the thread pool
increases when new threads are needed. The risk of this pool is that too much memory
is used, hence the application would crash. To solve this, the amount of concurrent
threads shall be limited. Nevertheless, in this implementation the amount of threads is
not limited because it can not be said what the maximum amount is. Since the aim is to
evaluate the performance, the cached thread pool does not limit the amount of threads
and therefore the devices can be tested to their limits. In case this middleware would be
used in a productive application, the threads shall be limited to an amount, where the
system is stable but the performance is satisfying.

5.2.1 Real-Time Channel

The real-time channel comprises the classes RealtimeWorkflow and MQTTClient. Besides
the implementation of the classes, a broker is needed which implements the MQTT
protocol. Thus, mosquitto5 is installed which is a lightweight broker and suitable
for resource-restricted devices. The communication with the broker is done via the
MQTTClient class.

The MQTTClient connects to the broker and publishes payload to the broker under a
certain topic. The connection is initialized with a maximum inflight value by setting
option m. The maximum inflight value determines the number of messages, which can
be transmitted by the broker concurrently with a QoS-level of one or two [87]. In case
option m, which is parsed in the Main class, is set, option m’s value is used else a default
value is used. The content, which is published to the broker, has a QoS-level of two. A
QoS-level of two means that the messages are sent exactly once [71]. The reason for
this high QoS-level is that the delivery of the sensor data shall be reliable. Thus, the
subscriber of certain topics does not have to implement mechanisms which detect data
losses or duplicates, if the reception has also a QoS-level of two.

The RealtimeWorkflow defines the workflow for the real-time channel for one Message
object. When the RealtimeWorkflow is executed, the Message is converted to a byte
array. Then, the byte array and the topic are passed to the MQTTClient. The topic
for the payload is the id of the data source from where the message comes. Since the
id of a data source equals a topic, it is easy for a subscriber to exactly choose the data
sources from which the values shall come. As it can be seen, the logic of the real-time
channel is not complex. When the right communication protocol is chosen, there are
little implementation efforts needed. Nevertheless, messages are delivered in a reliable
way and the broker provides a well-defined interface to the data sources’ messages.

5https://mosquitto.org [Accessed: 2018-06-24]

59

https://mosquitto.org/

5. Implementation

5.2.2 Integrity Channel

The integrity channel comprises the classes IntegrityWorkflow, BlockchainClient and
the IntegrityService. This channel distributes the data via the Ethereum blockchain in
combination with IPFS. To access the blockchain, a blockchain client must be started.
The used client for Ethereum is go-ethereum with the command line interface geth6.
To save resources, the client is executed with the light client protocol. The light client
protocol [78] is developed for the usage of Ethereum in low-capacity environments. The
protocol downloads the block headers and verifies only a little bit. Thus, approximately
one kilobyte of data every two minutes is processed. Using the light client protocol
has not the full security of a full node which disposes of the full information. However,
the light client is able to verify the execution of transactions and has a high-security
assurance about the current state of the Ethereum blockchain at least of some particular
parts. Since the light client only downloads the block headers, special mechanisms are
implemented to meet the use cases of a light client, for instance, watching for logged
events. There are also other use cases like checking for transaction confirmations, but
the event use case is relevant for the integrity channel. Hence, the watching of logged
events is explained. The light client receives the block headers which are searched
for Bloom filters matching addresses or certain topics of interest. A Bloom filter is a
probalistic data structure [88]. In general, a probabilistic data structure uses probabilistic
approaches, approximation principles and hashing to achieve a fast processing of data.
Therefore, these data structures are suitable for big data and streaming applications.
The Bloom filter is a representation of a set such that space usage is low. Only two
operations are supported, namely insertion of elements and checking if an element is in
the set. The accuracy of the filter depends on the size of the set and on the number of
used hash functions. When the block header is matching, all the transaction receipts
are downloaded. A transaction receipt is an encoding of a transaction where certain
information is contained, regarding the transaction’s execution [19]. Among other things,
Bloom filters composed from the logs’ information are part of a transaction receipt. The
receipts are checked for Bloom filter matches. After finding a match, the light client
checks the transaction receipt’s log for a match. This is how a light client is looking for
an event. Generally, the whole light client protocol is still under development. The actual
implementation of the protocol is the Light Ethereum Subprotocol (LES) [89]. Version 2
is the current version. To avoid conflicts with the main Ethereum protocol and for a
more independent development, the light client protocol is designed as an extra protocol.
It supports the download of the block headers and several on-demand data retrievals for
further information. Full nodes can support LES, hence this functionality is served to
light clients.

To start the light client, the command shown in Listing 5.4 is used. The testnet option
indicates that the client shall connect to the Ropsten testnet [90]. rpc starts a Hypertext
Transfer Protocol (HTTP)-Remote Procedure Call (RPC) server where an application
can connect. To enable the light client protocol, syncmode has to be set to light. datadir

6https://ethereum.github.io/go-ethereum [Accessed 2018-06-22]

60

https://ethereum.github.io/go-ethereum/

5.2. Middleware

Listing 5.4: Start of Geth in Light Client Mode
geth −−t e s t n e t −−rpc −−syncmode=l i g h t −−datad i r =./ ropsten

−−unlock 0 x7 f72bfcb5946b51b8e43 f fa43e0310 f1c6b84bf8
−−password pwd . txt

Java

Applica�on
Web3j

Ethereum

Client

Ethereum

Client

Ethereum

Client

Ethereum

Client

Ethereum

Client

JSON-RPC

Ethereum

Network

Figure 5.5: Web3j and the Ethereum Network. (Source: [91])

indicates the directory where all the blockchain data has to be stored. To send a
transaction, the issuing account has to be unlocked. Thus, the unlock option specifies the
account which shall be unlocked and password takes a file as argument. The password
for the account is read from the file. When the client is started, the synchronization of
the block headers starts as soon as other nodes are found.

To connect a Java application to a running client, Web3j can be used. Web3j is a Java
and Android library which implements the JSON-RPC API of Ethereum [91]. The
JSON-RPC API is used to interact with the Ethereum client [92]. Therefore, JSON
is used as a lightweight data-interchange format. JSON-RPC is the protocol to call
different methods on the Ethereum client like eth_syncing which returns the current
synchronization status. Figure 5.5 constitutes how the Web3j library links the Java
application with the Ethereum network. It can be seen that Web3j needs a running
instance of an Ethereum client. Otherwise, Web3j can not connect to the network. Two
different Ethereum clients are supported by Web3j. One client is the Geth client and the
other is the Parity7 client. With Web3j the connection to the client can be established
via HTTP or inter-process communication (IPC) [91]. Furthermore, Web3j enables to
interact with smart contracts via contract wrappers, which are Java classes representing
the contracts. Therefore, the interaction with the smart contract is like operating with a
Java class.

7https://www.parity.io [Accessed: 2018-06-25]

61

https://www.parity.io/

5. Implementation

The BlockchainClient is the class in the middleware which does the communication with
the Ethereum client. The class implements two methods to interact with the client. The
first method is the establishment of the connection. In this method, a connection is
established to the HTTP-RPC server of the client. Furthermore, the smart contract is
created by creating a new object of the smart contract wrapper class IntegrityService.
The second method calls the update-method in the IntegrityService. That means that
this method issues a transaction in the blockchain via the client. The update-method
is the only method of the smart contract which is used by the middleware whereas the
smart contract implements further methods.

The smart contract and its according wrapper class IntegrityService implement several
methods to achieve the defined functional requirements such as access of data with guar-
anteed integrity, automatic check of update frequency and penalty payments. The smart
contract is implemented with Solidity8. Furthermore, the aim of the implementation is to
roughly sketch the motivational scenario, which considers the monitoring of environmental
data. Thus, two parties are assumed, which are involved in an agreement in form of the
smart contract. One is the institution A and the second is the client B whereas in the
motivational scenario the institution would be the European Commission and the client
one of the Member States. The institution A creates the smart contract and sets the
maximum delay. This maximum delay determines the time period in which the updates
have to be delivered. The second parameter, which is set by A, is the deposit. Client B
has to pay the deposit during the registry on the smart contract. This deposit ensures
that money is available on the smart contract, which is necessary when client B misses to
deliver data in the specified time period and a penalty has to be paid. When institution A
has created the smart contract, client B has to register on the smart contract. The
registration of the client is not done implicitly by A because the deposit has to be paid.
Thus, B has to register himself explicitly and pay the deposit. The register-function
can only be called once if a registration is successful. With the registry the deposit is
transferred from the account of client B to the smart contract. Additionally, the address
of B is saved in the contract. In case the amount of the transferred deposit is not correct,
the changes to the state are undone and the client has to repeat the registry.

The core function of the smart contract, which checks the update rate, calculates penalties
and distributes the data, is the update-function of Listing 5.5. The first thing to mention
is the function modifier onlyBy(client) in line 8. This function modifier controls the
access of the function. In this case, only the registered client B is able to access the
function. The update-function contains several parameters. function_code, digest_length
and digest are the parts which form the multihash of IPFS. The parameter id_hash is
the hash of the data source’s id. The identification of the data source is important to
track the update rates of every single data source. Therefore, every timestamp of the
data source’s last update is stored in a structure called mapping. This data structure
maps a certain key to a value. When update is called and the last update timestamp
plus the maximum delay is less than the current timestamp, which is checked in line

8http://solidity.readthedocs.io/en/v0.4.24/index.html [Accessed: 2018-06-22]

62

http://solidity.readthedocs.io/en/v0.4.24/index.html

5.2. Middleware

Listing 5.5: Update-Function in Smart Contract “IntegrityService”
1 event MeasurementUpdate (
2 address indexed sender ,
3 uint8 function_code ,
4 uint8 digest_length ,
5 bytes32 d i g e s t
6) ;
7
8 f unc t i on update (u int8 function_code , u int8 digest_length ,

bytes32 d ige s t , bytes32 id_hash) onlyBy (c l i e n t) pub l i c {
9
10 r e qu i r e (r e g i s t e r e d == true && penaltyPaid == f a l s e) ;
11
12 i f (la s tUpdates [id_hash] > 0 && block . timestamp >

lastUpdates [id_hash] + maxDelay) {
13 pena l ty += 1 ;
14 }
15
16 l a s tUpdates [id_hash] = block . timestamp ;
17 emit MeasurementUpdate (msg . sender , function_code ,

d igest_length , d i g e s t) ;
18 }

12, a penalty is calculated in line 13. In this implementation the penalty is only one
Wei, which is the smallest unit of currency in Ethereum [93]. One quintillion Wei are
one Ether. The small amount is chosen because the penalty is not in the focus of the
thesis. The aim of implementing this penalty mechanism is to show how this can be
realized. However, before the penalty is checked there is another check in line 10. Solidity
provides require to check conditions [94]. In case the condition is not true, an exception
is thrown and all changes on the state are undone. The require command is also used in
the implementation of the function modifier onlyBy(client) and in the register-function.
In the update-function it is used to check, if the caller of the function is registered as
client B and if the penalty is already paid out to the institution A. When the penalty is
paid out, no further updates are accepted, hence this smart contract will not be used
anymore. The reason for a defined ending of the contract shall provide a limitation
to the validity of the agreement between client B and institution A. Additionally, the
deposit does not cover penalties for an infinite amount of time, hence a limited amount
of time makes it more predictable that the deposit is high enough to cover potential
penalties. After the execution of lines 10 to line 16, line 17 is executed. This line is
important for the distribution of the data to the clients. By calling the emit-command
in line 17, the event MeasurementUpdate is emitted. Events use the logging facilities of

63

5. Implementation

the EVM [95]. These logging facilities can be used to create callbacks in applications
which listen to the events. The events are stored in the transaction’s log whereas the
logs are associated with the smart contract which emitted the events. Parameters of the
event can have the attribute indexed. Thus, these parameters are not stored themselves,
but it is possible to search for the parameters and filter them in the user interface. All
parameters, which have not the attribute indexed, are stored in the data part of the log.
The MeasurementUpdate event contains four parameters. The first parameter, in line 2,
is an indexed parameter and stores the address of client B because B is the caller of the
update-function. The idea behind it is, in case all measured values of one address shall
be found in the blockchain, it can be filtered by the indexed parameter. The other three
parameters, in the lines 3 to 5, are the three parts of the multihash. When a listening
client receives the event, the client is able to build the multihash and retrieve the data
from IPFS. That means the emitted events are used to distribute the data to the clients.
For the performance evaluation, the update-function is the only part of the smart contract
which is used, since the aim is to compare the delivery speed to the real-time channel. To
complete the sketch of the motivational scenario, also disburse methods are implemented.
Before client B can withdraw the remaining deposit, the institution A has to withdraw
the penalty. Since the mapping is not iterable without a data structure on top of it [96],
institution A has to call the getLastUpdate-function for every data source of client B.
This function returns the timestamp of the given data source’s id hash. Additionally,
the current penalty is calculated during the call. This penalty calculation is necessary,
when a data source has not only skipped a few value deliveries but stopped delivering
values. When the delivery of values is stopped, the update-function can not update the
penalties. Hence, the explicit calculation is required. The disadvantage of this method is
that the institution has to keep track of all data sources. Nevertheless, the complexity of
the smart contract is reduced. When the institution has updated the penalty by calling
the getLastUpdate-function for every data source, the withdraw-function is called and the
penalty is transferred to the account of A. After that, client B is able to withdraw the
remaining deposit (deposit− penalty).

As it has already been explained, IPFS is needed, besides the blockchain, for the
distribution of the data. Similar to the blockchain, IPFS also needs a client to access the
file system. Therefore, the IPFS client go-ipfs9 is installed which provides a HTTP API
for the controlling of the node. Before starting the client, it has to be initialized with a
profile. The predefined profile lowpower is used. This profile shall reduce the overheads
of the client [97]. To connect the middleware with the client, the java-ipfs-api10 is used.
Another thing which has to be mentioned is the storage mechanism of IPFS. The data in
IPFS is stored in someone’s local storage as objects [74]. When an object is requested, it
has to be found, downloaded and stored locally whereas the object is stored temporarily.
When the object shall be stored permanently, it has to be pinned. That means in case of
the middleware that the device has to be available all the time to provide the measured
sensor data. With this setting the P2P properties of IPFS can not be used because

9https://dist.ipfs.io/#go-ipfs [Accessed: 2018-06-23]
10https://github.com/ipfs/java-ipfs-api [Accessed: 2018-06-23]

64

https://dist.ipfs.io/#go-ipfs
https://github.com/ipfs/java-ipfs-api

5.2. Middleware

Integrity

Work�ow
IPFS

add(�le)

mul�hash

Blockchain

Client

sendTransac�on(func�onCode

, digestLength

, digest, hashedId)

Integrity

Service

sendTransac�on(func�onCode

, digestLength

, digest, hashedId)

Transac�onReceipt

Transac�onReceipt

Figure 5.6: Distribution of Message via Integrity Channel.

the IoT device is a single point of failure. One solution is the IPFS Cluster11 which
supports the allocation, replication and the tracking of Pins within a cluster of IPFS
clients. Another solution is the Filecoin which is a token running on a blockchain [98]
where miners earn the token by providing storage. Although there are solutions for the
single point of failure, it is not realized in this implementation because data availability
is not in the scope of this thesis.

The IntegrityWorkflow contains the logic for the whole integrity channel. Thus, the
blockchain and IPFS clients are needed. Figure 5.6 constitutes the steps, which are
executed to send a message via the integrity channel. When the IntegrityWorkflow is
started by calling the run-method, which is done via the ExecutorService, the connections
to the blockchain and IPFS are established. After that, the Message object of the
IntegrityWorkflow is converted to a JSON byte array and added to the IPFS network.
This operation returns the multihash, which is divided into the distinct parts function code,
digest length and digest. Furthermore, the id of the Message is hashed with SHA-256.
With these four parameters, the sendTransaction-method, which passes the parameters
to the update-function in the IntegrityService, is called in the BlockchainClient. A Future
object is returned where the transaction receipt is returned as soon as it is available.
This Future can be used for exception handling. However, in this implementation the
result is only logged. The reason for that is the life cycle of a transaction. Figure 5.7
shows the different states of a transaction. First, the transaction is submitted to the
transaction pool, where all miners can choose the transactions which are included into
a block [82]. When the mined block is confirmed by eleven subsequent blocks, the
transaction can be seen as committed. Hence, the transaction remains in the block with
a high probability. If the transaction is included in a block, which is part of a shorter
chain, then the transaction is returned into the transaction pool. The rate of transactions,

11https://github.com/ipfs/ipfs-cluster [Accessed: 2018-06-23]

65

https://github.com/ipfs/ipfs-cluster

5. Implementation

Tx in Pool

Tx Dropped Tx Outdated

Tx in Block(s) Tx Commited
submi�ed

11 subsequent

blocks

suspended

validated & included

All blocks containing Tx

are part of a shorter chain

Figure 5.7: Life Cycle of a Transaction. (Source: [82])

which are returned into the transaction pool after the first inclusion, is 0.021%. After
the third inclusion it is only 0.000007%. Since the expected rate of transactions, which
are not included in the blockchain, is very low, there is no exception handling realized in
the current code of the middleware. Additionally, the low rate can be ignored for the
performance analysis because it has no relevant impact. If a transaction is dropped or
outdated, it can not be determined with certainty because the invalid transactions can
become valid in later states of the system. Furthermore, dropping the transaction is a
local decision of a miner, hence it is not possible to know with certainty if every node in
the network has dropped the transaction. The only case where a transaction is certainly
outdated for all nodes, is when a new transaction from the same account with the same
nonce is submitted. Thus, the transaction is definitely invalid and will not be included in
a block. The uncertainty of the states makes an exception handling difficult. However,
unless a small rate of uncertain transactions is tolerable, an exception handling shall be
implemented.

5.3 IoT Client

The IoT client is used to measure the delays of the different communication channels
and writes the results in a Comma Separated Values (CSV) format. This format shall
enable a further analysis of the results. As it has already been said in Section 4.4, Java
is used for the implementation of the IoT client. Figure 6.1 presents the architecture of
the IoT client.

The LogMessage class with its subclasses RealtimeLog and IntegrityLog is used to store
the information about the delays and further log information during the execution. Since
the log information of the real-time channel is different from the log information of the
integrity channel, there are two subclasses. After the termination of the subscription to
the channels, the LogWriter writes the collected LogMessage objects into a CSV file. A
sensor value is distributed twice, once through the real-time channel and a second time

66

5.3. IoT Client

Main ArgumentHandler

IntegrityChannelSubscriber

Real�meChannelSubscriber

Transac�onCommitChecker

<<use>> <<use>>

<<use>>

<<use>>

{abstract}

LogMessage

Real�meLog IntegrityLog

<<use>>

LogWriter

<<use>>

<<use>>

<<call>>

<<call>>

Figure 5.8: IoT Client Class Diagram

through the integrity channel. Since these channels operate independently, the values are
also received independently. Thus, the two logs for the same value have to be matched.
Both, RealtimeLog and IntegrityLog, contain a Message object of Figure 5.3. When these
two Message objects are equal, this means that they contain the same measured value and
hence they can be matched. Consequently, the matching RealtimeLog and IntegrityLog
are written into the same line of the CSV file. This matching and writing is done for
every RealtimeLog until none is left.

The RealtimeChannelSubscriber subscribes to the topics of the real-time channel and
logs the incoming messages. The subscription is done via the defined MQTT broker.
There are two options how the topics of the real-time channel can be defined. The first
option is the initialization of a string array in the Defines class. This class contains
a set of static final variables which are used to configure the IoT client. This string
array can be passed to the subscribe-method of the RealtimeChannelSubscriber. The
second option is to generate the topics automatically. This functionality is needed when
operating with the virtual driver. Since the topics have always the same scheme, it can
be generated without effort. The scheme looks as follows: “coap://<id>/<number>”
which, for example, is “coap://192.168.0.10/0”. Hence, the topics of the virtual driver

67

5. Implementation

are a sequence of strings with the number from 0 to n− 1 whereas the number of data
sources n depends on the number of active data sources in the virtual driver.

The IntegrityChannelSubscriber comprises two tasks. One task is the observation of new
logs and the second task is the observation of new blocks generated in the blockchain. The
observation of emitted events in the Ethereum network can be achieved with filters [99].
In Ethereum there are three classes of filters, namely block, pending transaction and
topic filters. Block filters detect new blocks in the network whereas pending transaction
filters detect new transactions. Topic filters allow specific filter criteria which can be
defined. If the filters are used directly via the JSON-RPC API, continuous polling has to
be done to obtain the updates for the filters. Furthermore, the block or transaction filters
only return the according hash. If the full block or transaction is needed, another request
has to be made. Web3j hides these extra steps by providing an asynchronous event-based
API which does the polling and fetching of further information automatically. Since the
polling is done by the Web3j instance, the instance has a default polling interval of 15
seconds. However, all timestamps which are recorded by the IoT client have an accuracy
of milliseconds. Because of that, the Web3j instance is instantiated with a polling time
of 1 millisecond. To observe the block generation, a block filter is created. In case a
new block is detected by the filter, the timestamp is recorded. The recorded blocks with
their timestamps are needed in the TransactionCommitChecker. For the observation of
the emitted events of the smart contract, the method ethLogObservable is used which is
actually a topic filter. To observe the smart contract, the wrapper class IntegrityService
is not needed. The filter is only instantiated with the contract’s address as well as the
start and end block for the filter. Since only the latest logs shall be filtered, the start
and the end block are parameterized with the predefined value LATEST. When an event
is received, the first step is to decode it by reconstructing the IPFS hash. Thus, the first
step is to look up the hash function type. With the hash function type and the received
digest, a new multihash is generated. The hash is then used to look up the JSON file
in the IPFS store. Since IPFS is tamper-resistant and every corruption of the data is
detected [74], the IoT client does not have to do further validation procedures. Thus,
computing the received data’s hash and comparing it to the hash, which is stored in the
blockchain, can be skipped. Only the existence of the file in IPFS proofs the integrity of
the data. After the reception of the data, an IntegrityLog is generated.

The TransactionCommitChecker is used to get the timestamp when a specific block is
confirmed by a specified amount of blocks. In case of this application, the amount of
confirming blocks is eleven because Ethereum is used. A confirmation of eleven blocks
in Ethereum means that the block containing the transaction of interest remains in
the blockchain with a high probability [82]. With the collected IntegrityLog and the
observed blocks of the IntegrityChannelSubscriber, the timestamps can be reconstructed.
Algorithm 5.1 shows the procedure in the TransactionCommitChecker.

The result of the algorithm is that the timestamp of the eleventh confirmation is assigned
to the specific log. The algorithm starts with iterating over all IntegrityLog elements of
the input queue. The first step, in line 2, in the loop, is to check the removed status of

68

5.3. IoT Client

the log. Every filtered log contains the “removed” tag [91]. This tag indicates whether
the log is still in the main chain or not. The reason for a removal of the log is a chain
reorganization. In case the log is already removed, the confirmation status has not to be
checked since this log is not relevant anymore and the next element is checked. If the log
is not removed, the algorithm continuous with the calculation of the block number for
the eleventh block confirmation. Every block has a block number, which indicates the
number of ancestor blocks [19]. Thus, to get the eleventh confirmation, eleven has to be
added to the block number of the current block as it is done in line 3. After that, the
blocks with the calculated block number are looked up in the recorded blocks. The search
can have three different outcomes. First, in line 5, there is no block found which means
that the block is not confirmed eleven times at this moment. The second case, in line 7,
is that more than one block is found. This is possible because of the decentralization
of the system and the concurrent generation of blocks by the different parties [19]. To
find out which block is part of the main chain, the heaviest path must be found. This is
the path where the most computation has been invested. The computation of a block
can be seen from the difficulty in the block header. The difficulty is enough to validate
the contributed computation [19]. Because of this, the total difficulty is used to validate
the computation power. The highest total difficulty means the heaviest path, hence the
block is part of the main chain. Equation 5.1 shows the definition of the total difficulty
where Bt is the total difficulty, B′

t is the total difficulty of the parent block and Bd is
the difficulty of the current block. When the block with the highest total difficulty is
selected, then its timestamp is added to the log. The last case, in line 10, is that only

Algorithm 5.1: Set Transaction Confirmation Timestamp
Input: Queue<IntegrityLog> Q, Map<EthBlock.Block, Long> B
Output: Timestamps are set for elements of Queue Q

1 for log in Q do
2 if !log.isRemoved then
3 n = log.blockNumber + 11
4 commitBlocks = Get all blocks in B where blockNumber == n
5 if commitBlocks.size == 0 then
6 log.commitTimestamp = 0
7 else if commitBlocks.size > 1 then
8 b = Get block with highest totalDifficulty from commitBlocks
9 log.commitTimestamp = B.get(b)

10 else
11 b = commitBlocks.get(0)
12 log.commitTimestamp = B.get(b)
13 end
14 end
15 end

69

5. Implementation

Listing 5.6: IoT Client Start Command
USAGE: java −j a r i o t c l i e n t . j a r −d <arg> −f <arg> [− i <arg >]

[− t <arg >]

one block is found. In this case, the timestamp of this single block is set.

Bt ≡ B′
t +Bd (5.1)

The ArgumentHandler class defines the options for the start of IoT client. Additionally,
the options are parsed in this class and stored in a CmdOptions object. The start of
the IoT client including the options is defined in Listing 5.6. The option d indicates,
how long the client shall listen to the channels until the client stops listening and writes
the CSV file. f determines the name of the CSV file for the report of the performance.
These two options are required. The other two options are only required when virtual
drivers are used. Since the addresses of the virtual drivers are generated, the two options
indicate which topics of the real-time channel are available for the subscription. Thus, i
specifies the id of the virtual driver and t the amount of topics which is available. With
this information, the topics can be reproduced and the client is able to subscribe to them.
In case i and t are not given, the topics are loaded from the Defines class.

The Main class is the entry point of the application. Here, the workflow of the application
is determined. The first step is the parsing of the arguments with the ArgumentHandler.
After that, the RealtimeChannelSubscriber is created and the connection to the MQTT
broker is established. This explicit connecting in the Main class shall help to detect
connection problems in the early stage of the application. In the next step the Integrity-
ChannelSubscriber is created and the observation is started. When both channels are
listing to incoming events, the Main thread sleeps for a specified amount of time to
collect enough data from the real-time and integrity channel. After that the observations
are stopped and the TransactionCommitChecker is executed. Finally, all collected logs
are written into a file with the LogWriter.

The content presented in the current chapter describes how the solution approach of
Chapter 4 is implemented. The libraries, which are chosen for the implementation, enable
a proper integration of the underlying technology in the applications. However, some
documentations, especially the ones from the CoAP and MQTT libraries, are short.
Thus, it takes a lot of time to find out some details of the libraries. Sometimes only
code inspections can reveal the desired information. Another challenge is the testing,
since the whole blockchain-IoT application has a lot of interfaces to different technologies.
In case of the current implementation, the interfaces are tested manually. However, in
bigger development projects automatic testing is essential to maintain a certain level of
quality. Therefore, a lot of mock-ups have to be written to enable automatic testing and
reach a higher test coverage. This additional effort has to be considered, when planning
such software projects. Apart from the minimal documentation and the general testing

70

5.3. IoT Client

issue, no further significant issues came up. An in-depth evaluation of the presented
implementation shall give more information about the implementation’s performance.
The performance evaluation is part of the following chapter.

71

CHAPTER 6
Evaluation

This chapter contains the performance evaluation of the blockchain-IoT application on
different IoT devices. As it has already been explained in Section 4.3, the blockchain-IoT
application comprises the drivers, sensor or virtual driver, and the middleware. The first
goal of this evaluation is to test the blockchain-IoT application and to create a proof-
of-concept. The second goal is to test the performance on different devices. Thus, the
portability of the blockchain-IoT application is tested and the IoT devices are tested for
their suitability to run a blockchain enhanced application. To evaluate the blockchain-IoT
application itself and the performance on the different IoT devices, several metrics are
used. First, the message delays are measured on the real-time and integrity channel. This
shall reveal the delay overloads which are caused by the integrity channel in comparison
to the real-time channel. Furthermore, it is tested if the varying computing power of the
devices has an impact on the delays. To evaluate the performance of the IoT devices,
the resource usage, like CPU, memory and network traffic, is measured. Additionally,
the CPU usage, which is consumed by every process, is measured. This shall identify
anomalies in the usage of CPU of the different processes. Regarding the drivers, both
drivers are used for the evaluation. The sensor driver is used to create a proof-of-concept
with a real sensor. For the performance evaluation with different workloads, the virtual
driver is used. By using the virtual driver, it is feasible to produce different workloads
by varying the amount of data sources. For a systematic approach of the performance
evaluation, the approach by Jain [100] is used. Jain defines ten steps which are common
in all performance evaluation projects. Following these steps can avoid common mistakes.
In the following part the performance evaluation is summarized in six steps.

1. System Definition: Since one goal is to test the suitability of different IoT devices
for the blockchain-IoT application, three IoT devices are chosen. The devices are listed
in Table 6.1. The constituted operating system is the system which is installed for the
evaluation. Every device is set up individually, to meet the requirements of the underlying
hardware. This is done by using images provided by the producers and in case required

73

6. Evaluation

Table 6.1: Used IoT Devices for the Performance Evaluation. (Source: [101, 102, 103])

Raspberry Pi 3 Odroid-XU4 Intel Galileo
Model B Gen 2

Chipset Broadcom BCM2837 Samsung Exynos5422 X1000
CPU Quad Core @1.2GHz Quad Core @2GHz Single Core @400MHz

ARM Cortex-A53 ARM Cortex-A15 Intel Quark
Quad Core @1.4GHz
ARM Cortex-A7

Memory 1GB LPDDR2 2GB LPDDR3 256MB DDR3
Ethernet 10/100 MB/s 10/100/1000 MB/s Available
Storage MicroSD MicroSD, eMMC 5.0 MicroSD
OS Raspbian 8.0 Ubuntu 18.04 Yocto-built Linux

Hardware

Opera�ng System

Sensor Driver

IoT Middleware

Geth IPFS Mosqui�oVirtual Driver

Figure 6.1: Setup of an IoT Device.

software is available in the operating system’s repositories, it is installed from there. An
advantage of this approach is that the heterogeneity of devices in IoT is reflected, hence
the portability of the blockchain-IoT application can be tested. Additionally, using default
software which is recommended by producers avoids potential issues with the hardware.
Therefore, all operating systems which are installed on the devices are different, however,
the operating systems are all based on Linux. Furthermore, the installed components
like Geth, IPFS and Mosquitto are also installed individually, hence the versions of the
components vary slightly between the devices. The version of Geth which is installed on
the Raspberry Pi 3 is 1.8.8 and on the Odroid-XU4 1.8.9. The IPFS version 0.4.15 is on
both devices the same. Regarding Mosquitto 1.3.4 is installed on the Raspberry Pi and
1.4.14 on the Odroid device. The installation of Geth and IPFS on the Intel Galileo is
not possible, thus this device is not considered in the performance evaluation. A more
detailed error report is given in Subsection 6.1.1. The whole setup of an IoT device is
shown in Figure 6.1. This setup, comprising the IoT middleware and its components,
is the first part of the evaluation setup. Regarding the driver only the Raspberry Pi
supports the sensor and the virtual driver. The second part of the evaluation setup is
the IoT client. The client is installed on a computer with 8GB memory, a Quad Core
@3GHz processor and a 500GB Solid State Drive (SSD). Besides the IoT client, also

74

Ethereum

IPFS

IoT Client

IoT Device

LAN

Wifi

Internet

Figure 6.2: Connection of the Different Components in the Evaluation Setup.

Geth and IPFS are installed whereas Geth is not run in light client mode. Geth is run as
a full node which means the whole blocks are synchronized not only the headers. The
used Ethereum network is not the main network, instead the testnet Ropsten1 is used.

As it has already been said, the first part of the evaluation setup is the IoT device with the
installed components and the second part is the IoT client. To enable a communication
between the two parts, they are connected to the same router. Thus, real-time channel
messages and messages stored in IPFS are only exchanged in the local area network
(LAN). Figure 6.2 sketches the whole evaluation setup. Since the delays of the network
are calculated on timestamps which are taken on different devices, time synchronization
is crucial. Hence, the Network Time Protocol (NTP) is used for the time synchronization.
NTP is a protocol to synchronize clocks over the Internet [104]. The protocol is based
on the IP and User Datagram Protocol (UDP). Since the timestamps which are taken
by the driver and the IoT are accurate to the millisecond, the accuracy of the time
synchronization has to be high. Measurements in a LAN where a router is between a
client and a NTP server show that the average time difference is 1.6 µs with a standard
deviation of 13.7µs [105]. Nevertheless, tests in the evaluation setup show that the
offset is up to five milliseconds. This offset is acceptable, because the difference between
real-time channel delays and integrity channel delays is much larger than five milliseconds.
Therefore, the offset is sufficient and does not affect the delay analysis of the channels.

2. Services: The services which are provided by the blockchain-IoT application are the
real-time and integrity channels. Messages which contain sensor data are sent via these
two channels and clients can subscribe to these channels. On the real-time channel the
client can subscribe to different topics which represent different data sources. On the
integrity channel, a subscription to certain data sources is not provided, hence messages
from all data sources are received. In the evaluation process the IoT client subscribes to

1https://ropsten.etherscan.io [Accessed: 2018-06-05]

75

https://ropsten.etherscan.io/

6. Evaluation

both channels and to all topics of the real-time channel.

3. Metrics: Since one goal is the evaluation of the performance, metrics have to be
chosen which cover the performance of the IoT devices and application. To evaluate
the devices, their resource usages have to be measured. The evaluation of the different
communication channels is based on the delays of the messages. The delay starts at the
time when the value is measured in the driver and ends when the message is received at
the IoT client. To achieve the evaluation goals, the following metrics are chosen:

• Total CPU Usage of IoT Device

• CPU Usage by Process of IoT Device

• Total Memory Usage

• Network Traffic of IoT Device

• Delay of Messages in Real-Time and Integrity Channel

• Confirmation Duration of Transactions

4. Parameters: The system parameters which affect the performance of the blockchain-
IoT application are the following:

• Speed of the CPU

• Size of Memory

• Speed of the Network

• Speed of Ropsten Network

The workload parameters which affect the performance of the blockchain-IoT application
are only the number of active sensors or rather the number of active data sources. The
more data sources are connected to the middleware, the more data is sent and the higher
is the workload.

5. Factors: The parameter which is varied during the evaluation is called factor whereas
the different values of the factor are called levels [100]. During the performance evaluation
different IoT devices are used. Hence, the parameter speed of the CPU and size of memory
are factors whereas their levels are constituted in Table 6.1. Furthermore, the amount of
data sources in the virtual driver is varied during the performance evaluation. Thus, the
data sources are also a factor. It is important to mention, that the varying amount of
data sources equals different workloads of sent data. However, the term data sources is
used since the data loads, for the different experiments of the performance evaluation,
are varied by varying the amount of data sources in the virtual driver.

76

To determine the levels of the factor data sources, it is first searched for benchmarks
about common data loads of different IoT scenarios. Unfortunately, there do not exist
benchmarks of similar performance evaluations. Thus, the different levels have to be
determined differently. Since the regulation for monitoring and reporting greenhouse gas
emissions of the European Union is used as motivational scenario, the idea is to derive
the workloads for the experiments from this scenario. The report for greenhouse gas
emissions of the European Union, which has to be produced annually, covers the emissions
of seven greenhouse gases [106]. Furthermore, there also exist other report obligations,
like the United Nations Framework Convention on Climate Change where eleven gases
are monitored [107]. The distinct gases are phenomena. Since every phenomenon is
managed by a data source, as it has been explained in Section 4.3.1, a data source is
needed for every gas. Thus, in case of the European Union seven data sources are needed
and in case of the United Nations eleven data sources are needed. These two cases are
used as distinct workloads for the performance evaluation. Additionally, 22 data sources
are chosen as third workload, to test the application and devices in extreme conditions.
The fourth level is two data sources. The level two is chosen because on the Raspberry
Pi a real sensor and consequently its driver are implemented. The sensor driver contains
two data sources namely humidity and temperature. To have a proof-of-concept that the
virtual driver is a good simulation of the real sensor driver, two is chosen as a level. To
sum up, the different levels of the factor data sources are 2, 7, 11 and 22.

6. Experimental Design: The four levels of the factor data sources are executed on
the Raspberry Pi and on the Odroid, which results in eight experiments. The ninth
experiment is the execution of the physical sensor driver on the Raspberry Pi. All of the
nine distinct experiments are performed three times to get an average of the metrics for
the following analysis. Executing the nine experiments three times results in 27 runs.
Every experiment has a duration of 60 minutes, which means the IoT client is listening
for this amount of time on the two communication channels. This long duration shall give
the possibility to track high delays especially on the integrity channel. Every experiment
is executed as follows:

1. Start of Resource Usage Monitoring on the IoT Device

2. Start of the IoT Client

3. Start of the Middleware

4. Execute (a) or (b) Depending on IoT Device:

a) Start of Virtual Driver and Send 60 Values per Data S

b) Start of Sensor Driver and Run for 5 Minutes

77

6. Evaluation

6.1 Results
The results of the experiments are presented in this section. The analysis of the results
focuses on two parts. The first part analyzes the delays of the real-time and integrity
channels. The second part takes a closer look a the resource usage of the IoT devices.
Section 6.1.1 presents the data which is collected during the execution of the experiments.
Therefore, the data preparation and data losses are explained. On basis of the presented
data, Section 6.1.2 analyzes the delays of the communication channels. Section 6.1.3 and
Section 6.1.4 analyze the resource usage of the IoT devices.

6.1.1 Collected Data

The data basis for the analysis is collected during 27 runs of the specified experiments.
This results in approximately 15,480 messages sent via the real-time channel and 15,480
log events emitted via the integrity channel. This is calculated by counting all data
sources which are used in the 27 runs and multiply it with 60 which is the expected
amount of values sent by a data source per run. Since not all runs are successful, data
losses occur. As it has been said, it is expected that 60 values are distributed via the
two communication channels for each data source in one run. In case fewer values are
received, it is documented in Table 6.2. The column “Missing RT” shows the missing
real-time channel values. It has to be mentioned that the Odroid device has a lot more
value losses than the Raspberry Pi. Regarding the data losses of the integrity channel
“Missing Int.” both devices loose values only in case of 22 active data sources. It seems
that the integrity channel is more stable than the real-time channel on the Odroid-XU4.
During the execution of the different experiments, potential data losses are visible by
several exceptions in the middleware which signalize issues with the IPFS and Mosquitto
client. However, based on the thrown exceptions a single source or rather reason for the
data losses can not be located.

Another anomaly in the data which is collected via the integrity channel is the negative

Table 6.2: Summary of Data Used for Analysis.

Missing RT Missing Int. Neg. Confirmation “Removed” Used(%)

R
as
pb

er
ry

Phy 0 0 0 0 100
2 0 0 0 0 100
7 0 0 304 19 75.87
11 0 0 184 5 90.71
22 465 1325 319 5 80.08

O
dr
oi
d 2 0 0 2 2 99.44

7 156 0 84 0 93.33
11 930 0 325 40 83.28
22* 1316 466 113 29 56.14

* Only one run

78

6.1. Results

confirmation time of transactions. Some subtractions of the transaction’s reception
timestamp and the eleventh block reception timestamp have a negative result. Since
blocks in the blockchain are generated in sequence and have ascending block numbers,
it is not possible that a block with a smaller block number has a timestamp which is
bigger than the confirmation block’s timestamp. A possible explanation for the negative
confirmation time can be the different speeds of filters especially on a high rate of wanted
incoming transactions. The IoT client uses two filters: One for the new generated blocks
and the second one for the emitted events. Since the filters are executed in threads
independently and the timestamps are taken when the event or block is found, the
negative confirmation time can only occur when the event is found later than the eleventh
confirmation of the block. A second anomaly, which may also be related to the same issue
of an overloaded event filter, is the “Removed” status. Some transactions are stated as
removed in the resulting data, which means that the events and therefore its transactions
are removed from the blockchain. Although, random samples of these transactions are
checked in the Ropsten2 blockchain explorer and the explorer shows that the transactions
are successfully committed. Thus, it can be assumed that on heavy loads of wanted
incoming transactions, some transactions are overlooked by the filter. Therefore, the
status of the last found transaction is kept, although the transaction which is part of
the blockchain may already be received in a new block. All transactions with status
“Removed” have a negative confirmation time because the IoT client does not set a
confirmation time. Thus, the amount of negative confirmation times contain also the
amount of “Remove” entries. The “Remove” entries are removed from the data set with
the removal of the negative confirmation times. This preparation of the data set shall
provide a clean data basis which can be used in further analyses.

The column “Used” shows how much of the expected data is used for the analysis of the
delays. The expected data calculation is shown in Equation 6.1 where n is the number of
registered data sources.

E = 3 ∗ 60 ∗ n (6.1)

Equation 6.2 shows how the percentage of used data is calculated. The minimum data
loss is taken from the real-time and integrity channels because the same value is sent via
both channels. Taking the minimal data loss means how often the value itself got lost.
As Table 6.2 shows, the experiment with 22 data sources is only executed once on the
Odroid-XU4. The reason for that is that in the first run only four values are received via
the real-time channel. Further runs showed similar results, hence run two and three are
terminated early and no usable results are available. Therefore, this experiment is not
only not suitable for a real-world use but it is also not suitable for a significant analysis.
To calculate the “Used” value, the expected data is calculated for one run, not for three.

P = 100 ∗ (E −min(MissingRT,MissingInt.) −Neg.Confirmation)/E (6.2)

As it has already been mentioned, there is no data available for the Intel Galileo Gen2.
The reason for that is that the processor does not support the Multimedia Extension

2https://ropsten.etherscan.io [Accessed: 2018-06-05]

79

https://ropsten.etherscan.io/

6. Evaluation

(MMX) technology. Hence, Geth and IPFS are not running on the device. MMX is an
Intel technlogy which increases the performance of CPUs and targets multimedia and
communication applications [108]. The missing of the technology is indicated by the
error message “This program can only be run on processors with MMX support” when
starting Geth or IPFS. To check the validity of the error message, the supported features
of the CPU are looked up with the command “cat /proc/cpuinfo”. The output confirms
that the MMX technology is not supported by the CPU. Due to the failure of running
Geth on this device, the Intel Galileo Gen2 is not suitable to run the blockchain in the
IoT. Hence, it is not considered in the following performance evaluation.

6.1.2 Delay Analysis

In this section the delays of the real-time and integrity channels are analyzed. Besides
statistical metrics, like median or quantil, notched boxplots are used to compare the data.
The notch in the boxes indicates a 95% confidence interval [109]. Figure 6.3 shows the
boxplots for the delays of the real-time channel of both devices. The boxplot of the 22
data sources experiment on the Raspberry Pi is missing because the median has a high
increase. In case this would be plotted this distorts the scale. Thus, the 22 data sources
experiment is missing to make the details and differences of the other experiments more
visible. Regarding the Odroid device, there is not enough data available for a detailed
analysis of the 22 data sources experiment.

Regarding Figure 6.3a, it can be said that the median of the delays is increasing with
the amount of data sources. Furthermore, the box of the physical data source and the
two data sources launched by the virtual driver achieve similar results, which shows
that the virtual driver is a good simulation of the sensor driver. Another observation is
that the upper whisker is increasing with the data sources. The lower whisker is almost
stable. In comparison to the results of the Raspberry Pi, the Odroid has not a constant
increase of the median which is constituted in Figure 6.3b. The experiment with seven
data sources has the highest median, however, all medians are different at a confidence
level of 95% because the notches are not overlapping. The huge gap between the first and
the second box can be explained with the failed experiments for the configuration seven
and eleven. The experiment with two data sources, where all runs are successful, has a
similar result to the Raspberry Pi. Another observation with the failed experiments are
the much higher medians. Table 6.3 shows the detailed values for the different statistical
metrics. It reveals that also the successful experiment on the Odroid has a median of
2,613 milliseconds whereas the highest median of the Raspberry Pi’s successful experiment
is only 321 milliseconds. Additionally, the variance is much smaller. Also the maximum
delay of a successful experiment on the Raspberry Pi with 2,407 milliseconds is smaller
than the Odroid median with two data sources. This is interesting because the Odroid is
the stronger device in terms of the hardware, but the delays are much worse than on the
Raspberry Pi. Another observation is that on failed experiments the delays are getting
much worse, in comparison to successful experiments on the same device. The median
on the Raspberry Pi nearly triples and the median on the Odroid is 35 times larger in

80

6.1. Results

Physical (2) 2 7 11

0
10

0
20

0
30

0
40

0
50

0

Data Sources

D
el

ay
 (

m
s)

(a) Raspberry Pi 3

2 7 11

0
50

00
0

15
00

00
25

00
00

Data Sources

D
el

ay
 (

m
s)

(b) Odroid-XU4

Figure 6.3: Real-Time Channel Delays.

81

6. Evaluation

Table 6.3: Summary Delays (ms) Real-Time Channel.

Min Q1 Median Mean Q3 Max σ
R
as
pb

er
ry

Phy 21.00 37.00 45.00 86.93 63.00 1785.00 169.234
2 21.00 39.00 50.00 96.26 73.00 3238.00 258.605
7 20.00 67.00 109.00 200.90 189.00 1856.00 268.4895
11 24.00 69.00 131.00 253.80 261.00 2407.00 350.524
22 26.00 129.00 321.00 2628.80 864.50 146121.00 15662.40

O
dr
oi
d 2 54.00 872.80 2613.00 9411.10 13245.50 60104.00 13075.06

7 356 272380 93165 103630 146321 352462 83819.53
11 44 4103 17265 56806 69005 235261 73998
22 - - - - - - -

the worst case.

The second communication channel is the integrity channel. Figure 6.4 shows the delays
of the integrity channel constituted as boxplots. The reasons for the missing boxplots of
the 22 data sources experiment are the same as they are discussed for Figure 6.3. Similar
to the real-time channel the median increases with the number of data sources. Also the
median on the Odroid has a smooth increase. Nevertheless, the delays are much higher
than on the real-time channel, which is an expected result. The higher range of delay
values of the physical experiment attracts attention. However, the confidence intervals
of the physical and the two data sources experiment are overlapping, which means that
the median is not significantly different. The higher quantils may result from a slow
Ropsten network, when a run was executed. Another observation on the Raspberry Pi is
the strong increase of medians. It seems that the integrity channel scales not as well as
the real-time channel on the Raspberry Pi. In comparison, the medians of the different
experiments on the Odroid are increasing in smaller steps. However, the upper whiskers
and the quantils are higher than the ones on the Raspberry Pi. In general it can be
said that the variances on the Odroid are higher. Regarding Odroid’s integrity channel,
it seems that this channel is more stable than the real-time channel. In comparison
to the real-time channel, value losses occur at first on the 22 data sources experiment.
Table 6.4 shows the summary of the delay data in more detail. This table shows that
the median of the physical experiment is only eight seconds higher than the median of
the two data sources experiment. Comparing the medians of the Raspberry Pi and the
Odroid, the latter is always faster except with two data sources. However, the Q3 and
the maximum is better on the Raspberry Pi for 7, 11 and 22 data sources. Thus, it can
not be said clearly which device achieved a better performance, since the high variances
on the Odroid relativize the better medians.

Table 6.5 documents the confirmation delays for the received transactions. It can be
seen that there is no trend in the confirmation times on increasing data sources. The
median is more or less stable for each device. The variations may result from the current
speed of the network and the performance of the filter. The median on the Odroid is

82

6.1. Results

Physical (2) 2 7 11

0
20

0
40

0
60

0
80

0

Data Sources

D
el

ay
 (

s)

(a) Raspberry Pi 3

2 7 11

0
50

0
10

00
15

00

Data Sources

D
el

ay
 (

s)

(b) Odroid-XU4

Figure 6.4: Integrity Channel Delays.

83

6. Evaluation

Table 6.4: Summary Delays (s) Integrity Channel.

Min Q1 Median Mean Q3 Max σ
R
as
pb

er
ry

Phy 4.302 29.858 53.499 99.600 221.404 316.739 97.614
2 5.739 31.448 45.538 51.359 63.503 143.668 29.289
7 20.15 197.19 224.95 238.71 280.20 513.61 115.634
11 52.11 422.03 539.03 526.52 641.58 1180.60 217.532
22 47.45 723.11 992.98 1172.06 1503.20 3409.93 694.025

O
dr
oi
d 2 3.461 19.130 76.36 118.44 143.75 423.88 68.567

7 6.771 50.079 92.763 261.824 523.978 910.902 282.315
11 8.259 78.938 127.727 472.022 943.437 1859.190 549.939
22 65.37 636.30 963.88 943.51 1318.51 1533.45 457.973

Table 6.5: Summary Confirmation Delay (s) Integrity Channel.

Min Q1 Median Mean Q3 Max σ

R
as
pb

er
ry

Phy 53.0 128.4 155.8 153.6 187.7 258.4 42.833
2 54.92 91.10 129.57 147.43 195.40 315.12 68.671
7 0.981 93.476 108.030 106.527 120.555 254.730 27.995
11 1.654 85.072 130.343 132.617 164.869 265.441 56.536
22 0.007 51.408 106.932 105.113 153.386 297.532 65.584

O
dr
oi
d 2 21.95 63.74 76.36 118.44 143.75 423.88 87.940

7 0.256 63.20 89.309 102.394 131.826 361.936 50.740
11 1.792 36.694 94.289 91.485 135.890 245.124 61.034
22 10.58 60.44 88.64 90.70 118.33 184.19 41.397

smaller than on the Raspberry Pi. All in all the confirmation times seem to be more or
less stable and are not affected by the different loads of data sources.

To sum up, it can be said that the real-time channel is not working well on the Odroid
in terms of delays and lost values. On the Raspberry Pi, it runs quite stable and scales
well when the number of data sources increases. In comparison, the scaling on the
integrity channel contains bigger gaps between the medians of the single experiments.
In terms of the median, the integrity channel scales better on the Odroid, however the
variances of the values are much higher than on the Raspberry Pi. Thus, it can not be
clearly determined which device’s performance is better regarding the integrity channel.
Generally, it must be said that only the Raspberry Pi is worth to consider, because it
has no value losses except for the 22 data sources experiment whereas the Odroid starts
loosing values with seven data sources on the real-time channel.

84

6.1. Results

6.1.3 Total Resource Usage

This section deals with the analysis of the used resources during the experiments. To
measure the performance, nmon3 is used. nmon is a tool to monitor the performance
of computers. The performance information can be directly seen on the screen or the
information is saved to a file. In this performance evaluation, the performance information
is saved to a file to use it for further analysis. The performance is measured every second.
The resulting data, from all three runs, is plotted in a graph whereas Locally Weighted
Least Squares Regression (LOESS) is used. LOESS is used to smooth scatter plots and to
estimate trends [110]. Additionally, it is a robust method which means outliers have less
impact on the result, which is in case of the plot the curve. The smoothing is done to
make the trends in the data more visible and therefore to ease the analysis. The analysis
is divided into two parts whereas the first part looks at the total resource usage in terms
of CPU, memory and network traffic. The second part deals with the resource usage per
process and is documented in Section 6.1.4. This shall reveal possible processes, which
use too many resources and may cause the data losses due to the extensive resource
usage.

Figure 6.5 shows the CPU and memory usage for two experiments executed on the
Raspberry Pi. In both experiments no value losses occurred. Regarding the memory
usage, it is pretty constant in both plots. In terms of the CPU usage, the course of the
curve is similar. At the beginning there is a steep ascent, then the usage stays high for
the five minutes where the driver is sending the values. After that, the usage decreases
whereas with two data sources the decrease starts at minute five. In contrast, the usage
descent with eleven data sources starts 2.5 minutes later. The median CPU usage is
92.75% with two data sources and 95.5% with eleven. Both have a maximum of 100%.
Regarding the network traffic the median is 294.9 KB/s with two data sources and 320.8
KB/s with eleven. In comparison to the increase of data sources, the increase of data
traffic is smaller. Figure 6.6 shows the resource usage of the failed experiment with 22
data sources. Regarding CPU usage and memory usage, no real anomalies are visible.
The only difference is that the decrease of the CPU usage is slower than with eleven data
sources. However, looking at the increase of the point where the descent of the CPU
usage between two and eleven data sources starts, this seems to be a normal behavior.
The median of CPU usage is 96.2% and the memory usage is nearly the same as with
two data sources. The network traffic with a median of 255.2 KB/s is lower than with
two data sources. The longer processing period and the loss of values can be the reason
for the lower network traffic per second.

Figure 6.7 shows the CPU and memory usage of the Odroid. In Figure 6.7a the powerful
hardware is visible. The median CPU usage is only 57.8% and the maximum never
reaches 100%. In the experiment with eleven data sources, where value losses occurred,
the median is 88.9% which is a higher increase of the usage from two to eleven data
sources than on the Raspberry Pi. In this experiment CPU usage rates of 100% are

3http://nmon.sourceforge.net/pmwiki.php [Accessed: 2018-07-25]

85

http://nmon.sourceforge.net/pmwiki.php

6. Evaluation

0

25

50

75

100

00:00 05:00 10:00

Time (min)

U
sa

ge
 (

%
)

CPU Usage

Memory Usage

(a) 2 Data Sources

0

25

50

75

100

00:00 05:00 10:00 15:00

Time (min)

U
sa

ge
 (

%
)

CPU Usage

Memory Usage

(b) 11 Data Sources

Figure 6.5: CPU and Memory Usage on Raspberry Pi 3.

86

6.1. Results

0

25

50

75

100

00:00 10:00 20:00 30:00

Time (min)

U
sa

ge
 (

%
)

CPU Usage

Memory Usage

Figure 6.6: Experiment with 22 Data Sources on Raspberry Pi 3.

reached. The memory usage is slightly higher in the two data sources experiment than
on the eleven data sources experiment. Comparing the course of the usage between the
Raspberry Pi and the Odroid, it can be said that the course of the usage is similar in
terms of the CPU and the memory. The difference is that the Odroid has a lower usage
and the descent after five minutes is faster. The network traffic has a median of 360.9
KB/s for two data sources and 489.9 KB/s for eleven. Compared to the Raspberry Pi,
the network traffic is higher for the same sent data.

Table 6.6 summarizes the results of the resource usage. It is obvious that the Odroid has
a lower CPU usage in all experiments. Although, the Median Absolute Deviation (MAD)
on the Odroid is higher than on the Raspberry Pi especially on the two data sources
experiment. In all experiments a maximum of 100% is reached expect, on the two data
sources experiment on the Odroid where only 95.70% are reached. The CPU usage is high
on the Raspberry Pi, but the MAD is quite low with a maximum of 6%. An interesting
aspect of the CPU usage is that the Raspberry Pi has a higher usage, however, it looses
fewer messages. Furthermore, between the eleven and 22 data sources experiment on
the Raspberry Pi there is no big difference between the CPU usage, however, in the 22
data sources experiment value losses occur. It seems that a certain threshold is passed
and value losses start to occur in both communication channels. Regarding the memory,
the Raspberry Pi has nearly the same usage as the Odroid and on the two data sources
experiment the usage is slightly lower. The interesting thing about it is that the Odroid

87

6. Evaluation

0

25

50

75

100

00:00 05:00 10:00

Time (min)

U
sa

ge
 (

%
)

CPU Usage

Memory Usage

(a) 2 Data Sources

0

25

50

75

100

00:00 05:00 10:00 15:00

Time (min)

U
sa

ge
 (

%
)

CPU Usage

Memory Usage

(b) 11 Data Sources

Figure 6.7: CPU and Memory Usage on Odroid-XU4.

88

6.1. Results

Table 6.6: Total Resource Usage.

CPU (%) Memory (%)
Median MAD Q3 Max Median MAD Q3 Max

R
as
p. 2 92.75 6.00 95.80 100.00 93.30 4.69 96.08 97.59

11 95.50 3.26 97.20 100.00 94.49 2.76 96.25 96.82
22 96.20 3.41 98.10 100.00 96.27 1.08 96.59 97.73

O
dr
. 2 57.80 21.94 71.60 95.70 96.03 3.01 97.68 98.52

11 88.90 9.64 94.20 100.00 89.90 11.42 96.75 97.94

has twice the size of the Raspberry Pi’s memory, but the relative usage is still higher.
Regarding the MADs of the memory, they are all quite low. The only value which is
clearly higher is the MAD of the eleven data sources experiment on the Odroid.

6.1.4 Resource Usage by Process

This section looks at the CPU usage per process whereas the processes Geth, IPFS, Java,
Mosquitto and Python are considered. Basically, the measurements for this processes
are also done every second, however, in the resulting data set the measured timestamps
are quite irregular. The reason for that is that the processes are only documented when
they use a significant amount of CPU during the specified interval. Furthermore, in the
documentation of the nmon analyser4 it is explained that the CPU usage can be greater
than 100% because nmon shows the usage of a single CPU, not the usage of the whole
system. Thus, it is possible that multi-threaded processes consume more than 100%.

Figure 6.8 shows the results for the Odroid. The first thing to be noticed is the by far
highest CPU usage of the IPFS process with an approximate maximum of 550% in both
experiments. However, the median of the eleven data sources experiment is 341.77% and
with two data sources nearly the half is used namely 170.71%. The second highest usage
is done by the Java process, which executes the middleware and has an approximate
median of 99%. All other processes do not have a significant usage. The same behavior
of the processes can be observed on the Raspberry Pi. Figure 6.9 shows the usage of the
processes whereas IPFS has also by far the highest CPU usage. On the failed experiment
with 22 data sources (Figure 6.10b) the processing period is very long with a maximum
usage of 520.58% only in the IPFS process. In comparison, the maximum usage with
eleven data sources is 398.98%. The median in the failed experiment is 241.21% and in
the eleven data sources experiment 262.47%.

4https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/
Power%20Systems/page/nmon_analyser [Accessed: 2018-08-04]

89

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/nmon_analyser
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/nmon_analyser

6. Evaluation

0

100

200

300

00:00 05:00 10:00 15:00 20:00

Time (min)

U
sa

ge
 (

%
)

Geth

IPFS

Java

Mosquitto

Python

(a) 2 Data Sources

0

100

200

300

400

00:00 05:00 10:00 15:00 20:00

Time (min)

U
sa

ge
 (

%
)

Geth

IPFS

Java

Mosquitto

Python

(b) 11 Data Sources

Figure 6.8: CPU Usage by Process on Odroid-XU4.

90

6.1. Results

0

100

200

300

00:00 05:00 10:00 15:00 20:00

Time (min)

U
sa

ge
 (

%
)

Geth

IPFS

Java

Mosquitto

Python

(a) 11 Data Sources

0

100

200

300

00:00 05:00 10:00 15:00 20:00

Time (min)

U
sa

ge
 (

%
)

Geth

IPFS

Java

Mosquitto

Python

(b) 22 Data Sources

Figure 6.9: CPU Usage by Process on Raspberry Pi 3.

91

6. Evaluation

Table 6.7: Delays with Only Real-Time Channel (22 Data Sources).

Min Q1 Median Mean Q3 Max σ

Raspberrry Pi 3
20.0 53.0 92.0 213.7 209.0 2331.0 314.5

Odroid-XU4
33.0 543.0 672.0 989.8 882.0 9938.0 946.6

6.1.5 Only Real-Time Channel

Since the results in Section 6.1.4 reveal that IPFS consumes a lot of resources, the
evaluation procedure, which is explained at the beginning of this chapter, is slightly
changed for another experiment. Therefore, an experiment is designed which is executed
with 22 data sources and the integrity channel of the middleware is switched off. The
only channel where data is sent, is the real-time channel. Additionally, the IPFS client is
shut down. The Geth client is running and synchronizing, however, no transactions are
issued because the integrity channel is switched off. The experiment is executed three
times on the Raspberry Pi 3 and the Odroid-XU4.

The first result which has to be mentioned is that no value losses occur on both devices,
although, value losses occur in the experiment with both communication channels switched
on. Furthermore Table 6.7 shows, the median delay on the Raspberry Pi is only one third
and the Q3 is only a quarter in comparison to original experiment (Table 6.3). Regarding
the Odroid results, there is no comparison to the original 22 data sources experiment,
however, the delay is even better than the two data sources experiment. It can be said
that the integrity channel has a huge impact on the performance of the real-time channel.
Since the Geth client is still synchronizing during the experiments, it seems that IPFS
causes the problems. Despite the improvement of the delays, the Odroid has still longer
delays than the Raspberry Pi.

Table 6.8 shows the total CPU and memory usage of the experiments. The more powerful
hardware of the Odroid is visible. Compared to the experiment with both channels
activated, only a minimal amount of CPU is consumed. The CPU usage of the Raspberry
Pi is twice as much as on the Odroid. Regarding the memory, the usage is almost the
same, which is interesting, because as it has already been said, the Odroid has twice the
size of memory than the Raspberry Pi. For a more detailed look at the resource usage,
Figure 6.10 shows the resource usage per process. However, compared to the figures of
Section 6.1.4 there are no clear differences, despite the IPFS process is missing.

To sum up, it can be said that the integrity channel has an impact on the performance
of the real-time channel, in terms of making the real-time channel unstable, regarding
the value losses, and the increasing of the delay times. Furthermore, it seems that the
main troublemaker is IPFS. A reasonable explanation for the worse performance of the
Odroid compared to the Raspberry Pi can not be found on basis of the shown results.

92

6.1. Results

0

25

50

75

100

00:00 02:00 04:00 06:00

Time (min)

U
sa

ge
 (

%
)

Geth

Java

Mosquitto

Python

(a) Raspberry Pi 3

0

25

50

75

100

00:00 02:00 04:00 06:00

Time (min)

U
sa

ge
 (

%
)

Geth

Java

Mosquitto

Python

(b) Odroid-XU4

Figure 6.10: CPU Usage by Process with Only Real-Time Channel (22 Data Sources).

93

6. Evaluation

Table 6.8: Total Resource Usage with Only Real-Time Channel (22 Data Sources).

CPU (%) Memory (%)
Device Median MAD Q3 Max Median MAD Q3 Max
Rasp. 26.40 0.89 28.60 70.20 66.09 2.25 67.19 68.48
Odr. 13.5 0.74 21.20 33.50 66.29 0.13 66.40 66.52

6.2 Discussion

Stability

It can be said that the integrity channel is more stable in terms of value losses. On the
Odroid the value losses in the real-time channel start already with seven data sources
whereas the value losses on the Raspberry Pi occur with 22 data sources. Determining
the cause for the instability of the real-time channel on the Odroid is difficult for several
reasons. At first the thrown exceptions in the middleware, when values get lost, are
diverse and they are not the same in every error case. The exceptions are thrown by
IPFS and the MQTT client. The second difficulty to trace down the failing of the
real-time channel is the performance usage. No clear patterns can be recognized how the
performance is different in case of data losses. The only anomaly in the performance data
is the high CPU usage of the IPFS process. However, the pattern is not clearly different
between an error case and a successful case. Regarding the maximum IPFS CPU usage
on the Odroid, it is nearly the same in the successful and the failed experiment. On the
Raspberry Pi the CPU usage, concerning the median, of the failed experiment, is 20%
lower than the successful one, however, the maximum is 120% higher. Regarding these
values, a clear difference in the performance is not obvious. Nevertheless, the experiment
with the integrity channel shut down shows that the performance of the real-time channel
is affected by the integrity channel. To sum up, it can be said that the integrity channel
has fewer data losses when both communication channels are activated. This can be the
preferred option for some use cases where integrity is more important than real-time
updates. Thus, in terms of data losses the integrity channel is more stable.

Portability

Portability is a specified nonfunctional requirement for the blockchain-IoT application.
The installation and execution of the middleware, the driver and the needed components
is feasible. However, the performance evaluation shows that the devices’ results are
quite different. Interestingly, the device with the more powerful hardware achieves worse
results in terms of number of delivered messages and delays in the real-time channel.
The only experiment which runs without data losses on the Odroid is the one with two
data sources. On the Raspberry Pi data is lost only with 22 data sources. Also the
delays of the real-time channel are smaller on the Raspberry Pi. When the delays of the
integrity channel are concerned, the Odroid is slightly better regarding the medians. In
terms of portability, these results show that the portability is not working well. Despite

94

6.2. Discussion

the usage of platform independent languages and components, portability is still not
achieved. This means that the development process should include an extensive testing
phase on different devices, since relying on platform independent technology does only
work to a certain degree.

Technologies

The blockchain-IoT application depends on a lot of different technologies. Furthermore,
there are some of the technologies, like Geth or IPFS, which are not well established yet.
Thus, the robustness of the technologies may not have reached a certain level of maturity
and experiences are rather rare, especially in the IoT environment. However, the light
client synchronization mode of Geth seems to work well on resource-restricted devices.
In contrast, IPFS consumes a lot of the CPU resources even though a profile lowpower
for resource savings is added in version 4.15. Due to the results of the performance
evaluation, it can be said that IPFS is not a good option to be used on resource-restricted
devices. Especially when the device is used not only as a IPFS node. The different
technologies which have different levels of maturity make it difficult to trace occurring
errors, since dependencies or impacts between the technologies are hard to discover. The
issue has already been explained for the data loss problem. To gain more certainty about
the used technologies, the technologies should be tested isolated on various devices. A
final evaluation shall then reveal the suitability of the technology, to be used in the
planned application. Another option is to concentrate on one experimental technology
and use well-established ones for the rest of the application. In case of the blockchain-IoT
application, the first try to stabilize the communication and decrease the CPU usage
could be the exchange of the IPFS technology with another well-established database.

95

CHAPTER 7
Conclusion

The blockchain and the IoT are emerging technologies [1]. In general, it can be said that
these two technologies are aiming for different application fields. Nevertheless, combining
these two technologies has the potential to solve some challenges in the IoT [2, 3] and
provides opportunities. Challenges in the IoT, like robustness and scalability, shall be
improved by the blockchain’s decentralized architecture [2, 3]. An opportunity for the
IoT is the monetary exchange of data and computing power [76]. However, besides the
opportunities and the potential solutions, there are also a lot of challenges to overcome
when using the blockchain in the IoT. For instance, Blockchain technologies need a
lot of resources [76]. Thus, running the blockchain on resource-restricted devices is a
challenge. Another challenge are latency demands of time-sensitive applications which
are not realizable with the current blockchain technologies, when the applications depend
on fully confirmed transactions [76].

One contribution of this thesis is the development of the blockchain-IoT application
which is able to collect data from sensors and distribute data via two communication
channels. One channel distributes data in real-time, the other channel distributes data
with guaranteed integrity by using Ethereum. Besides the blockchain-IoT application, an
IoT client is implemented which monitors the delays of both channels and keeps track
of transactions’ confirmation times. Finally, the blockchain-IoT application is tested on
different IoT devices whereas delays and resource usage is considered in the evaluation.

To get an impression about the state-of-the-art in terms of approaches combining the
blockchain and the IoT, a survey of the related work is conducted in Chapter 3. Existing
approaches are identified like the approach from Huh et al. [45], which sets policies for
IoT devices on Ethereum via smart contracts. Another approach is the blockchain-based
data integrity framework for IoT data from Liu et al. [47]. The impression from this
state-of-the-art research is that a lot of papers deal with the topic blockchain and IoT on
a low level. With low level it is meant that the papers focus on basic questions instead of
integrating the technologies in more complex applications. Based on the research results,

97

7. Conclusion

regarding the challenges, opportunities and current solution approaches, four research
questions are formulated in Chapter 4. The research questions and their answers are part
of the following section.

7.1 Discussion of Research Questions

As it has already been said, the four research questions, which are formulated in Chapter 4,
are based on the research results from Chapters 2, 3 and 4. The research questions help
to develop a better understanding of the software requirements when designing an IoT
application which integrates the blockchain. In the following paragraphs, the research
questions are answered, based on the results of this thesis.

RQ-1 How can the integration of the blockchain in the IoT be realized from
a software engineering perspective?
To answer this question, an IoT application is developed which uses the blockchain.
Chapter 4 describes the design of the application and Chapter 5 the actual imple-
mentation. The application uses the tamper-proof property of the blockchain to
distribute sensor data with guaranteed integrity. The whole application comprises
several parts. First, there is the sensor driver, which collects data from sensors
and provides data via a CoAP interface. Second, the middleware collects the data
from the sensors and provides it through two channels. One provides the data in
real-time, the second distributes the data with guaranteed integrity. The integrity
channel uses the Ethereum blockchain to ensure the integrity.

RQ-2 What is needed to suit time-sensitive applications and take advantage
of blockchain properties?
Since current blockchains are not suitable for time-sensitive applications [76], the
solution approach in Chapter 4 and the implementation in Chapter 5 do not try
to realize a real-time distribution of data with the blockchain. Therefore, an extra
channel is provided by the middleware which focuses on the time-sensitive delivery
of the message. To distribute messages in real-time, MQTT is used. Besides the
time-sensitive delivery of data, MQTT has another advantage. Clients are able to
receive data from specific data sources, by choosing the according topic. Choosing
the data by its source is not possible in the integrity channel.

RQ-3 How to store data while keeping the stored data volume in the blockchain
low?
The approach to keep the data which is stored in the blockchain as small as
possible is introduced in Chapter 4 and implemented in Chapter 5. The chosen
approach in this thesis is to store the data off-chain and to only store the data’s
hash in the blockchain. This strategy keeps the data in the blockchain small and
still guarantees the integrity of the data. As storage technology IPFS is used. An

98

7.2. Future Work

advantage of the technology is the P2P architecture and that nodes in the network
do not have to trust each other [74]. Another advantage is that the identification
of the data is done via hashes. These hashes can be stored in the blockchain.
Despite the promising features of IPFS, the performance evaluation in Chapter 6
shows that this technology consumes by far the most CPU power. This high CPU
usage does not suit well into the IoT environment.

RQ-4 How does a blockchain-IoT application perform on different devices?

In Chapter 6, the answers to this question are presented. The developed blockchain-
IoT application is tested on three different devices, namely on an Intel Galileo
Gen2, an Odroid-XU4 and a Raspberry Pi 3. Regarding the Intel Galileo Gen2
device, the blockchain-IoT application can not be executed, because the CPU does
not support the needed MMX to run the Geth and IPFS client. Thus, the Intel
Galileo is not an appropriate device to integrate the Ethereum Blockchain into
the IoT. Regarding the Odroid-XU4, the setup of the application works without
any issues. However, on increasing data sources the real-time channel looses a lot
of messages. Also the delays of this channel are bigger than the real-time delays
on the Raspberry Pi. The message losses on the integrity channel occurred only
with 22 data sources. Regarding the Raspberry Pi 3, the message losses for both
channels only occurred on the experiment with 22 data sources. It can be said,
that the Raspberry Pi 3 performs the best in terms of message losses. In terms
of delays on the real-time channel the Raspberry Pi also achieves better results,
however, based on the delay data of the integrity channel a clear favorite can not
be identified.

7.2 Future Work

Combining the blockchain with the IoT is a very extensive topic where a lot of different
technologies are involved. Furthermore, it is also a rather new topic. Thus, there are
still research questions which are not answered yet. In the course of this thesis further
topics came up, which are interesting to be regarded in future works. The topics which
are interesting to be considered in further explorations are discussed in this section.

Alternative Storage

The IPFS process needs, on both tested devices, by far the most CPU power in comparison
to the other processes, as it is shown in Section 6.1.4. Therefore, an alternative is needed
to lower the resource usage. Different strategies can be imagined. The first idea is to
change to a classical database. However, a challenge is the centralization, which creates
a potential bottleneck. Thus, distributed approaches have to be considered and tested.
In case IPFS is still considered as storage technology, the research has to focus on the
availability of the data which is stored locally in the IoT device. Therefore, cluster
approaches could be explored.

99

7. Conclusion

Exception Handling

As it has already been said several times, combining the blockchain and the IoT com-
prises many technologies, interfaces and components. Furthermore, the IoT is a rough
environment where applications have to deal with resource restrictions, lossy links and
heterogeneous devices. Also the blockchain is an environment which needs a flexible
handling. For instance, the speed of the transaction delays with partly large outliers
in the integrity channel show, how flexible applications have to be to react to these
behaviors. The handling of lossy links and the optimizations of technologies for the IoT
are already included in technologies like CoAP. However, the exception handling for the
processes in the blockchain and the development of best-practice methods need further
research effort.

Bidirectional Communication

At the moment the communication is only unidirectional, in terms that the data is sent
from the IoT device to the client. However, besides sensors there also exist actuators
which can be connected to IoT devices. To be able to send commands to the actuators,
the middleware must also support the reception of data. The integrity channel can be
used for logging critical commands which are sent to the actuators.

Automatic Deployment

The distribution of sensor data, whereas the integrity of the data can be guaranteed, is one
central requirement of the implemented blockchain-IoT application. This is realized by
using the blockchain. An additional advantage by using the blockchain is the transparency
of the distribution process. However, the application itself and its deployment is not
transparent. Thus, an interesting question is how to deploy the application in such a way
that deployment is more transparent and the integrity of the application itself can be
guaranteed. To take the deployment process a step further, an autonomous deployment
of the application, which is decided by IoT devices, is imaginable. This would enable an
autonomous sensor network to decide where the collection of sensor data is needed. In
case a suitable device is found, the application is deployed to it and the communication
channels are established. However, if this is realized the transparency of the deployment
process is crucial.

100

List of Figures

1.1 Sketch of Solution Approach. 3

2.1 Simplified Example of a Blockchain. (Source: [12]) 10
2.2 Merkle Root. (Source: [12]) . 11
2.3 Different IoT architectures. (Source: [36]) 17

3.1 Data Integrity Service Framework (Source: [47]) 25
3.2 Purchase of a Smart Property. (Source: [49]) 26

4.1 Stakeholders of Motivational Scenario. 40
4.2 Architecture of the Solution Approach. 44
4.3 Sensor Driver Registry. 45
4.4 Storage of Data via Integrity Channel. 47

5.1 Workflow of the Virtual Driver in Case of a Successful Registration. . . . 55
5.2 Middleware Class Diagram . 56
5.3 Message Objects . 57
5.4 Initialization and Observation of a New Virtual Driver. 58
5.5 Web3j and the Ethereum Network. (Source: [91]) 61
5.6 Distribution of Message via Integrity Channel. 65
5.7 Life Cycle of a Transaction. (Source: [82]) 66
5.8 IoT Client Class Diagram . 67

6.1 Setup of an IoT Device. 74
6.2 Connection of the Different Components in the Evaluation Setup. 75
6.3 Real-Time Channel Delays. 81
6.4 Integrity Channel Delays. 83
6.5 CPU and Memory Usage on Raspberry Pi 3. 86
6.6 Experiment with 22 Data Sources on Raspberry Pi 3. 87
6.7 CPU and Memory Usage on Odroid-XU4. 88
6.8 CPU Usage by Process on Odroid-XU4. 90
6.9 CPU Usage by Process on Raspberry Pi 3. 91
6.10 CPU Usage by Process with Only Real-Time Channel (22 Data Sources). 93

101

List of Tables

2.1 Summary of the IoT Elements and According Technologies. (Source: [36]) 19

3.1 Summary of the Blockchains’ Basic Facts. 33

4.1 Usage and Description of Projects Used for the Java Implementations. . . 49

6.1 Used IoT Devices for the Performance Evaluation. (Source: [101, 102, 103]) 74
6.2 Summary of Data Used for Analysis. 78
6.3 Summary Delays (ms) Real-Time Channel. 82
6.4 Summary Delays (s) Integrity Channel. 84
6.5 Summary Confirmation Delay (s) Integrity Channel. 84
6.6 Total Resource Usage. 89
6.7 Delays with Only Real-Time Channel (22 Data Sources). 92
6.8 Total Resource Usage with Only Real-Time Channel (22 Data Sources). . 94

103

List of Algorithms

5.1 Set Transaction Confirmation Timestamp 69

Listings

5.1 Sensor Driver Start Command . 52
5.2 Virtual Sensor Driver Start Command 52
5.3 JSON Message from Driver to Middleware 54
5.4 Start of Geth in Light Client Mode . 61
5.5 Update-Function in Smart Contract “IntegrityService” 63
5.6 IoT Client Start Command . 70

105

Acronyms

AMQP Advanced Message Queuing Protocol. 49

API Application Programming Interface. 16, 20, 61, 64, 68

ASIC application-specific integrated circuit. 12, 30

CoAP Constrained Application Protocol. 34, 35, 43, 49–53, 57, 58, 70, 98, 100

CPU central processing unit. 4, 73, 74, 76, 80, 85–95, 99, 101

CSS Cloud Storage Service. 24

CSV Comma Separated Values. 66, 67, 70

DAC decentralized autonomous corporation. 26

DAG directed acyclic graph. 32, 38

DCAs Data Consumer Applications. 24

DDS Data Distribution Service. 34, 35, 49

DHT distributed hash table. 28, 35

DIS Data Integrity Service. 24

DOA Data Owners Application. 24

EVM Ethereum Virtual Machine. 12, 30, 64

GHOST Greedy Heaviest Observed Subtree. 30, 31

HTTP Hypertext Transfer Protocol. 60–62, 64

IoT Internet of Things. xi, 1–5, 7, 8, 15–21, 23–31, 34, 35, 37–41, 43, 44, 46–51, 54–56,
65–68, 70, 73–80, 94, 95, 97–101, 103

107

IP Internet Protocol. 51, 53, 75

IPC inter-process communication. 61

IPFS InterPlanetary File System. 35, 49, 50, 57, 60, 62, 64, 65, 68, 74, 75, 78, 80, 89,
92, 94, 95, 98, 99

IPv4 Internet Protocol Version 4 . 51

IPv6 Internet Protocol Version 6 . 51

JSON JavaScript Object Notation. 49, 53, 54, 56, 58, 61, 65, 68, 105

LAN local area network. 75

LES Light Ethereum Subprotocol. 60

LOESS Locally Weighted Least Squares Regression. 85

M2M machine-to-machine. 18, 31, 58

MAD Median Absolute Deviation. 87, 89

MMX Multimedia Extension. 79, 80, 99

MQTT Message Queuing Telemetry Transport. 34, 35, 49, 50, 57, 59, 67, 70, 94, 98

NFC near field communication. 18

NTP Network Time Protocol. 75

P2P peer-to-peer . xi, 2, 9, 13, 25, 28, 35, 38, 39, 50, 64, 99

Perm permissioned. 32, 33

PermL permission-less. 32, 33

PKI public key infrastructure. 24

PoA proof-of-activity. 13

PoB proof-of-burn. 14

PoS proof-of-stake. 13, 14

PoW proof-of-work. 11–14, 30, 32

QoS Quality of Service. 34, 35, 59

108

REST Representational State Transfer . 34, 49

RPC Remote Procedure Call. 60–62, 68

SLR systematic literature review. 7, 8, 23, 29

SSD Solid State Drive. 74

STXO spent transaction output. 10

tps transactions per second. 15, 32, 33

UDP User Datagram Protocol. 75

URI uniform resource identifier . 34

UTXO unspent transaction output. 10

109

Bibliography

[1] K. Panetta, “Top Trends in the Gartner Hype Cycle for Emerging Technologies.”
Gartner, 2017. http://www.gartner.com/smarterwithgartner/top-
trends-in-the-gartner-hype-cycle-for-emerging-technologies-
2017/ [Accessed: 2017-09-29].

[2] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized blockchain for iot,”
in Second International Conference on Internet-of-Things Design and Implementa-
tion, IoTDI ’17, pp. 173–178, IEEE, 2017.

[3] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet
of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[4] European Parliament and Council, “Regulation (eu) no 525/2013.” Official Journal
of the European Union, May 2013. [Accessed: 2017-09-29].

[5] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain in internet of things: Challenges
and solutions,” ARXIV.ORG CoRR, vol. abs/1608.05187, 2016.

[6] D. Wörner and T. von Bomhard, “When your sensor earns money: exchanging data
for cash with bitcoin,” in 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication, pp. 295–298, ACM, 2014.

[7] M. Conoscenti, A. Vetrò, and J. C. De Martin, “Blockchain for the internet of things:
a systematic literature review,” in IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pp. 1–6, IEEE, 2016.

[8] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is current
research on blockchain technology?—a systematic review,” PLOS ONE, vol. 11,
no. 10, pp. 1–27, 2016.

[9] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware
for internet of things: a survey,” IEEE Internet of Things Journal, vol. 3, no. 1,
pp. 70–95, 2016.

[10] B. Kitchenham, “Guidelines for performing Systematic Literature Reviews in
Software Engineering.” Elsevier, 2007. https://www.elsevier.com/__data/

111

http://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
http://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
http://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

promis_misc/525444systematicreviewsguide.pdf [Accessed: 2017-10-
09].

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” Bitcoin Project,
Dec 2008. https://bitcoin.org/bitcoin.pdf [Accessed: 2017-09-15].

[12] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical survey
on decentralized digital currencies,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 3, pp. 2084–2123, 2016.

[13] G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy: Using
blockchain to protect personal data,” in 2015 IEEE Security and Privacy Workshops
(SPW), pp. 180–184, IEEE, 2015.

[14] Facebook, “Company Info | Facebook Newsroom.” Facebook, 2017. https://
newsroom.fb.com/company-info/ [Accessed: 2017-12-11].

[15] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba,
“A taxonomy of blockchain-based systems for architecture design,” in 2017 IEEE
International Conference on Software Architecture (ICSA), pp. 243–252, IEEE,
2017.

[16] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain
technology: Architecture, consensus, and future trends,” in 2017 IEEE International
Congress on Big Data (BigData Congress), pp. 557–564, IEEE, 2017.

[17] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in
Financial Cryptography and Data Security, pp. 436–454, Springer, 2014.

[18] R. C. Merkle, A Digital Signature Based on a Conventional Encryption Function,
pp. 369–378. Springer, 1988.

[19] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger.”
Ethereum Foundation, 2017. Yellow Paper.

[20] M. E. Peck, “Blockchains: How they work and why they’ll change the world,” IEEE
Spectrum, vol. 54, no. 10, pp. 26–35, 2017.

[21] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 270–282, ACM, 2016.

[22] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” in 25th
IET Irish Signals Systems Conference 2014 and 2014 China-Ireland International
Conference on Information and Communications Technologies (ISSC 2014/CIICT
2014), pp. 280–285, IET, 2014.

112

https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://bitcoin.org/bitcoin.pdf
https://newsroom.fb.com/company-info/
https://newsroom.fb.com/company-info/

[23] M. Mueller, “How much power is 1 gigawatt.” Office of Energy Efficiency &
Renewable Energy, 2016. https://energy.gov/eere/articles/how-much-
power-1-gigawatt [Accessed: 2018-02-25].

[24] Digiconomist, “Bitcoin energy consumption index.” digiconomist.net, 2018. https:
//digiconomist.net/bitcoin-energy-consumption [Accessed: 2018-06-
01].

[25] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.”
White Paper - Peercoin, 2012. http://peerco.in/assets/paper/peercoin-
paper.pdf [Accessed: 2018-02-21].

[26] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity: Extending
bitcoin’s proof of work via proof of stake [extended abstract]y,” SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 3, pp. 34–37, 2014.

[27] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp. 1243–
1248, 1968.

[28] “Slimcoin: A peer-to-peer crypto-currency with proof-of-burn.” White Paper
- Slimcoin, 2014. https://github.com/slimcoin-project/slimcoin-
project.github.io/raw/master/whitepaperSLM.pdf [Accessed: 2018-02-
21].

[29] M. Swan, Blockchain: Blueprint for a new economy, ch. 6. Sebastopol: O’Reilly
Media, 2015.

[30] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant pay-
ments.” xva-blockchain.com, 2016. https://www.xva-blockchain.com/wp-
content/uploads/2017/08/lightning-network-paper.pdf [Accessed:
2018-02-21].

[31] E. Foundation, “Sharding faqs.” GitHub, 2018. https://github.com/
ethereum/wiki/wiki/Sharding-FAQs [Accessed: 2018-07-09].

[32] J. Ray, “Mining.” ethereum/wiki Wiki, 2018. https://github.com/ethereum/
wiki/wiki/Mining [Accessed: 2018-02-28].

[33] blockchain.info, “Blockchain size.” blockchain.info, 2018. https:
//blockchain.info/de/charts/blocks-size [Accessed: 2018-02-28].

[34] etherscan.io, “Ethereum chaindata size (geth w/fast sync),” 2018. https://
etherscan.io/chart2/chaindatasizefast [Accessed: 2018-02-28].

[35] L. Wang and Y. Liu, “Exploring miner evolution in bitcoin network,” in Passive
and Active Measurement, pp. 290–302, Springer, 2015.

113

https://energy.gov/eere/articles/how-much-power-1-gigawatt
https://energy.gov/eere/articles/how-much-power-1-gigawatt
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
http://peerco.in/assets/paper/peercoin-paper.pdf
http://peerco.in/assets/paper/peercoin-paper.pdf
https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
https://www.xva-blockchain.com/wp-content/uploads/2017/08/lightning-network-paper.pdf
https://www.xva-blockchain.com/wp-content/uploads/2017/08/lightning-network-paper.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Mining
https://github.com/ethereum/wiki/wiki/Mining
https://blockchain.info/de/charts/blocks-size
https://blockchain.info/de/charts/blocks-size
https://etherscan.io/chart2/chaindatasizefast
https://etherscan.io/chart2/chaindatasizefast

[36] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[37] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[38] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[39] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things—a survey of
topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274,
2015.

[40] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “Iot middleware:
A survey on issues and enabling technologies,” IEEE Internet of Things Journal,
vol. 4, no. 1, pp. 1–20, 2017.

[41] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation
platform with guaranteed privacy,” ARXIV.ORG CoRR, vol. abs/1506.03471, 2015.

[42] Y. Zhang and J. Wen, “An iot electric business model based on the protocol of bit-
coin,” in Intelligence in Next Generation Networks (ICIN), 2015 18th International
Conference on, pp. 184–191, IEEE, 2015.

[43] L. Axon, “Privacy-awareness in blockchain-based pki.” Oxford University Research
Archive, 2015. Technical Paper.

[44] C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin: A namecoin based
decentralized authentication system 6.857 class project.” courses.csail.mit.edu, 2014.
https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-
velicann-yakoubov-certcoin.pdf [Accessed: 2017-09-22].

[45] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain platform,” in
Advanced Communication Technology (ICACT), 2017 19th International Conference
on, pp. 464–467, IEEE, 2017.

[46] F. Lange, “Release cry uncle (v1.5.2).” GitHub, 2016. https://github.com/
ethereum/go-ethereum/releases/tag/v1.5.2 [Accessed: 2018-05-17].

[47] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data integrity
service framework for iot data,” in Web Services (ICWS), 2017 IEEE International
Conference on, pp. 468–475, IEEE, 2017.

[48] A. Nordrum, “Mobile world congress 2017: Startup ubirch sails the blockchain into
a new application—iot.” IEEE Spectrum, 2017. https://spectrum.ieee.org/

114

https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://github.com/ethereum/go-ethereum/releases/tag/v1.5.2
https://github.com/ethereum/go-ethereum/releases/tag/v1.5.2
https://spectrum.ieee.org/tech-talk/telecom/security/mobile-world-congress-2017-startup-ubirch-logs-iot-sensor-data-on-the-blockchain
https://spectrum.ieee.org/tech-talk/telecom/security/mobile-world-congress-2017-startup-ubirch-logs-iot-sensor-data-on-the-blockchain

tech-talk/telecom/security/mobile-world-congress-2017-
startup-ubirch-logs-iot-sensor-data-on-the-blockchain [Ac-
cessed: 2018-05-18].

[49] Y. Zhang and J. Wen, “The iot electric business model: Using blockchain technology
for the internet of things,” Peer-to-Peer Networking and Applications, vol. 10, no. 4,
pp. 983–994, 2017.

[50] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “Internet of things, blockchain
and shared economy applications,” Procedia Computer Science, vol. 98, no. Supple-
ment C, pp. 461–466, 2016.

[51] slock.it GmbH, “The usn.” slock.it, 2018. https://slock.it/ [Accessed: 2018-
05-16].

[52] M. E. Peck and D. Wagman, “Energy trading for fun and profit buy your neighbor’s
rooftop solar power or sell your own-it’ll all be on a blockchain,” IEEE Spectrum,
vol. 54, no. 10, pp. 56–61, 2017.

[53] E. Project, “Enigma’s ambition - our latest roadmap.” blog.enigma.co, 2018.
https://blog.enigma.co/enigmas-ambition-our-latest-roadmap-
8d50107ad314 [Accessed: 2018-05-18].

[54] “Cryptocurrency market capitalizations.” CoinMarketCap, 2018. https://
coinmarketcap.com/[Accessed: 2018-02-21].

[55] A. Nordrum, “Wall street occupies the blockchain - financial firms plan to move
trillions in assets to blockchains in 2018,” IEEE Spectrum, vol. 54, no. 10, pp. 40–45,
2017.

[56] G. Brant, “A next-generation smart contract and decentralized application platform.”
White Paper - ethereum/wiki Wiki, 2018. https://github.com/ethereum/
wiki/wiki/White-Paper [Accessed: 2018-02-21].

[57] J. Ray, “Dagger hashimoto.” ethereum/wiki Wiki, 2018. https://github.com/
ethereum/wiki/wiki/Dagger-Hashimoto [Accessed: 2018-05-14].

[58] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” CoRR, vol. abs/1801.10228, 2018.

[59] S. Popov, “The tangle.” iota.org, 2017. White Paper.

[60] D. Schiener, “A primer on iota (with presentation).” Official IOTA blog, 2017.
https://blog.iota.org/a-primer-on-iota-with-presentation-
e0a6eb2cc621?gi=cdeef663fc250 [Accessed: 2018-04-06].

115

https://spectrum.ieee.org/tech-talk/telecom/security/mobile-world-congress-2017-startup-ubirch-logs-iot-sensor-data-on-the-blockchain
https://spectrum.ieee.org/tech-talk/telecom/security/mobile-world-congress-2017-startup-ubirch-logs-iot-sensor-data-on-the-blockchain
https://spectrum.ieee.org/tech-talk/telecom/security/mobile-world-congress-2017-startup-ubirch-logs-iot-sensor-data-on-the-blockchain
https://slock.it/
https://blog.enigma.co/enigmas-ambition-our-latest-roadmap-8d50107ad314
https://blog.enigma.co/enigmas-ambition-our-latest-roadmap-8d50107ad314
https://coinmarketcap.com/
https://coinmarketcap.com/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://blog.iota.org/a-primer-on-iota-with-presentation-e0a6eb2cc621?gi=cdeef663fc250
https://blog.iota.org/a-primer-on-iota-with-presentation-e0a6eb2cc621?gi=cdeef663fc250

[61] A. Gal, “The tangle: an illustrated introduction - part 5: Con-
sensus, confirmation confidence, and the coordinator).” Official IOTA
blog, 2018. https://blog.iota.org/the-tangle-an-illustrated-
introduction-79f537b0a455 [Accessed: 2018-04-06].

[62] A. Gal, “The tangle: an illustrated introduction - part 3: Cumulative weights and
weighted random walks.” Official IOTA blog, 2018. https://blog.iota.org/
the-tangle-an-illustrated-introduction-f359b8b2ec80 [Accessed:
2018-04-06].

[63] P. Handy, “Introducing masked authenticated messaging.” Official IOTA blog,
2017. https://blog.iota.org/introducing-masked-authenticated-
messaging-e55c1822d50e [Accessed: 2018-04-06].

[64] bitcoincore.org, “Bitcoin core integration/staging tree.” GitHub, 2018. https:
//github.com/bitcoin/bitcoin [Accessed: 2018-04-20].

[65] etherscan.io, “Ethereum transaction chart,” 2018. https://etherscan.io/
chart/tx [Accessed: 2018-04-20].

[66] Ethereum Foundation, “Go ethereum.” GitHub, 2018. https://github.com/
ethereum/go-ethereum [Accessed: 2018-04-20].

[67] hyperledger.org, “Hyperledger fabric.” GitHub, 2018. https://github.com/
hyperledger/fabric [Accessed: 2018-04-20].

[68] iota.org, “Iota reference implementation.” GitHub, 2018. https://github.com/
iotaledger/iri [Accessed: 2018-04-20].

[69] T. T. A. Dinh, M. Zhang, G. Chen, B. C. Ooi, and J. Wang, “Untangling blockchain:
A data processing view of blockchain systems,” IEEE Transactions on Knowledge
and Data Engineering, vol. PP, no. 99, pp. 1–1, 2018.

[70] A. Talaminos-Barroso, M. A. Estudillo-Valderrama, L. M. Roa, J. Reina-Tosina,
and F. Ortega-Ruiz, “A machine-to-machine protocol benchmark for ehealth appli-
cations – use case: Respiratory rehabilitation,” Computer Methods and Programs
in Biomedicine, vol. 129, pp. 1 – 11, 2016.

[71] M. B. Yassein, M. Q. Shatnawi, and D. Al-zoubi, “Application layer protocols for
the internet of things: A survey,” in 2016 International Conference on Engineering
MIS (ICEMIS), pp. 1–4, IEEE, 2016.

[72] G. Pardo-Castellote, “Omg data-distribution service: architectural overview,” in
23rd International Conference on Distributed Computing Systems Workshops, 2003.
Proceedings., pp. 200–206, IEEE, 2003.

116

https://blog.iota.org/the-tangle-an-illustrated-introduction-79f537b0a455
https://blog.iota.org/the-tangle-an-illustrated-introduction-79f537b0a455
https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80
https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80
https://blog.iota.org/introducing-masked-authenticated-messaging-e55c1822d50e
https://blog.iota.org/introducing-masked-authenticated-messaging-e55c1822d50e
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/iotaledger/iri
https://github.com/iotaledger/iri

[73] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan, “Performance
evaluation of mqtt and coap via a common middleware,” in 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), pp. 1–6, IEEE, 2014.

[74] J. Benet, “IPFS - content addressed, versioned, P2P file system,” CoRR,
vol. abs/1407.3561, 2014.

[75] M. S. Ali, K. Dolui, and F. Antonelli, “Iot data privacy via blockchains and ipfs,”
in Proceedings of the Seventh International Conference on the Internet of Things,
IoT ’17, pp. 14:1–14:7, ACM, 2017.

[76] G. S. Ramachandran and B. Krishnamachari, “Blockchain for the iot: Opportunities
and challenges,” ARXIV.ORG CoRR, vol. abs/1805.02818v1, 2018.

[77] N. Kshetri, “Can blockchain strengthen the internet of things?,” IT Professional,
vol. 19, no. 4, pp. 68–72, 2017.

[78] J. Ray, “Light client protocol.” GitHub, 2018. https://github.com/ethereum/
wiki/wiki/Light-client-protocol [Accessed: 2018-06-05].

[79] K. E. Wiegers, Software Requirements. Microsoft Press, 2003.

[80] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless
micro-sensor network models,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 6,
no. 2, pp. 28–36, 2002.

[81] N. Diakopoulos and S. Cass, “Interactive: The top programming lan-
guages 2017.” IEEE Spectrum, 2017. https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2017 [Accessed: 2018-
06-08].

[82] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and P. Rimba,
“On availability for blockchain-based systems,” in 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS), pp. 64–73, IEEE, 2017.

[83] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-time data
with websocket,” IEEE Internet Computing, vol. 16, no. 4, pp. 45–53, 2012.

[84] K. Hartke, “Observing resources in the constrained application protocol (coap).”
Internet Engineering Task Force (IETF), 2015. https://tools.ietf.org/
html/rfc7641 [Accessed: 2018-06-19].

[85] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter,
“A survey on reactive programming,” ACM Comput. Surv., vol. 45, no. 4, pp. 52:1–
52:34, 2013.

117

https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7641

[86] K. Hartke and C. Bormann, “The constrained application protocol (coap).” Inter-
net Engineering Task Force (IETF), 2014. https://tools.ietf.org/html/
rfc7252 [Accessed: 2018-06-20].

[87] R. Light, “mosquitto.conf man page.” mosquitto.org, 2018. https://
mosquitto.org/man/mosquitto-conf-5.html [Accessed: 2018-07-29].

[88] D. Gupta and S. Batra, “A short survey on bloom filter and its variants,” in
2017 International Conference on Computing, Communication and Automation
(ICCCA), pp. 1086–1092, IEEE, 2017.

[89] F. Zsolt, “Light ethereum subprotocol (les).” GitHub, 2017. https:
//github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-
Subprotocol-%28LES%29 [Accessed: 2018-06-22].

[90] Ethereum Foundation, “Command line options.” GitHub, 2018. https:
//github.com/ethereum/go-ethereum/wiki/Command-Line-Options
[Accessed: 2018-06-22].

[91] C. Svensson, “Filters and events.” web3j.readthedocs.io, 2018. https://
web3j.readthedocs.io/en/latest/index.html [Accessed: 2018-06-13].

[92] A. Baranov, “Json rpc.” GitHub, 2018. https://github.com/ethereum/
wiki/wiki/JSON-RPC [Accessed: 2018-06-13].

[93] E. Foundation, “Ether: The crypto-fuel for the ethereum network.” ehtereum.org,
2018. https://ethereum.org/ether [Accessed: 2018-06-22].

[94] Ethereum Foundation, “Expressions and control structures.” solidity.readthedocs.io,
2018. https://solidity.readthedocs.io/en/v0.4.24/control-
structures.html?highlight=require [Accessed: 2018-06-22].

[95] Ethereum Foundation, “Events.” solidity.readthedocs.io, 2018. https:
//solidity.readthedocs.io/en/v0.4.24/contracts.html#events [Ac-
cessed: 2018-06-22].

[96] E. Foundation, “Mappings.” solidity.readthedocs.io, 2018. http:
//solidity.readthedocs.io/en/v0.4.24/types.html#mappings [Ac-
cessed: 2018-06-22].

[97] M. Saito, “The go-ipfs config file.” GitHub, 2018. https://github.com/ipfs/
go-ipfs/blob/master/docs/config.md [Accessed: 2018-06-23].

[98] filecoin.io, “Filecoin: A decentralized storage network.” filecoin.io, 2018. https:
//filecoin.io/filecoin.pdf [Accessed: 2018-06-23].

[99] C. Svensson, “Filters and events.” web3j.readthedocs.io, 2018. https://
web3j.readthedocs.io/en/latest/filters.html [Accessed: 2018-06-13].

118

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
https://web3j.readthedocs.io/en/latest/index.html
https://web3j.readthedocs.io/en/latest/index.html
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://ethereum.org/ether
https://solidity.readthedocs.io/en/v0.4.24/control-structures.html?highlight=require
https://solidity.readthedocs.io/en/v0.4.24/control-structures.html?highlight=require
https://solidity.readthedocs.io/en/v0.4.24/contracts.html#events
https://solidity.readthedocs.io/en/v0.4.24/contracts.html#events
http://solidity.readthedocs.io/en/v0.4.24/types.html#mappings
http://solidity.readthedocs.io/en/v0.4.24/types.html#mappings
https://github.com/ipfs/go-ipfs/blob/master/docs/config.md
https://github.com/ipfs/go-ipfs/blob/master/docs/config.md
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://web3j.readthedocs.io/en/latest/filters.html
https://web3j.readthedocs.io/en/latest/filters.html

[100] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for
Experminetal Design, Measurement, Simulation, and Modelling, ch. 2. John Wiley
& Sons, 1991.

[101] raspberrypi.org, “Raspberry pi 3 is out now! specs, benchmarks & more.” raspber-
rypi.org, 2016. https://www.raspberrypi.org/magpi/raspberry-pi-3-
specs-benchmarks/ [Accessed: 2018-07-03].

[102] Hardkernel co., Ltd, “Odroid-xu4.” hardkernel.com, 2018. https:
//www.hardkernel.com/main/products/prdt_info.php?g_code=
G143452239825&tab_idx=1 [Accessed: 2018-07-03].

[103] Intel Corporation, “Intel galileo gen 2 board.” ark.intel.com, 2018. https:
//ark.intel.com/products/83137/Intel-Galileo-Gen-2-Board [Ac-
cessed: 2018-07-03].

[104] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE
Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[105] J. Han and D. K. Jeong, “A practical implementation of ieee 1588-2008 transparent
clock for distributed measurement and control systems,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 2, pp. 433–439, 2010.

[106] European Comission, “Emissions monitoring & reporting.” ec.europa.eu,
2018. https://ec.europa.eu/clima/policies/strategies/progress/
monitoring_en [Accessed: 2018-07-22].

[107] Umweltbundesamt, “Internationale berichtspflichten.” umweltbundesamt.at,
2018. http://www.umweltbundesamt.at/umweltsituation/luft/
emissionsinventur/berichtspflichten-international/ [Accessed:
2018-07-22].

[108] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multimedia pcs,” Commun.
ACM, vol. 40, no. 1, pp. 24–38, 1997.

[109] R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of box plots,” The American
Statistician, vol. 32, no. 1, pp. 12–16, 1978.

[110] I. Gijbels and I. Prosdocimi, “Loess,” Wiley Interdisciplinary Reviews: Computa-
tional Statistics, vol. 2, no. 5, pp. 590–599, 2010.

119

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825&tab_idx=1
https://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825&tab_idx=1
https://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825&tab_idx=1
https://ark.intel.com/products/83137/Intel-Galileo-Gen-2-Board
https://ark.intel.com/products/83137/Intel-Galileo-Gen-2-Board
https://ec.europa.eu/clima/policies/strategies/progress/monitoring_en
https://ec.europa.eu/clima/policies/strategies/progress/monitoring_en
http://www.umweltbundesamt.at/umweltsituation/luft/emissionsinventur/berichtspflichten-international/
http://www.umweltbundesamt.at/umweltsituation/luft/emissionsinventur/berichtspflichten-international/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Systematic Literature Review
	Blockchain
	Internet of Things

	Related Work
	Blockchain and IoT
	Blockchains
	Communication Protocols
	Storage

	Solution Approach
	Research Challenges
	Requirements Specification
	Architecture
	Technology Decisions

	Implementation
	Sensor Driver
	Middleware
	IoT Client

	Evaluation
	Results
	Discussion

	Conclusion
	Discussion of Research Questions
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	Bibliography

