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Abstract—On many blockchain platforms, gas fees have to
be paid for deploying and executing smart contracts. These
fees depend on the size of the contract code as well as the
needed computational steps and required storage space of a smart
contract. Because of the large amount of gas cost paid each day,
there is an inherent motivation to optimize smart contract code
in order to reduce these cost.

Within this paper, we discuss the application of 25 strategies
for code optimization to Solidity smart contracts. A prototype
is developed which detects potential optimizations and partially
automatically optimizes the code accordingly. The optimization
strategies are evaluated based on 3,018 verified open source smart
contracts from etherscan.io. We find 471 rule violations in the
test data spread across 204 different contract files.

Index Terms—Smart contracts, Code optimization, Solidity

I. INTRODUCTION

Since the introduction of the basic principles of blockchains
in 2008 [1], blockchain technologies have evolved into a major
trend in both research and industry. Basically, a blockchain is
an append-only distributed ledger which stores transactions
that are propagated through a peer-to-peer (P2P) network.
Transactions are grouped in blocks and the blocks are chained
using cryptographic hash pointers [2], [3].

While first-generation blockchains like Bitcoin solely focus
on providing the functionality for cryptocurrency transactions,
second-generation blockchains like Ethereum introduce the
possibility to write and deploy computer programs, which
are executed by the nodes participating in the according
blockchain [4]. These smart contracts are usually written in
a high-level programming language like Solidity1. The source
code is compiled into byte code and can then be deployed
on the blockchain. The execution takes place in a dedicated
environment, e.g., the Ethereum Virtual Machine (EVM) in the
case of Ethereum [5]. In short, the EVM is a Turing-complete
state machine with a stack-based architecture [6].

Turing-completeness poses some drawbacks when executing
code in a blockchain network. For instance, by adding infinite
loops to smart contracts, it would be possible to effectively
diminish the available computational power. Hence, most
second-generation blockchains apply a limit for the computa-
tional steps that can be performed within a smart contract [5].
This limit is set for each transaction leading to a smart contract
invocation, individually by the sender of a transaction. The

1https://github.com/ethereum/solidity

limit has an important implication, as it guarantees that each
transaction will terminate at some point, i.e., at the latest when
the upper limit of computational steps is reached.

While there are differences in the nomenclature and imple-
mentation of this limit, most second-generation blockchains
follow the notions introduced by Ethereum. Since we make
use of Ethereum and Solidity in the work at hand, we will also
apply in the following the nomenclature defined by Ethereum.

In Ethereum, the unit for calculating cost is called gas.
Every operation that can be carried out in the EVM has a
defined amount of gas it consumes during deployment and
invocations, ranging from 3 amounts of gas for the ADD
operation to 32,000 amounts of gas for CREATE, which creates
a new contract on the blockchain [5]. Storing data on the
blockchain also is done through operations, and the according
gas cost depend on the amount and the type of storage space
needed (see Section III).

Importantly, the sender of a transaction does not only define
the gas limit for a transaction. She also has to define how
much Ether—i.e., the original cryptocurrency supported by
Ethereum—she is willing to pay for each amount of gas. After
a successful transaction, the sender pays the fee in Ether to
the node (i.e., the miner) that executed the smart contract.

With the success of blockchains, the amount of gas paid
for smart contracts grows accordingly. As an example, on
February 21st 2020, approximately 121,800 US dollars have
been spent on gas fees2. According to etherscan.io, the con-
sumed gas cost per day were mostly in the range of 100,000
to 250,000 US dollars in 2019 and early 2020. At the end of
July 2020 and in early August 2020, more than 1,000,000 US
dollars were spent on gas fees per day.

Since a significant part of these cost are caused by smart
contract code on the blockchain, there is a high potential to
reduce these cost by optimizing the code of smart contracts.
Therefore, we study the applicability of fundamental code
optimization rules to Solidity-based smart contracts, with the
goal of cost reduction. We implement promising optimization
strategies (called rules) and provide a tool which is able to
identify optimization potentials in source code, thus allowing
developers to improve their smart contracts. To show that
this can lead to gas fee savings, we implement automatic
optimization for a subset of these rules.

2https://etherscan.io



Notably, we apply a defensive white-listing approach
throughout our work. This means that only known patterns are
identified when we apply rules. While this may lead to false
negatives, i.e., rules are not applied even if there is potential for
optimization, it also decreases the number of false positives.

The remainder of this paper is organized as follows: In
Section II, we discuss the related work, while Section III
introduces basic concepts necessary for the understanding of
the presented solution. In Section IV, we analyze state-of-
the-art optimization strategies and discuss to which degree it
makes sense to apply them to Solidity-based smart contracts.
Afterwards, we evaluate the implemented rules in Section V.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

To the best of our knowledge, the number of approaches
aiming at code optimization for smart contracts is still quite
small. Notably, the related work discussed below has been
conducted for Solidity-based smart contracts, as is also done
within the work at hand.

In an early approach, Chen et al. describe the optimiza-
tion of smart contracts on the source code level [7]. The
authors identify seven anti-patterns, categorized into “useless-
code-related” and “loop-related” anti-patterns, and provide
the GASPER tool, which is able to identify three of these
anti-patterns. Unfortunately, the GASPER tool is not publicly
available so far [8]. In their follow-up work, Chen et al.
focus on the identification of inefficient smart contract code
on byte code level [9], [10]. Here, the authors present ten
anti-patterns, which focus on loops, useless code, wasted
disk space, and gas-inefficient operation sequences, implement
them in the GasReducer tool, and evaluate the outcomes based
on 1,500 Ethereum smart contracts. Notably, the authors apply
an optimistic optimization approach, leading to a small yet still
identifiable number of false positives of 2.5%. In our approach,
we apply a white-listing approach for optimizations, which
does not lead to false positives. While Chen et al. focus on
the byte code level, we apply optimization on the source code
level. Nevertheless, the contributions presented by Chen et al.
come closest to the work at hand.

Nagele and Schett present the EVM byte code superopti-
mizer ebso which optimizes EVM byte code using constraint
solving [6]. For this, ebso provides an encoding of the relevant
information from the EVM (including its state), finds different
target programs for the byte code, and then selects the target
program with minimum gas cost. For this, single blocks of the
byte code are taken into account, i.e., instructions which cover
different blocks are not further regarded.

Albert et al. present EthIR, which allows to generate a
control flow graph from the byte code of a smart contract [11].
The tool can help developers to gain a deeper understanding
of smart contracts, but does not provide any identification of
optimization potential. In subsequent work, the authors present
GASOL, which is a tool for gas cost analysis and optimiza-
tion [12]. The main functionality of GASOL is to calculate
an upper bound of gas cost for a particular smart contract.

Optimization is done solely with regard to storage-related gas
cost (namely SSTORE and SLOAD – see Section III).

Feist et al. provide Slither, a tool which can be used
to extensively analyze smart contracts [13]. Slither provides
among other things the means for automated detection of
code optimization opportunities and implements some basic
optimization rules, i.e., that eligible variables are declared as
constants and that some functions are defined as externals.

In general, work on analyzing algorithms and optimizing
code with regard to efficiency is of course not a novel research
direction, and has been a topic for at least 50 years [14], [15].
Notably, code optimization has been discussed with regard
to different goals, e.g., energy efficiency [16] or reusability
and flexibility [17]. However, as mentioned above, our work
focuses on optimization with regard to gas fee reduction, since
this is a primary goal for smart contracts.

Last but not least, there are a number of papers discussing
the analysis of smart contract code with respect to other goals
than cost efficiency. Here, the focus is mostly on detecting
security vulnerabilities in smart contracts, e.g., [18]. An ex-
cellent overview of these approaches is given in [19].

III. BACKGROUND: SMART CONTRACTS

In Ethereum and similar blockchains, smart contracts are
controlled by so-called contract accounts [20]. To invoke a
smart contract, Ether has to be sent to the address of the
contract account.

Apart from other data, the transaction also contains
the sender-defined STARTGAS and GASPRICE fields.
STARTGAS defines the upper limit of gas to perform the trans-
action, thus representing the limitation of computational steps
and storage space mentioned in Section I. The GASPRICE
defines the price the sender is willing to pay for each amount
of gas needed to perform the transaction. The actual used gas
for a smart contract invocation multiplied by the caller-defined
GASPRICE gives the gas fee that has to be paid by the caller.

Notably, if a contract account invokes a smart contract,
instead of a transaction, a so-called message call is sent
by the contract account. The important difference between
a transaction and a message call is that the latter does not
contain the GASPRICE. Instead, the GASPRICE is defined by
the origin transaction which led to the message call. For the
purposes of the work at hand, we assume that smart contract
invocations are always done through a transaction.

Before a smart contract can be invoked, it has to be deployed
on the blockchain. After deployment, smart contracts in pub-
lic blockchains like Ethereum are available for all network
participants. Whenever a transaction invoking a contract is
broadcast to the network, the deployed smart contract is
executed by every validating node in the blockchain network.
Since blockchains are append-only data structures, a deployed
smart contract cannot be altered any longer [20]. This stresses
the need to implement gas cost-efficient smart contracts.

When invoking a smart contract, gas cost occur. Every com-
putational step costs some defined amount of gas. Reducing
the steps therefore results in lower gas cost. In addition, the



TABLE I
EVM OPERATION GAS COST OVERVIEW (FROM: [5])

Name Value Operations/Transactions
Gzero 0 Paid for STOP, RETURN and REVERT.
Gjumpdest 1 Paid for JUMPDEST.
Gverylow 3 Paid for ADD, SUB, NOT, LT, GT,

SLT, SGT, EQ, ISZERO, AND, OR,
XOR, BYTE, CALLDATALOAD, MLOAD,
MSTORE, MSTORE8, PUSH*, DUP*,
and SWAP*.

Gmemory 3 Paid for every additional word when
expanding memory.

Gtxdatazero 4 Paid for every zero byte of data or code
for a transaction.

Glow 5 Paid for MUL, DIV, SDIV, MOD, SMOD,
and SIGNEXTEND.

Gmid 8 Paid for ADDMOD, MULMOD and JUMP.
Gtxdatanonzero 68 Paid for every non-zero byte of data

or code for a transaction.
Gsload 200 Paid for SLOAD.
Gcall 700 Paid for CALL.
Gsreset 5000 Paid for SSTORE when the storage value’s

zeroness remains unchanged or is set to zero.
Gselfdestruct 5000 Amount of gas to pay for SELFDESTRUCT.
Gsset 20000 Paid for SSTORE when the storage

value is set to non-zero from zero.
Gtransaction 21000 Paid as a basic fee for every transaction.
Gcreate 32000 Paid for CREATE.
Gtxcreate 32000 Paid by all contract-creating transactions.
Rsclear -15000 Refund given when the storage value

is set to zero from non-zero.
Rselfdestruct -24000 Refund given for self-destructing an account.

fees for deploying a smart contract depend on the length of
the generated byte code. Thus, reducing the length of the byte
code results in lower gas cost.

Another important cost factor is storage, since expanding
the storage itself costs gas. Regarding storage, the EVM may
utilize (i) the stack, which is used for executing a smart
contract. The values on the stack are reset once execution of a
smart contract is finished. (ii) Memory, which is an expandable
word-addressable word array. Like the stack, the memory is
volatile and therefore resets after the execution is finished.
(iii) Storage, which provides long-term persistent storage, and
is therefore the most expensive storage type [5].

Table I provides an overview of common EVM operations
and their gas cost; a complete list can be found in [5]. In
general, pure stack operations, e.g., ADD, are rather cheap,
while storage- and contract-related operations are expensive.
There are also two EVM operations which allow to refund
gas, namely SCLEAR and SELFDESTRUCT.

When optimizing code, there might be a trade-off between
cost for the deployment of smart contracts in the Ethereum
blockchain, and each invocation of a smart contract in the
EVM, i.e., the gas cost for deployment may increase because
of the optimization, while the invocation cost decrease (or vice
versa). We will discuss such trade-offs whenever necessary.

IV. EFFICIENCY OPTIMIZATION RULES

We analyze the applicability of classical code efficiency
optimization strategies in the context of smart contracts.
Specifically, we consider the efficiency rules postulated in

early work by Bentley [15], which proposes strategies that
are grouped into six categories (time-for-space rules, space-
for-time rules, loop rules, logic rules, procedure rules, and
expression rules).

We decided to analyze these standard rules for two major
reasons. First, the application of these rules is supposed to
be bound to local transformations that are almost independent
from the underlying system specifics (however, we point out
certain rules in which optimizations are highly context-specific
for smart contracts). Second, given the simplistic nature of the
cost model described above, analyzing the efficacy of rules
geared towards general-purpose procedural languages, we can
establish a baseline for more domain-specific optimizations.

Our first goal is to put these efficiency optimization rules
into context for Solidity source code and Ethereum smart
contracts. To that end, we provide a general description of
each rule and how it could be applied to reduce gas cost, or
whether applying the rule has no effect on gas cost or may
even lead to cost increase. The second goal of our study is
to mark rules with labels with respect to their efficacy for
classifying and automatically fixing efficiency issues.

We present an analysis of 25 rules, organized in the
six categories, to provide contextualization with respect to
Solidity/Ethereum smart contracts and visibly label each rule
with one of the following labels:

• [Non-intrusive Fix]: The rule can be automatically
classified and a non-intrusive, context-independent fix
exists. Non-intrusive fixes are changes that semantically
preserve functionality without introducing increased code
complexity or maintenance cost [21]. We implement these
non-intrusive fixes as part of this work.

• [Automated Rule Classification]: The rule can be con-
structed as a context-independent automated classifier.
We implement the classifier as part of this work and
quantify the presence of these rules. However, we do not
provide a non-intrusive (automated) fix.

• [Context-dependent Rule]: This label marks rules for
which we cannot construct an automated, context-
independent classifier, but which can theoretically lead
to gas savings. We opt for a conservative definition here
where we regard a rule as context-dependent if there
is possibility for uncertainty in the classifier (due to
context-specific properties). We acknowledge that more
context- or domain-specific classifiers could potentially
be constructed, but are beyond the scope of this work.

• [No Gas Savings]: The rule is not applicable to achieve
gas savings.

• [Included in Compiler]: The rule is already implemented
in the Solidity compiler solc3 and will therefore not lead
to further gas savings.

We perform initial analysis with simple code fragments
addressing the rules to assess if cost benefits can be achieved
during smart contract deployment and invocations. This ad-
ditionally checks whether a particular rule is already imple-

3Version v0.15.3, which was the latest when conducting the work at hand.



mented in solc. We leverage the possibility to activate and
deactivate compiler-internal optimization in solc, and run
the original and optimized source code with activated and
deactivated optimization.

A. Time-for-Space Rules
The basic idea of time-for-space rules is that space in terms

of memory or storage is reduced, while the execution time
is increased, since data is not directly available, and needs
to be recalculated. In general, smart contracts deployed in
the EVM can be assessed to be not very time-critical, since
there is an inherent delay when invoking a smart contract [22].
This means that time-critical applications should rather not be
deployed in the EVM in the first place. Therefore, adding some
execution time should not be an issue in most applications.

a) [Context-dependent Rule] Time-for-Space Rule 1:
Packing: Packing adopts dense storage representations. One
approach to implement this is to apply overlaying, i.e., to use
the same storage space to store data that is never needed at
the same time. For instance, the same variable could be used
for different things, if a variable is defined in a function and
then never reused. In the EVM, defining less variables directly
leads to decreased gas cost, since the operation for setting a
storage value from zero to non-zero (SSET) costs 20,000 gas
units, while the EVM operation for resetting a storage value
to another non-zero value (SRESET) costs 5,000 gas units.

Hence, packing could be suitable to enable more cost-
efficient smart contract code. However, it is not trivial to
implement this rule defensively: The identification of packing
possibilities generates a false positive whenever the usage of
a variable is not found.

b) [Context-dependent Rule] Time-for-Space Rule 2: In-
terpreters: This rule aims at reducing the space required by
using interpreters for compact representations. The simplest
application of an interpreter are subroutines, i.e., part of a
function is defined as a subroutine and can then be called.

Integrating subroutines may lead to decreased deployment
cost, because the size of a smart contract is potentially
decreased if subroutines are inserted into the code. However,
the invocation cost may increase, since calling a subroutine is
usually (a little bit) more expensive than calling code directly
(see also Procedure Rule 1: Collapsing Procedure Hierarchies).

Identifying subroutines is closely related to “extract
method” refactoring [23], and a complex task which provides
a certain degree of uncertainty if a routine has really been
identified or not. Hence, we decided not to further pursue this
rule in the scope of this work.

B. Space-for-Time Rules
Space-for-time rules are based on the idea to store redundant

information to decrease the runtime of a system. We regard
space-for-time rules to not be generally applicable for reducing
gas cost since storage is expensive in blockchains. This is
the case for data structure augmentation and the storage of
precomputed results. Nevertheless, there are two space-for-
time rules which could be applicable to smart contracts when
aiming at gas cost optimization:

a) [Included in Compiler] Space-for-Time Rule 1:
Caching: The caching of the most frequently accessed data in
the volatile memory (instead of the persistent storage) could
lead to gas savings, since accessing the memory (MLOAD) is
way cheaper than accessing the storage (SLOAD). Our analysis
has shown that this optimization strategy has already been
implemented in solc.

b) [Context-dependent Rule] Space-for-Time Rule 2:
Lazy Evaluation: This rule aims at avoiding unnecessary
evaluations, e.g., calculations or expression checks [24]. As a
simplified example for memorization (which is a prerequisite
for lazy evaluation), let us use the calculation of Fibonacci
numbers. These numbers could either be calculated before-
hand, which would be the above mentioned storage of pre-
computed results, or numbers are calculated when needed and
stored at that point of time (e.g., in a lookup table), thus
avoiding recalculations. We conducted an initial analysis to
assess if this rule could lead to gas cost reduction. In this
analysis, an additional mapping was introduced into a standard
function, and filled and reused during function calls. This led
to higher deployment cost, but lower invocation cost for the
implemented smart contract.

In general, this rule could be applied if the number of
invocations is high enough to justify the overhead of storing
precomputed values in a lookup table, following the lazy
evaluation principle. To apply this rule, expertise on the spe-
cific application is required, which means that the automatic
classification and fixing according to this rule is difficult to
achieve without introducing domain-specific heuristics.

C. Loop Rules

The loop rules discussed in the following paragraphs apply
general best practices when programming loops. As will be
shown in the following, all discussed loop rules are generally
applicable to Solidity smart contracts.

a) [Non-intrusive Fix] Loop Rule 1: Code Motion out
of Loops: This rule describes that repeated calculations that
are inside a loop and do not depend on a loop variable can be
moved outward of the loop. Thus, a calculation is performed
only once instead of in each loop iteration. This may lead
to additional deployment cost, if a new variable needs to
be defined. However, the invocation cost for the optimized
function is expected to be much cheaper. The only exception is
if a loop has only one iteration. Therefore, calculations that do
not depend on the loop variable should be moved outside the
loop. This can always be applied to Solidity smart contracts.

b) [Automated Rule Classification] Loop Rule 2: Com-
bining Tests: The goal of this rule is to decrease the number
of tests for a loop. In the best case, only one test condition
needs to be applied. As in Loop Rule 1, this may lead to higher
deployment cost, while the invocation cost of a function are
decreased. This rule is generally applicable with regard to the
identification of potential combinations. However, automated
optimization is context-dependent.

c) [Non-intrusive Fix] Loop Rule 3: Loop Unrolling: In
some cases, it might be meaningful to remove small loops



to save the cost of modifying the loop variables and of
checking the loop condition. Usually, this leads to higher
deployment cost, while the invocation cost are reduced. This
makes Loop Rule 3 generally eligible for optimizing Solidity
smart contracts. It should be noted that automatic identification
and subsequent optimization is not trivial if loops are nested
or conditions are not automatically optimized. Therefore, in
our implementation, we will differentiate between simple and
complex loops (see Section V).

d) [Non-intrusive Fix] Loop Rule 4: Transfer-driven
Loop Unrolling: This rule extends Loop Rule 3 by only
externalizing trivial assignments made within a loop, i.e., the
loop is still in the source code, but trivial assignments are
moved outside the loop. For instance, this can be achieved by
eliminating superfluous variables inside a loop. This should
lead to savings in gas cost for both smart contract deployment
and invocation, since storage and memory space are decreased.

e) [Non-intrusive Fix] Loop Rule 5: Unconditional
Branch Removing: The basic idea of this rule is to remove
unconditional branches at the end of a loop. Instead, the loop
should be rotated in order to have a conditional branch at
the end. For instance, this can be achieved by replacing a
for-loop or while-loop with a do-while-loop. This removes a
conditional jump at the beginning and an unconditional jump
at the end of the loop. Instead, there is only a conditional jump
at the end, thus saving gas cost.

f) [Automated Rule Classification] Loop Rule 6: Loop
Fusion: Loop fusion combines multiple loops that apply to the
same set of elements. This may lead to decreased deployment
cost, since the smart contract code becomes shorter. Also, the
invocation of a smart contract may become cheaper, since only
one loop (instead of several loops) needs to be iterated. As
with the other five loop rules, we therefore further regard this
rule in our implementation (see Section V).

D. Logic Rules

This category of rules deals with logic evaluations that test
the program state. The rules describe how code logic can be
modified without semantic changes to increase cost efficiency.

a) [Non-intrusive Fix] Logic Rule 1: Exploit Algebraic
Identities: The idea of this rule is to replace expensive expres-
sions with semantically equivalent, yet cheaper, expressions.
One example is the application of De Morgan’s law, i.e.,
¬a∨¬b ≡ ¬(a∧ b). By replacing the first term ¬a∨¬b with
the second term ¬(a ∧ b), it is possible to get rid of a NOT
operation in Solidity. Of course, there are further examples for
exploiting algebraic identities.

The rule is generally applicable, however, it is not always
trivial to identify these parts of optimization automatically,
because they heavily depend on the use case. Still, easily
applicable examples like De Morgan’s law exist.

b) [Context-dependent Rule] Logic Rule 2: Short-
circuiting Monotone Functions: This rule can be applied when
a monotone function is tested for a threshold. The idea is
to introduce a break into a function as soon as the result is
known, avoiding excessive calculations. A typical example of

the short-circuit evaluation is that instead of evaluating both
expressions A and B, we only evaluate the first expression.
So, if A is already false, B is not evaluated, because the
overall expression cannot become true any longer. However,
this cannot be applied if B has some important side effects.

Utilizing this rule may lead to cost reductions during smart
contract invocations, since a contract can potentially avoid
to be executed in its entirety. However, for more complex
expressions that may introduce side-effects, it is difficult to
construct an automated (general-purpose) classifier that avoids
false positives.

c) [Context-dependent Rule] Logic Rule 3: Reordering
Tests: Tests, i.e., conditions, can be arranged in different
orders. This rule exploits this by rearranging tests so that
“cheap” tests, i.e., tests most likely evaluated to true, are
placed before expensive tests, which are more likely to be
evaluated to false. For instance, this can be done in an
if-then-else clause. Again, the problem is the necessity of
estimating which condition is most likely evaluated to true,
which requires domain expertise.

d) [No Gas Savings] Logic Rule 4: Precompute Logical
Functions: The aim of this rule is to replace the calculation
of a logical function by a lookup table. As discussed in
Section IV-B, the issue is, however, that storage is expensive
in the EVM, and it is therefore generally not meaningful (if
the goal is to save gas) to use additional space in order to save
time. Precomputation may save some gas in future invocations,
but the additional deployment cost are usually too high and
access to the precomputed results is still very expensive.

e) [Non-intrusive Fix] Logic Rule 5: Boolean Variable
Elimination: The basic idea of this rule is to get rid of Boolean
variables and to replace them with an if-then-else condition.
For instance, we can replace a Boolean variable, which stores
the result of a logical expression, with the actual logical
expression, whenever the Boolean variable is originally used
in a condition. This saves deployment cost, since the variable
is not needed any longer, and may also lead to less cost during
smart contract invocation.

E. Procedure Rules

This category of optimization strategies deals with the
underlying structure of a program organized in procedures.

a) [No Gas Savings] Procedure Rule 1: Collapsing
Procedure Hierarchies: Collapsing procedure hierarchies de-
scribes that procedure calls are replaced by inserting code
directly into a smart contract (with appropriate binding of
variables). Notably, this rule is the counterpart to Time-for-
Space Rule 2: Interpreters that has already been discussed
in Section IV-A. Following the idea of collapsing procedure
hierarchies, the deployment of a smart contract is more ex-
pensive, since additional source code is needed. However, the
invocation cost may decrease.

We conducted some pre-analysis for this rule by replacing
iterative procedure calls by inlining code that shows the
additional deployment cost being too high to yield any savings.



b) [Context-dependent Rule] Procedure Rule 2: Exploit
Common Cases: This rule follows the goal to treat frequent
cases efficiently. Thus, it is related to Space-for-Time Rule 1:
Caching (see Section IV-B), which we found to be applicable
to Solidity smart contracts. Identifying the occurrence of this
rule and its application is a complex task, since it is necessary
to have the domain expertise to identify the most frequent
cases, and to implement accordingly efficient code for this
special case. Naturally, the application of this rule is only
meaningful if it is possible to apply a more efficient (while
correct) code fragment. Thus, while it would make sense to
apply this rule whenever a special piece of code for the most
common cases leads to less gas cost, classification and fixing
are very context-dependent.

c) [No Gas Savings] Procedure Rule 3: Coroutines:
This rule optimizes code by adding coroutines [25]. Since the
EVM does not support coroutines, this rule is not applicable.

d) [Automated Rule Classification] Procedure Rule 4:
Transformations on Recursive Procedures: The transformation
of recursive procedures into iterative procedures may lead to
gas cost savings. In many cases, this will lead to increased
deployment cost, e.g., since additional variables need to be
defined. However, there might be less cost during smart
contract invocation.

e) [No Gas Savings] Procedure Rule 5: Parallelism:
Parallelism describes that tasks are carried out in parallel, e.g.,
using threads. Since there is no support for concurrency in the
EVM [26], [27], this rule cannot be applied here.

F. Expression Rules

Expression rules describe the optimization of expressions,
such as reusing results or replacing expensive expressions
with cheaper ones. As will be discussed in the following
paragraphs, this includes the adaptation of some of the already
discussed rules to expressions.

a) [Included in Compiler] Expression Rule 1: Compile-
time Initialization: This rule adapts principles of the previ-
ously discussed Loop Rule 1: Code Motion out of Loops,
which we assessed to be applicable to Solidity smart contracts.
Expression Rule 1 could for instance be applied by replacing
an expression directly with its result, if possible. Our analysis
has shown that this rule is already implemented in solc.

b) [Context-dependent Rule] Expression Rule 2: Exploit
Algebraic Identities: The basic functionality of this rule has
already been discussed in Logic Rule 1: Exploit Algebraic
Identities. As discussed in Section IV-D, this rule is in general
applicable to Solidity smart contracts, but it is not always
trivial to identify these optimization parts in an automated
fashion. Hence, it is necessary to analyze in more detail
the algebraic identities which could be applied in Solidity.
Unfortunately, this goes beyond the scope of the work at hand.

c) [Context-dependent Rule] Expression Rule 3: Com-
mon Sub-expression Elimination: This rule is related to Space-
for-Time Rule 2: Lazy Evaluation. Its basic idea is to avoid
the repeated calculation of the same expression by saving the
result of the first invocation and then reusing this result later

on. Hence, it makes sense to apply this rule if the number of
accesses is large enough to justify the overhead of storing the
precomputed values in a lookup table. As with lazy evaluation,
the applicability of this rule needs to be answered separately
for each use case. Therefore, the rule is not further regarded
within the work at hand.

d) [Context-dependent Rule] Expression Rule 4: Pairing
Computation: The goal of this rule is to combine expressions
into pairs that are similar and can be evaluated together. These
expressions are then implemented in a procedure. Pairing com-
putation is related to Loop Rule 6: Loop Fusion, where several
loops are combined, as well as Procedure Rule 2: Exploit
Common Cases, where a new code fragment is introduced
for common cases. For instance, instead of separately finding
the minimum and maximum from a dataset, this could be
combined into one expression. While in general useful for the
cost optimization of Solidity smart contracts, the application of
this rule is hampered by the difficulty to automatically identify
application cases.

e) [Context-dependent Rule] Expression Rule 5: Exploit
Word Parallelism: Following this rule allows to execute dif-
ferent operations on words in parallel, e.g., different Boolean
operations. For this, it is necessary to put related bits next to
each other in a word. However, the identification of related
bits is context-dependent.

V. EVALUATION

We empirically characterize rule violations and gas cost
savings based on a representative dataset of Ethereum smart
contracts written in Solidity. For this, we implemented the
python-solidity-optimizer as an open source tool that classifies
context-independent rules and, where applicable, provides
non-intrusive fixes to measure gas cost savings. The python-
solidity-optimizer is available at Github4.

Figure 1 provides an overview of the system structure of the
python-solidity-optimizer. In brief, the tool uses the python-
solidity-parser5 to generate a parse tree for each file from
a repository of smart contracts defined by the user, applies
the rules to these contracts, and generates smart contracts
which are optimized (where non-intrusive fixes are applicable),
provide mark-up information for the user, or both.

Notably, the python-solidity-optimizer allows to extend the
set of rules by new rules, i.e., any researcher can use the tool
to apply their own set of rules.

A. Metrics and Applied Rules

We measure for how many of the rules we can find optimiza-
tion potential in the test dataset (see below) – this is done for
the rules labeled [Non-intrusive Fix] and [Automated Rule
Classification] (see below). For each violation of a rule (i.e.,
for each optimization potential), we mark this in the source
code by adding a comment above the line of code where the
violation has been found. In addition to the identification of

4https://github.com/TamaraBrandstaetter/python-solidity-optimizer
5https://github.com/ConsenSys/python-solidity-parser



python-solidity-
optimizer

  pragma solidity ^0.5.13;

  contract TestContract {
      function doSomething() public {
          // .............
      }
  }

Contractname.sol

opt_Contractname.sol

  pragma solidity ^0.5.13;

  contract TestContract {
      // ### PY_SOLOPT
      function doSomething() public {
          // .............
      }
  } 

python-solidity-
parser

1

2

3

read
contract

write
contract

apply
rules

Fig. 1. Schematic overview of the python-solidity-optimizer that
applies efficiency transformations on the original source code file and returns
a new, optimized file

rule violations, we apply the non-intrusive fixes we identified.
For these rules, we measure the gas cost savings.

By focusing on non-intrusive fixes, we make sure to avoid
false positives with the disadvantage that we may not be able to
detect all rule violations and miss some optimization potential.

We briefly reiterate and elaborate the rules we implemented
in our prototype for classification and optimization. We detect
and automatically provide non-intrusive fixes for the following
rules:

• Loop Rule 1: Code Motion out of Loops: Repeated
calculations are moved outside the loop and therefore
only calculated once.

• Loop Rule 3: Loop Unrolling for Simple Loops6:
Removing the loop and unrolling the content for each
iteration reduces gas cost by saving the cost of modifying
variables and checking conditions.

• Loop Rule 4: Transfer-driven Loop Unrolling: Re-
moving trivial assignments (aliases) within a loop and
replacing them with the values themselves reduces the
required space.

• Loop Rule 5: Unconditional Branch Removing: Using
a do-while loop instead of a while- or for-loop. This
rule is implemented for the simple loops mentioned in
Loop Rule 3, since it is necessary to decide if the loop is
executed at least once in order to replace the loop with a
do-while loop. Applying this rule removes a conditional
jump operation at the beginning of the loop.

• Logic Rule 1: Exploit Algebraic Identities: Gas savings
by replacing expensive expressions with semantically

6The prototype detects all rule violations of that kind – see below. Only
simple loops that only contain expressions are automatically optimized.

equivalent cheaper expressions, e.g., application of De
Morgan’s law.

• Logic Rule 5: Boolean Variable Elimination: Direct
evaluation of a condition instead of storing the result in
a (costly) Boolean variable.

Furthermore, violations are detected (but not automatically
optimized) for the following rules:

• Loop Rule 2: Combining Tests: Potential to reduce the
number of evaluated conditions within a loop in order to
contain (in the best case) only one condition. Optimiza-
tion is context-dependent and therefore not automatically
applied.

• Loop Rule 3: Loop Unrolling for Complex Loops7:
Removing the loop and unrolling the content for each
iteration.

• Loop Rule 6: Loop Fusion: Combining successive loops
across the same collections to one can save computation
and space. Not automatically optimized, since each vari-
able has to be checked across the loops to see whether it
is possible to merge them without changing the semantics
of the smart contract.

• Procedure Rule 4: Transformations of Recursive Pro-
cedures: Iterative algorithms usually provide cheaper
invocations than recursive ones, since a smaller number of
variables need to be modified and less conditions need to
be checked. Therefore, iterative algorithms should always
be preferred to recursive ones. However, optimizing this
automatically is not a trivial task. Per se, this rule can
be applied by identifying if a function with the same
name is called within a function. Since it is possible
to define several functions with the same name and
the same number of parameters, but different parameter
types, within one contract, this can easily lead to false
positives.

We do not see these lists of rules as exhaustive. Rather, we
see these rules as a baseline for a lower-bound of optimiza-
tion potential when applying context-independent analysis and
adaptation of smart contracts.

To calculate the actual gas savings achieved due to the
implemented rules, we deploy all contracts that are automat-
ically optimized by our prototype in a test environment with
the help of the Remix IDE8. Again, we use solc v0.5.13
for compilation. We deploy the contracts before and after the
optimization to compare the gas usages.

Since the required gas also depends on parameters when
deploying contracts, we use the same parameters for both
contracts (i.e., optimized and not optimized) to make them
comparable.

If a contract is used within another contract as a dependency,
that particular source code is also included in the source
file. Therefore, violations in the dependency contract can be
counted multiple times, depending on how often they are

7Loops that contain nested loops or conditions are not automatically
optimized because this would lead to even higher deployment cost.

8https://remix.ethereum.org/



used. Since the used dependency also has to be deployed,
we cannot filter out these violations. Even though the rule
might be violated by another smart contract developer, the
gas consumption affects the new contract, too.

After the deployment, we call all functions that are opti-
mized by our prototype to compare the gas usages of the
function calls. Again, we use the same parameters for both
function calls to make them comparable. Some functions in our
dataset, particularly those used in games, use randomization.
We rewrite those randomized functions to return a fixed
value, guaranteeing the same execution for the initial and the
optimized version of the contract.

B. Dataset

We apply the implemented rules to 3,018 smart contracts9

from etherscan.io10. etherscan.io is a well-known online ser-
vice that offers the possibility to verify source code of smart
contracts. The goal behind the service is to create transparency
and to strengthen the user’s confidence in using a smart con-
tract. Data from etherscan.io has been used for the evaluations
in a number of research papers, e.g., [28], [29], [30].

We explicitly selected the 3,018 verified and open source
contracts that were available to us at etherscan.io when con-
ducting the evaluations. The set of open source smart contracts
at etherscan.io contains a number of popular and commonly-
used applications, which are developed as a joint effort by the
Ethereum community, e.g., SafeMath11. We therefore expect
that the quality of most of the smart contracts used in our
evaluation is already at a high level. This way, we can evaluate
if the implemented rules lead to significant gas savings even
for such cases.

C. Results

Figure 2 provides an overview of the rule violations (i.e.,
for rules labeled [Non-intrusive Fix] or [Automated Rule
Classification]) detected in our dataset of 3,018 verified smart
contracts. The yellow bars show the number of violations
found for a particular rule, the gray bars show the number of
affected contract files in which the violations occur (in order
to assess multiple violations in one smart contract).

In total, we identify 471 rule violations within the test
dataset. Contracts tend to contain multiple violations. The most
common case is that two violations occur in the same file, but
one smart contract file contained as much as 12 violations.
The 471 violations are spread across 204 input files from the
dataset, yielding a violation rate of about 6.76%.

Table II provides an overview of the cost savings when
applying the six implemented automatic optimizations, i.e.,
the rules labeled [Non-intrusive Fix]. For each of the ap-
plied rules, we calculate the total and average gas cost for
deployment and for invocations of a smart contract. This is

9The list of used smart contracts can be found at https://github.com/
TamaraBrandstaetter/python-solidity-optimizer.

10https://etherscan.io
11https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/
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done for both the original files from etherscan.io and the
optimized versions of the smart contracts. The calculation
of the average cost is based on the number of functions a
violation is detected in. Thus, if a function contains the same
violation several times, the function nevertheless only counts
once for the calculation of the average.

Loop Rule 1: Code Motion of Loops finds a total of six
violations in three smart contracts. As it can be seen in
Table II, gas cost for both deployments and invocations can
be achieved. On average, this leads to savings of 0.197% for
the deployment and 0.101% for each invocation of the smart
contracts in the test dataset.

Loop Rule 2: Combining Tests finds a total of 81 violations
in 52 smart contracts. We encounter a total of 4,469 loops
in the test dataset. Out of these, 3,943 are for-loops, with 13
violations of this rule coming from this loop type. Further-
more, we identify 508 while-loops and 18 do-while-loops in
the test dataset, leading to 66 violations for the while-loops and
two violations for the do-while-loops. The analysis shows that
there are more likely multiple tests in a while-loop, leading to
the 13% violation rate for this rule, while the other two loop
types are less affected.

Loop Rule 3: Loop Unrolling is regarded in two different
ways: Once for simple loops, for which the prototype detects
violations and automatically optimizes the code, and for com-
plex loops, where violations are detected, but not automatically
optimized (see Section V-A).

Four violations regarding simple loops are found, while
more complex loops show 130 violations. This means that
about 2.9% of all loops are affected by this rule.

Following this rule, loops are automatically unrolled if they
would run a maximum of four iterations. This limit has been
set in order to take into account the higher deployment cost
if a loop is unrolled (see Table II). In fact, as can be seen
in the table, the deployment cost for this rule increase by
43,591 gas on average (or 4.771%), while the invocation cost



TABLE II
DEPLOYMENT GAS COST OVERVIEW GROUPED BY RULES

Deployment Invocation
Total Average Total Average

Loop Rule 1
Original 2,082,519 694,173 570,469 142,617

Optimized 2,078,417 692,806 569,891 142,473
Difference -4,102 -1,367 -578 -144

Loop Rule 3
Original 3,654,299 913,575 176,443 44,111

Optimized 3,828,662 957,166 174,761 43,690
Difference 174,363 43,591 -1,682 -421

Loop Rule 4
Original 481,510 481,510 30,569 30,569

Optimized 479,302 479,302 30,519 30,519
Difference -2,208 -2,208 -50 -50

Loop Rule 5
Original 204,034,849 2,081,988 4,420,417 35,363

Optimized 203,908,250 2,080,696 4,404,346 35,235
Difference -126,599 -1,292 -16,071 -129

Logic Rule 1
Original 30,814,434 2,801,312 404,838 36,803

Optimized 30,810,740 2,800,976 404,805 36,800
Difference -3,694 -336 -33 -3

Logic Rule 5
Original 14,140,841 2,828,168 152,509 30,502

Optimized 14,134,321 2,826,864 152,459 30,492
Difference -6,520 -1,304 -50 -10

only decrease on average by 421 gas (or 0.954%). Thus, we
are able to redeem the additional deployment cost by 104
invocations on average. If unrolling loops with an iteration
number higher than four, the deployment cost would increase
even more, so that the number of invocations to balance out the
higher deployment cost would on average be higher than 300.
Since the internal optimizer of solc applies optimizations
only if they pay off within 200 invocations, this is also the
limit we take into account here.

Loop Rule 4: Transfer-driven Loop Unrolling is only appli-
cable in one case in the test dataset, leading to 0.459% less
deployment cost and 0.164% less invocation cost. However,
because of the limited number of occurrences, these savings
cannot be generalized.

Loop Rule 5: Unconditional Branch Removing is the most-
applied rule within the whole test dataset, with 138 violations
found in 98 smart contracts. As pointed out above, this rule
was applied to the same simple for-loops as considered in
Loop Rule 3. About 3% of all loops in the test dataset
violated this rule. As can be seen in Table II, both deployment
(on average by 0.062%) and invocation cost (0.364%) are
decreased when optimizing smart contracts following this rule.

Loop Rule 6: Loop Fusion is violated ten times in ten dif-
ferent smart contracts, which is in line with our expectations,
since multiple looping over the same collection is rarely used.

Logic Rule 1: Exploit Algebraic Identifies finds a total of 11
violations in 11 smart contracts, with rather small gas savings
for both deployment (0.012%) and invocations (0.008%).

When examining this rule further, we observe that only 31
if-statements in the whole dataset contain multiple negations.
However, out of these, 35.4% violate the implemented rule.

Logic Rule 5: Boolean Variable Elimination is violated five
times across five contracts. The relative cost savings are on
average 0.046% per deployment and 0.033% per invocation.

Procedure Rule 4: Transformations of Recursive Procedures
is only implemented in order to identify rule violations,
optimizations are not automatically conducted (see above). A
total of 85 violations in 44 different smart contract files are
found in the test dataset.

D. Discussion

With 6.76% of all smart contracts showing at least one rule
violation, the number of violations in the test dataset is quite
significant. In fact, the high number of affected smart contracts
was a little bit of a surprise to us, since we expected that the
smart contracts in the test dataset would be relatively well-
maintained. This notion is based on the fact that the 3,018
validated open source smart contracts involve a number of
popular and commonly-used smart contracts, which we did not
expect to violate the rules very often. Other studies have shown
that popular contracts used very frequently in transactions do
show a smaller amount of optimization potential [19]. We
therefore expect an even higher violation rate if the test dataset
would be extended to further smart contracts.

While the number of rule violations in the test dataset is
surely significant, it could be argued that the gas savings
per deployment and invocation are quite small. On average,
1,213 gas is saved when deploying an optimized smart con-
tract, and 123 gas for each invocation. While the absolute
savings for each deployment and invocation might be small,
gas cost in most of 2019 and 2020 in the Ethereum blockchain
alone are in the range of 100,000 to 250,000 US dollars each
day, or even higher (see Section I). Therefore, even small cost
savings can sum up to high absolute numbers.

As a side effect of the study conducted, we are able to
identify that solc (v0.15.3) only includes a very limited
subset of the investigated optimization rules, namely Space-
for-Time Rule 3: Caching and Expression Rule 1: Compile-
time Initialization. Based on the results of our experiments,
it is surely promising to explore the integration of further
optimization rules into solc.

Last but not least, the application of the discussed rules
may also lead to negative side-effects, e.g., by decreasing the
readability of the smart contract code. However, it should
be noted that our python-solidity-optimizer optimizes code
directly before compilation into byte code, i.e., a developer
is still able to see the original, not-optimized code.

VI. CONCLUSIONS

Within this paper, we examined how basic optimization
strategies from the field of software engineering can be
applied to Solidity smart contracts in order to reduce their
gas consumption. For this, we have analyzed 25 optimization
strategies with respect to potential gas savings when being



applied to Solidity smart contracts. We utilized a defensive
white-listing approach when analyzing the rules, i.e., only
known patterns are recognized as rule violations.

We have identified 21 of these strategies as generally
applicable to smart contracts: Two of these rules are already
implemented in solc, ten rules highly depend on a specific
use case (i.e., the context), and nine rules have been identified
as candidates for automatic optimization. We have imple-
mented these nine rules in order to find rule violations in smart
contracts. Out of these nine rules, we have also implemented
six rules in order to automatically optimize smart contracts. We
then evaluated our implemented rules for a test dataset from
etherscan.io, finding violations in 6.76% of the smart contracts
– despite the supposed high quality of the 3,018 verified open
source contracts which we applied in our experiments. The
saved gas cost differ significantly between different rules, but
are overall substantial.

While these results are already very promising, we never-
theless see them primarily as a first step towards smart contract
optimization. In our future work, we want to extend especially
the rule detection and the automatic optimization, i.e., we
want to increase the amount of detected violations and further
automate rule application in these detected cases. For instance,
we are currently working on extending the exploitation of
algebraic identities by further cases.
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