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PREFACE

The “Fachgespräche” series of the Communication and Dis-
tributed Systems (German: Kommunikation und Verteilte Sys-
teme – KuVS) special interest group1 of the German Society
for Computer Science (GI) and the Information Technology
Society (ITG) of VDE brings together researchers in order to
discuss fresh ideas in recent research topics. As such, we are
very grateful that it was possible to organize another edition
of the GI/ITG KuVS-Fachgespräch Fog Computing2 as part
of this series.

Since the inaugural edition of the KuVS-Fachgespräch Fog
Computing in 2018, the topic has evolved to a major research
direction in the field of distributed systems, with different
conferences and journals focusing on fog and edge computing.
We are happy that the 2nd GI/ITG KuVS-Fachgespräch Fog
Computing received a substantial number of submissions, both
from research groups already involved in the inaugural edition,
and from groups new to this Fachgespräch.

Overall, seven papers were accepted for presentation. Each
paper received at least three reviews by the Program Commit-
tee members.

In their paper Survey of Mobile Opportunistic Networks for
Parallel Data Dissemination and Processing, Peter Danielis
and Gunnar Karlsson discuss approaches to opportunistically
disseminate and process data in mobile networks, including
approaches which make use of fog computing. Jonathan
Hasenburg and David Bermbach present a novel approach
to identify the relevance of IoT data for broker-based pub-
lish/subscribe in their paper Using Geo-context Information
for Efficient Rendezvous-based Routing in Publish/Subscribe
Systems. Alexander Palm et al. investigate in their work
Towards Online Reinforcement Learning for Self-adaptive
Fog Systems the utilization of reinforcement learning for
the adaptation of applications which exploit fog resources.
Vasileios Karagiannis examines how new fog nodes can be
added to an existing fog environment in his paper Building
A Scalable Distributed System For Fog Computing. In their
paper Fogsy: Towards Holistic Industrial AI Management in
Fog and Edge Environments, Patrick Wiener et al. discuss
how Artificial Intelligence can be realized in the fog and at
the edge. Simon Krejci and Stefan Schulte investigate which
typical edge devices can be used in order to interact with the
InterPlanetary File System and the Ethereum blockchain in
their paper Living at the Edge: Running IPFS and Ethereum
Client Software on Single-board Computers. Finally, Julian
Bellendorf studies in his paper Latency in Fog Computing
which different types and sub-types of latency play a role in
the fog.

1https://www.kuvs.de/
2https://sites.google.com/view/fachgespraechfog/

In order to minimize the risk for the participants of the
Fachgespräch, it was decided to postpone the actual on-site
meeting to a later date in 2020, i.e., to a date when the Covid-
19-induced travel restrictions in Germany have been lifted.
Therefore, these proceedings are actually pre-proceedings to
the later on-site meeting in Essen, Germany.

Last but not least, the organizers would like to thank
everybody involved in the organization of the 2nd GI/ITG
KuVS-Fachgespräch Fog Computing, especially the local or-
ganizers at the University of Duisburg-Essen and the Program
Committee members:

• Atakan Aral, TU Wien
• Peter Danielis, Universität Rostock
• Frank Dürr, Universität Stuttgart
• Boris Koldehofe, Rijksuniversiteit Groningen
• Ruben Mayer, TU München
• Andreas Reinhardt, TU Clausthal
• Dominik Riemer, FZI Forschungszentrum Informatik,

Karlsruhe
• Lin Wang, VU Amsterdam

Without their help, it would not have been possible to organize
the Fachgespräch. Also, we thank our sponsor Ascora3 for
supporting this event.

Essen, Vienna, April 17, 2020

Zoltán Ádám Mann & Stefan Schulte

3https://ascora.net/
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https://sites.google.com/view/fachgespraechfog/
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Abstract—In this paper, we survey work that relates to
our fully distributed protocol called UrbanCount for counting
large numbers of people using opportunistic device-to-device
communication. We provide an overview of existing approaches
that address mobile opportunistic networks for parallel data
dissemination and processing. First, works are presented that
are concerned exclusively with the dissemination of information
in opportunistic networks. We continue to present approaches
that are dedicated to both opportunistic data dissemination
and processing in mobile networks. In this context, we outline
gossiping algorithms and fog computing-based techniques. Sub-
sequently, we present methods that use mobile crowd sensing
for data dissemination and processing. We contrast them with
procedures that leverage opportunistic data processing and finally
we conclude open research questions. In this regard, our research
objectives are to investigate how the modeling can be carried out
for a scenario such as UrbanCount and for which other use cases
opportunistic networks for data dissemination and processing are
suitable.

Index Terms—mobile opportunistic networks, parallel data
dissemination, parallel data processing

I. INTRODUCTION

In an opportunistic network, nodes can exchange infor-
mation, for example, by using device-to-device communica-
tion once they are in direct communication range of each
other [1]. In mobile opportunistic networks, the underlying
node mobility causes nodes to meet occasionally, thereby
helping to disseminate data. For instance, a node can be
a person carrying a device, such as a cell phone, that is
equipped with a wireless communication interface [2]. In the
context of parallel computing, each node participating in the
opportunistic network acts as a collector and processor of data
and as a disseminator of the result of the calculation. The
calculation is often carried out iteratively between the nodes.

Parallel computing in opportunistic networks is not always
easy, especially when it comes to open systems with node
churn, i.e., nodes that enter and leave the area under con-
sideration. As an example for parallel computing in open
systems with mobile nodes, we evaluated the performance of
a distributed node counting protocol called UrbanCount using
simulations [3]. Each UrbanCount node collects estimates
of the people count from other participants in the system
whenever in direct communication range and immediately
integrates these estimates into a local estimate. We showed

that the accuracy of the counting measure strongly depends
on the node density. In open systems such as those under
investigation in [3], the counting must also consider nodes that
leave the area during the period for which the count is being
performed. In closed systems, on the contrary, the number of
nodes is fixed, but unknown and must be estimated. One use
case for closed systems is to estimate attendance at an event
where churn is low and can possibly be neglected. This defines
exactly when the parallel calculations are completed: when all
interested nodes in the system have calculated the same value.

In this paper, we survey work that relates to our work
UrbanCount and finally we formulate as a research question
how the modeling could be carried out for an open system
like UrbanCount. Furthermore, we raise the question of which
tasks, for which the calculation is more difficult than for
UrbanCount, could also be solved by parallel data distribution
and processing in opportunistic networks. A brief outlook
shows initial ideas for answering these questions.

II. STATE OF THE ART

There is a number of works in the literature that are
concerned with the dissemination of information in oppor-
tunistic networks. Such networks can, for example, help to
increase the resilience of communication systems to disasters
[4]. As described in [4], mobile phones can be organized
into a peer-to-peer network for this purpose. Networking is
made possible by device-to-device communication as soon as
devices are in direct transmission range of each other. As
a result, the devices are not dependent on the connection
to cellular towers, which can possibly not be established in
the event of a disaster. A model that maps the properties of
opportunistic networks is described in [5]. With the model,
the authors pursue the goal of realistically representing the
spread of information. The work in [6] presents an analytical
model based on population processes. This model serves to
characterize the opportunistic information dissemination in 5G
networks. The authors present closed-form expressions that
can be used to determine the diffusion time, network coverage,
and latency. Another analytical model is developed in [7]. It
models the dependencies between network-wide inter-contact
time and the inter-contact time per network node. Another
work from the state of the art addresses the possibilities
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that mobile opportunistic networks offer to spread time and
space sensitive information [8]. The study in [9] examines
opportunistic information dissemination, which serves to store
mobile data in an open system. All of the work addressed so
far, however, have in common that they solely consider the
exchange of information between network nodes. Hence, they
do not use the full scope of functions available in opportunistic
networks.

Opportunistic networks are used for data exchange, but data
processing is also possible. Data exchange is solely possible
during the sporadic contact between nodes, which occurs as
soon as two or more nodes are within within communication
range of each other [10]. In addition to the opportunistic data
exchange, the nodes can use their respective software and
hardware resources to work on tasks in parallel even outside
the sporadically occurring contacts. One such task can be to
calculate the total value over the entire network from the
local values of a node. In this context, there are numerous
gossiping algorithms that calculate a value across the network,
such as an average or a sum of a given metric. Nodes usually
exchange data periodically in synchronous rounds. Typically,
only randomly selected or predefined nodes work during a
round. The goal is for all nodes to calculate a common
value [11]. Gossiping algorithms are even able to work in
networks that are characterized by regular node entry and exit,
i.e, churn.

A gossiping algorithm for mobile networks is presented in
[12], in which network nodes only know a few neighbors. A
fully distributed gossip-based protocol for aggregating values
in large dynamic networks is described in [13]. By means
of paired interaction between network nodes, the locally
aggregated values of all nodes quickly converge to the global
aggregation value. The work in [14] investigates the data
mining of data collected by edge devices such as mobile
phones. A gossip-learning approach is used for reasons of
privacy and robustness. Using this approach, models of fully
distributed data can be learned in large-scale networks. Each
node in the network has exactly one data record, such as a
sensor reading, which it does not share with other nodes.
The gossip-learning algorithm includes models that perform
random walks across all nodes in the network, and the models
are updated each time they visit a node by using the local data
record. There are as many models as nodes in the network
due to the procedure. Since models perform random walks,
all nodes are exposed to a continuous stream of models that
pass through them. In addition to using these models directly
for prediction, nodes can also combine them in different ways
using ensemble learning.

Opportunistic processing differs from gossiping algorithms
in particular in that parallel pairs of nodes communicate
simultaneously. Neighborhood lists are not known in advance
and not all known neighboring nodes are requested before the
connection to one of them is established. This is often due to
the dynamics of the system, which occur faster than what is
usually the case in studies of gossiping algorithms. The typical
link duration in opportunistic networks with pedestrians is

typically 10 s [15].
Mobile and fog computing have developed to bring com-

puting power closer to the end user. This can be observed
particularly in connection with large IoT networks. In prin-
ciple, the fog includes computing units that have sufficient
storage, energy, and computing resources and are able to carry
out parallel information processing [16]. Some work extends
the fog to include end-user devices such as mobile devices or
sensors. An approach to resource sharing in very dense IoT
mesh networks is presented in [17]. This method combines
data communication and processing. By implementing an arti-
ficial neural network on top of an IoT network, communication
between users can be used for data aggregation and processing.
At the same time, energy efficiency is increased and the latency
for processing is reduced. However, the scenario examined
does not include any mobile nodes and is based on a closed
system with predefined functionality.

To use the resources on mobile devices for data collection
and processing, mobile crowd sensing is one solution [18].
An opportunistic variant of this approach is explained in [19].
The method presented collects data in the background without
the user becoming active. Mobile crowd-sensing applications
typically use the client-server network model and so the data
collected by the devices is sent to a central server. It carries
out the further data processing and distributes the results to
interested users. Another work uses peer-to-peer approaches,
in which, however, only the information exchange takes place
directly between the nodes [20]. The information processing is
still carried out centrally on a server. If one compares mobile
crowd sensing with opportunistic data processing, it can be
seen that the nodes in the latter variant both collect and process
data. Finally, they distribute results of the data processing to
other nodes.

The work in [21] gives an overview of various non-image-
based methods for counting people. One of these techniques
is based on opportunistic data exchange using device-to-
device communication in mobile networks with churn [3]. This
technique is supplemented by an exploratory study in [22].
This study deals with the simulation of closed systems to in-
vestigate the interaction between opportunistic communication
and parallel data processing on the nodes. Another work [23]
examines the use of opportunistic communication by means of
device-to-device communication for distributed voting, again
in mobile networks with churn.

III. CONCLUSION AND RESEARCH QUESTIONS

To conclude, let us focus on our proposals, which deal
with both data dissemination and processing using device-to-
device communication in mobile opportunistic networks for
the use cases of voting and people counting [3], [23]. These
works already show that the algorithms presented are suitable
for use in highly dynamic mobile opportunistic networks.
Compared to state-of-the-art algorithms, the local values of
the individual nodes converge to the global value (and also
very quickly). However, only the basic process has been
designed and simulated but not modeled for the open systems
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under investigation. The basic process has been shown to
be applicable for the use cases of distributed voting and
node counting. It consists of collecting data, performing a
calculation of the data, and sharing the result of the calculation
in parallel. For the already studied use cases, the process is
contact limited (limited by the contact duration) because the
calculation is only done when new information is provided in a
node (and for counting, the processing is light). Other parallel
opportunistic calculations may have heavier calculations and
be less dependent on the exchange of intermediate results with
other nodes in the system. Data in the previously investigated
uses case are basically node IDs, but could have been other
system parameters that should be collectively estimated, or
data could be environmental parameters for the space that the
nodes jointly detect, collect, and calculate. Hence, the previous
results may not be applicable in other cases.

Based on these insights and experiences, let us conclude
following research questions:

• How to develop a model that captures the dynamics in
open systems characterized by node churn?

• Which tasks other than counting and voting could be
solved through parallel data dissemination and processing
by mobile opportunistic communication?

Therefore, our first research objective is to develop a model
that maps the dynamics in scenarios like UrbanCount. An
initial model for mapping the process of collecting data op-
portunistically from a closed set of nodes has been developed
in [22] but is only valid for closed systems. Hence, this is
solely a first step towards a model that captures the dynamics
in open systems with churn, but, however, in the closed
systems we were able to show that the process can be well
described by empirical laws.

Another task that could be accomplished by parallel data
exchange and processing is the monitoring of critical in-
frastructures by a swarm of autonomous robots both under
water and in the air. The robots are constrained in terms of
communication range and energy and should be coordinated
as well as possible to perform the task, on which they work
in parallel. As opposed to our previous works, in which we
investigate the impact of given movement patterns, we will
rather determine the best movement behavior under the given
constraints in order to complete the task in a certain time.
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Abstract—A promising communication paradigm that en-
ables communication between IoT devices is broker-based pub-
lish/subscribe. When the brokers are distributed across the fog,
events and subscriptions of clients connected to different broker
instances must be routed across the router network. State-of-the
art solutions, however, do not take into account that the relevance
of the IoT data depends on its origin and purpose. Instead,
they assume a uniform data distribution when determining
where to match events and subscriptions which degrades system
performance.

In this paper, we propose a routing solution that builds
upon geo-context information attached to published events and
subscriptions. This way, we can match events close to either
the publishers or subscribers of an event, thus, minimizing
communication latency while not affecting scalability.

Index Terms—Geo-Context, IoT Data, Geo-Distributed Pub/Sub

I. INTRODUCTION

The vision of the Internet of Things (IoT) is to connect
billions of devices. These devices usually operate at the
edge of the network; thus, they might be battery powered
or have a slow and unstable connection to the wide area
network. Hence, rather than interconnecting devices directly,
communication is usually handled by some kind of distributed
middleware operating in the fog. A promising communication
paradigm for this purpose is broker-based publish/subscribe
(pub/sub) because it allows client devices to asynchronously
communicate without having to know each other [1]: they
create subscriptions (subscribers) and send events (publishers)
to any of the brokers, brokers match incoming events with
created subscriptions and deliver them accordingly.

Because a large chunk of IoT data is only relevant to a
relatively small amount of subscribers [2], which are often
operating in physical proximity to each other, communication
can often be handled by a local fog broker in the same region.
Other use cases, however, require inter-region communication,
so brokers must be connected to exchange events and/or
subscriptions they received from client devices. How this can
be achieved for IoT data continues to be an open research
question as existing approaches do not take into account that
the relevance of data depends on the data origin (i.e., the
current location of the sensor) and purpose (e.g., collecting
temperature values to control heaters in proximity or to
collecting weather information for nation wide forecasts).

In general, existing pub/sub routing strategies can be clas-
sified into the three categories flooding, gossipping, and se-
lective [3], [4]. Flooding does not scale as here every broker
has to process all events or subscriptions from every other
broker. Gossiping sacrifices latency in favor of tolerance of
very dynamic environments by distributing messages between
brokers randomly. While the IoT devices might operate in such
an environment, the brokers, to which the routing approach is
applied, do not. Instead, it is more likely that the brokers are
deployed in (a limited number of) fog regions which do not
face a high churn rate. Selective approaches are either filter-
based or build upon rendezvous points (RP). For the former,
filters are distributed across brokers and used to build dynamic
multicast trees for each event. Traversing the multicast trees,
however, increases end-to-end latency. RPs are are effective
in reducing excess data by being a “meeting point” for
subscriptions and events for the matching to occur; however,
state of the art solutions expect a uniform distribution of data,
i.e., they do not take into account that IoT data is often only
relevant in a very specific area.

In our previous research [5], [6], we showed that enriching
IoT events and subscriptions with geo-context information can
reduce excess data and enable new application scenarios. In
this paper, we propose to make additional use of this geo-
context information to select RPs to ensure data is matched
in proximity to where it is relevant which improves system
performance. For that sake, we:

• describe how to enrich events and subscriptions with geo-
context information (Section II),

• introduce our novel approach on how to use this geo-
context information to select appropriate RPs (Sec-
tion III).

Finally, we draw a conclusion and outline next steps (Sec-
tion IV).

II. ENRICHING EVENTS AND SUBSCRIPTIONS WITH
GEO-CONTEXTS

Before we explain how to use geo-context information to
select RPs, we repeat our previous definition of geo-contexts
presented in [5], [6]. Note, that we use a slightly updated
terminology, as indicated below, that better fits the intended
purpose of this paper.
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Subscription Geofence

Publisher Location
(match)

Publisher Location
(no match)

Event Geofence

Subscriber Location
(match)

Subscriber Location
(no match)

Figure 1. Subscription GeoCheck (left) and event GeoCheck (right) [5], [6].

There are four geo-context dimensions. Clients have a
geographic location, which consists of a latitude and a lon-
gitude value. For publishers, the corresponding dimension is
called publisher location; for subscribers, the corresponding
dimension is called subscriber location. Beyond this, each
event and subscription has an area it relates to; we propose to
use geofences to describe these areas. The event geofence,
ensures that only subscribers located in the specified area
receive the event, i.e., subscriber locations must be inside the
event geofence. The subscription geofence, ensures that only
the events of publishers located in the specified area may be
delivered to the subscriber, i.e., publisher locations must be
inside the subscription geofence1.

For bringing geofences and locations together, two checks
are necessary to decide whether data from a given pub-
lisher should be delivered to a given subscriber (Figure 1)
– first, from the subscribers’s perspective with the help of
the subscription geofence and publisher locations (subscription
GeoCheck) and, second, from the publishers’s perspective with
the help of the event geofence and subscriber locations (event
GeoCheck). For a more detailed discussion and explanation
of the geo-context model, we refer to our previous work [5].
Furthermore, it usually makes sense to combine the two
GeoChecks with an additional ContentCheck, i.e., based on
topics. For a more detailed discussion on how this can be used
to build a (single-node) data distribution service leveraging
geo-contexts, we refer to our previous work [6]. In this
work, we describe how such single-node service instances
(here called brokers) can communicate via rendezvous-based
routing.

III. RENDEZVOUS NODE SELECTION

In this section, we present our RP selection approach that
builds upon geo-context information. RPs reduce commu-
nication cost by being a “meeting point” for subscriptions
and events: the matching occurs at the RP brokers [4, p.
166]. Hence, they constrain propagation of events and/or
subscriptions to a small subset of nodes which improves
system efficiency. A major challenge with rendezvous-based

1In previous work we referred these four dimensions as producer location,
consumer location, producer geofence and consumer geofence.

Broker 
B1

B1 Broker Area B2 Broker Area B3 Broker Area

Broker 
B2

Broker 
B3

Edge

Fog

Figure 2. Setup with three brokers deployed in the fog that facilitate
communication between publishers (squares) and subscribers (circles).

routing in wide-area deployments is to select an RP that is
close to the subscribers or publishers of an event. Many state
of the art solutions distribute RPs uniformly over available
brokers [7], [8]; this is problematic for IoT data traffic which
is non-uniform. Our key idea is to use the IoT data itself to
identify RPs physically close to publishers and/or subscribers;
this is only possible if the necessary geo-context information
is attached to the events and subscriptions.

In the following, we first describe some assumptions (Sec-
tion III-A) before we present how geo-context information
can be used to select RPs close to subscribers (Section III-B)
or close to publishers (Section III-C). Both strategies come
with their own advantages and disadvantages; which one is
better depends on the application scenario. Finally, we discuss
how both strategies compare against the baseline, flooding
of either events or subscriptions to all brokers, and other
rendezvous-based routing approaches found in the literature
(Section III-D).

A. Assumptions

For our approach, we assume a setup that comprises mul-
tiple geo-distributed brokers and clients, i.e., IoT devices and
services. Even though brokers are geo-distributed, they are
aware of each other, typically have a good inter-connection,
and are well equipped in terms of computing power; clients,
on the other hand, might operate in a constrained environment
and only communicate with a single broker, i.e., their local
broker (LB). A broker is responsible for communication with
all clients located in its broker area; usually, a broker area
covers the region surrounding the physical location of the
corresponding broker as this asserts low latency communica-
tion between the broker and clients located in the area2, see
also Figure 2. Subscriptions and published events comprise
the payload, some kind of content filter (e.g., a topic), and
geo-context information. When a client creates a subscription,
it creates the subscription at its LB. Similarly, when a client
publishes an event, it sends the event to its LB. Depending on
the strategy (Section III-B and III-C), as soon as the LB has

2Using the network distance instead of physical distance to determine
broker areas might be more accurate, but is also more complicated in an
environment with changing network conditions.
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Figure 3. An event only needs to be sent to brokers with a broker area that
intersects with the event geofence.

received an event or subscription, it distributes them to the RP
where the matching occurs.

B. Selecting RPs close to the subscribers

With this strategy, the RPs for an event are all brokers that
are the respectively closest broker to each of the subscribers
that have created a matching subscription. Thus, the RPs are
the LBs of these subscribers. Hence, subscriptions are not
distributed to other brokers as subscribers create subscriptions
at their LB. The event, on the other hand, is distributed to all
brokers which could possible manage a matching subscription.
Fortunately, the event geofence can be used to select these RP
because only broker areas intersecting with the event geofence
might contain clients that pass the event GeoCheck (subscriber
location inside event geofence).

Figure 3 shows an example with one publisher (P) that is
located in the broker area of broker B1 and publishes three
events—each has a different event geofence (EG):

• EG1 does not intersect with the broker area of broker B2
so the event does not need to be forwarded for matching
to B2.

• EG2 intersects with the broker areas of B1 and B2 so the
event needs to be matched at B1 and be forwarded for
matching to B2.

• EG3 only intersects with the broker area of B2 so the
event needs to be forwarded for matching to B2. Note,
that matching at B1 can be omitted, as no subscription
created by the clients located in the broker area of B1
can pass the event GeoCheck.

C. Selecting RPs close to the publishers

With this strategy, the RP for an event is the broker closest
to the publisher of that event. Thus, the RP is the LB of the
publisher. While this means matching only occurs at a single
broker, it also implies that all subscriptions must be distributed
to all brokers to which a matching event might be published;
subscription updates must also be propagated in a similar
fashion. Fortunately, the subscription geofence can be used to
select these RPs because only broker areas intersecting with
the subscription geofence might contain clients that pass the

S

SG1

SG2

SG3

B1 Broker Area B2 Broker Area

B1
B2

Figure 4. A subscription only needs to be sent to brokers with a broker area
that intersects with the subscription geofence.

subscription GeoCheck (publisher location inside subscription
geofence).

Figure 4 shows an example with one subscriber (S) that
is located in the broker area of broker B1 and creates
three subscriptions—each has a different subscription geofence
(SG):

• SG1 does not intersect with the broker area of broker B2
so the subscription does not need to be forwarded to B2.

• SG2 intersects with the broker areas of B1 and B2 so
the subscription needs to be maintained at B1 and be
forwarded to B2.

• SG3 only intersects with the broker area of B2 so the
subscription needs to be forwarded to B2. Note, that the
subscription can be discarded at B1, as none of the clients
managed by B1 can publish an event that passes the
subscription GeoCheck.

After matching the event, it still needs to be distributed to
the LBs of subscribers with matching subscriptions as these
brokers are the ones communicating with the subscribers.

D. Discussion

It is straightforward to calculate how many inter-region
messages can be saved when using our rendezvous node
based approaches compared to a flooding solution for a given
event/subscription. In both cases, the given event/subscription
must only be distributed to the brokers whose broker areas
intersect with the corresponding geofence, rather than to
all brokers participating. Consider the following example: if
one data-distribution broker instance runs in each of the 21
currently available AWS regions, a published event that is only
targeted at clients in Europe would have an event geofence
that only intersects with the broker areas of 5 AWS regions
and thus reduces the amount of inter-node messages by 16
(>75%). In case of more dense deployments or events that
are only relevant to an even smaller number of subscribers,
benefits could become even higher.

We see the most closely related work in two areas:
rendezvous-based pub/sub, e.g., [7]–[9], and geo-distributed,
location-based pub/sub, e.g., [2], [10]–[12]. Still, none of these
approaches aims to use geo-context information to select RPs
close to the publishers or subscribers of an event.
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With our current approach, each broker has to know about
all other brokers and their broker areas. This is plausible,
if the number of brokers is limited to, for example, one
very scaleable instance per AWS data center. One interest-
ing aspect about rendezvous-based routing is, however, that
matching not always has to occur at the RP when there is
a network/hierarchy of nodes. This could potentially be used
to further extend our approach to support broker deployments
in which not all brokers are connected directly, e.g., because
some brokers are also running at the Edge.

IV. CONCLUSION

In this paper, we proposed to make use of geo-context
information attached to published messages and subscriptions
to select RPs. By doing so, we can ensure that events and
subscriptions are matched close to the publishers or sub-
scribers of an event. This can significantly reduce the amount
of data that needs to be distributed between geo-distributed
broker instances. In the future, we plan to more thoroughly
study the effects of our approach on excess data and quantify
effects on system characteristics such as the communication
latency between IoT devices. We are currently implementing a
broker prototype for use case driven experiments and are also
preparing a simulation-based study.
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Abstract—Fog computing uses geographically distributed fog
nodes that can supply nearby end devices with low-latency access
to cloud-like compute resources. In order to effectively use fog
resources, applications deployed on top of such fog nodes need
to self-adapt to changing characteristics and availability of the
fog nodes, possibly dynamically balancing resource needs and
requirements satisfaction. Due to the uncertainty at design time
about the actual fog configuration and characteristics at run
time, fully specifying the self-adaptation of fog applications is
not feasible. This paper makes a first step towards addressing
this challenge by introducing the ENACT Online Learning
Enabler and experimentally applying it to a representative, self-
adaptive cloud application. The ENACT Online Learning Enabler
leverages state-of-the-art reinforcement learning algorithms to
enable a self-adaptive application to continuously learn and
improve its self-adaptation behavior. We give an insight into
the conceptual design of the online learning enabler and its
capabilities while applying it to a cloud benchmark platform,
serving as an initial validation of the approach to be expanded
to fog computing.

Index Terms—Self-Adaptation, Reinforcement Learning, De-
sign Time Uncertainty, Cloud Computing, Fog Computing

I. INTRODUCTION

A self-adaptive system can modify its own structure, param-
eters and behavior at run time based on its perception of the
environment, of itself and of its requirements. By adapting
itself at run time, the system is able to maintain its quality
requirements even if the environment changes dynamically [1],
[2]. Self-adaptation thereby can help to effectively use fog
resources, by building fog applications being able to adapt to
changing characteristics and availability of the fog nodes, pos-
sibly dynamically balancing resource needs and requirements
satisfaction [3].

To develop a self-adaptive system, software engineers have
to create self-adaptation logic by specifying when and how
the system should adapt itself. As an example, a system
engineer may specify event-condition-action rules that define
which adaptation action is executed in response to a given
environment change. Defining self-adaptation logic requires
an intricate understanding of the information system and its
environment, and how adaptation impacts on system qual-
ity [4]–[6]. Among other concerns, software engineers have
to anticipate the potential environment changes the system
may encounter at run time in order to define how the system
should adapt itself in response to these environment changes.
However, anticipating all potential environment changes at

design time is in most cases infeasible due to design time un-
certainty [5], [7]. Especially in the context of fog computing,
the challenge of anticipating potential environment changes is
amplified; e.g., when compared to cloud computing. Due to
the high number and high dynamicity of end devices and fog
nodes, fully specifying the self-adaptation of fog applications
is not feasible.

One emerging way to address design time uncertainty is to
employ online reinforcement learning [8]–[17]. Reinforcement
learning can learn the effectiveness of adaptation actions
through interactions with the system’s environment.

In this paper we introduce a novel variant of online rein-
forcement learning, which leverages state-of-the-art reinforce-
ment learning algorithms to enable a self-adaptive application
to continuously learn and improve its self-adaptation behavior.
This online learning approach is developed as part of the
EU project ENACT [18] and delivered as the so called
ENACT Online Learning Enabler. We give an insight into the
conceptual design of the ENACT Online Learning Enabler and
its capabilities. In particular, we apply it to a cloud benchmark
platform, serving as an initial validation of the approach to be
expanded to fog computing.

The remainder of this paper is structured as follows: Sec. II
introduces the ENACT Online Learning Enabler with neces-
sary background information, its motivation and its underlying
concept. Sec. III gives an insight into the corresponding tool,
while Sec. IV presents the initial validation using a cloud
example and a brief introduction on possible applications in
the fog computing domain. Sec. V concludes with an outlook.

II. THE ONLINE LEARNING ENABLER

A. Background

1) Online Learning: Online learning comprises machine
learning techniques that enable a system to learn during oper-
ation time. One common technique thereby is Reinforcement
Learning (RL), offering approaches to enable a so-called
agent to learn an optimal behaviour policy through direct
interaction with its environment [9], [10] without the need
for offline training data (as in supervised learning). Applying
these RL approaches to self-adaptive software systems (SASS)
one can interpret the agent as the adaptation logic of the
SASS and the environment as the context in which the SASS
operates. As it might be expensive and potentially unreliable
to formulate adequate adaptation rules that capture all possible
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context situations during design time [19], online learning
gives a SASS the opportunity to autonomously learn which
adaptation actions to perform in certain situations or context
states during runtime. For instance, when considering a cloud
platform expected to fulfill certain quality requirements like
not exceeding a certain latency threshold when serving user
requests, online learning can be used to enable this platform
to adapt itself (e.g. through runtime reconfiguration) to meet
these kind of requirements even in changing context situations
(e.g. different workloads).

2) Reinforcement Learning: A model showing the basic
concept of RL can be found in Fig. 1 [20]–[22]. Following
this model, in RL a so called agent (i.e., system in our case)
learns how to perform optimally in an unknown environment.

Agent
(with action-

selection policy )

Environment

Action

atrt+1

st+1

State

st

Reward

rt

Fig. 1. Conceptual model of reinforcement learning (based on [20])

RL allows solving sequential decision making problems
by learning the effectiveness of the agent’s actions through
interactions with its environment [20], [23]. At each time step
t, the agent observes the current state st of its environment.
Based on this observation the agent selects an action at, which
may cause the environment to transition into a succeeding
state st+1 depending on its dynamics. Furthermore, after
performing an action the agent receives a scalar feedback
signal in the form of a reward rt. The overall goal of RL is to
learn an optimal action-selection policy π by maximizing the
agent’s cumulative (long-term) rewards. Depending on how
rewards are defined for the concrete learning task, the agent’s
goal may also be to minimize cumulative rewards.

B. Motivation

The ENACT Online Learning Enabler basically aims at two
aspects: First, it should ease steps that have to be done during
design time of a system. Second, it should enable a system
to adapt itself to changing context situations during runtime.
Concerning the first aspect: Typically a software engineer
needs to foresee all possible context-situations the system
might encounter during runtime to formulate adequate rules
(e.g. ECA-rules) to enable the system to adapt itself [19]. As
this can become very tough especially when the system context
changes very often and can vary, the Online Learning Enabler
seeks to support a software engineer, so that these traditional
steps can be accelerated by providing means to enable the
system to directly learn how to behave in certain context
situation during runtime. This means that after identifying the
continuous environment state variables that influence a context
situation, adaptation can be done through parametrization of
continuous system variables. To automate this parametrization
process at runtime, policy-based Reinforcement Learning is
our means of choice, as with this certain RL technique we

are able to handle even complex context situations as they
might be specified by continuous state and action variables (in
contrast to value-based RL approaches like [11]). Furthermore,
by directly handling these type of variables an additional step
of discretizing the variable spaces and manual tuning of explo-
ration parameters, as it occurs in state-of-the-art approaches,
can be avoided.
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Fig. 2. Conceptual architecture of the Online Learning Enabler

C. Conceptual Architecture

The Online Learning Enabler (OLE) merges the concept
of RL with the structure of the MAPE-K model [24]. We
still consider the activities monitor and execute (connecting
the adaptation logic with the managed element), but replace
analyze and plan with the policy and the underlying action
selection, derived from RL. The resulting conceptual architec-
ture of the OLE is shown in Fig. 2.

The selection of action at for the current state st is based
on the current policy πt. After action at is executed, a new
state is reached and replaces the previous state st (which
is then represented by st−1). Based on previous experience
(comprising past state(s) st−1, action(s) at−1 and perceived
rewards rt) the current policy is updated after a predefined
amount of time steps.

For simplicity, the model shows that the computation of the
reward is based on the current state st.

III. THE ONLINE LEARNING TOOL

Based on the conceptual work, we developed a tool [25],
which offers a software engineer the opportunity to enable
a system with the ability to adapt itself during runtime. The
tool provides specialized components, which are combined by
the engineer according to the requirements of the software
system. A combination of independent components enables the
best possible adaptation to the application and the underlying
system. To briefly introduce the field of RL and how to set up
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the tool, a documentation component with a running example
is provided. A monitoring component provides necessary
information about context and system state variables, as well
as an opportunity to actually perform actions proposed by the
tool. Using the tool an engineer is able to quickly configure a
state-of-the-art RL algorithm to solve the identified problem.
To do so, the engineer needs to formulate the problem of
runtime re-parametrization as a RL problem (i.e., analyze the
underlying system to identify states, actions and formulate
a suitable reward function) and configure an interface for
the communication between the software system and the
tool. After starting the learning process he/she can use the
monitoring component to supervise the learning process, being
able to quickly intervene if something does not go as planned.
Technically, the back-end of the tool is implemented in Python
using a stable version [26] of the baseline-implementation by
OpenAi [27]. The stable-baseline-implementation provides the
Proximal Policy Optimization algorithm [28], which is used as
a concrete RL technique for online learning. Communication
between the underlying system and the tool is established via
plain TCP-sockets, using JSON-Objects for data exchange. To
enable interactive plotting of the diagrams on the monitoring
page, the graphical user interface is set up using the Dash
library from Plotly [29], which is based on the JavaScript
library React [30]. A snapshot of the graphical user interface
is shown in Fig. 3.

Fig. 3. Snapshot of the GUI of the Online Learning Tool

IV. APPLICATION AND VALIDATION OF ONLINE
LEARNING TOOL

A. Initial Validation of Online Learning Tool

To perform an initial validation of our approach we ap-
plied the resulting tool to a well-known cloud benchmark
platform. We use Brownout-RUBiS as a subject system for
our validation experiment. Brownout-RUBiS is a self-adaptive
variant of a popular web application benchmark, mimicking an
auction web application [31]. Users can request information
for specific items, which can optionally be served with a
list of recommended items based on past auctions provided
by the application’s recommendation engine. Due to the re-
source needs of the recommendation engine, Brownout-RUBiS
has to balance two quality requirements: maximizing the

user experience by providing many recommendations, while
minimizing the user-perceived latency. The recommendation
engine can be adapted through the ratio of requests being
served with recommendations by setting a so-called dimmer
value δ ∈ [0, 1], which represents the per-request probability
that the recommendation engine is activated. The dimmer
value thus impacts on both quality requirements: A high rate
of recommendations increases user experience but at the same
time also increases resource needs and thus may increase
latency.

The underlying RL-problem is thereby formalized as a
Markov Decision Process:

State space: A state st comprises the user requests ut ∈
IN+, the recommendation ratio αt ∈ [0, 1] and the latency
λt ∈ IR+ monitored during a single time step (5s).

Action space: As an action at ∈ A with A = δ ∈ [0, 1] we
defined the adaptation of the dimmer value.

Reward function: The reward function is formulated as
rt = αt · f(λt) with αt ∈ [0, 1] being the recommendation
ratio, λt ∈ IR+ being the monitored latency and f(λt) being
a utility function defined as follows: f(λt) = 1 if λt ≤
λmax; f(λt) = 0 if λt > 2 ·λmax; f(λt) = −λt/λmax +2 else
(= linearly decreasing reward).

By maximizing the reward the Online Learning Tool enables
the cloud application to adapt itself to changing workload
situations while not violating quality requirements (i.e. latency
constraints). Fig. 4 shows the results of an experiment where
an On/Off workload pattern has been applied to the cloud
platform. It can be seen that the Online Learning Tool is able to
adjust the dimmer value in reaction to changes in the workload
(which occur every 850 learning cycles). During the first off-
phase the dimmer value begins to converge towards a value of
0.55 as the tool learns that this maximizes the reward. After
gaining experience on how to properly set the dimmer value
during an on-phase, the reward gets maximized during the suc-
ceeding phases. Based on the maximization of the cumulative
reward the Online Learning Tool enables the cloud platform to
serve as many requests as possible with recommendations (i.e.
maximizing recommendation ratio) while keeping the average
latency of the requests around the predefined threshold of
20ms.
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Fig. 4. Application of the Online Learning Tool on a cloud platform with a
On/Off workload pattern. State: blue = workload, black = latency; Action:
green = dimmer value; Reward: red

B. Application in the Fog Computing Domain

Fog computing as an extension of the cloud computing
paradigm offers several starting points to use RL techniques
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for optimizing decision making at runtime (e.g. optimization
of resource allocation, task allocation, etc.) depending on the
involved layers (cf. [32]). Typical metrics such as latency, load,
etc. are also present in the fog setting and depending on certain
constraints they could be used to formulate proper reward
functions to drive a certain decision making process. As the
context is typically dynamically changing many optimization
problems in fog computing bear potential to be formulated as
sequential decision making problems.

V. OUTLOOK

The initial validation indicated that the ENACT Online
Learning Enabler is indeed able to learn effective self-
adaptation actions at run time. However, when expanding the
approach from the cloud to the fog setting, one needs to
take into account the increased complexity and dynamicity
in the fog; e.g., due to a much higher number of collaborating
entities. In such a situation, the convergence of the learning
process can become a limiting factor. Until reinforcement
learning has converged, the system most likely executes inef-
ficient adaptations, because not enough observations have yet
been made. To speed up convergence, one avenue to explore is
to quickly gather approximate knowledge and then to fine-tune
and improve it gradually.
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chine learning meets quantitative planning: Enabling self-adaptation in
autonomous robots,” in 14th Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2019). ACM, 2019.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[21] F. L. Lewis and D. Liu, Reinforcement learning and approximate
dynamic programming for feedback control. John Wiley & Sons, 2013,
vol. 17.

[22] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforce-
ment learning and dynamic programming using function approximators.
CRC press, 2017.

[23] T. G. Dietterich, “Machine learning,” ACM Comput. Surv., vol. 28, no.
4es, p. 3, 1996.

[24] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[25] A. Palm, “Enact online learning tool,” https://gitlab.com/enact/online-
learning-enabler, 2020.

[26] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,”
https://github.com/hill-a/stable-baselines, 2018.

[27] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,”
https://github.com/openai/baselines, 2017.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[29] Plotly Technologies Inc., “Dash library,” https://github.com/plotly/dash,
2019.

[30] Facebook Inc., “React library,” https://github.com/facebook/react/, 2020.
[31] C. Klein, M. Maggio, K.-E. Arzén, and F. Hernández-Rodriguez,

“Brownout: Building more robust cloud applications,” in 36th Intl Conf.
on Software Engineering (ICSE 2014). ACM, 2014, pp. 700–711.
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Abstract—The emergence of the Internet of Things along with
the trend to create smart applications which automate everyday
tasks (e.g., smart homes, smart factories, etc.), have given rise
to fog computing. In fog computing, various compute nodes that
span from the cloud to the edge of the network, are used for
distributing the computations of the smart applications in order
to reduce the communication latency, and to improve the band-
width utilization. Due to these advantages, many fog computing
systems have already been proposed in the literature. Most of
these systems assume that the participating compute nodes are
organized hierarchically, and aim at deploying the applications
on these compute nodes, in a way that provides benefits (e.g.,
low communication latency between the applications and the
users). However, the problem of how to organize the participating
compute nodes hierarchically, is usually not discussed. This is a
serious concern in fog computing because fog computing systems
should be able to add new compute nodes dynamically, and still
maintain the same hierarchical structure that provides benefits.
For this reason, in this paper, we discuss the problem of creating
scalable fog computing systems that grow dynamically.

Index Terms—Fog Computing, Edge computing, Distributed
Systems, Scalability

I. INTRODUCTION

The advent of the Internet of Things (IoT) has initiated
an era with applications that sense the physical world and
transfer this information to the cloud for further processing [1],
[2]. To facilitate such applications, novel computing paradigms
have emerged, two of the most popular being fog and edge
computing [3]. Due to the research conducted in the context
of fog and edge computing, various models, frameworks, and
architectures have been proposed for performing computations
at the edge of the network, i.e., closer to the users [4].

Even though fog and edge computing are closely related,
there is one characteristic that can be used to separate them.
This characteristic is that fog computing–extends–the cloud
to the edge of the network. This means that fog computing
envisions compute nodes which are organized hierarchically,
and span from the edge of the network to the cloud, thereby
including the compute resources of the cloud [5]. On the con-
trary, edge computing focuses on pushing the computations to
the edge of the network (e.g, at cloudlets), without necessarily
connecting to the cloud compute resources.

Both fog and edge computing systems have been proven
useful for providing benefits in use cases such as data stream

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No. 764785, FORA—Fog
Computing for Robotics and Industrial Automation.
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Fig. 1: A hierarchical fog computing system.

processing [6], provisioning of services in the IoT [7], smart
grids [8], and others [9]. In such systems, the participating
compute nodes are organized in specific structures that span
over the network, in order to avoid bottlenecks and reduce
latency delays [10]. The most widely used structure to im-
plement such systems so far, has been the hierarchical [10].
For example, Fig 1 shows a fog computing system with eight
compute nodes which are organized hierarchically in three
layers.

In the hierarchical structure, the compute nodes close to the
data source are commonly placed low in the hierarchy, while
compute nodes that reside farther away, are placed in higher
layers. This way, the data is first sent for processing to compute
nodes in low layers which reside nearby, and if these compute
nodes are unavailable/overloaded, the data moves upwards the
hierarchy until there are compute nodes with available com-
pute resources. Many approaches have been designed based
on the hierarchical structure, in order to leverage the edge of
the network for meeting the application requirements (e.g.,
regarding bandwidth utilization and communication latency),
and for improving the user experience [11].

Despite the popularity and consequently, the growing com-
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munity around fog and edge computing, computing at the edge
of the network is still at an early stage, and the research
associated with this field is still ongoing. Therefore, several
open problems and challenges still exist [12].

Most current approaches for building fog computing sys-
tems assume that the participating compute nodes are orga-
nized hierarchically in layers, but do not discuss how this is
achieved. To evaluate these systems, the logical links among
the participating compute nodes are statically configured. This
means that most current approaches do not provide mecha-
nisms for adding new nodes dynamically to the hierarchical
structure. Even though in small-scale testbeds, static configura-
tion of the logical links among the participating compute nodes
is possible, large-scale distributed systems as envisioned in fog
computing, cannot be assumed to be statically configured.

Thus, in this paper we discuss the problem of how to
organize the compute nodes of a fog computing system in
a way that scales dynamically. Moreover, we discuss the
various aspects of the system that need to be taken into
account while addressing this problem. Such aspects can be,
e.g., the proximity among the compute nodes, the resource
heterogeneity of the compute nodes, and the fault tolerance of
the system in case some of the participating compute nodes
fail unexpectedly.

In the following, there is a discussion of related work from
the literature in Section II. Afterwards in Section III, we
discuss how to address the problem of building scalable fog
computing systems along with the various aspects that need
to be taken into account, such as: proximity, fault tolerance,
and resource heterogeneity. Finally, Section IV concludes this
work, and discusses our plans for further research on this
topic.

II. RELATED WORK

In this section, we present related work from the literature.
Most approaches that aim at building fog computing systems
assume that the participating compute nodes are organized
hierarchically in layers, e.g., [13]. However, the way whereby
this is achieved is usually not discussed. A potential reason
that this happens is that such approaches aim at showing
the differences between using a centralized compute node,
and using distributed compute nodes which are organized
hierarchically, i.e., the differences between cloud computing
and fog computing.

For instance, Bittencourt et al. [14] discuss resource allo-
cation in a hierarchical structure that consists of three layers.
At the bottom of the structure there are the end user devices,
in the middle there is a layer of multiple cloudlets, and at the
top there is the cloud. This work proposes various scheduling
approaches that consider the capacity of the involved resources
and the mobility of the users although, the way to build the
hierarchical structure is not discussed.

Xia et al. [15] create a system model that includes switches,
cloudlets, and cloud compute nodes in a two-layer structure,
and tackle the problem of data replication and placement for
big data analytics. Notably, for evaluating this approach, the

authors build a testbed with multiple virtual machines that
communicate with each other. However, the manner that these
virtual machines form connections, is not described.

Nguyen et al. [16] propose ICN-Fog which aims at enabling
distributed compute nodes to communicate with each other
in order to execute applications. According to ICN-Fog, the
participating compute nodes form a hierarchical structure. In
this structure, the compute nodes from various locations form
logical links to the cloud, but also to other compute nodes in
proximity. However, the proximity among the compute nodes
is assumed without actual measurements. Furthermore, the
way that the compute nodes form logical links in order create
the hierarchical structure is not discussed. Therefore, this
approach can benefit from addressing the proposed problem
of enabling the nodes to form logical links dynamically.

Skarlat et al. [7] present FogFrame which is a framework for
executing applications in the IoT. To do that, FogFrame creates
a hierarchical structure in which there are various compute
node at the edge of the network, which are organized in layers.
Above these compute nodes, there is a cloud compute node
which can be used in case the other compute nodes do not
have enough compute resources to execute the applications.
In order to organize the participating compute nodes in this
structure, FogFrame assumes that all the compute nodes are
preconfigured with location coordinates. However, preconfig-
uring each compute node individually may not be possible in
large-scale systems because the number of the participating
compute nodes can be too large to allow this. Thus, this
approach can benefit from addressing the proposed problem
regarding forming the logical links among the compute nodes
dynamically.

III. BUILDING A SCALABLE FOG COMPUTING SYSTEM

Fog computing systems include compute nodes that span
from the cloud to the edge of the network. Since this can
include a multitude of compute nodes, fog computing systems
need to be able to scale to a large degree. Therefore, when
a new compute node appears, it needs to be discovered and
integrated in the system along with all the preexisting compute
nodes.

This can be a complicated task because there may be many
different possible places for the new node. For instance, Fig 2a
shows a hierarchical fog computing system and a new compute
node (with green color) that wants to join in the hierarchy. The
problem here is where should the new node be placed.

One possible option is to place the new node in the low layer
close to the things, as shown in Fig 2b. Another option is to
place the new node in the higher layer closer to the cloud,
as shown in Fig 2c. Similarly, there are various alternatives
to place the new node in either layer, but with different
connections to the nodes of the adjacent layers. When making
this decision of where to place each new node that joins a fog
computing system, there are various aspects that need to be
taken into account. These are described below:

Proximity awareness. A prime objective in fog computing
is to reduce the communication latency of latency-sensitive
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(a) A new compute node appears (green
color).

(b) New compute node is placed in the low
layer.

(c) New compute node is placed in the high
layer.

Fig. 2: Possible options for a new compute node that joins a fog computing system.

applications [17]. To achieve this, enabling the communication
among nodes in close proximity is necessary, because close
proximity improves the communication efficiency [18]. Thus,
while deciding where each new compute node should be
placed, one aspect is to consider which existing nodes are in
close proximity, and place the new node in the adjacent layer,
enabling their communication and collaboration for processing
IoT data.

Resource heterogeneity. Fog computing includes a variety
of resource heterogeneous compute nodes which are typically
organized hierarchically [5]. In the hierarchy, compute nodes
with a large amount of compute resources are commonly
placed in higher layers, and aid in the processing of the data
from nodes with fewer compute resources, which are placed
in lower layers. Therefore, another aspect to consider while
deciding where to place a new compute node is the amount
of integrated compute resources.

Fault tolerance. Notably, in Fig 2 we can notice that
if a node in the middle layer fails or becomes temporarily
unavailable, the nodes below may lose connectivity with the
rest of the fog computing system. For this reason, fault
tolerance mechanisms become essential to fog computing,
since node failure might affect the connectivity among the
nodes and in turn, the performance of the applications [19].
For this reason, while deciding where to place each new node
that joins the system, it is important that the new node makes
some additional connections to nodes farther away, which
are not used for processing the data, but for maintaining the
connectivity in case of failures.

Thus, while deciding where to place each new compute node
in a fog computing system, there are various aspects that need
to be taken into account. Nevertheless, even though deciding
on an appropriate position may not be a simple task, it is
evident that this decision needs to be taken dynamically by
the system. This is necessary so that a fog computing system
can grow dynamically as long as new compute nodes become
available.

Therefore, the existing compute nodes, along with the new
ones, need to exchange information, e.g., proximity measure-

ments, resource capacities, etc., in order to find appropriate
places for the new nodes. Notably, all these messages are the
overhead of adding new nodes to a fog computing system.
In order to enable fog computing systems to scale to a large
degree, this overhead needs to be controlled. For instance, if
every new node examines all the possible positions, in large-
scale systems, this overhead may grow to a point that it creates
bottlenecks, and increases the communication latency among
the nodes.

For this reason, in order to create fog computing systems
that scale, this overhead needs to remain stable while the
number of nodes in the system grows. This ensures that the
system will not grow to a point that the overhead creates
bottlenecks, since the size of the system does not affect the
overhead.

To achieve this, we propose that when a new compute
node joins a fog computing system, this new node sends
a limited number of messages to existing nodes, and does
not explore the whole system to find an appropriate position.
This may result in having nodes that are not placed in an
optimal position, but it ensures that the overhead will not
grow to a point that compromises the scalability of the system.
Thus, we note that there can be a trade-off between finding
an appropriate position for new nodes, and the resulting
overhead.

IV. CONCLUSION

In this paper, we discuss various aspects of fog computing
(such as: proximity awareness, resource heterogeneity, and
fault tolerance), and how these aspects need to be taken into
account when new compute nodes become available, in order
to enable fog computing systems to scale dynamically to a
large degree. In our future work, we plan to further analyze the
process of adding new nodes to a fog computing system, and
to propose concrete algorithms that can be used for building
scalable systems for computing that spans from the cloud to
the edge of the network.
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Abstract—The proliferation of industrial IoT is one of the
driving forces that lead to a deluge of generated data bridging the
physical and virtual worlds. Consequently, harvesting such data
bears a vast potential for companies to realize intelligent, data-
driven decisions. In recent years, the decreasing costs for compute
resources as well as new decentralized computing paradigms
such as fog computing enable companies to invest in artificial
intelligence (AI) use cases. However, realizing industrial AI
applications is still a major challenge due lack of know-how in AI
as well as a complex surrounding infrastructure. In this paper, we
present the vision of Fogsy, a holistic industrial AI management
system aiding to support domain experts to manage analytical AI
pipelines from data access, modeling, and training to deployment,
monitoring and adaptation in fog and edge environments.

Index Terms—Industrial Artificial Intelligence, Industrial In-
ternet of Things, Fog Computing, Distributed Systems.

I. INTRODUCTION

The steady increase in digitalization in industrial domains
such as manufacturing, energy, or logistics has lead to a deluge
of generated data with the industrial internet of things (IIoT)
as a key enabler bridging the physical and virtual worlds. This
offers great opportunities for companies to harvest these new
data sources to feed artificial intelligence (AI) based applica-
tions to deduce meaningful insights. Typical use cases include
both improvements in product and process quality, as well
as increased safety in collaborative human-machine scenarios
that potentially enable companies to generate competitive
cost advantages. For instance, continuous automated visual
inspections of produced goods are performed, where a camera
scans the product for quality defects to detect deviations
in terms of size, shape or component skew. Generally, an
industrial AI life cycle begins with data, that are generated
by sensors on the edge, served to models for training in the
cloud, which are then moved back to the edge for deployment
to perform live predictions to autonomously trigger decisions
such as stopping a conveyer belt, that again influences sensor
measurements. However, realizing industrial AI applications
is still a problem, which is especially true for small and
medium-sized companies, where they lack (i) dedicated know-
how in AI and (ii) the surrounding infrastructure for such
end-to-end systems is vast and complex [1]. Particularly in
the industrial domain the challenges are manifold. Industrial
data are highly heterogeneous in terms of format, protocols,
oftentimes inaccurate, and generally provide few incidents
for model training, and unlike data of other domains have
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clear physical meanings resulting in patterns being harder to
interpret without domain expertise. Since data is produced on
the edge at great volume and speed, e.g., factory shop floor,
it induces the challenge of running AI models (optimized
in size, prediction speed, throughput) on the edge as well,
to overcome the shortcomings of solely centralized cloud
deployments in terms of latency, bandwidth or privacy, leading
to a vastly distributed infrastructure that needs to be managed.
Furthermore, models and their predictions must be explainable
for domain experts, especially when the stakes of a single
prediction are higher and can be costly.

To address these challenges, we present our vision of Fogsy,
a holistic industrial AI management system integrating domain
experts in the model creation and adaptation process and
aiding them to manage analytics pipelines along the cloud-
edge continuum as depicted in Figure 1. The contributions of
Fogsy are (1) an end-to-end system focused around the AI life
cycle from generating training data, to model training and op-
timization, to deployment, monitoring and model adaptation,
(2) a unified fog cluster management to be able to deploy
and dynamically adapt pipeline elements of analytics pipelines,
e.g., running the right model at the right places, (3) integrating
domain experts and their knowledge in an interactive model
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creation and refinement process by providing explainability
of models and their predictions as well as ensuring overall
traceability of the analytical results.

The outline of the paper is as following. In Section II, we
show related work in the field of AI management approaches.
Section III gives an overview of the conceptual architecture of
Fogsy and presents key considerations for the design. Lastly,
we summarize and address future work in Section IV.

II. RELATED WORK

To our best knowledge, existing fog computing frameworks
do not address the unique challenges of industrial AI man-
agement in a holistic manner. Most approaches either only
focus on certain aspects of fog computing architectures or
present infrastructures which are not specifically tailored for
the industrial AI lifecycle and its inherent challenges [2]–
[4]. Our previous work has focused on the development of a
context-aware, dynamic management infrastructure for stream
processing pipelines in the fog [5]. We consider this approach
a good foundation and plan on extending it into a holistic
solution for industrial AI management based on existing state-
of-the-art components and future research. Besides the re-
search community, well-known companies as well as startups
offer fog computing services and tools, such as Google Cloud
IoT, Amazon Greengrass, Microsoft Azure IoT Edge, IBM
Edge Computing, Foghorn1 or Nebbiolo2. So far, however, the
ability of domain experts to understand the predictions of the
models and improve them through interaction with the system
is limited, requires high overhead or is not considered. For
these reasons, our vision is to provide a holistic framework
around the industrial AI life cycle including AI model man-
agement, domain knowledge integration as well as decision
explainability and traceability.

III. FOGSY: HOLISTIC INDUSTRIAL AI MANAGEMENT

In this section, we outline our vision for a holistic in-
dustrial AI management framework. Figure 2 illustrates the
conceptual architecture consisting of five different layers and
their dependencies. The overall goal of the training layer is
the preparation of AI models suitable for various deployment
targets with minimal configuration and adaptation effort, based
on techniques such as few-shot learning and multi-objective
neural architecture search. The management layer handles
the management of models and data, orchestrates individual
pipeline elements (e.g., pre-processing algorithms and exe-
cutable models), selects appropriate models for the target
execution runtime and handles scheduling, deployment and
monitoring. In addition, the management layer derives single
hypotheses (e.g., complex process anomalies) by combining
multiple, individual models. Models, pre-/post-processing al-
gorithms and adapters to connect data sources are deployed in
the execution layer on dedicated cloud, fog and edge nodes,
each of them managed by a node controller and a node
broker to exchange data between pipeline elements running

1https://www.foghorn.io (last accessed February 24th 2020)
2https://www.nebbiolo.tech (last accessed February 24th 2020)

on the same node as well as between nodes, e.g., to send
pre-processed data and/or prediction results to a cloud node
for storage. Humans (e.g., manufacturing experts) control the
system behaviour from the interaction layer, which is used
to model pipelines, to support training by interactive labeling
methods and to explore model explanations as a starting
point for continuous model improvement (based on interactive
learning). Finally, the repository layer stores and provides
adapters, pipeline elements, models and training data.

The following subsections describe the scope of some core
modules of this architecture (data management, model training
and adaptation, explainability, analytics pipeline management
and fog cluster management and execution) in more detail.

A. Data Management

The foundation of ensuring high quality AI models is a
good data management including data pre-processing and rich
meta-information. In industrial settings, however, obtaining
useful data is challenging due to high data heterogeneity and
the distribution of data sources over multiple locations. First,
one has to collect data from machines and sensors, often
requiring technical knowledge about the used protocols and
formats. In Fogsy, we rely on domain experts to connect data
sources themselves. As they have the best knowledge about the
meaning of data, we can best ensure high quality of data and
metainformation. For this purpose, we provide an extensible
set of semantic adapters in the repository layer controlled by
the data management module. The system instantiates those
adapters on edge nodes in the adapter runtime within close
proximity to the data source (e.g., corresponding sensors).
Furthermore, adapters are capable of reducing the frequency
of data streams which is often higher than required for the ana-
lytics task. In current solutions data is often stored in a central
storage (e.g., in the cloud). However, since compute units can
be located near the source (at the edge of the network) and
connectivity to the cloud is not always given a centralized
storage approach is no longer sufficient. In addition, not all
collected data is equally useful for model improvement. For
instance, data describing new, unseen situations could have
higher relevance than data describing the normal state of
the system. All this requires a dynamic management that is
capable of routing data in a distributed environment to the
processing nodes and deciding which data is relevant for
further training, taking the user feedback from the interaction
layer into account.

B. Model Training and Adaptation

Model management is essential for efficiently training AI
models (e.g., deep neural networks) with high predictive per-
formance, especially when only few training data is available
by (i) designing and curating a model repository for industrial
tasks as a baseline for ensuring high quality of available
models and (ii) building on state-of-the-art technologies for
neural architecture search (NAS) [6], [7] and few-shot learning
[8], [9]. The model repository structures how models are stored
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such that they can be updated when available data distri-
butions change (and model performance or -trust potentially
decreases) as well as readily reused and adapted for novel
tasks. It thus comprises necessary metadata about the training
process of available models, including hyperparameters such
as learning rate or batch size, references to the used ground
truth and provenance about when model updates occurred. The
model repository also needs to provide details about up-to-
date evaluations of the model for critical situations to foster
trust for end-users. Given a novel task, model management
encompasses the complete process from designing the pre-
diction task (e.g., classification, regression or a combination
thereof) to fine-tuning the trained models with human-in-the-
loop updates. Task design deals with successfully partitioning
a given problem, if possible, such that specialized models
get be efficiently and quickly trained based on available
models in the model repository as well as data in the data
repository. It is especially useful when targeted problems
are complex, such as quality anomaly prediction for scenes
in industrial facilities, where heterogeneous objects need to
be classified (e.g. different types of employees, production
machines, collaborative robots). Models for specialized tasks
are initialized based on available training data and learned
model parameters from previous, related tasks available in the
model- and data repositories. Few-shot learning (also referred
to as meta-learning or transfer learning) deals with efficiently
learning such an initialization, resulting in models where
few, task-dependent training samples suffice for accurate pre-
dictions. As few-shot learning approaches usually assume a
fixed model hyperparameters (e.g., the architecture of a neural
network), it is essential to combine such algorithms with NAS,
where model architectures are adapted and optimized for the

novel task to maximize accuracy. Here, multi-objective NAS
focusses on searching architectures which, besides accuracy,
also account for additional factors, such as computational
resources required for training or prediction.

C. Explainability

After specialized AI models have been learned, interactive
machine learning [10], [11] enables efficient fine-tuning by
incorporating end-users into the training process. By gener-
ating post-model explanations [12], [13] of the models (e.g.
heatmaps for image processing tasks), the model management
system can show the end-user what parts of the input (e.g. an
image) the models focussed on in order to enable to reward or
penalize the system for different used parts [11]. Finally, model
management fosters more expressive explainability by generat-
ing contextual hypotheses of available model predictions, such
that end-users can understand the reasoning of the system.
Contextual hypotheses can be realized as causal graphs [14],
enabling to infer correlation and causation among available
specialized model predictions. By validating or invalidating
individual nodes of the causal graph, the end-user can interact
with the available hypothesis in order to change the eventual
outcome as well as to train the system.

D. Analytics Pipeline Management

Once models are trained, optimized for edge operation in
terms of size, speed, throughput as well as stored in a model
repository, they can be leveraged and deployed as part of
user-defined analytics pipelines. To this extent, our application
model follows a dataflow programming pattern [15], where
pipelines are composed of (i) pipeline elements, that are
each responsible for a specific task, e.g., data source/sink
adapters, numerical filters, or trained models, and (ii) their
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interconnections based on the publish-subscribe pattern. The
analytics pipeline management receives inputs from the in-
teraction layer, where pipelines are modeled and refined by
users, and further orchestrates and configures them. Thereby,
this component validates for semantic correctness, selects a
model for the chosen task (e.g, classification), and outputs a
pipeline description including its requirements. In times, where
industrial companies are faced with inherent dynamics and
changes in their markets, e.g., shorter product life cycles in
the domain of manufacturing, it is inevitable to also reflect
and incorporate such modularity, flexibility and adaptability
in the analytics workflow.

E. Fog Cluster Management and Execution

Fogsy builts on a unified fog cluster management ap-
proach [5] spanning along the cloud-edge continuum by ab-
stracting the necessity of manually managing the heteroge-
neous and potentially large-scale geo-distributed infrastructure
as depicted in the execution layer. At the edge, compute
nodes can typically access sensors and actuators as they are
deployed within the corporate network to retrieve data or
trigger actions as a result of predictions, e.g., sorting out a
bad part on the basis of an autonomous visual inspection
pipeline. Meanwhile, the cloud functions as a centralized
scalable backbone to store analyzed and aggregated data, to
(re-)train, adapt, optimize and store AI models for serving and
to provide a control plane for system operators to monitor
the fog cluster’s state, to manage nodes and resources and
orchestrate and deploy containerized analytics pipelines. Thus,
each infrastructure node is equipped with a node controller,
that (i) initially registers node-specific, contextual information
(e.g. IP, geolocation, hardware, interfaces to sensors/actuators,
etc.) at the central fog cluster management and continuously
updates them, (ii) serves as a proxy between deployment
decisions and local container runtime, (iii) thus triggering
on- and off-loading actions of dedicated pipeline elements. A
scheduler then maps the pipeline description and requirements
on the underlying infrastructure specifications registered by
the individual node controllers, by considering user-defined
QoS, contextual information (e.g. priority, privacy), hardware
requirements and decides, where to best place individual
adapters and pipeline elements, e.g., the optimized AI model
for inferencing. As a result, the pipeline execution graph is
used for the actual deployment of pipeline elements on the
chosen nodes by informing the dedicated node controllers.

IV. CONCLUSION AND FUTURE WORK

Industrial AI is receiving great attention due to a manifold
of reasons including the accessibility of data, advancements
in hardware and the availability of AI software libraries.
However, the adoption of AI in the manufacturing sector is
still hindered by a number of reasons, which are focused
around human involvement, model adaptation and deployment.
In this vision paper, we presented Fogsy, a holistic industrial
AI management system with focus on domain experts ranging
from data connection over model training and deployment

on the edge, to continuously optimizing models based on
user interaction. Future work will evolve around creating a
prototypical implementation of the described approaches and
evaluate them based on real-world use cases from the industry.
Additionally, we plan on integrating the outcome of our work
in the open source project Apache StreamPipes (incubating) 3,
which was originally initiated by the authors of this paper.
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Abstract—Blockchains and decentralized file systems like the
InterPlanetary File System (IPFS) are frequently named as
means to share data among different devices and stakeholders
in Internet of Things (IoT) scenarios. Very often, the idea is to
connect lightweight IoT-based data sources, e.g., sensor nodes,
to a ledger or a file system via a Single-board Computer (SBC),
i.e., using computational resources at the edge of the network for
providing an interface between the data sources and the ledger
or file system.

However, SBCs like a Raspberry Pi naturally possess only
limited resources, and therefore may not be suitable to provide
an interface between IoT-based data sources and decentralized
ledgers and file systems. Within this paper, we evaluate the
applicability and performance of common SBCs, namely the
Raspberry Pi 3, the Odroid-XU4, and the Intel Galileo Gen2,
when used in order to run IPFS and Ethereum client software.

Index Terms—Edge computing, blockchain, IPFS, single-board
computer

I. INTRODUCTION

The Internet of Things (IoT) is a worldwide network of in-
terconnected devices, which are able to process and store data,
and in many cases provide sensor and actuator capabilities [1].
In many IoT scenarios, data distribution and data storage are
core functionalities, and different standards and protocols like
MQTT are used to distribute data from the sources to the
sinks [2]. Recently, the utilization of decentralized file systems
like the InterPlanetary File System (IPFS) [3] has been named
as a promising means to store data in a distributed way, thus
avoiding bottlenecks and relying on a single data storage,
e.g., [4], [5]. In many cases, IPFS is combined with blockchain
technologies in order to store data in a tamper-proof way, again
without the need to rely on a trusted third party, e.g., [6]–[10].

IoT devices like sensor nodes are usually constrained with
regard to the available computational power, and/or energy-
restricted, since they rely on batteries. Hence, IoT devices are
in many cases not powerful enough to directly interact with
a blockchain or a decentralized file system [11]. Also, IoT
devices may not offer the full software stack necessary to run
according client software. In order to use IPFS and blockchains
together with IoT devices, a gateway between the devices and
the blockchain and IPFS, respectively, is needed. For this, it
is very often proposed to make use of cheap yet powerful

This work is partially funded by COMET K1, FFG -– Austrian Research
Promotion Agency, within the Austrian Center for Digital Production.

devices like Single-board Computers (SBCs). Examples for
SBCs are the different versions and variants of the Rapsberry
Pi, Intel’s Galileo and Edison, and Nvidia’s different Jetson
versions [12].

However, SBCs again are not necessarily providing a lot
of computational resources, so using them as a middle layer
between the IoT devices at the edge of the network and the
blockchain or IPFS may be too demanding for the SBCs.
Hence, as some preparatory work for our research on a fog-IoT
middleware which is able to store data items in IPFS and add
the according hashes of the data items to an Ethereum-based
blockchain, we have conducted some experiments with three
SBCs (Raspberry Pi 3, Odroid-XU4, Intel Galileo), showing
the resource consumption of standard APIs for IPFS and the
Ethereum blockchain.

Within this paper, we present some preliminary results of
these experiments. For this, we will give a brief overview of
IPFS and blockchains in Section II. Afterwards, we present
preliminary results of the experiments in Section III, and
conclude the paper in Section IV.

II. BACKGROUND

The IPFS [3] is a Peer-to-Peer (P2P) distributed file system.
It combines concepts of Distributed Hash Tables (DHTs),
the filesharing system BitTorrent, the Self-certifying File Sys-
tem (SFS), and the version control system Git. The aim of
the IPFS project is to connect all computing devices with one
common file system. Furthermore, the nodes in the network do
not have to trust each other and no user or node is privileged.

The unique identification of the content stored in the IPFS
is done by the multihash of the data item. The multihash is
a specific format which adds meta-information to the hash of
the content. Hence, the multihash comprises a function code
which specifies the hash function, the digest length, and the
digest bytes.

As mentioned in Section I, the utilization of the IPFS to
store (and distribute) IoT data has frequently been named in
the related work, very often in combination with blockchain
technologies. Generally, a blockchain can be described as a
public, distributed ledger, which is built on a P2P network
where security is achieved by cryptography. All transactions
executed in this network are recorded on this ledger and stored

20



BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

BlockHash

Tx Tx Tx...

PrevBlockHash

TimeNonce

MerkleRoot

Fig. 1: Simplified Example of a Blockchain (Source: [13])

on every node in the P2P network. Basically1, the ledger looks
as depicted in Figure 1. As it can be seen, several blocks are
linked to each other like a chain of blocks. This data structure
is the reason for the name blockchain. In the following, we
will describe some fundamental aspects of blockchains. For a
more detailed description, we refer to [13].

Transactions can be seen as an abstract representation of
tokens or other elements in a blockchain. Every transaction
has a hash to identify it and a list of inputs and outputs. The
input list is used to reference outputs of previous transactions.
Notably, an output can only be used as input once in the whole
chain. Due to the linking of the transactions, the history of
transactions can be traced back.

Besides the transactions, a block also contains a header
which comprises several elements. First, the BlockHash is the
hash value of the block and the PrevBlockHash refers to the
BlockHash of the previous block. With the PrevBlockHash
as a pointer, the data structure of the chain is like a linked
list. Therefore, the order of the blocks and transactions can be
determined. Furthermore, the blockchain is tamper-proof since
the hash depends on the block’s content. If some data changes
within a block, the hash changes too and thus the references
are not correct anymore, which results in an invalid chain.
Thus, data manipulations in the data of existing blocks can not
be carried without recognition by other peers in a blockchain
network.

Because of this feature, blockchains can be used in order to
trace monetary transactions in a fully decentralized way – as it
is done in cryptocurrencies like Bitcoin [14] or Ethereum [15].
However, blockchains can also be used for other use cases.
Especially, second-generation blockchains like Ethereum allow
to store almost arbitrary data, however, potentially for a quite
high price. This is the reason why blockchain technologies
have been frequently named as an important way to share
data in IoT settings [16], [17].

As discussed in Section I, IoT devices like sensor nodes
are usually not powerful enough to directly participate in a
blockchain, e.g., to store data items. This makes it necessary to
utilize a gateway like an SBC to run the client software needed

1It should be noted that the description here follows the Bitcoin protocol,
which is also the foundation for other blockchain protocols, e.g., Ethereum.
There are also blockchains which make use of a different basic structure.

to provide interactions between the data sources and the IPFS
and the blockchain. Thus, the SBC provides the means of an
edge device, which is used to offload computational tasks from
the IoT devices. This is a typical use case for SBCs in fog
environments [18].

Within the next section, we will evaluate the applicability
of SBCs in such settings.

III. EXPERIMENTS

A. Setup

For our experiments, we have chosen three typical SBCs,
providing different levels of resources. The SBCs are listed in
Table I. To conduct our experiments, we have implemented
a software stack for each SBC, as depicted in Figure 2. The
software stack contains services to integrate and simulate data
items from IoT-based data sources, and to store and distribute
these data items using IPFS, a blockchain which is based on
the Ethereum protocol, and MQTT. For this, the software stack
contains the following components:

• Sensor Driver: Provides an interface to a sensor con-
nected to the SBC. This allows to store and distribute data
from real-world sensors. In our experiment, the sensor
driver has been implemented for the Raspberry Pi, but
not the other SBCs.

• Virtual Driver: Is used in order to simulate data items
which should then be stored and distributed. Using the
virtual driver, we can specify the amount of data sources
and the amount of sent messages, allowing us to use the
virtual drivers in order to execute reproducible perfor-
mance tests. To be able to test varying loads, we use
virtual drivers with 2, 7, 11, and 22 data sources in the

Hardware

Opera�ng System

Sensor Driver

IoT Middleware

Geth IPFS Mosqui�oVirtual Driver

Fig. 2: Setup of an IoT Device.
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TABLE I: Selected IoT Devices

Raspberry Pi 3 Model B Odroid-XU4 Intel Galileo Gen 2
Chipset Broadcom BCM2837 Samsung Exynos5422 X1000
CPU Quad Core @1.2GHz ARM Cortex-A53 Quad Core @2GHz ARM Cortex-A15 Single Core @400MHz Intel Quark

Quad Core @1.4GHz ARM Cortex-A7
Memory 1GB LPDDR2 2GB LPDDR3 256MB DDR3
Ethernet 10/100 MB/s 10/100/1000 MB/s Available
Storage MicroSD MicroSD, eMMC 5.0 MicroSD
OS Raspbian 8.0 Ubuntu 18.04 Yocto-built Linux

experimental setup. In the current setup, one value per
data source is sent every 5 seconds. In total, 60 values
are sent, leading to an overall duration of 5 minutes.

• Geth implements the Ethereum protocol and serves as
entry point into the Ethereum-network, i.e., main, test
or private. Geth is run in “light client” mode, i.e., only
the headers of the blocks are synchronized and the
verification is reduced.

• IPFS provides the means to interact with IPFS. For this,
we apply the go-ipfs client and initialize the client with
the “lowpower” profile, which is provided to reduce the
overhead.

• Mosquitto is installed as MQTT software in order to offer
an alternative means for data distribution.

Apart from the listed software, a Python and Java runtime
environment is also installed on the respective SBC. Java and
Python are needed since our envisioned fog-IoT middleware
uses these programming languages.

Importantly, the setup already led us to the first important
result of our experiments: Since the Intel Galileo does not
provide Multimedia Extension (MMX) technology, both Geth
and IPFS are not running on this device. Hence, an Intel
Galileo is not suitable to used in an IoT scenario where data
should be stored and distributed via the Ethereum blockchain
or IPFS.

We use the described setup in order to evaluate the CPU
Usage by Process. To measure the performance, nmon2 is
applied. As it can be seen in Table I, both the Raspberry Pi 3
and the Odroid-XU4 provide quad-core CPUs. Measurements
for the CPU utilization are done in nmon with 100% for one
core, i.e., with four cores, the CPU utilization may go up
to 400%. All experimental runs have been conducted three
times. The preliminary results presented in the next subsection
therefore provide the average numbers of these runs.

B. Preliminary Results

This section looks at the CPU usage per process whereas
the processes Geth, IPFS, Java, Mosquitto and Python are
considered. Basically, the measurements for these processes
are done every second, however, in the resulting data set the
measured timestamps are quite irregular. The reason for this
is that the processes are only documented when they use
a significant amount of CPU during the specified interval.
As written above, nmon calculates the CPU utilization for

2http://nmon.sourceforge.net/pmwiki.php
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Fig. 3: CPU Usage by Process on Odroid-XU4.

different cores, i.e., a multi-threaded process may consume
more than 100% of one core.

Figure 3 shows the results for the Odroid-XU4 for 2 and
11 data sources, respectively. Notably, despite having more
computational resources than the Raspberry Pi 3, the usage
of 22 data sources led to the loss of many data items and is
therefore not recommended. The first thing to be noticed is the
by far highest CPU usage of the IPFS process. The median
of the experiment with 11 data sources is 341.77%. If only
2 data sources are needed, the CPU usage drops significantly,
namely to 170.71%. The second highest usage is done by the
Java process, which executes the fog-IoT middleware and has
an approximate median of 99%. All other processes do not
have a significant usage.

The same behavior of the processes can be observed on the
Raspberry Pi. Figure 4 shows the usage of the processes where
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IPFS has also by far the highest CPU usage. The maximum
usage with 11 data sources is 398.98%3. The median in
the 22 data sources experiment is 241.21% and in the 11
data sources experiment 262.47%. This can actually be traced
back to measurement inaccuracies, i.e., there is no significant
difference if 11 or 22 data sources are used.

Due to the results of the performance evaluation, it can be
said that IPFS is not a good option to be used on resource-
restricted devices like SBCs, while the overhead provided by
Geth (running in light client mode) is very small. We have
also shown that the number of data items to be added to IPFS
increases the resource demand by a very large degree for the
Odroid-XU4, but not for the Raspberry Pi 3.

IV. CONCLUSIONS

SBCs are frequently used in IoT scenarios in order to con-
nect to data sources, while IPFS and blockchain technologies
have gained quite some attention by the research community
as means to store and distribute IoT data. However, as has
been shown in this paper, using standard client software on
SBCs to interact with IPFS is not a good option. Therefore,
it is necessary to find more lightweight ways to interact with
IPFS.

3Notably, the maximum usage is not shown in the figures, since the figures
represent average numbers over three runs.

Notably, the experiments conducted so far should be seen as
preliminary. Apart from the tested devices, there are of course
further SBCs, which may be applied in IoT and fog settings
and are therefore worth being investigated. This includes, e.g.,
the different variants and versions of the Raspberry Pi, the
Banana Pi, the Nvidia Jetson, and many more. Also, the
results may be different if other programming languages (and
therefore APIs and client software) are applied.

We have only shown some preliminary results in this paper.
We are currently preparing our full experimental outcomes for
a more detailed analysis in a follow-up paper.
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Abstract—Almost every author of scientific publication dealing
with the topic of fog computing mentions the low latency when
executing computation tasks in the fog nodes as an advantage
over executing in the remote cloud. However, this term is often not
further defined and aspects which are summarized in it are not
clarified. This paper divides the term latency in fog computing
into six types with a total of eight sub-types. The aim of this
division is to provide an overview of the various aspects of latency
and thus to achieve a common understanding of this term.

Index Terms—fog computing, edge computing, latency

I. INTRODUCTION

Fog computing (the term edge computing is used inter-
changeably by some authors [8]) is a concept in which
computing, storage, and network resources are made available
distributed at the edge of the network instead of providing
resources in a centralized way like in central cloud computing.
Those resources are called fog nodes and they are provided
in proximity to the end devices. Distributed provisioning of
resources close to end devices enables low-latency access
to data and services for these end devices [3]. In addition,
fog computing enables processing sensor data close to its
respective sources so there is no need to send them through
the entire network to the cloud for analyzing [8]. However, it
is worth mentioning that many authors in the literature have
a different understanding of the term latency in the context of
fog computing. One reason for this is that some publications
focus on fog nodes [5], while others implicitly include into
their consideration the concept of cloud computing, which is
related to fog computing [6]. Another reason for a different
definition of latency is the particular use case that the authors
describe.

The contribution of this paper is to provide an overview of
various aspects of latency in fog computing. The inclusion or
exclusion of these aspects should be clarified for an approach
to achieve a common understanding of the term latency in a
given context among authors and readers.

A distinction is made between six different types of latency
in [2]. Those types are 1)“Time of data transfer between end
device and fog node”, 2)“Time of executing a task in the fog
node”, 3)“Time of executing a task in the end device”, 4)“Time
of executing a task in the cloud”, 5)“Time of data transfer
between fog node and cloud” and 6)“Time of migration
of applications between fog nodes”. The subdivision that is
shown in the following section restructures and refines the
types of latency presented in this paper.

II. TYPES OF LATENCY IN FOG COMPUTING

Fig. 1 provides an overview of different types of latency
in fog computing. The architecture which fog computing is
based on essentially consists of three layers. The layer shown
on the left-hand side includes the cloud, the layer shown on
the right-hand side contains the end devices. In between is
the layer of fog nodes. These three layers must be taken into
account when considering latency in fog computing. For this
reason, these three layers are shown at the top of the figure.
For each computation that occurs the decision must be made,
whether it can be executed in the end device itself or whether it
needs to be offloaded to the cloud or the fog nodes. Reasons
for offloading from end devices include reduced processing
time or decreased energy consumption. Therefore, “Request
processing in the cloud” and “Request processing in fog
nodes” as well as “task execution in end devices” are types
of latency. Besides the time for executing a task on one of
the three layers, the time for data transmission between these
layers has to be considered, therefore the figure contains the
types “Data transmission between cloud and fog nodes” and
“Data transmission between fog nodes and end devices”. The
following subchapters describe in detail the types that are
shown in the diagram. Since the layer of the fog node is the
focus of this paper, processing within the cloud and within the
end devices is not considered in detail.

A. Request processing in fog nodes

Baresi et al. define the three terms acquisition delay, allo-
cation delay, and execution delay, which make up the latency
for processing a request send by the end devices to the fog
nodes [1]. Acquisition includes downloading and installation
of services by the fog nodes. By downloading services on
demand, resources can be saved when they are not requested.
Allocation means the distribution of downloaded services
over a set of fog nodes. Execution delay occurs for a task
after acquisition and allocation. Depending on the type of a
fog node, more can be added to these 3 types of latency.
For example, Zhang et al. describe a fog node consisting
of a coordinator and several servers [12]. The coordinator
distributes incoming tasks over the servers. Additional latency
can occur when data is transferred between the coordinator
and the servers.
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Fig. 1. Overview of different types of latency in fog computing

B. Data transmission between fog nodes

Another type of latency occurs when transmitting data
between fog nodes. There can be several reasons for data
transfer between fog nodes. One example is the formation
of a cluster of fog nodes to bundle their resources and
distribute computational tasks over them [7]. The objective of
clustering could be to minimize energy consumption during
task execution. It is also possible that the resources provided
by a fog node are not sufficient to execute a task. In this case,
the task could be offloaded to a neighboring fog node [9].

In addition, there is the case that the end device is assigned
a virtual machine on the fog node that stores its data and
processes its requests. If the end device moves away from this
fog node, the associated virtual machine could be migrated to
a new fog node to follow the route of the end device. Another
type of latency also arises with such a migration [10].

C. Data transmission between fog nodes and end devices and
between cloud and fog nodes

In addition to the latency for executing a task, there is
latency for the transmission of data between the three layers.
On the one hand for the transmission between the end device
and the fog node and on the other hand for the transmission
between the fog node and the cloud [4]. The latency for data
transmission is made up of two parts. The first part is the
transfer of the data. This includes the time between the sending
of the first symbol by the sender and the reception of the last
symbol by the receiver. The second part includes the time that
the sent data is in the buffer [11]. The data can be in the buffer
of the sender before sending (if the limit of the bandwidth is
reached) or in the buffer of the receiver after sending (if the
latter is not yet ready for processing).

III. CONCLUSION AND FUTURE WORK

This paper provides an overview of different types of latency
that arise in and during transmission between the three layers

of fog computing. To achieve a common understanding of the
latency in a use case, it can help to go through these types and
make clear which ones are relevant in the respective use case.
This relevance depends on the one hand on the layers involved
and on the other on the type of fog node concerned. For
future work a distinction between the different types of energy
consumption can be considered, since for energy consumption
similar types can be identified as for latency [2].
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