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Abstract—Business Process Management Systems (BPMS) need to be able to take into account the fluctuating demand for
computational resources during the execution of business process activities. Today, BPMS rely on the leasing and releasing of virtual
machines (VMs) on cloud resources, which leads to a rather coarse-grained allocation of computational resources. This may result in
an increase in the execution cost, flexibility restrictions, and a negative impact on the Quality of Service.
In order to overcome these drawbacks, we introduce the Vienna Platform for Elastic Processes on Containers (ViePEP-C). ViePEP-C
is an elastic BPMS that uses containers instead of VMs for the execution of business process activities on cloud resources, leading to a
more fine-grained execution environment. To achieve this, ViePEP-C offers cloud controller, monitoring and business process
execution functionalities and provides a platform for different resource and task scheduling algorithms. To evaluate the benefits of
ViePEP-C, we further present a resource and task scheduling algorithm and show that, by using containers as execution environment,
the execution cost can be decreased by over 20% (compared to a state-of-the-art VM-based scheduling algorithm) while considering a
high service level.
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1 INTRODUCTION

BUSINESS processes are an integral part of any type
of organization, including product ordering, complex

manufacturing [1], [2], and various other kinds of processes.
Business process management (BPM) and BPM systems
(BPMS) support organizations with a flexible approach of
composing services [3] by the help of control structures such
as decision points, concurrent paths or loops [4], and by
providing components for the execution and monitoring of
business processes [5].

It is a challenge for a BPMS to deal with changing
resources requirements during the execution of processes,
which might leave the system often in a state of over-
or under-provisioning of computational resources [6]. Over-
provisioning of resources that are not utilized entail un-
necessary cost, while under-provisioning harms the quality
of services and leads to the denial of service in the worst
case [6]. Cloud computing can help to address these prob-
lems, when designed in a way that is appropriate for the
application at hand. Concepts of utilizing cloud computing
for BPMS are referred to as elastic BPMS (eBPMS) and
enacted processes are called elastic processes [6].

State-of-the-art eBPMS as suggested by, e.g., [7], [8], [9],
apply virtual machines (VMs) as computational entities for
the execution of elastic processes. However, VMs as heavy-
weight entities have disadvantages in terms of deployment
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and start-up time, because of the requirement of an own
operating system. Those disadvantages lead to increased
deployment cost and reduce the flexibility and ad hoc elas-
ticity [10]. Containers promise to provide various advantages
over VMs such as no need for an own operating system [11],
[12]. This leads to a more lightweight solution that deploys
faster and, thus, adapts faster to changing requirements [13],
[14], [15].

As presented in different other publications, e.g., [7],
[16], [17], [18], the usage of resource and task scheduling
algorithms during the execution of processes further lower
the cost of process execution. To reap the benefits of con-
tainers, such as exemplified for data stream processing [19]
or service-oriented computing [20], [21], appropriate algo-
rithms have to be devised. These algorithms have to be
able to cope with lightweight containers as entities of a
potentially much higher amount as compared to coarse-
grained VM-based solutions.

In this paper, we focus on how container technologies
can be used to execute processes in a cost-efficient way.
Our contribution is twofold. First, we present the novel
Vienna Platform For Elastic Processes on Containers (ViePEP-C),
which represents a generic architecture that offers support
for container-based scheduling of business processes and
their activities. Second, we specify a novel scheduling algo-
rithm for optimizing the execution of business processes and
container deployments. The algorithm, called GeCoVM, is
based on a genetic algorithm. Our evaluation demonstrates
the efficiency of our algorithm by comparing it with state-
of-the-art VM-based approaches in terms of the accruing
amount of cloud resources and deployment times.

The remainder of this paper is organized as follows:
Section 2 presents a motivational scenario to define the
requirements of an eBPMS. In Section 3, we discuss relevant
background information. Subsequently, in Section 4, we
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describe the architecture of our eBPMS. The scheduling al-
gorithm and the implementation of ViePEP-C are presented
in Sections 5 and 6, respectively. Afterwards, we discuss the
results of our evaluation in Section 7. Section 8 presents
the related work and Section 9 concludes this paper and
discusses our future work.

2 MOTIVATIONAL SCENARIO

To motivate our work, we use a scenario from the man-
ufacturing industry. The scenario is taken from use cases
observed in the European H2020 project CREMA (Cloud-
based Rapid Elastic Manufacturing) [2]. The goal of CREMA
is to offer Cloud Manufacturing-based, inter-organizational
manufacturing processes. Cloud Manufacturing applies ba-
sic principles from the field of cloud computing and virtual-
ization in order to achieve agile and scalable manufacturing
processes [22], [23]. In brief, this is done by porting well-
known approaches from the field of cloud computing to
the manufacturing domain, so that it is possible (i) to lease
and release manufacturing assets in an on-demand, utility-
like fashion, (ii) to achieve rapid elasticity of manufacturing
processes through scaling leased assets up and down, and
(iii) to achieve pay-per-use through metered services.

In Cloud Manufacturing, manufacturing processes are
composed from single process activities represented by their
digital twins, e.g., a virtualized manufacturing machine [24].
After a digital twin has been modeled, it can be used as a ser-
vice in manufacturing processes, thus allowing to integrate
real-world data (e.g., from sensors) into a virtual represen-
tative of an asset. In these service-oriented processes, single
manufacturing assets are integrated in a similar way as
software and platform services are provided following the
Software-as-a-Service (SaaS) or Platform-as-a-Service (PaaS)
paradigms [25]. In addition, manufacturing processes may
include software services which have no representation on
the shopfloor, e.g., services for data analytics, automated
ordering of parts, creation of invoices, model rendering,
image processing, or product and process optimization.
These software services can reach from simple calculations
to more complex and long-running analytical tasks.

As it can be seen, it is therefore necessary and possible
to execute and monitor real-world manufacturing processes
by executing the single software services representing the
activities in a process model. Notably, in order to provide
and analyze real-time monitoring data about the status of
a process instance, each single manufacturing process is
represented by a software-based counterpart, i.e., there is
a software-based process instance for each real-world man-
ufacturing process instance. Thus, software-based processes
act as digital twins of real-world manufacturing processes.

A graphical representation of our motivational scenario
is illustrated in Fig. 1. As an example, we consider a
company, called CarOne, that produces car parts, e.g., seats
or doors. CarOne has several suppliers and sub-companies
that produce different parts and perform assembly steps.
For the daily business CarOne uses a vast amount of pro-
cess models, e.g., that defines the steps that are needed
to assemble the product or handle warehouse logistics.
Processes range from small short-running processes, like as-
sembling a connector, to more complex long-running inter-
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Fig. 1. Motivational Scenario

organizational processes, like building a car seat. It has to
be noted that to simplify Fig. 1, the depiction only contains
a small example process model and only a sub-part of all
supplier companies. In reality, CarOne is part of an exten-
sive process network which includes several suppliers. Also,
the figure shows a quite static setting. In reality, process
models need to be changed and process instances need to be
adapted, e.g., because suppliers are not available any longer
or there have been delays in a particular supply chain.

Since CarOne has to be able to compete with its competi-
tors, it offers the possibility of ordering customized parts
with a very short time for delivery and in small quantities,
as well as, products in large quantities and with some lead
time. This can lead to high fluctuations regarding the num-
ber of orders especially during peak times, e.g., Monday
morning when several orders come in, and off-peak times,
e.g., during the holidays. Products are build to order, i.e.,
once an order request has been received, a process model is
instantiated [2].

In addition to the product orders, CarOne gets supplies
for their production delivered at specific times, e.g., Tuesday
around lunchtime. To store those supplies in the warehouse
different processes are used, e.g., optimization of the ware-
house or route calculation for the autonomous forklifts.

Thus, the company has to be able to cope with a poten-
tially very large (yet volatile) number of process instances
with different priorities at different points in time. This can
lead to high fluctuations with regard to the need for compu-
tational resources, e.g., to break down the customer orders
into raw materials, optimize the manufacturing schedule,
or create potential cascades of replenishment orders. The
lightweight feature of containers provide here a valid solu-
tion to cope with these high fluctuations.

Independent of the current order situation, CarOne has
to fulfill different quantitative constraints. For instance, each
order contains a defined deadline, i.e., the point in time until
when the product has to be done.

To sum up the motivational scenario, we can derive the
following requirements which need to be fulfilled by an
eBPMS in order to support a Cloud Manufacturing-enabled
process landscape:

• To dynamically react to the ever-changing needs for
computational resources, cloud resources should be
used for the execution of the process activities.
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• Process instances may be enacted at any time.
• The execution of the process instances should con-

sider Service Level Agreements (SLAs), e.g., a dead-
line until when the execution of a process instance
has to be done. If the SLAs are violated, penalty cost
may occur.

• For a resource- and cost-efficient execution of the
processes, resource allocation and task scheduling
optimization should be provided.

• The available cloud resources should be shared and
optimized among all running process instances.

• The process instances and process activity execution
should be monitored and corresponding counter-
measures should be performed if required, e.g., if
there have been delays in a process activity.

It has to be noted that the presented scenario is only for
explanation purposes and should not be seen as exhaustive.
Nor is the approach presented in this paper exclusively ap-
plicable to the manufacturing domain. In fact, the presented
approach can be applied to any domain with an extensive
process landscape, e.g., the Smart Grid [26], financial indus-
try [27], or eHealth domains [28].

3 BACKGROUND

3.1 Containers
As briefly mentioned in Section 1, a container is a
lightweight, virtualized entity that does not need an own
operating system. Instead, for each container, computational
resources, e.g., physical hosts or VMs, are partitioned and an
isolated user space instance is created that shares resources
and an operating system with other containers [11], [12],
[14]. Similar to a VM, a container is a configurable solution
to execute software services in a virtualized manner, but in a
resource-wise cheaper way due to the transparent operating
system. This resource saving results in shorter startup, shut-
down and migration times compared to rather heavyweight
VMs. As shown in [29] the container deployment time can
be six times lower than the one from a VM, and the memory
footprint, i.e., the incremental memory cost of adding a
container or VM, of a container can be up to eleven times
lower than the one from a VM.

State-of-the-art container technologies enable to host
potentially hundreds of containers on one physical ma-
chine [13]. These containers allow to offer self-contained
services in an isolated computational environment. One
popular use case for containers is hosting microservices.

For each container, a container image exists that contains
the required configuration information and the executable
software, i.e., the actual software of the service (e.g., a user
login service) [11]. Container images are typically stored in a
container repository. A user, or a system, can pull a container
image from the repository and run it on a host system.

In comparison to a VM image, i.e., similar to a container
image but on VM level, the size of a container image is up to
three times smaller [30]. This smaller image size decreases
the deployment time of a container in comparison to a VM.

3.2 Elastic Business Process Execution
”A business process consists of a set of activities that are per-
formed in coordination in an organizational and technical

environment” [5]. The order of the process activities is thereby
defined in a process model. The process model structure can
compose sequentially ordered process activities, as well as,
more complex structures. More complex structures are, e.g.,
parallel or exclusive branches, or loops [4]. A parallel branch,
called AND-block, is started by an AND-split and closed by
an AND-join. The same goes for an exclusive branch, called
XOR-block, which is started by an XOR-split and closed by
an XOR-join.

If a process model is enacted, a new process instance is
generated from the model. By using elastic cloud resources
for the process execution, elastic processes are realized [6].

To execute a process activity, a software service is used.
Each service is deployed in a container, resulting in a service
instance. This service instance is then invoked during the pro-
cess instance execution to fulfill a specific process activity.

3.3 Genetic Algorithms
A genetic algorithm is an iterative process that uses the
principle of an evolutionary process by applying the genetic
operations selection, crossover, and, mutation on each gener-
ation of possible solutions to a problem [31]. Each possible
solution is called a chromosome, which is a composition
of several genes. A composition of several chromosomes is
called a generation. The size of a generation, i.e., the amount
of chromosomes in a generation, is called population size.

During each iteration, a fitness function calculates a fitness
score for each chromosome. This fitness score determines
how well a given problem (e.g., process activity scheduling)
is solved by a chromosome. This fitness score is used by
the selection operator to select a subset of the generation
as parent chromosomes for the next iteration. These par-
ent chromosomes are then altered by the mutation and
crossover operators to form a new generation of chromo-
somes. While the mutation operation changes random genes
of a chromosome, the crossover operator swaps some genes
of two chromosomes to form a new chromosome. In addi-
tion, each new generation gets a small number of unaltered
elite chromosomes, i.e., chromosomes with the best fitness
score, from the former generation.

The result of this iterative approach is the chromosome
with the best fitness score that is achieved when a stop
criterion is reached. With this approach, a genetic algorithm
browses a large search space to find a near-optimal solution
in polynomial time [32].

4 DESIGN

To address the requirements defined in Section 2, we present
ViePEP-C, an eBPMS that uses cloud resources for the
execution of business processes.

4.1 General Approach
For the execution of the software services that compose
elastic business processes, ViePEP-C uses containers on
VMs which are hosted on cloud resources. By using VMs
for the deployment of the containers, ViePEP-C becomes
independent from cloud providers, since the containers can
be deployed to arbitrary VMs. Due to the isolated user
space characteristic of containers, one VM can host several
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containers and still provides an isolated environment for
each container, respectively its hosted service. This is not
possible in a VM-based approach without containers since
services executed in parallel on a single VM are not isolated
from each other. Services executed in parallel on a VM with-
out containers can lead, for instance, to conflicting library
versions or filesystem accesses.

The general ViePEP-C approach is as follows: Clients are
able to request a business process execution from ViePEP-C.
Based on this request, the platform creates a process instance
of the corresponding business process model. Subsequently,
ViePEP-C analyzes the process structure (i.e., the given
order of process activities) and SLA requirements, e.g.,
the process execution deadline, and creates a provisioning
plan. The provisioning plan defines how the containers are
allocated on VMs and how those VMs are hosted on cloud
resources. The creation of the provisioning plan is done by
a resource and task scheduling algorithm.

Since ViePEP-C can run multiple process instances con-
currently, it considers all currently running and not yet
running process instances, the corresponding SLAs, and the
available cloud resources to create the provisioning plan.

After the provisioning plan is defined, ViePEP-C per-
forms the tasks defined in the plan. Doing this, ViePEP-C
deploys the required VMs, instantiates the container images
on the VMs, and invokes the service instances on the con-
tainers. ViePEP-C further monitors the service instances and
the execution environment, i.e., the containers and VMs. If
the monitoring observes an unexpected behavior, e.g., fail-
ure of a service instance or a container, ViePEP-C performs
corresponding countermeasures to guarantee the correct
execution of the process instances. If required, ViePEP-C
updates the provisioning plan during process runtime, e.g.,
if a new process execution request arrives or if a monitored
event requires an update of the provisioning plan.

After a service instance completed its task, ViePEP-C
continues with the execution of the subsequent process
activity according to the provisioning plan. This is con-
tinued until all process activities of a process instance are
completed, which results in the completion of the process
instance and in the notification of the client (e.g., a customer
or autonomous machine) that the execution is finished.

ViePEP-C belongs to the class of domain-agnostic
process-aware information systems due to its universal
approach and the generalized usability of business pro-
cesses [1]. This means that ViePEP-C can be used in many
different domains with an intensive process landscape,
e.g., cloud manufacturing [2] (as discussed in Section 2),
eHealth [28], or the financial industry [27].

Fig. 2 presents the high-level architecture of ViePEP-
C. The architecture of ViePEP-C is based on our former
work, called ViePEP [7], [33], [34]. Since ViePEP is not able
to utilize containers to enact business processes, ViePEP-C
constitutes a complete revision of the software. Several com-
ponents had to be adapted, completely rewritten or were
obsolete due to the new container-based approach. Which
component had to be adapted or rewritten is depicted in
Fig. 2 by different shadings.

As can be seen in Fig. 2, the platform consists of five
top-level entities. Those entities are Client API, eBPMS,
Cloud Environment, Message Queue, and Container Registry.

In the following subsections, we will discuss those entities
in detail. Notably, all components in ViePEP-C are loosely
coupled and can be easily replaced by other implementa-
tions.

4.2 Client API

The Client API allows customers during design time to
model and manage business processes. Moreover, the Client
API is used to request the execution of processes. Process
models are reusable, i.e., they can be stored and instantiated
several times, even concurrently and by different process
owners. ViePEP-C allows clients to model processes which
include sequences as well as more complex process patterns,
i.e., AND-blocks, XOR-blocks, and loops.

Besides the explicit request of process executions, an
execution request can also be initialized by a triggered
event, e.g., a customer places an order, or in predefined
intervals, e.g., to automatically perform quality tests every
five hours.

Each process execution request requires the presence of
an SLA. Since the process execution can happen in an ad hoc
manner or follows an interval approach, those SLAs can be
set for each instantiation separately or defined as a default
value for a process model. The default values are then used
as long as no separate SLA has been defined for a particular
process instance.

4.3 eBPMS

The second top-level entity is the eBPMS, which is re-
sponsible for the management of process instances and
the execution environment, i.e., the cloud-based compu-
tational resources. For optimizing the utilization of cloud
resources and to minimize the execution cost, the eBPMS
entity performs resource allocation and task scheduling
(see Section 4.3.2). Furthermore, the eBPMS monitors the
execution of the service instances and conducts counter-
measures in case of service instance or resource failures (see
Section 4.3.6).

The eBPMS entity consists of several subcomponents:

4.3.1 Process Manager
The Process Manager is the entry component to the eBPMS.
This component provides the interface that is used by the
Client API to request the execution of a process. Each
execution request includes the process model that should
be enacted and the already discussed SLA. If a new request
is received, the Process Manager creates a new process
instance, writes the received information into the Database
(see Section 4.3.8) and informs the Scheduler component
(see Section 4.3.2) about the new process instance.

4.3.2 Scheduler
The Scheduler is responsible for creating and updating the
provisioning plan that defines on which VM a container,
holding a software service that represents a process activity,
should be deployed and when its execution should start.
Fig. 3 depicts an example provisioning plan that defines for
five different process instances on which VM the container
should be deployed, which cloud provider should be used
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for the VMs and when the deployment and service invoca-
tion should be done.

The scheduling is done based on an algorithm, e.g., a ge-
netic algorithm, or a formal model, e.g., following a Mixed-
Integer Linear Programming approach. As mentioned be-
fore, all components in ViePEP-C are loosely coupled and
can be easily replaced by other implementations. While we
present a genetic algorithm within Section 5, the general
approach and architecture of ViePEP-C is independent of
the algorithm.

As input, the Scheduler gets the information about the
running process instances, the not yet started process in-
stances, the corresponding SLAs, the information how much
computational resources (i.e., CPU, and RAM) a software
service requires for a particular amount of invocations, how
long the execution of the software service will be, and the
monitoring data from currently running VMs and contain-

ers (e.g., resource utilization). How much computational
resources a software service requires for a particular amount
of invocations has to be known upfront, e.g., via monitored
and historical data [35].

Eventually, the result of the scheduling is a provisioning
plan that defines how the cloud resources should be used to
execute all process instances while considering the SLAs.

The Scheduler is executed in predefined intervals, or
if special events occur, e.g., if a new execution request
arrives, a particular cloud resource is over-utilized, an SLA
is violated, or a cloud resource fails. There are three different
failure scenarios for which the Scheduler has to update the
provisioning plan accordingly:

Failure of a container: For instance, the connection to
a container is lost. Such a failure concerns the execution of
the corresponding process activities and the corresponding
process instances that are using the service on the particular
container. If such a failure occurs, the provisioning plan has
to be updated in a way that the container is redeployed and
the execution of the service is restarted.

Failure of a VM: For instance, the connection to a VM is
lost. Since a VM can host several containers, such a failure
concerns all containers on that VM. Thus, the VM, as well
as all affected containers, have to be redeployed and the
service instances invoked.

The provisioning plan cannot be adhered to: For in-
stance, the execution of a preceding process activity took
longer than expected and, thus, the scheduled time of the
next process activity cannot be adhered to. Such a failure
affects all upcoming process activities of the affected process
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instance. Thus, the provisioning plan has to be updated so
that all upcoming process activity executions can be per-
formed in the correct order, defined by the process model.

The detection of these different failure scenarios is the
task of the Monitoring component (see Section 4.3.6).

4.3.3 Action Executor
The created provisioning plan is then handed over from
the Scheduler to the Action Executor. As the name implies,
this component is responsible for the execution of the pro-
visioning plan. This includes the management of the cloud
environment and the deployed VMs and containers. For this
task, the component interacts with the Cloud Controller (see
Section 4.3.4) and the Service Executor (see Section 4.3.5).

4.3.4 Cloud Controller
The Cloud Controller is responsible for the interaction with
the cloud environment. This involves the tasks: (i) start a
VM, (ii) stop a VM, (iii) deploy a container on a VM, and (iv)
stop a deployed container. Which task has to be performed,
and at which time, is defined in the provisioning plan.

4.3.5 Service Executor
As soon as the containers are instantiated according to the
provisioning plan, the Service Executor is triggered. This
component is responsible for invoking the service instances
on the containers. The execution of each service instance is
asynchronous, i.e., the Service Executor does not wait for
the service instances to finish. If required, this component
also transmits input variables to the service instances at the
start of the execution.

4.3.6 Monitoring
The Monitoring component collects monitoring information
about the state of the service instances (i.e., running, fin-
ished, failure) and the resource utilization of the contain-
ers. While the service instance itself provides the service
instance state, the Monitor component (see Section 4.4.2)
provides the resource utilization. A service instance is in
the state running after it has been successfully invoked.
The Monitoring component is informed about the state
finished by the service instance via the Message Queue (see
Section 4.5).

To detect the failure of a service instance, e.g., an ex-
ception during the execution of the software, the following
methods are applicable: (i) a push model (i.e., the service
instance notifies the Monitoring component), (ii) a pull
model (i.e., the Monitoring component asks periodically
if a failure occurred), (iii) a timeout approach, or (iv) a
combination thereof [36]. The current architecture foresees
a push model via the Message Queue (Section 4.5) to detect
exceptions thrown by the software. This failure detection
is reinforced with a timeout approach to detect if a service
instance completely stopped running.

If the state of a service instance changes, the Monitoring
component informs the Scheduler about the state change.
The Scheduler then triggers the update of the provisioning
plan and the execution of the updated plan.

The Monitoring component is also responsible for the
monitoring of the cloud environment. In this matter, it

monitors the connection and availability of the cloud en-
vironment, the instantiated VMs, and containers. This mon-
itoring can follow again a push model, a pull model, or a
combination thereof [36]. The current architecture foresees
a pull model on the base of heartbeat messages. If a failure
occurs, e.g., if an instantiated VM is not responding, the
Scheduler component is informed about this situation. Thus,
the Monitoring component is responsible for the detection
of the container and VM failures that were discussed in
Section 4.3.2.

Each state change is stored in the Database. Further, if the
new state signalizes the end of a service instance execution,
the Monitoring component receives the output variables of
the service instance, if available.

4.3.7 Container Registry Connector
The Container Registry Connector is responsible for the
connection to the external Container Registry (Section 4.5) to
get the matching container image for a service of a process
activity. The Scheduler triggers this during the creation of
the provisioning plan.

As a result, the Container Registry Connector returns
the information of the container image that is required to
deploy the image on a VM, i.e., the container registry URL,
the registry name, and the image name. This information
is then transferred to the Cloud Controller, via the Action
Executor.

4.3.8 Database
The last component in the eBPMS is the Database. The
Database is used to persist execution-related information.
This includes the status of the VMs, containers and service
instances, the process activity variables (e.g., input and out-
put variables of the service instances), the process instance
state, the defined SLAs for each process instance, and the
provisioning plan.

4.4 Cloud Environment

The third entity of ViePEP-C as depicted in Fig. 2 is the
Cloud Environment that is used for the actual execution of
the process activities, respectively the corresponding service
instances. The cloud providers can be, for instance, Amazon
EC21, Google Cloud Platform2 or a private OpenStack-
based3 cloud. As stated before, each service instance is exe-
cuted in a container. Each of those containers is deployed on
a VM that is instantiated and hosted in the cloud. Each VM
can deploy several containers for the services. To monitor
the resource consumption of the containers and hosting
VM, each VM has one dedicated monitoring service running
on a separate container. This container and the monitoring
service is deployed and started automatically after the VM
is running.

4.4.1 Service
The Service component is the actual service implementation
that represents a process activity. Such a service can be,

1. https://aws.amazon.com
2. https://cloud.google.com
3. https://www.openstack.org
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e.g., a simple software service that performs an addition,
a controlling software that is connected to a hardware
machine, or a complex and long-running analysis software.
Each software service needs to offer a remotely accessible
interface, e.g., REST interface, that is used to invoke the
service instance and to transfer necessary input variables to
the service instance. Each service instance can be invoked
several times simultaneously, provided that the hosting
container instance has enough resources available.

If the service software recognizes an exception during its
execution, which requires a restart of the service, the service
informs the Monitoring component via the Message Queue.
Thus, each service is responsible for detecting runtime ex-
ceptions and for notifying the Monitoring component. If the
execution of a service completely stops, the exception may
not be detected. Such situations are detected by the Moni-
toring component with a timeout approach as discussed in
Section 4.3.6.

After the service instance finishes its task, it informs
the Monitoring component about the state change via the
Message Queue (see Section 4.5).

4.4.2 Monitor
The Monitor is responsible for monitoring the services’ QoS
and the executing environment, i.e., the containers. In this
respect, it monitors the status of the used computational
resources such as CPU, and RAM. This information is pub-
lished in regular intervals on the Message Queue.

4.5 Message Queue & Container Registry

The Message Queue and Container Registry are the fourth
and fifth entities shown in Fig. 2. While not providing core
functionalities of ViePEP-C, these entities offer important
helper functionalities necessary for the operation of the
platform.

The Message Queue is used to send service instance
states, e.g., “execution completed”, and monitored compu-
tational resource information from the Monitor and Service
components to the Monitoring component in the eBPMS.
Furthermore, the Message Queue is used to transfer possible
output variables, e.g., calculation results, back to the eBPMS.

The Container Registry contains all available container
images which are then used to deploy the containers on the
VMs. For each container image, the registry holds the infor-
mation about the contained service, the container registry
URL, the registry name, and the image name. This registry is
then used by the Container Registry Connector component
to get the container image information of a service and by
the VMs to pull the container image.

5 THE GECOVM ALGORITHM

As described in Section 4.3.2, the resource and task schedul-
ing algorithm aims to create a provisioning plan. Such a plan
contains the information where a software service should be
deployed (i.e., on which container instance and on which
VM the container instance should be deployed) and when
it should be invoked. The following section presents an
algorithm, called GeCoVM (Genetic Container on VM), that
is capable of creating such a provisioning plan.

5.1 Concepts of GeCoVM
To create a provisioning plan and to achieve a resource-
efficient execution, GeCoVM performs two optimization
steps:

In the first optimization step, GeCoVM performs
scheduling of the process activity executions to achieve
a timely overlapping of concordant process activities (i.e.,
activities that require the same service instance). Overlap-
ping concordant process activities, which invoke the same
service instance, are then allocated to the same container in-
stance. This considers that a service instance can be invoked
concurrently as part of different processes, as long as the
container instance has sufficient computational resources.
This results in the need for fewer container instances and,
as a consequence, in reduced resource consumption and
leasing cost. The output of this optimization step is a list
of container instances and their deployment times.

The second optimization step gets the output of the first
step and assigns to each of those container instances a VM.
Each VM can get several container instances assigned (N:1),
as long as the VM has enough computational resources.

By separating the optimization into two steps, the search
space for finding a cost-efficient deployment for the con-
tainers on VMs is narrowed down. Instead of searching for
a deployment location for each process activity, the second
optimization step only has to search for a deployment lo-
cation for the container instances. Since a container instance
can handle more than one process activity, depending on the
output of the first optimization step, the amount of container
instances is smaller or equal to the number of process
activities. Eventually, a narrowed search space speeds up
the optimization and a good result can be found faster.

To further optimize the process activity execution, the
deployments of the container instances and VMs are sched-
uled in a way that it is done during the execution of the pre-
ceding process activities. This minimizes the time a process
activity execution has to wait for deployment and ensures
that the container instances and VMs are already up and
running at the time they are needed. However, this is not
possible for the first process activities. Since only after the
execution of GeCoVM it is known which container instances
and VMs have to be deployed. To consider this, GeCoVM
schedules the execution of the first process activities in
a way that there is enough time to deploy the container
instances and VMs.

As described in Section 4.3.2, GeCoVM gets all infor-
mation about the currently running and not yet running
process instances (including information about the process
activities), the corresponding SLAs, and the monitoring
information from currently running VMs and containers.
In line with the related work [3], [37], [38], we consider
as SLA the deadline until when the execution of a process
instance has to be finished.As defined in Section 4 this SLA added
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is user-defined for each process instance. If the deadline is
not fulfilled, penalty cost are charged.

The optimization goal of GeCoVM is to minimize the
process execution cost that is composed of the cloud re-
source and penalty cost.

Since the problem of task scheduling is NP-hard,
GeCoVM is realized as a genetic algorithm [7]. As shown in
different areas (e.g., [39], [40]) genetic algorithms have great
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potential for task scheduling in respect to optimization-
runtime and quality of the result, i.e., convergence to the
optimal solution.

GeCoVM is an extension of a scheduling algorithm
presented in our former work [41]. So far, we introduced
a genetic algorithm that performs scheduling of process
activities in a way that a timely overlapping of concordant
process activities is achieved, i.e., the first optimization
step. In comparison to GeCoVM, the algorithm from [41]
only considers the enactment of the process activities on
containers and does not optimize the deployment of the
container instances on the VMs, i.e., the second optimization
step. In the following subsections, we will focus on the
second step, but will give an overview about the first step
wherever necessary for the understanding of GeCoVM.

5.1.1 Stopping Criterion
Since the execution duration of the algorithm affects the
actual schedule of the activities, i.e., the algorithm needs
to know when the first process activities can start, we use a
time-based stopping criterion. This time-based stopping cri-
terion stops the execution of the scheduling algorithm after a
predefined time and returns the best result found until then.
This stopping criterion is used for both optimization steps.

5.1.2 Chromosome Representation
As described before, GeCoVM uses two consecutive opti-
mization steps so that the output of the first optimization
step is the input of the second optimization step. Each opti-
mization step uses a different chromosome representation.

For the first optimization step, the chromosome is com-
posed of all running and not yet running process activities,
which are the genes of the chromosome. Each gene holds the
scheduled start time, i.e., the time when the execution of a
process activity should start. Fig. 4a represents an example
chromosome with a detailed representation of the process
shown in Fig 4b.

For the second optimization step, the chromosome is
composed of all containers that are required to execute the
process activities at the time that was determined by the
first optimization step. Each gene holds the VM where the
container instances should be deployed. Fig. 4c depicts an
example chromosome for the second optimization step.

Each of those chromosomes represents a possible solu-
tion. In the following, the genetic operations (i.e., selection,
crossover, and mutation) will be used on these chromo-
somes to alter them and to find an optimal solution.

5.1.3 Initial Population
The initial population, i.e., the first generation of chro-
mosomes used as input for a genetic algorithm [42], is
composed by randomly assigned process activity start times
for the first optimization step, and randomly assigned VMs
for the second optimization step. A random selection of the
start time and VMs, creates a high population diversity and
helps to avoid premature convergence [42], [43].

For the first optimization step, the initial population
creation algorithm assigns to each process activity a random
start time in a way that the order of the process activities,
defined by the process model, is not violated. This algorithm

Start Time: 12:37 Start Time: 12:50Start Time: 12:20 Start Time: 12:38

P1A1 P1A2 P1A3 P2A1 PNA1 ... PNANP1A4 P2AN

Process 1 Process 2 Process N

... ...

...

(a) Example Chromosome for the First Optimization Step with a Detailed
Representation of Process 1

P1A2

P1A3
P1A4P1A1

(b) Process 1 in BPMN

VM: VM 2 VM: VM 3VM: VM 1 VM: VM 2

Container 1 Container 2 Container 3 Container 4 Container N...

(c) Example Chromosome for the Second Optimization Step

Fig. 4. Example Chromosome Representation

Algorithm 1 Initial Population
Require: containers, availableVMs

1: function ASSIGNVMS
2: chromosome← NULL
3: for all c ∈ containers do
4: if c.vm is empty then
5: vm← getVM(c, availableVMs)
6: availableVMs← availableVMs ∪ {vm}
7: c.vm← vm
8: end if
9: chromosome← chromosome ∪ {c}

10: end for
11: return chromosome
12: end function

creates chromosomes of the kind represented by Fig. 4a.
The algorithm uses the deadlines as a priori knowledge [44]
and limits the random movement of the activities to not
violate the deadlines. To achieve this, the algorithm assigns
to each process activity a time frame in which the randomly
assigned start time can be.

As discussed in Section 4.3.2, the Scheduler component,
in this case GeCoVM, is executed several times (e.g., if a new
process instance is requested or a failure occurs) and each
call considers all currently running and requested process
instances for the optimization. This can lead to the situation
where the execution of a process activity already started or
is already done when GeCoVM performs an optimization.
This situation happens when a process instance was already
the subject of an earlier optimization. If the execution of
a process activity is already done or will be over before
the optimization end time is reached, the process activity
is ignored. If the process activity execution is still running
when the optimization end time is reached, the start time of
this process activity is used as a priori knowledge and not
altered. A full description of the initial population creation
algorithm for the first optimization step can be found in [41].

Algorithm 1 presents the initial population creation al-
gorithm for the second optimization step. This algorithm
assigns a random VM to each gene of a chromosome, as
presented in Fig. 4c.

As input, the algorithm gets a list of all container in-
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stances (containers) required to execute the process activities
at the times defined by the first optimization step, and
a list of already available VMs (availableVMs). The list of
available VMs, contains VMs that will be available when the
execution of GeCoVM is done, i.e., the stopping criterion
is fulfilled. These VMs are for example VMs that were
assigned to some process activities in a previous execution
of GeCoVM.

Beginning with line 3, Algorithm 1 iterates over all con-
tainer in the containers list. As mentioned before, GeCoVM
is executed several times and each execution considers all
running and requested process instances. Thus, previous
executions of GeCoVM may already assigned a VM to a
container c, this is checked by line 4. In such a situation, the
algorithm does not change the deployment.

If the container c does not have a VM, a new VM is
selected by the method getVM (line 5). The method getVM
selects a VM that has enough computational resources left
to deploy the container instance. This VM is taken from
the availableVMs list, or a new VM is created. The decision,
whether a VM is taken from the availableVMs list or a
new VM is created, is done randomly to achieve a high
population diversity [42], [43]. If the availableVMs list is
empty or does not contain a VM that has enough space for
the container instance, a new VM is created. The returned
VM is stored in vm.

The VM, which is stored in vm, is then added to the avail-
ableVMs list (line 6) and to the container instance c (line 7).
Eventually, the container c is added to the chromosome and
the chromosome is returned in line 11.

Algorithm 1 is executed several times, depending on
defined population size, to compile the initial population.
The population size is a configureable value and defined
upfront, e.g., by the eBPMS operator.

5.1.4 Fitness Function
The fitness function calculates for each chromosome the
fitness score. The chromosome with the smallest fitness
score represents the solution with the lowest VM leasing
cost and penalty cost.

As defined before, the first optimization step aims at
overlapping concordant process activities so that several
process activities can use the same software service. There-
fore, the fitness score of the first optimization step is com-
posed of the amount of overlapping concordant process
activities, how good an overlapping was achieved, and the
penalty cost.

To define how good an overlapping of concordant pro-
cess activities was achieved, the first optimization step cal-
culates the computational resources used by a container in-
stance to execute the process activities. A good overlapping
of concordant activities yields in a minimized duration of a
container instance being deployed and, thus, in a minimized
computational resource usage. This overlapping of process
activities is considered by (1).

∑
c∈C

(ccpu ∗ fcpu + cram ∗ fram) ∗ cduration ∗ fcontainer (1)

In (1), C is the list of container instances required to execute
all process activities. A container instance is defined as

c ∈ C = {c1, c2, ...} and c = (cpu, ram, duration) defines the
computational size of the container instance (i.e., amount
of CPU and RAM) and how long the container instance is
deployed. The factors fcpu and fram define how much the
amount of CPU cores, respectively RAM, should be con-
sidered in the fitness score. The parameter fcontainer defines
the weight of the cost in the final fitness score of the first
optimization step. fcpu, fram, and fcontainer are configureable
values.

The penalty cost is composed of all the cost that arise due
to missing deadlines, i.e., the time between the termination
of the last process activity of a process and the deadline.∑

w∈W
x(w) ∗ (wend − wdeadline) ∗ fpenalty (2)

In (2), W is the set of all process instances of a chromosome
and w ∈ W = {w1, w2, ...} defines one process instance. A
process is defined by w = (end, deadline), where end defines
the time when the last process activity terminates, and
deadline is the defined process instance deadline. The factor
fpenalty defines the weight of the penalty cost in the final
fitness score. If a process instance w violates the deadline
or not, is considered by x(w) ∈ {0, 1}, i.e., x(w) = 1 the
deadline is violated, x(w) = 0 the deadline is not violated.

The sum of (1) and (2) results in the final fitness score of
the first optimization step.

The second optimization step considers the deployment
of the container instances to the VMs. A good solution to
this optimization step is when the leasing cost of the VMs
are minimized. The VM leasing cost is the combination of
all cost that arise due to the leasing of the required VMs
used to deploy the container instances. Since the second
optimization step does not change the process activity start
times, the penalty cost is not considered.

∑
v∈V

(vcpu ∗ pcpu + vram ∗ pram) ∗ vduration ∗ fVMleasing (3)

Eq. (3) is similar to (1), however, this time the VM resource
consumptions, instead of the container resource consump-
tions, are considered. In (3), V is the list of VM deployments
required to deploy all containers that are used for the
enactment of the process activities. A VM is defined as
v ∈ V = {v1, v2, ...} and v = (cpu, ram, duration) defines
the computational size of the VM (i.e., amount of CPU and
RAM) and how long the VM is deployed. The CPU and
RAM prices of a VM are defined by pcpu, i.e., the price for
one CPU core, and pram, i.e., the prize for one GB of RAM.
The parameter fVMleasing is a configurable factor that defines
the weight of the leasing cost in the final fitness score.

Since the second optimization step is only concerned
with the VM leasing cost, the fitness score is the result of (3).

5.1.5 Mutation
As explained in Section 3.3, the mutation operation varies
a randomly selected gene of a chromosome. For the first
optimization step, the mutation changes the start time of a
process activity, and the second optimization step mutates
the VM that should be used to deploy a container instance.

To ensure that the control flow of a process instance is not
violated by mutating the start time, the mutation operation
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P1A1 P1A2 P1A3 P2A1P1A4 P2AN
Process 1 Process 2

...

P1A1' P1A2' P1A3' P2A1'P1A4' P2AN'...

Parent 1

Parent 2

(a) Parent Chromosomes

P1A1 P1A2 P1A3' P2A1P1A4' P2AN
Process 1 Process 2

...

(b) Offspring Chromosome

Fig. 5. Two-Point Crossover Operation

of the first optimization step defines boundaries in which
the start time can be mutated, similar to the creation of
the initial population. For instance, if the process activity
is between two other process activities within a process
model, the boundaries are the end time of the preceding
process activity and the start time of the upcoming process
activity minus the current process activity execution time.
In between these boundaries, the mutation operation ran-
domly selects a start time and assigns this start time to the
gene. A detailed description of this mutation operation can
be found in [41].

In case of the second optimization step, the already men-
tioned method getVM from Algorithm 1 is used to mutate
the assigned VMs. The method gets the container of the
current gene (c) and the list of available VMs (availableVMs)
as input parameters and returns a random VM from the
availableVMs list or a new VM.

In case of the second optimization step, the assignment
of a new VM to a gene can lead to a situation where there is
not enough time between the optimization end time (i.e., the
end of the execution of GeCoVM) and the scheduled start
time of the process activity to deploy the VM and container
instance. To consider this, GeCoVM checks if this is the case
and if so the mutation is reversed, and another random gene
is selected.

5.1.6 Crossover

The crossover operation creates a new chromosome by
splitting two chromosomes and combining them to a new
chromosome. The two selected chromosomes are called
parent chromosomes, and the new chromosome is called
offspring (see Section 3.3).

For the first optimization step, GeCoVM uses a two-
point crossover [31]. For this, the start gene of the crossover
is selected randomly, i.e., a random process activity in a
random process instance, and the end gene is the end of the
process to which the process activity belongs. We decided to
use a two-point crossover operation to consider one process
instance at a time. Fig. 5 depicts such a two-point crossover
operation. Fig. 5a depicts the two parent chromosomes with
the two genes that are selected for the crossover highlighted
in yellow. In this example, the gene P1A3 is the randomly
selected gene, and P1A4 is the end of the process instance
of chromosome Parent 1 (for Parent 2, chromosomes P1A3’
and P1A4’ are the representative process activities). Fig. 5b
shows the offspring chromosome where the selected genes
are from Parent 2 (i.e., P1A3’ and P1A4’) and the remaining
genes are from Parent 1.

For the second optimization step, the crossover opera-
tion is a single-point crossover where only the start gene
is randomly selected, and the end point is the end of the
chromosome. Since the chromosome of the second opti-
mization step is independent of the process instance, but a
combination of containers, we decided to use a single-point
crossover instead of a two-point crossover as for the first
optimization step.

Again in the first optimization step, the crossover oper-
ation changes the start times of the process activities. In the
second optimization step, the crossover operation changes
the VM that should be used to deploy a container instance.

In both optimization steps, a crossover can lead to an
incorrect provisioning plan. In case of the first optimization
step, a crossover operation can lead to a violation of the
control flow, defined by the process model. In the second
optimization step, a situation where a VM does not have
enough computational resources to deploy a container in-
stance may occur. To consider this, GeCoVM checks if one
of those violations occurs after the crossover and selects
another crossover point, i.e., another gene, if necessary. If
the offspring chromosome does not contain one of those
violations, the offspring chromosome is returned.

6 IMPLEMENTATION

We implemented ViePEP-C in Java. The implementation
uses the Spring Framework (vers. 2.1.1). As container tech-
nology, ViePEP-C applies Docker and as container registry
Docker Hub4 is used. As cloud provider, the current im-
plementation provides connections to Google Cloud and
Amazon AWS EC2. The default VM type in the current
implementation is CoreOS 1800.5.0. However, the VM type
is configurable. The execution of the services is monitored
by a timeout approach in combination with a push model, if
the service software detects an exception. The timeout is the
multiple of the expected execution duration of a service (the
default value is two times the expected execution duration).
As message queue, ViePEP-C uses RabbitMQ 3.6.115, i.e.,
a JMS-based message queue. The GeCoVM implementation
uses the Watchmaker framework6 as evolution engine.

The implementation offers a rich set of configuration
possibilities, e.g., to define the container images for the
services, the cloud user information, or the different VM
sizes. As database, MySQL 14.147 is used.

For interacting with the cloud, e.g., to start and stop a
VM, the implementation uses the Google Cloud Platform
Java library (vers. 0.21.1)8 respectively the Amazon AWS
EC2 library (vers. 1.11.121)9. For the interaction with the
Docker environment, i.e., to deploy, start, stop and monitor
the resource consumptions of the containers, the implemen-
tation uses the Spotify Container library (vers. 8.11.7)10.

Since Google Cloud and AWS EC2 only allow the leasing
of one CPU or an even amount of CPUs, e.g., 2, 4, 6, we split

4. https://hub.docker.com
5. http://www.rabbitmq.com
6. https://watchmaker.uncommons.org/
7. https://www.mysql.com/de/
8. https://cloud.google.com/java/docs/reference/
9. https://aws.amazon.com/sdk-for-java/
10. https://github.com/spotify/docker-client
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up container instances that would require an odd amount of
CPUs. For instance, if a container instance needs five CPUs
to execute four process activities, the container instance
is split up into two container instances with two process
activities each. By doing this, we can further minimize the
size of the leased VMs, since without this the next fitting
VM size would be 6 CPUs. The size of RAM can be defined
in 0.25 GB steps, hence, a segmentation is not needed.

The Monitor component, which observes the resource
consumption of the individual VMs, is also written in Java,
uses the Spring Framework, and the Spotify Container
library to gather the required information.

The source code of ViePEP-C and the Monitor compo-
nent, are available at 11 and 12.

7 EVALUATION

In the following, we will evaluate ViePEP-C and discuss
the benefits of a container-based process execution in com-
parison to a state-of-the-art VM-based approach. For the
evaluation, we use ViePEP-C as discussed in Section 6 and
employ the Google Cloud Platform as cloud environment
for the eBPMS and the VMs for the containers. The source
code of the Evaluation Client is available at Github13.

7.1 Evaluation Setting

For the evaluation, we apply a setting that has already been
used in our former work on elastic process execution [7],
[41], and has been adapted for the purposes of the container-
based elastic process execution discussed here.

7.1.1 Test Collection
For the evaluation of ViePEP-C, we use a subset of the
SAP reference process models [45], [46], which is a common
validation sample applied in many evaluations in the field
of BPM [47]. For the evaluation, we choose ten represen-
tative process models with different degrees of complexity.
Table 1a shows the basic characteristics of the chosen process
models. The table presents the amount of process activities,
AND-blocks, XOR-blocks, and loops. Each AND- and XOR-
block includes a split and join gateway. Fig. 6 shows process
No. 3 and process No. 9 as examples in BPMN.

For the evaluation, we use eight different software ser-
vice types with different resource requirements and execu-
tion durations. Table 1b provides an overview of the re-
quired CPU load (in percentage), required memory (in MB),
and total makespan (in seconds) of the different services.
The required CPU load defines how much of a CPU is
required by the service when one core of the CPU offers
100% and each further core adds another 100% (e.g., a dual-
core CPU offers 200% overall). We assume that each service
is fully parallelizable among the available CPUs. This means
that a service with 100% load on a single-core CPU, has a
50% load on a dual-core (i.e., 50% on each core) with the
same execution time, which results in 50% of the dual-core
CPU not being used or being available to other services.

11. https://github.com/piwa/ViePEP-C
12. https://github.com/piwa/ViePEP-C-Backendmonitor
13. https://github.com/piwa/ViePEP-C-Testclient

TABLE 1
Evaluation Process Models and Service Types

(a) Evaluation Process Models Characteristics

Name |Activities| |XOR| |AND| |loops|
1 3 0 0 0
2 2 1 0 0
3 3 0 1 0
4 8 0 2 0
5 3 1 0 0
6 9 1 1 0
7 9 1 0 0
8 3 0 1 0
9 4 1 1 1
10 20 0 4 0

(b) Evaluation Services

Service
No.

CPU Load
in % (µcpu)

Memory Load
in MB (µram)

Service Makespan
in sec. (µmakespan)

1 15 270 40
2 20 450 320
3 25 720 480
4 40 720 80
5 55 960 400
6 65 1150 120
7 80 1150 160
8 135 1440 80

A1

A2

A2'

(a) Process No. 3 in BPMN

result<0

result>=0

A1

A2 A3

A2'

(b) Process No. 9 in BPMN

Fig. 6. Evaluation Processes in BPMN

In addition, we assume that the actual CPU load, mem-
ory consumption, and total makespan of a service vary to
some extend for each service invocation. For this we assume
a normal distribution with σ1 = µcpu/10, σ2 = µram/10,
and σ3 = µmakespan/10, each with a lower bound of 95%,
and an upper bound of 105%.

If a service is invoked several times in parallel, the
service utilizes more computational resources. To consider
this aspect, we utilize insights from previous research [41]
that has been found to best calibrate with a parameter of
2/3. Accordingly, we add for each invocation 2/3 of µcpu

and µram to the service resource consumption defined in
Table 1b. For instance, two parallel invocations of service 1
will lead to µcpu = 15 + 15 ∗ 2/3 = 25.

Despite the fact that several SAP reference models con-
tain human-provided services, we use for all process activi-
ties only software-based stateless services.

We implemented a test service to evaluate our ap-
proach14. This service is written in Java and uses the Spring
Framework. To simulate the different resource demands
and execution durations, the service uses the fakeload load
generator [48]. This load generator simulates a configurable
CPU and memory load for a particular time span. The test
service offers a REST interface to start the execution. This
execution takes as a parameter the resource consumption re-

14. https://github.com/piwa/ViePEP-C-Backendservice
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quirements, i.e., CPU and RAM, and the service makespan.

7.1.2 Applied SLAs

Each process execution request also includes a deadline
SLA, i.e., a point in time until when the execution of a
process instance has to be finished. For the evaluation of
ViePEP-C, we apply two different SLA levels. The first one
is following a strict scenario, i.e., the deadline is 1.5 times of
the makespan of the whole process. The process makespan
is calculated upfront with the knowledge of the process
model structure and the makespan of each service, taken
from historical runs of the services. The second SLA level
is lenient, i.e., the deadline is 2.5 times of the makespan of
the whole process. Therefore, the lenient scenario allows a
longer execution of a process instance without violating the
SLA. Those two scenarios were chosen to tolerate the start-
up time for the VMs, the containers and services.

7.1.3 Process Request Arrival Patterns

We apply two different process request arrival patterns. The
first one requests a constant amount of process executions in
a regular interval, i.e., this pattern requests the execution
of five different process models every 120 seconds. The
selection of the processes is done sequentially in a round-
robin fashion according to Table 1a, i.e., the first iteration
requests process model No. 1 to No. 5, the second round
No. 6 to No. 10, the third one No. 1 to No. 5 etc. This is
repeated 20 times.

The second process request arrival pattern follows a
pyramid-like pattern described by (4). In the equation, a
represents the amount of process execution requests at a
specific point in time n. Analogue to before, the concrete
process is chosen in a round-robin fashion according to
Table 1a. In the end, a total amount of 100 instances are
requested. The request time interval is set to 120 seconds.

f(n) = a


1 if 0 ≤ n ≤ 3
d(n+ 1)/4e if 4 ≤ n ≤ 17
0 if 18 ≤ n ≤ 19
1 if 20 ≤ n ≤ 35
d(n− 9)/20e if 36 ≤ n ≤ 51

(4)

7.1.4 Baseline

We compare ViePEP-C against a baseline which follows
a state-of-the-art approach. The baseline provides an ex-
tended version of the algorithm AllParExceed discussed by
Frincu et al. [49]. The algorithm assigns to each parallel
process activity a new VM, or an existing one if available.
A VM can thereby execute one service instance at a time
to guarantee the necessary isolation of the service instances.
However, a service can be invoked several times by process
activities that require the same software service.

Fig. 7 presents a provisioning plan for the process shown
in Fig. 6a, applying the AllParExceed approach.

In comparison to the algorithm presented in [49] we ne-
glect the minimum leasing duration of a VM, called Billing
Time Unit (BTU). This is done since most cloud providers
do not consider the BTU time anymore or it is set to a small
duration, e.g., 1 minute.

A3

A1VM 1

VM 2

Execution Time

A2

VM ServiceLegend:

Fig. 7. Baseline Provisioning Plan Example

7.1.5 GeCoVM Parameter Setting
Based on preliminary experiments, we set the parameters in
our evaluations as follows: A population size of 700, with 35
elite chromosomes per population, an optimization duration
of 40 seconds for the first optimization step, and 40 seconds
for the second optimization step.

For the fitness function, we use the settings: pcpu = 32
and pram = 4 (which are rounded real-world cost of the
Google Cloud Platform15), and fcpu = 32 and fram = 4. The
remaining parameters for the fitness functions (i.e., fcontainer,
fVMleasing, and fpenalty) will be set differently for different
evaluation scenarios, as outlined below.

7.2 Metrics
To evaluate our approach, we use different metrics. To start
with, the total execution duration of all process instances is
measured, i.e., the sum of the elapsed time from a process
execution request until the final process activity of the
process instance terminates. The second metric is the SLA
adherence in percentage, i.e., the amount of finished process
instances without violating the SLAs in percentage. Third,
the leasing cost in core-minutes tells us how many cores are
leased for how many minutes, e.g., leasing two cores for two
minutes results in four core-minutes. This is equivalent to
the cost model of most cloud providers since they charge for
the amount of used computational resources (e.g., amount
of cores and duration of usage) following a linear cost
model. Fourth, the penalty cost is the cost that is charged due
to a SLA violation, i.e., in our case not keeping a deadline.
For the penalty cost, we apply a linear cost model [50]: The
model assigns for 10% of time units of delay, one unit of
penalty cost. The penalty cost is measured in money units
(MU). For all metrics, we calculate the mean value and the
standard deviation σ.

7.3 Evaluation Process
In the evaluation, we evaluate the efficiency of our
container-based process execution approach in comparison
to the state-of-the-art VM-based approach presented in Sec-
tion 7.1.4. To fully evaluate ViePEP-C in combination with
the task and scheduling algorithm GeCoVM, we perform
and evaluate the following steps: First, we conduct a general
evaluation where we analyze the influence of the two arrival
patterns and SLA levels. Second, we analyze the influence of
the fitness function parameters fcontainer, fVMleasing, and fpenalty
by adapting them. Third, we analyze how ViePEP-C detects
a failure situation by terminating a VM during a process
activity execution.

15. https://cloud.google.com/compute/pricing
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(a) Constant Arrival Pattern - Strict SLA
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(b) Constant Arrival Pattern - Lenient SLA

Fig. 8. Constant Arrival Pattern

To minimize the effect of external influences, e.g., con-
currently running applications, we execute each evaluation
three times at different times of a day over two weeks.

7.4 Results and Discussion
In the following, we will present and discuss the results of
the evaluation.

7.4.1 General Evaluation
In this scenario, we evaluate the behavior of ViePEP-C in
combination with GeCoVM by using both arrival patterns,
and both SLA level. For this evaluation scenario we set
the fitness function parameters to the following values:
fcontainer = fVMleasing = 10, fpenalty = 0.001. This values
yielded good results in several pre-evaluation executions.

Table 2 presents the resulting mean values and the stan-
dard deviation of the evaluation. Fig. 8 shows the results
of the constant arrival pattern for the strict and lenient SLA
level, and Fig. 9 the same for the pyramid arrival pattern.

In the following, we will first discuss the results of the
constant arrival pattern for both SLA levels and then the
results of the pyramid arrival pattern for both SLA levels.

As can be seen in Table 2, the SLA adherence of the
baseline with the lenient SLA level is the highest (100%).
Since the baseline executes one process activity directly after
a preceding activity, basically no delay happens, which leads
to 100% SLA adherence. For the baseline with the strict
SLA level, a slightly lower result (98.67%) is achieved. This
slightly lower result is due to the need for deploying the
VMs, which may lead to a delay in the process activity
execution. For the evaluation with active GeCoVM, an SLA
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(a) Pyramid Arrival Pattern - Strict SLA
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(b) Pyramid Arrival Pattern - Lenient SLA

Fig. 9. Pyramid Arrival Pattern

adherence of 90.67% (for the lenient SLA level) and 89.67%
(for the strict SLA level) is achieved. This lower SLA ad-
herence, in comparison to the baseline, is because GeCoVM
postpones process activity executions if an overlapping of
process activities can be achieved. The lower SLA adherence
also increases the penalty cost in case of active GeCoVM.

While the SLA adherence is lower in case of active
GeCoVM, regarding the leasing cost GeCoVM achieves a
cost saving in comparison to the baseline. For the strict
SLA level, GeCoVM resultes in 20.20% lower leasing cost
than the baseline, i.e., 1173.0 core-minutes instead of 1470.33
core-minutes for the baseline. For the lenient SLA level the
leasing cost saving, achieved by GeCoVM in comparison to
the baseline, is 21.60%. This additional cost saving is because
GeCoVM is able to achieve more overlappings of process
activities since the margin of postponing them is higher for
the lenient SLA level than for the strict SLA level.

This can also be observed in Fig. 8. In Fig. 8a (strict SLA
level) more CPUs at a time are leased than in Fig. 8b (lenient
SLA level), i.e., partly over 30 CPUs for the strict SLA and
always under 30 CPUs for the lenient SLA. However, in
Fig. 8b the time the VMs are leased is long, i.e., over 110
minutes for the lenient SLA level and under 100 minutes for
the strict SLA level.

In Fig. 8, it can also be observed that GeCoVM leases less
CPU cores than the baseline. It can be further observed that
after 50 minutes the number of leased CPU cores in case of
GeCoVM are sometimes higher than for the baseline. This
is the result of postponing the process activity executions in
case of GeCoVM, which is not the case for the baseline.

For the pyramid arrival pattern, similar results are
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TABLE 2
General Evaluation Results (Standard Deviations in Parenthesis)

Constant Arrival Pattern Pyramid Arrival Pattern
Strict Lenient Strict Lenient

GeCoVM Baseline GeCoVM Baseline GeCoVM Baseline GeCoVM Baseline

Execution Duration in Minutes 92.0
(8.66)

80.33
(4.67)

114.0
(10.54)

80.67
(0.57)

148.33
(0.58)

144.0
(0.53)

174.0
(17.35)

144.0
(0.0)

SLA Adherence (%) 89.67
(6.81)

98.67
(0.58)

90.67
(1.53)

100.00
(0.00)

91.33
(1.15)

99.67
(0.57)

96.67
(2.31)

100.0
(0.00)

Penalty Cost in MU 32.67
(20.11)

2.67
(2.89)

20.33
(5.51)

0.00
(0.00)

22.33
(4.73)

1.67
(2.89)

6.33
(4.04)

0.0
(0.0)

Leasing Cost in Core-Minutes 1173.0
(50.86)

1470.33
(11.68)

1154.33
(73.21)

1472.33
(8.08)

1203.33
(155.28)

1394.0
(2.65)

1198.67
(28.10)

1395.33
(10.11)

achieved. With the pyramid arrival pattern, the baseline
with the lenient SLA level achieves an SLA adherence
of 100%, and with the strict SLA level 99.67%. However,
in comparison to the constant arrival pattern, GeCoVM
achieves for both SLA levels better results regarding the SLA
adherence, i.e., 91.33% for the strict SLA level and 96.67% for
the lenient SLA level. This also results in lower penalty cost,
in comparison to the constant arrival pattern.

Regarding the leasing cost, the cost savings in com-
parison to the baseline is lower in case of the pyramid
arrival pattern than for the constant arrival pattern. With
the pyramid arrival pattern, GeCoVM achieves a cost saving
of 13.68% (strict SLA level) and 14.09% (lenient SLA level)
in comparison to the baseline. This lower cost saving, in
contrast to the cost saving with the constant arrival pattern,
is due to the fact that the constant arrival pattern requests
more process executions in parallel. This increases the
chance that an overlapping of concordant process activities
can be achieved, i.e., the possibilities of re-using a container
instance for several process activities.

Concluding, it can be seen that by accepting a slightly
lower SLA adherence (thus, slightly higher penalty cost)
ViePEP-C is able to achieve much lower leasing cost in com-
parison to the baseline. This trade-off between cost and SLA
adherence needs to be taken into account by the user, i.e., the
process owner, and could be used as a foundation to select
between different resource allocation and task scheduling
strategies.

7.4.2 Parameter Influence Evaluation

In this evaluation, we analyze the influence of the GeCoVM
parameters fVMleasing,fcontainer, and fpenalty (Section 5.1.4).

For this, we use the constant process execution request
pattern with the strict SLA level and analyze the behavior
by using three different parameter settings: (1) fcontainer =
fVMleasing = 10, fpenalty = 0.001; (2) fcontainer = fVMleasing = 1,
fpenalty = 1; (3) fcontainer = fVMleasing = 0.001, fpenalty = 10. The
first setting puts more weight on the optimization regarding
the leasing cost than the penalty cost, the second setting
weights the leasing cost and penalty cost the same, and the
third setting puts more weight on the optimization of the
penalty cost. The results of the evaluation are presented in
Fig. 10 and Table 3.

As can be seen in Table 3 and Fig. 10 the first parameter
setting (fcontainer = fVMleasing = 10, fpenalty = 0.001) achieves
the best result in respect of leasing cost and the third
parameter setting (fcontainer = fVMleasing = 0.001, fpenalty = 10)

0 20 40 60 80 100
Time in Minutes

0

10

20

30

40

50

0

2

4

6

8
l=10, p=0.001
l=1, p=1
l=0.001, p=10
Process Arrivals

Fig. 10. Result of the GeCoVM Parameter Evaluation (legend: l =
fVMleasing = fcontainer; p = fpenalty

is the most expensive one. This is since the first parameter
setting emphasis the optimization regarding leasing cost the
most (fcontainer = fVMleasing = 10) and the third parameter
setting the least (fcontainer = fVMleasing = 0.001).

For the penalty cost, it is the opposite. Here the third
parameter setting achieves the best result regarding the SLA
adherence (99.33%) and the first parameter setting the worst
(90.67%). Again, this is due to the weight of the importance.
Since the first parameter setting sets fpenalty = 0.001 and the
third parameter sets fpenalty = 10, the optimization of the
penalty is more important with the third parameter setting
than with the first parameter setting.

The second parameter setting (fcontainer = fVMleasing = 1,
fpenalty = 1) distributes the weight equally between the op-
timization of the leasing cost and penalty cost (respectively
SLA adherence). As can be seen in Table 3, the results for the
leasing cost and penalty cost are between the first and third
parameter setting. Regarding the leasing cost, the second
parameter setting (1242.0 core-minutes) is approximately
in the middle between the leasing cost of the first setting
(1154.33 core-minutes) and the third setting (1314.33 core-
minutes). For the SLA adherence and penalty cost the results
are more in the direction of the third parameter setting.

In comparison to the baseline results from Section 7.4.1,
for the constant arrival pattern with strict SLA, we can fur-
ther see an improvement with the second and third param-
eter setting. Both settings achieve better results regarding
the SLA adherence and leasing cost than the baseline from
Section 7.4.1, e.g., the second parameter setting achieves:
99% SLA adherence (baseline: 98.67%) and 1242.0 core-
minutes (baseline: 1470.33 core-minutes).
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TABLE 3
GeCoVM Parameter Influence Evaluation Results (Standard Deviation in Parenthesis). For all settings we set fcontainer = fVMleasing

fVMleasing = 10
fpenalty = 0.001

fVMleasing = 1
fpenalty = 1

fVMleasing = 0.001
fpenalty = 10

Execution Duration in Minutes 114.0 (10.54) 103.33 (6.81) 103.33 (8.39)
SLA Adherence (%) 90.67 (1.53) 99.0 (0.0) 99.33 (0.58)
Penalty Cost in MU 20.33 (5.51) 1.0 (0.0) 0.67 (0.58)
Leasing Cost in Core-Minutes 1154.33 (73.21) 1242.0 (82.94) 1314.33 (56.32)
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Fig. 11. Result of the Failure Detection Evaluation

7.4.3 Failure Detection Evaluation
In this evaluation, we analyze the behavior of ViePEP-C
in a failure situation, e.g., the loss of a connection to a
VM. As discussed in Section 4.3.2, this should trigger a re-
scheduling of the provisioning plan.

For this evaluation, we request the execution of process 1
from Table 1a. This process is a sequential execution of
the software services 6, 7, and 8 from Table 1b. During
the execution of the second process activity, we externally
(i.e., by a separate tool and not via ViePEP-C) terminate
the executing VM. ViePEP-C should detect this as a VM
connection failure and should trigger a re-scheduling of the
provisioning plan. For the process execution, we use the
strict SLA level. For the baseline, we request the execution
of the same process, also with active GeCoVM. However,
for the baseline, the VM is not terminated.

Fig. 11 presents the result of this evaluation. In Fig. 11
two markers, labeled GeCoVM, signalise when a scheduling,
i.e., an execution of GeCoVM, took place. The third marker,
labeled Failure, signalises when the VM was terminated.

As can be seen in Fig. 11, at the beginning (minute 0)
the first execution of GeCoVM and the creation of the pro-
visioning plan takes place (signalized by the first GeCoVM
marker). Since we set the time-based stopping criterion to
80 seconds, the first VM is deployed at around 1:30 for the
failure run evaluation. In the beginning, only one CPU is
leased, since the first two process activities use service 6
and 7 that only need one CPU.

At around minute 5, we terminate the VM (signalized by
the Failure marker). As can be seen in Fig. 11, this is detected
by ViePEP-C and a re-scheduling takes place (signalized
by the second GeCoVM marker). After another 80 seconds,
GeCoVM updates the provisioning plan, and a new VM is
deployed in case of the failure run evaluation.

At minute 9, a two-core VM is deployed during the
failure run evaluation, which is used for the execution of

the third process activity. At this time, the execution of the
second process activity is not over yet, which leads to a
leasing of three cores for a short period. After the execution
of the third process activity is over, all VMs are released and
the execution of the process instance is finished.

In case of the baseline, the same behavior as during the
failure run can be observed at the beginning. The first VM
is leased at a similar time as before. However, since the
baseline does not suffer from a VM loss, it can use the same
VM for the execution of the first and second process activity.
Again, for the third process activity, a two core VM is leased
while the one-core VM is still leased. This results in a short
time where three CPUs are leased.

The final leasing cost of the failure run is 10 core-minutes
and 9 core-minutes for the baseline. Regarding the penalty
cost, the failure run is delayed 86 seconds which leads to a
penalty cost of 3 MU. The baseline run is not delayed.

7.4.4 Concluding Discussion
Concluding, it can be said that ViePEP-C together with the
container-based process execution approach and GeCoVM
always achieves a better result regarding the leasing cost
(Section 7.4.1 and 7.4.2). For instance, GeCoVM achieves
21.60% cost saving in comparison to the baseline for the con-
stant arrival pattern and the lenient SLA level. Regarding
the SLA adherence, the same evaluation results in 90.67%
adherence.

Most of the cost-savings result from the fact that by using
containers a higher VM utilization is achieved by offering
an isolated environment for each service. This isolated en-
vironment allows the parallel execution of several services
without risking conflicts, e.g., conflicting libraries.

With respect of failure detection and recovery, we have
shown in Section 7.4.3 that ViePEP-C detects failures, e.g.,
a VM is not reachable anymore, and triggers the task and
resource scheduling process. This scheduling process, per-
formed by GeCoVM, updates the provisioning plan so that
the execution of all process instances can be continued.

8 RELATED WORK

In the following, we discuss selected contributions to the re-
search field of elastic process execution on cloud resources.

In our former work [7], [33], [34], we presented an
eBPMS called ViePEP. ViePEP uses VMs for the execution of
process activities on cloud resources. ViePEP optimizes and
schedules the execution on the available cloud resources in
a cost-efficient way while considering SLAs, e.g., a deadline
for the process execution. While ViePEP is the most compa-
rable eBPMS to the work presented in this paper, the use of
containers as execution environment requires a completely
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new design and implementation of the eBPMS architecture
and process execution handling, as shown in Figure 2.

Juhnke et al. [16] provide in their work an extended
BPEL engine that leases and uses cloud-based computa-
tional resources in the form of VMs in an on-demand fash-
ion to execute process activities. The presented scheduling
algorithm considers the cost for the VMs and also the
data transfer duration. Nevertheless, the approach does not
regard SLAs nor container-based service instantiation.

Further publications regarding scheduling and execution
of elastic processes on cloud resources are presented by
Bessai et al. [51], Wei and Blake [17], Euting et al. [37], and
Cai et al. [38]. All of them present different approaches for
optimizing the usage of cloud resources, in form of VMs, to
execute processes in a cost- and resource-efficient manner.

Rosinsky et al. [52] present a migration-aware optimiza-
tion strategy for multi-tenant process execution in the cloud.
In comparison to our work, they use VMs for the execution.
Moreover, the approach does not execute the process ac-
tivities on different cloud resources but on the same as the
BPMS is running. This restricts the elasticity of the approach.

In [53], the authors present a highly scalable object-
aware process management engine that is using distributed
microservices on cloud resources. As an underlying ar-
chitecture, the authors are using the actor model, where
each microservice is an actor (comparable to our services)
and connected to different other actors according to a data
model. While this actor model allows high scalability, the
integration of new objects into the data model is compu-
tationally very costly. Furthermore, each actor has to be
aware of the process structure since the actors directly
communicate with each other. This is not the case in our
approach.

All of the approaches discussed so far aim at using
cloud resources in the form of VMs for the execution of
business processes, and none of the approaches consider
the usage and resource optimization based on containers.
However, there are several approaches which use containers
for scheduling and resource allocation of arbitrary services
in non-process settings: Especially the work of Vaquero et
al. [54], Pahl [11], Xu et al. [15], Hoenisch et al. [20] and
Nardelli et al. [21] have to be mentioned here. While they
are discussing the usage of containers for the execution
of applications to increase scalability and isolation of the
applications, none of them consider containers for processes.

For instance, Hoenisch et al. [20] present a multi-
objective optimization model that optimizes the deployment
of applications on containers, which are themselves de-
ployed on VMs, for cost-efficiency. In comparison to ViePEP-
C and GeCoVM, this approach considers single applications
and not processes. While a single process activity can be
seen as a single application, this approach can not con-
sider subsequent process activities for the optimization. The
approach from [20] can only consider currently requested
and running applications. Thus, a postponing of a process
activity so that an overlapping with other process activities,
whose executions will start shortly, is not possible. As
shown in our evaluation, such a postponing further helps
to achieve a cost-efficient execution.

Related work considering the execution of business pro-
cesses on container-based cloud architectures is presented

by Boukadi et al. [18]. Similar to the work at hand, Boukadi
et al. present a business process execution approach that
uses containers on VMs for the execution of the process
activities. For this, they extend the simulation tool Con-
tainerCloudSim and present a linear program that finds
a global optimum solution, in respect of cost efficiency,
for the deployment of the process activities. The objective
function minimizes the deployment and data transfer cost
and considers a minimum required VM QoS. As QoS, they
consider VM security and availability. In comparison to our
approach, the approach in [18] does not consider SLAs and
does not allow slight violations of the SLAs to minimize the
cost further. Besides, a simulator instead of a framework and
testbed are used.

In [41], we present an optimization approach that per-
forms an optimization of the start times of process activities
to achieve an overlapping of them. This approach is one
part of GeCoVM as presented in Section 5. The optimization
presented in [41] only considers the start time of the process
activities, which are then executed on containers. In compar-
ison to the work at hand, the container deployment on the
VMs is not optimized. Instead, the containers are directly
executed on the cloud resources. While this is possible
at some cloud providers (e.g., Amazon AWS and Google
Cloud), the execution of containers on VMs is the norm [20].

Gerlach et al. [55] present in their work a scientific
workflow (SWF) platform called Skyport that uses Docker
containers for the deployment of the workflow services.
By the usage of containers, they aim at providing a repro-
ducible software deployment solution with isolated soft-
ware applications that can be applied to SWFs. Zheng et
al. [56] also aim at solving the problems that can occur in
SWFs by using containers. They propose a solution with
a two-level resource scheduling model to efficiently share
resources among different SWFs. The authors show that
by using a container-based scheduling platform, a higher
system efficiency and a lower performance loss can be
achieved. While this work is undoubtedly interesting, there
are significant differences between SWFs and the business
processes supported by ViePEP-C, which prevent the direct
adaptation for our purposes [3].

In summary, most of the related work considers VMs
as an execution environment for business processes. As
discussed in Section 1, this leads to a rather coarse-grained
deployment solution that reduces the flexibility and ad hoc
elasticity of the deployment. None of the above-mentioned
publications present a platform that uses containers as an
execution environment for business processes.

9 CONCLUSION

In this paper, we have presented ViePEP-C, a novel eBPMS
for the execution of business processes on cloud-based
computational resources. ViePEP-C offers an API that can
be used for the execution of business processes, composed
of different process activities and different process patterns.
ViePEP-C uses resource allocation and task scheduling al-
gorithms, e.g., the presented GeCoVM algorithm, to achieve
an efficient resource allocation while considering process-
specific SLAs. The output of the algorithm is a provisioning
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plan that is used for the process activity execution, respec-
tively its corresponding services, on cloud resources by the
use of containers on VMs. For this, ViePEP-C takes over
the tasks of a cloud controller, i.e., deploys VMs, deploys
containers on the VMs, and monitors the infrastructure. The
monitored information is used to adapt the provisioning
plan to current situations at runtime.

In our evaluation, we have shown that by using a
container-based eBPMS, a significant improvement with
respect to cost and deployment times, in comparison to a
state-of-the-art approach, can be achieved. For instance, in
case of the constant process execution arrival pattern with
the lenient SLA level, ViePEP-C together with GeCoVM
reduced the leasing cost by 21.60% in comparison to the
state-of-the-art baseline. Furthermore, we have shown that
ViePEP-C detects and handles failure situations, e.g., the loss
of connection to a VM.

In our future work, we want to use ViePEP-C to ana-
lyze different scheduling algorithms and benchmark further
optimization algorithms, e.g., based on a linear program.
Furthermore, we plan to extend the scheduling algorithms
in a way that not only CPU and RAM are considered, but
also required disk space and disk accesses. We will also
take a look into unikernels and how they can be used in
ViePEP-C to decrease the resource consumption further and
to increase the flexibility of the business process execution.
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