
Pathfinder: Fault Tolerance for Stream Processing Systems

Bernhard Knasmüller, Christoph Hochreiner, Stefan Schulte
Distributed Systems Group, TU Wien

Email: e1109965@student.tuwien.ac.at, {c.hochreiner|s.schulte}@infosys.tuwien.ac.at

Abstract—Data from Internet of Things devices such as sensors
often need to be processed in (near) real-time. One common
approach to do so is the usage of stream processing. According
stream processing systems are able to integrate data from var-
ious sources, and to invoke self-hosted and external operators.
In case of faults, such systems usually rely on redundancy
of single stream processing operators, while the relationship
between the single operators is not taken into account. Hence,
there is a lack of approaches for fault-tolerant distributed
stream processing which consider that stream processing ap-
plications are often composed of different operators.

Within this paper, we present the Pathfinder framework
which overcomes these shortcomings by enabling functional
redundancy at the level of stream processing operator paths.
During system runtime, Pathfinder reacts to operator failures
in the main path by switching to a fault-free path with a similar
functionality. To restore the main path once a failed operator
has recovered, Pathfinder uses the circuit breaker pattern.

1. Introduction

With the ever-growing number of sensing devices in
the Internet of Things (IoT), the amount of generated data
increases as well, leading towards what is known as big
data: data sets with a volume, variety, and velocity which
prevent the utilization of traditional processing solutions [1].

Gathering and analyzing IoT data series, i.e., data
streams, from a very large number of devices and users,
poses significant technological hurdles, e.g., space and mem-
ory limits, latency and bandwidth considerations, data het-
erogeneity, and fault tolerance [2]. Processing continuous
data streams in (near) real-time and offering solutions to
the aforementioned hurdles is also known as data stream
processing (DSP) [3]. DSP at big data scale is usually
implemented in a distributed manner where multiple com-
puting nodes are involved to divide the computational bur-
den [4]. To run such distributed stream processing applica-
tions (SPAs), distributed stream processing engines (SPEs)
like Apache Storm [5] are applied.

Distributed SPEs depend on a potentially large number
of operators that are composed to perform data processing
tasks such as data aggregation, filtering or transformation.
These operators can be internally hosted, e.g., using cloud-
based computational resources [6], but can also be in-
voked via the Internet from external service providers in
a Software-as-a-Service manner [7], [8].

Each internal and external operator can fail at any time
or become unreachable due to communication problems.
Since this could, in the worst case, render a complete
SPA unresponsive, employing fault tolerance mechanisms is
essential for distributed SPEs [9] and has therefore gained a
lot of attention recently, e.g., [10], [11]. Notably, today’s ap-
proaches to fault-tolerant DSP mostly rely on redundant sin-
gle operators applying an active replication approach [12],
while there is a lack of approaches which take into account
the fact that SPAs are often implemented by a composition
of multiple operators, which together form an operator path
in a stream processing topology [2]. Within this paper, we
argue that by taking advantage of functional redundancy on
the level of operator paths, the interplay between operators
can be handled while taking care of faulty operators, and it
is possible to achieve a higher level of flexibility, compared
to redundancy on the level of single operators.

Therefore, we present the Pathfinder framework for fault
tolerance in distributed DSP. Pathfinder is based on the no-
tion of operator paths and functional redundancy and allows
SPA developers to define fallback paths, which are activated
if a fault occurs. Based on this information, Pathfinder is
able to react to faults at runtime and thereby increases the
availability of an SPA. Once the faulty operator has been
recovered, a switch back to the main path can be conducted.
To achieve this, Pathfinder regularly tests the availability of
the failed main path by applying the circuit breaker pattern.

Pathfinder is an independent system that closely inter-
acts with an associated SPE. Therefore, Pathfinder is not
restricted to a particular SPE such as Apache Storm. Instead,
it can be integrated into any distributed SPE providing the
necessary data and control APIs. To achieve fault-tolerant
DSP, Pathfinder is provided with functionalities to monitor
the distributed SPE, to continuously analyze operational
statistics, to classify each operator into being free from
failures (or not) based on those statistics, and to initiate
the use of fallback paths if failures are detected.

The remainder of this paper is organized as follows: In
Sect. 2, we introduce some background information and
further motivate the need for path-based fault tolerance.
Afterwards, we discuss the functionalities and implemen-
tation of the Pathfinder framework in Sect. 3. We evaluate
the framework in terms of applicability and performance in
Sect. 4. In Sect. 5, we discuss the related work. Afterwards,
we conclude the paper in Sect. 6.



2. Background

2.1. Fault Tolerance for Stream Processing

In general, fault tolerance is aiming at avoiding “service
failures in the presence of faults” [13]. With regard to fault-
tolerant DSP, this means that the service (i.e., generating
data output) should still be operational even if there is a fault
on the communication or operator level. Within this paper,
we are focusing on faults on the operator level. In distributed
systems, failures in one part of the system can cause faults
in other parts of a system. This error propagation is also
frequent in DSP: If one operator needs as input the outcome
of another operator, a failure of the former operator will
necessarily lead to the failure of the whole SPA.

DSP systems have some unique characteristics that re-
quire special attention regarding fault tolerance. First, due
to their continuous nature of operation, fault tolerance is
even more crucial than in batch processing applications [2].
Second, individual data items tend to have less importance in
SPAs than in other kinds of systems, since the loss of single
data items can be mitigated by interpolation and does not
necessarily prevent service delivery [9]. Another important
aspect in fault-tolerant DSP is the differentiation between
stateful and stateless operators. As the name implies, stateful
operators have a local state that is constantly updated by
incoming data items. Therefore, fault tolerance mechanisms
need to deal with this and guarantee a reliable state even
when faced with failures. In general, the basic methods
introduced within the work at hand can be applied to both
stateful and stateless operators. While in the following, we
will limit our discussion to stateless operators, means for
the handling of faulty stateful operators could be directly
integrated into our solution approach, e.g., by implementing
the mechanisms presented in [9], [11], [14] (see Sect. 5).

In general, there are three basic mechanisms of fault
tolerance in DSP systems [2]: (i) cold restart, (ii) check-
pointing/restart, and (iii) replication. Both cold restart and
checkpointing/restart assume that there is only a transient
failure that can be corrected by restarting an operator, e.g.,
by deploying an operator on a different host. This restart
can happen either directly or via checkpointing. Replication
is redundancy in its most apparent form. In the case of
active replication, multiple instances of the same operator
are running concurrently [2]. Once a particular operator
instance fails, one of the other instances replace it.

The limitation to fault tolerance on the level of single
operators may become problematic for several reasons: First,
restart and replication only lead to a failure-free system if
the underlying fault is transient. If the fault occurs because
there is, e.g., a permanent software bug in an operator, the
failure will persist. Second, replication and restart do not
take into account the interplay between different operators
in an SPA. In the case of a common-mode failure (i.e., a
permanent, deterministic failure [13]), where it is necessary
to replace an operator by another operator with a similar
functionality, the replacement operator may not possess the
same interface as the faulty one or may require a different

data schema for its input. Hence, it is necessary to adapt the
SPA, e.g., by adding another operator which adapts the data
stream. This is not foreseen in fault tolerance mechanisms
at the level of single operators.

Third, if external operators are invoked within an SPA,
operator instances are not under control of the SPE. Instead,
an SPE invokes an externally-hosted operator. In this case,
the SPE may not be able to simply select another instance of
the same operator, because such an instance does not exist.
Hence, a different type of operator may have to be invoked,
leading again to the problem that the data streams may have
to be adapted. Fourth, a different operator type may also be
invoked for other reasons, e.g., an external operator may be
invoked on an interim basis, because an internally hosted
operator is overloaded. Again, this may require adaptations
in the stream processing topology. Fifth, in replication-
based approaches, fallback solutions need to be created for
each operator in isolation, which makes it cumbersome to
replace the functionality of a complete processing path (i.e.,
a combination of individual operators) by a different one.

Instead of focusing on the level of operator instances,
functionalities for fault tolerance could also be applied on
the infrastructure level or on the level of the distributed
SPE. On the infrastructure level, the application logic is not
considered, but it is, e.g., possible to restart a failed host.
Fault tolerance mechanisms on the level of distributed SPEs
provide the means to control the single operator instances in
an efficient way and are therefore a promising approach to
redeploy failed operator instances only if necessary, instead
of fully replicating operators. However, these approaches
suffer from the same drawbacks regarding missing aware-
ness of operator interplay, as discussed in the paragraph
above.

Due to the shortcomings of fault tolerance mechanisms
on the level of single operators and on the infrastructure
level, we propose to provide path redundancy. Redundancy
in SPAs does not necessarily imply the use of multiple
instances of the same operator in case of an operator crash.
Instead of having multiple instances of the same operator
path, we argue that SPA developers should be allowed to
define different alternative paths that provide the same (or a
similar) functionality and can replace each other. Compared
to redundancy at the operator level, this approach has several
advantages:

Functional Redundancy. Fault tolerance on the level
of operator paths allows to use an alternative path (with
different operators) in case of a failure in the main path.
This resembles the idea of N-version programming [15].
Functional redundancy is especially helpful if it is not
possible to deploy a replica of a failed operator, e.g., because
the operator is externally hosted, or because of a permanent
software bug which cannot be solved immediately.

Notably, applying functional redundancy on the level of
operator paths does not prohibit that the same operator type
is used within different paths, however unique instances of
these operators per unique path.

Flexibility. Since paths can consist of arbitrarily
many operators, SPA developers can define fault tolerance



actions for specific sets of operators. In addition, the length
and number of alternative paths can be chosen by the SPA
developer to reflect the level of availability that needs to be
achieved. Naturally, there are SPA functionalities for which
failures can be tolerated more easily, while for others, faults
are intolerable [2].

Mitigation of Fault Propagation. The handling of
faults on the level of single operators does not allow to
define how to avoid data congestion since data items cannot
be processed any longer. By defining fault tolerance on the
path level, i.e., by defining how to redistribute data items
in case a particular operator fails, faults can be intercepted
before such data congestions occur.

Simplicity. Pathfinder allows to define fault tolerance
on the level of a stream processing topology definition,
as presented in [6]. Hence, no thorough knowledge about
fault tolerance or distributed systems is required to define
alternative paths. Furthermore, the code of existing operators
does not need to be modified in order to add fault tolerance.
Instead, a distributed SPE takes the information from the
topology definition to mitigate failed operators.

2.2. Terminology

consists of

Data item

runs on

Processing 
Operator 

(internal/external) 
Stream

deploys internal 
 operators on

invokes/ 
controls

Stream
Processing 

Engine

Computational 
Resource

consists of

Topology

processes as input(s)

produces output(s)

Figure 1: Entities in DSP

Fig. 1 provides an overview of the entities in DSP most
important for the work at hand. Following the definition by
Andrade et al. [2], data streams consist of a continuous se-
quence of data items of the same type. Processing operators
consume one or more streams as an input and produce one
or more output streams. The composition of all operators
with their connections is known as a topology. Usually, a
data flow representation is used to model the flow of data
items between operators [2]. An SPE manages the internal
operators and their deployment on computational resources,
and invokes external operators, respectively.

We define the topology of an SPA as a directed acyclic
graph T (O,E) that consists of a set of vertices represent-
ing operators O and a set of edges that denote a data
flow E [16]. The topology, therefore, defines which oper-
ators exist in an SPA and how they are connected to each
other. A data flow from operator A to operator B exists if
there is an edge from A to B. We denote such a data flow as
df(A,B). An operator A has an input (operator) B if there is
a logical flow from B to A. Analogously, A has an output

A Split Join
B C

D

E
1

2

Figure 2: Example Topology with Split/Join Operators

(operator) C if there is a logical flow from A to C. The
input degree of an operator A is denoted as deg+(A) and
represents the number of input streams of A. Analogously,
the output degree deg−(A) represents the number of output
streams of A.

Operator paths provide functionality by combining in-
dividual operators in the right order [2]. A path π in a
topology T is defined as an ordered sequence of operators
such that there is always a data flow between consecutive
operators in that sequence. We refer to the i-th operator in
path π using the notation πi (starting at index i = 0). An
operator A is part of path π if A ∈ π. A path π is active
if there exists an operator A 6∈ π where dfp(A, π

0), i.e.,
there is a data flow from A to the first operator of π. A path
is inactive if there is no operator A 6∈ π where dfp(A, π0),
i.e., there is no operator with a data flow to the first operator
of π. A path is said to contain a failure if one or more of
its operators contain a failure.

Topologies may contain split and join operators. A split
operator S is an operator with deg−(S) > 1. Semantically,
a split operator defines several alternative paths: a main
path and one or more fallback paths. The main path is the
alternative path that is active by default if all alternative
paths are fault-free. We name an alternative path π by
its first operator (π0) since the beginnings and ends of
alternative paths are unambiguously defined by the split
and join operators, respectively. An alternative path’s path
order ρ defines the order in which Pathfinder falls back
on the alternative path in case of operator failures. The
main path has a path order of ρ = 1, i.e., it is used with
the highest priority. Path orders are defined by an SPA
developer. There must exist at least one other alternative
path with ρ > 1. Two alternative paths of a split operator
must not have the same path order (i.e., for a split operator
S, dfl(S,A) ∧ dfl(S,B) ⇒ ρA 6= ρB). The counterpart to
the split operator is the join operator. It indicates the place
where the alternative paths come together again. Notably a
split operator will only forward data items to the active path,
and if applicable, to a path which is currently probed (see
Sect. 3.4). Join operators only receive data items from the
active path.

Fig. 2 shows an example topology with a split and a join
operator. In this representation, operators are modeled as
boxes and the data flow between them as directed edges. In
the example, operator C, which is part of the main path πB

(ρ = 1), has a failure. Therefore, the complete main path
has failed, and fallback path πD (ρ = 2) is activated by
Pathfinder through the split operator; the active fallback path
is highlighted in blue colors. As can be seen in the example



topology, functional redundancy as applied in Pathfinder
does not necessitate the availability of the same operator
types in a path, even though this could be the case. In the
example, the composed operators B and C are offering a
functionality which is similar to the functionality of the
single operator D. Therefore, the alternative path πD can
take over data processing if the main path πB fails.

3. Pathfinder – A Fault Tolerance Framework
for Stream Processing

3.1. Error and Fault Handling Approach

Following a common approach, Pathfinder performs a
two-stage recovery from faults [13]. For this, first, the
faulting operator itself is handled. In a diagnosis step, it
is detected which operator caused the error. The whole path
containing the faulty operator is then isolated to mask the
fault. This is done by blocking the data flow to that path.
In a reconfiguration step, an alternative path is activated.
Finally, reinitialization of the SPA takes place and the data
item routing is updated such that the newly activated path
is used instead of the faulty one.

Pathfinder’s fault handling does not stop after the faulty
processing path has been deactivated. While it is acceptable
to use a fallback path as long as the main path is unavailable,
there is also a need for a mechanism to get back to the main
path once it is available again, if it is possible to restore
the main path. If this is not possible, the other operators
in the main path are shut down, unless they are needed
in a different path. In the case of external operators in the
failed main path, the operators are not invoked any longer. A
probing mechanism is used to continuously check whether
a previously failed path was able to recover. This probing
mechanism is based on the circuit breaker pattern and will
be discussed in detail in Sect. 3.4.

Notably, no attempts are made at reprocessing data items
by the main path after they have already been processed by a
fallback path. This is because it is assumed that the fallback
path produces results of a similar quality and the benefits
of reprocessing by the main path are small compared to the
computational overhead of reprocessing.

3.2. Framework Functionality

Pathfinder is an independent framework that closely
interacts with an associated SPE. Thereby, Pathfinder is
not restricted to a specific distributed SPE. Instead, it can
be used to support any distributed SPE that is able to
provide the needed information and to obey the commands
by Pathfinder. Pathfinder controls the associated SPE’s data
flow and operator deployment based on monitoring opera-
tional statistics. For this, Pathfinder

• monitors the associated SPE and continuously ana-
lyzes operational statistics,

• classifies each operator into being free from failures
or not based on those statistics, and

• commands the use of fallback paths if failures are
detected.

Monitoring and classifying are necessary to detect faults.
These steps are essential since fault tolerance mechanisms
can only be initiated when Pathfinder knows about the faults.
Commanding a distributed SPE is needed because Pathfinder
does not reimplement control features to influence the dis-
tributed SPE’s operators or its data flow. Thus, separation of
concerns between Pathfinder’s functionalities and an SPE’s
usual mode of operation is provided.

For the commanding, Pathfinder needs to know about
available fallback paths. This knowledge needs to be added
by the SPA developer. For instance, a topology definition
language like VTDL [6] could be extended accordingly.
For the definition of fallback paths, split and join operators
as introduced in Sect. 2.2 are used. As it can be seen in
the example in Fig. 2, downstream of a split and upstream
of a join operator are at least two alternative paths that
provide functional redundancy through different operators.
Pathfinder decides at runtime which of the alternative paths
is active, i.e., receives the data flow from the operator that
is directly upstream of the split operator. In Fig. 2, this is
operator A. If Pathfinder detects a failure in the main path
(identifiable by the path order ρ = 1 shown next to the split
operator), it applies the circuit breaker pattern by switching
to a fallback path and to observe the recovery of the main
path (see Sect. 3.4).

3.3. System Design

Communicator

Pathfinder Runtime

Pa
th

fin
de

r R
un

tim
e

SP
E 

R
un

tim
e

SP
E 

R
un

tim
e

Circuit Breaker

Operator Statistics

Operator Status

Path Activations

Pa
th

fin
de

r R
un

tim
e

... ...
Internal
Topology

Representation Nexus

Figure 3: Pathfinder’s System Design

Pathfinder’s basic functionalities are provided through
three core modules: The Circuit Breaker, the Nexus and the
Communicator. Fig. 3 shows the system design.

A critical component such as the Pathfinder frame-
work should not become a single point of failure. Hence,
Pathfinder is deployed in a distributed manner itself, as can
be seen by the presence of different Pathfinder Runtimes in
Fig. 3. Since every Pathfinder Runtime can be restricted
to query only a subset of a distributed SPE’s operators,
distributed deployment of Pathfinder Runtimes also allows
easier scaling based on the partitioning of the topology.

In the following paragraphs, the three core modules of
Pathfinder are explained in more detail:

(i) Since Pathfinder can be deployed in a distributed
manner, a Pathfinder Runtime instance needs to communi-
cate with other Pathfinder Runtime instances and also with



instances of the associated SPE, e.g., in order to actively
request operational statistics. Bundling all communication
aspects in the single module Communicator enables loose
coupling since this module can be easily exchanged when
a different distributed SPE should be controlled. The Com-
municator module is also responsible for updating the states
of the circuit breakers (see Sect. 3.4) and for retrieving
topology information from the associated SPEs.

(ii) The Circuit Breaker module is aware of the topology
that is currently active in the associated SPE. To describe a
topology, e.g., a description language needs to be used, as
mentioned above. In order to address arbitrary distributed
SPEs, a conversion step from and to the description language
is added to the Communicator.

A circuit breaker object is created and maintained for
each alternative path at a split operator. By continously
querying the Nexus component, operator failures are de-
tected that are then translated into state transitions of the
circuit breaker objects. In the event of topology changes
initiated by the associated distributed SPE, the internal
topology representation of the Circuit Breaker is discarded
and new circuit breaker objects are created for all paths of
the SPA’s updated topology.

(iii) The Nexus component is responsible for analyzing
statistical data and classifying operators into working and
failed. Each operator is classified separately based on cur-
rent and historical statistics collected from the associated
SPE. The concrete Nexus implementation can make use
of different technologies such as manually created rules or
machine learning-based profiles. Particular example rules
which have already been implemented in Pathfinder are:
(i) Not more than a maximum number of data items are
allowed to be buffered for processing at a specific operator
while the CPU utilization is below a particular minimum
threshold, (ii) the memory and CPU utilization is below
or above minimum/maximum thresholds, and (iii) the rate
of data item processing is lower than the rate of incoming
items.

3.4. Circuit Breakers in Pathfinder

Figure 4: States of a Circuit Breaker (Adopted from [17])

A circuit breaker in a software system “trips” (i.e., stops
the control/data flow to a service) when a failure is detected,
thereby preventing future calls to that service from being
made [17]. Instead, either a fallback solution is used or the
failure is propagated to the caller as soon as possible.

Using a circuit breaker has two major benefits. First,
the failing service (here: an operator) itself will experience

less load which might be beneficial for a quick recovery,
depending on the failure’s cause. Second, the other operators
as well as the SPE will not waste time waiting for responses
from the failed operator and can instead instantly provide a
fallback solution or throw an exception.

The basic idea of the circuit breaker pattern in Pathfinder
is to avoid invoking a failed operator’s service. Instead, a
fallback solution is used to replace the operator as soon as
that failure is detected. One solution approach would be the
implementation of the circuit breaker pattern on the level of
individual operators, but as discussed in Sect. 2.1, this may
not be the best solution in all scenarios. Instead, Pathfinder
implements circuit breakers on the level of paths that can
consist of arbitrarily many operators. The major advantage
of this approach is that a topology designer can construct
functional redundancy at the topology level and is not
restricted by the subdivision of functionality into multiple
operators. However, redundancy can still be implemented at
the operator level simply by considering paths of length one
(i.e., containing only one single operator) in Pathfinder.

A circuit breaker can be viewed as an automaton with
three possible states: open, half-open and closed [17], as
shown in Fig. 4. Being closed by default, a circuit breaker
acts as a proxy and forwards all requests to a software
component and in turn forwards the component’s reply to
the caller. With regard to distributed SPEs, this means that
a circuit breaker forwards the data flow to an operator if it
is closed. If an operator failure is detected, the circuit for
the respective operator is opened. In this state, no further
data is forwarded to the failed operator. After a configurable
amount of time, the circuit breaker switches to the half-
open state and forwards a small fraction of data items to the
presumably failed operator to see whether it has recovered.
If it has (indicated with “success” in Fig. 4), it returns to
the closed state and the operator is fully functional again.
For this, Pathfinder invokes a probing mechanism in the
half-open state where only a small fraction of data items is
allowed to pass the circuit breaker (see below).

To implement this pattern in Pathfinder, a circuit breaker
object is created for every alternative path of every split
operator. Pathfinder’s Nexus component (see Sect. 3.3) pro-
vides information about the current health of each operator.
Using that information, the circuit breakers are updated
accordingly (i.e., circuit breakers are opened if at least one
operator failure in that path is detected). On each circuit
breaker transition, the distributed SPE is contacted and
advised to configure the data flow, i.e., stop it when the
circuit breaker is opened and resume it once it is closed.

An example is shown in Fig. 5. The figure depicts the
data flow through a split operator. Each of the outgoing paths
(πP1−3) is assigned its own circuit breaker and the state of
each circuit breaker is indicated by a traffic light symbol.
Since the circuit breaker of πP1 is in the open state, there
is no data flow from operator A to operator P1. By means
of the probing mechanism, a small fraction of data items
is forwarded to P2 due to the circuit breaker of πP2 being
half-open. πP3 is the active path due to its circuit breaker
being closed.



A Split P2

P3

1

2

3

P1

...

...

...

Figure 5: Representation of Circuit Breakers in Pathfinder

As can be seen in Fig. 4, the following circuit breaker
transitions are used in Pathfinder:

Closed to open. The most important transition is ar-
guably the opening of the circuit breaker, which corresponds
to blocking the data flow to an operator. While being in the
closed state, the data flow is uninterrupted. The transition
to the open state causes the flow to stop immediately, i.e.,
Pathfinder commands the SPE to stop the data flow by
invoking a specific API of the SPE. This transition is caused
by the Nexus component providing information about an
operator failure.

Open to half-open. After a configurable time period,
the circuit breaker automatically transitions from the open
to the half-open state. In this state, the probing takes place,
i.e., a small amount of data items is forwarded to the first
operator in the probed path in order to assess if the path is
fully operational again.

Half-open to open. If the probing has indicated that
the path still contains failed operators, the circuit breaker
transitions back to the open state until another probing
attempt is started.

Half-open to close. If the probing attempt succeeds
and all operators of the probed path are fully operational
again, the circuit breaker transitions to the closed state and
the normal data flow is restored, i.e., the probed path is
activated again.

In addition to these transitions, Pathfinder allows the
execution of several path-related commands. These com-
mands are triggered via Pathfinder’s Communicator module
at the distributed SPE if the circuit breaker of a particular
path changes. If an operator recovery is detected, the cir-
cuit breaker is changed to the closed state and the path
is available again. However, if an operator of an active
path becomes unavailable, that path’s circuit breaker is
transitioned into the open state and an alternative path is
activated. To find a suitable alternative path, Pathfinder first
considers all alternative paths of the split operator the failing
path was part of. From those alternative paths, it further
considers only those paths with a closed circuit breaker. If
more than one path with a closed circuit breaker is available,
Pathfinder uses the one with the lowest ρ. It then commands
the associated SPE to change the data flow of all operators
directly upstream of the split operator to that alternative
path. However, if no such path is available, Pathfinder is
not able to correct the operator failure at that point in time
and waits for the next scheduled retrieval of new operational
statistics. In any case, Pathfinder then transitions the circuit

breaker of the failed path into the open state to signal that it
is no longer available. Also, probing attempts are initiated.

For this, the Circuit Breaker component determines that
an alternative path with a circuit breaker in the open state is
to be probed. Then, the circuit breaker’s state is transitioned
to the half-open state and an endpoint of the distributed SPE
is invoked to start the probing procedure. In the meantime,
Pathfinder continues gathering operational statistics from the
operators and detects whether the probed path has recovered
in which case its circuit breaker is transitioned to the closed
state. However, if no recovery took place, no further probing
attempts are made until a certain user-defined amount of
time has passed. This cool-down mechanism ensures that
no resources are wasted on an inactive path, especially in
long paths containing many operators. Also, the topology
designer can define how many probing attempts are con-
ducted before a path is marked as permanently failed. This is
done in order to be able to shut down internal operators and
to stop the invocation of external operators if they are not
needed any longer. Notably, during a probing attempt, the
data flow to the currently active path must not be interrupted.
Otherwise, data item loss may occur. The rare case where
active and probed both paths successfully process the same
data items are tolerated since Pathfinder follows an at-least-
once delivery approach.

4. Evaluation

4.1. Experimental Setup

Pathfinder has been implemented as a standalone frame-
work that communicates with associated SPEs via REST
APIs. For the purposes of the evaluation, the Vienna Ecosys-
tem for Elastic Stream Processing (VISP) [18] has been
used, but in general, Pathfinder could be integrated into
any arbitrary SPE, as long as this SPE is able to deliver
the needed information and can execute commands from
Pathfinder (see Sect. 3.2). VISP and Pathfinder are available
on Github1.

VISP is a fully-fledged research SPE, which allows
the utilization of cloud-based computational resources in
DSP to adapt to changes in data volume and velocity at
runtime. In VISP, Docker containers are utilized to host the
single operators. VISP allows lazy deployment of operators.
This means that only the operators in the main path are
activated at initialization, while operators in alternative paths
are not deployed yet. This saves computational resources
and therefore cost, especially if compared to the usually
applied active replication of operators in SPAs. However,
it also causes an additional startup time since no results
are produced between the failure of the main path and the
complete deployment of a fallback path.

Notably, VISP provides a DataProvider, which is applied
to generate input data in a reproducible way. In the experi-
ments, a constant pattern is applied, i.e., the production of
new data items is done at a constant rate. The DataProvider

1. https://github.com/visp-streaming



P1 Transform
location data

Split

P3Get keywords 
near <distance> to

location

P4Find companies
near <distance>

to location

P5 Get keywords
by company

P6 Get keywords
near <distance>

to location by
user tags

Join

P7 Find ads by
keywords

Si2
Set relevant ads

Si1 Set friend 
suggestions

S1
GPS Data

S2
IPS Data

P2Suggest nearby
friends

1

3

2

Figure 6: Evaluation Topology

is deployed on the same virtual machine as VISP in order
to minimize network communication overhead. Another key
feature of VISP is the ability to change the topology at
runtime. Since this ability is important for fault tolerance
mechanisms, VISP has been chosen as the basis for the
evaluation.

In order to evaluate the performance and function-
ality of Pathfinder, a number of experiments have been
conducted. The experiments are performed in a private
OpenStack-based cloud. An m1.large instance (7 GB
memory, 4 VCPUs) and an m1.medium instance (3 GB
memory, 2 VCPUs) are used for the deployment of VISP
and Pathfinder, respectively. Additionally, four m1.large
instances serve as computational resource pool for spawning
the operator instances used for data processing.

Fig. 6 describes the topology used for the evaluation of
Pathfinder. The topology is based on a real-world scenario
presented by Couceiro et al. [19]. As can be seen in the
figure, it provides an SPA example from the marketing
domain, aiming at targeted advertisements based on the user
location. This could be applied, e.g., in order to provide
personalized ads to users on their smartphones, e.g., in a
mall.

There are two data sources S1-2, supplying the neces-
sary data input, two data sinks Si1-2, and seven operators
P1-7, which provide the following functionality:

• S1_GPS_Data: User positions derived from the
GPS module of mobile devices enter the SPA via
this source.

• S2_IPS_Data: User positions derived from indoor
position systems enter the SPA via this source.

• P1_Transform_location_data: This opera-
tor transforms data items from S1 and S2 into a
common format for further processing.

• P2_Suggest_nearby_friends: Based on the
current position of the users, this operator suggests
connections with other users based on geographical
proximity and other matching criteria (e.g., common
friends, workplaces or interests).

• P3_Get_keywords_near_distance...: An
external service is used to retrieve a set of keywords
for a specific location.

• P4_Find_companies_near_distance...:
Based on a location, a set of companies located in
proximity is fetched from a database.

• P5_Get_keywords_by_company: A company
is transformed into a set of keywords based on what
it sells.

• P6_Get_keywords_near_distance_-
to_location_by_user_tags: Key-
words for a specific location are fetched from a
database containing user annotations.

• P7_Find_ads_by_keywords: Filters the set of
advertisement campaigns by restricting them to cer-
tain keywords.

In order to generate reproducible results, we intention-
ally did not fully implement every single operator. Instead,
P1-7 simulate a predefined computational load. For each
data item to be processed by an operator, the processing of
that item is simulated by computing the Fibonacci sequence
until n. Tab. 1 lists how much work the operators need to
perform for each data item. The n values have been chosen
to approximate the expected work done by each operator.
The average time it takes an operator to process a single
data item for a specific n is also shown in the table. The
sinks Si1-2 consume the data without any further action.

As shown in Fig. 6, the topology features a split/join
segment that has been defined by the topology designer
to achieve fault tolerance. In the case of active replication,
all paths πP3, πP4, and πP6 would be active at all times.
However, when applying Pathfinder, one path is selected
at a time, as described in Sect. 3. As it can be seen in
the figure, functional redundancy of the different operators
in the alternative paths is assumed, i.e., the different paths
provide a comparable functionality, but the single operators
are not identical. We assume that all operators are self-

TABLE 1: Load Simulation

Operator n Avg. proc. time [s]
P1 37 0.199
P2 43 2.115
P3 40 0.841
P4 40 0.841
P5 40 0.841
P6 40 0.841
P7 40 0.841



hosted on the abovementioned computational resources.
In order to produce deterministic results, we artificially

inject faults at pre-defined points of time during the ex-
periments. We simulate operator failures in three different
ways: (i) exhaustive memory consumption (MEM) of an op-
erator, (ii) total suspension of execution (SLP), and (iii) low
processing throughput (THR). Pathfinder’s Nexus is able to
identify these different failures as follows: (i) For MEM fail-
ures, an operator is classified as failed if its memory usage
is above or below predefined thresholds. These thresholds
can be defined by the topology designer or can be derived
from historical operator performance data. Nexus identifies
failures by comparing thresholds and monitored memory
consumption. (ii) SLP failures are detected by observing the
rate of item output. An operator is classified as failed if this
rate is zero despite data items waiting in the input queue of
an operator. (iii) THR failures occur if an operator is slowing
down with regard to the number of data items processed
in a particular timeframe, e.g., because the operator is not
able to cope with the velocity of its input data streams. To
identify such failures, Nexus compares the rate of incoming
data items to the rate of their consumption and classifies an
operator as failed if the incoming rate is larger.

4.2. Experiments

For each of the three mentioned operator failure types
(MEM, SLP, and THR), four experiments are carried out at
different times of the day and on different days. This is done
in order to cater for “background noise”, e.g., the load on the
OpenStack-based cloud testbed by other applications. Each
experiment starts with deploying the topology in the VISP
Runtime. Once the setup is complete, the main path πP3

is activated. Then, the VISP DataProvider is configured to
continuously produce data items at S1 and S2 at a constant
rate. Initially, P3 is active and receives data items from P1.
After another 100 seconds, an artificial MEM, SLP, or THR
failure is deliberately introduced in P3.

In the meantime, Pathfinder continuously queries VISP
for operator statistics. Initially, all statistics are expected to
show normally working operators. Once the artificial failure
has been introduced, Pathfinder is expected to detect the
failure of P3 and react by switching to the next alternative
path πP6 (as indicated by ρ = 2). The time between the
beginning of the failure and the activation of πP6 is named
time to adapt, which is equal to the time where no path
is active. The time to adapt consists of six parts: (i) the
time between two scheduling intervals, (ii) the time it takes
Pathfinder to receive the statistics from VISP, (iii) the time it
takes for the Nexus component to make a failure prediction
for an operator, (iv) the time it takes until Pathfinder can
communicate its decision to VISP, (v) the time it takes VISP
to switch paths, and (vi) the time it takes until a newly
activated operator is deployed.

Once the artificial failure is removed and P3 recovers,
Pathfinder is expected to detect this recovery and switch
back to the main path πP3. Regular probing events are used
to verify whether P3 has already recovered.

4.3. Results and Discussion

0 100 200 300 400 500 600
Time [s]

Ph
as

e

Topology Setup [57.29 s]

Main path (P3) active [101.57 s, 100.00 s]

P3 fails [300.01 s]

No path is active [27.03 s]

Pathfinder switches to P6 [0.39 s]

Fallback path (P6) is active [339.97 s]

Probing

Figure 7: Pathfinder’s Action in Case of Failure

Fig. 7 shows a plot that visualizes the temporal con-
nection between the different experimental phases described
above. Different phases are depicted in a GANTT-inspired
style by horizontal bars in different colors. The width of each
bar corresponds to the duration of the phase, and the position
along the x-axis shows its beginning and end. Notably, the
figure presents one representative evaluation run (out of
twelve runs) to avoid cluttering the figure with too much
information. In fact, for each of the twelve evaluation runs,
a similar plot has been produced. While the plots of all
twelve evaluation runs show similar results for most of the
phases, there is one notable exception, namely the time to
adapt, i.e., the timespan where no path is active. Therefore,
this aspect will be discussed separately below.

Fig. 7 shows that, starting at time t = 0, the initial
topology setup takes about 57 seconds. This phase in-
cludes (1) uploading a topology description to VISP and
all subsequent initialization steps, (2) connecting VISP with
Pathfinder, and (3) starting the DataProvider which emits the
data for S1 and S2. This is not influenced by Pathfinder,
since it simply sets up the topology within VISP.

The second phase starts when the first data item from
S1 or S2 was successfully processed by P1 (approximately
at t = 58). In this phase, the main path πP3 is active and is
successfully processing incoming data items. While it is not
explicitly shown in the plot, Pathfinder continuously queries
VISP for operational statistics to detect potential failures
but does not detect anything yet. At t = 159, an artificially
generated operator failure of P3 is triggered. Specifically,
Fig. 7 shows the data for one run of the SLP failure type.
The total length of the failure is 300 seconds. During this
time, the main path πP3 is not available.

Since Pathfinder queries VISP in intervals of 15 seconds,
some time passes where no path is active. This phase takes
about 27 seconds and ends when Pathfinder recommends
VISP to switch to πP6. Reasons for the duration until the
switch-over is recommended are discussed below.



MEM THR SLP
Failure type

30

35

40

45

50

Ti
m

e 
to

 a
da

pt
 [s

]
Time to adapt

Figure 8: Time to Adapt

Switching paths is very time-efficient – after 0.39 seconds,
πP6 is active. While πP6 is active, probing attempts are
made where the data flow to P3 is restored for a few seconds
to see whether the operator has recovered. Once P3’s failure
stops after 300 seconds, Pathfinder switches back to πP3

after a few probing attempts and the period of πP6 activity
ends after a total of 340 seconds. Without Pathfinder, the
whole SPA would have been unavailable during this time.
In summary, the experiment shows that Pathfinder is able to
maximize the SPA’s availability in the presence of operator
failures by utilizing functional redundancy at the path level.

Nevertheless, there are some shortcomings that need to
be discussed. First, the time it takes to detect the failure
is quite high (around 27 seconds). This can be traced back
to the fact that Pathfinder’s Nexus component solely relies
on statistics and performance indicators provided by the
execution environment (see Sect. 3.3), instead of relying on
implementation details of the single operators. While this
allows using Pathfinder without development efforts on the
operator level, deriving a failure obviously takes additional
time. Second, the time to detect the recovery is also quite
long. As can be seen in Fig. 7, there are three probing events
between the end of P3’s failure (i.e., the end of the red bar)
and the re-activation of the main path (i.e., the second start
of the pink bar). Each probing event consists of three stages:
(1) the activation of data flow, (2) a short pause, and (3) the
inactivation of data flow. Due to the fluctuations in data
volume, it can happen that the pause is too short and no
data items are produced during this time span. Therefore,
one probing event might not be sufficient. This could be
fine-tuned by elongating the pause at the cost of increased
resource usage.

In order to detect the influence of the three different
operator failure types regarded by Pathfinder, the average
time to adapt for the failure types has also been evaluated.
Fig. 8 shows the outcomes of these experiments. As men-
tioned above, experiments were conducted four times for
each failure type. SLP is the quickest to be detected (on
average around 30 seconds) since its effects are reflected
immediately by the lack of new data items. The MEM
failure takes longer to be detected (45-50 seconds) since

it takes some time until the memory utilization threshold
is reached and the operator is therefore classified as failed.
The THR failure’s detection time varies much more than
that of MEM and SLP, as can be seen from the high spread
depicted in Fig. 8. Since THR failures cause a processing
delay, the failure is only triggered when the incoming data
item rate is large enough. This depends on multiple factors,
including the current utilization of the cloud infrastructure.
The identification of solutions to reduce the time to adapt for
the different failure types remains part of our future work.

5. Related Work

To the best of our knowledge, no approaches to path-
level fault tolerance for distributed SPEs have been proposed
so far. Nevertheless, there is some relevant related work in
the field of fault-tolerant SPEs.

To start with, Balazinska et al. [11] introduce a fault
tolerance approach for Borealis, aiming at eventual con-
sistency. It allows SPA developers to change the trade-
off between availability and consistency by specifying a
maximum waiting time. The distributed SPE will wait as
long as the predefined recovery time for operators has not
passed yet. If an operator does not recover in time, tentative
results are produced, serving as approximations for the
missing results. This allows a continuous output of data
items. Once a failed operator is successfully recovered, the
tentative results are corrected. Akidau et al. [14] present
the distributed SPE MillWheel, along with a fault tolerance
model. MillWheel promises consistency even if faced with
arbitrarily many hosts crashing and an infinite amount of
data items lost. These guarantees are implemented using
an acknowledgment mechanism to prevent message loss,
and a fine-grained checkpointing mechanism. Huang and
Lee [9] present an approach to approximate fault tolerance
for distributed SPEs. The authors argue that especially for
scenarios where streaming data is only processed to identify
trends in the data, it is tolerable to lose some of the data
items to improve availability. Hence, the authors tolerate a
small number of errors that can remain uncorrected.

All three discussed fault tolerance mechanisms focus
on individual operators. As has been argued in Sect. 2.1,
Pathfinder is based on the assumption that fault tolerance
should also be provided on the level of operator paths, since
operators should not be seen as atomic units. Hence, our
work enables functional redundancy on the level of operator
paths. This has not been foreseen in the related work so far.

It should be noted that the work presented in [9], [11],
[14] explicitly aims at stateful operators, while we have
not discussed operator state in Pathfinder so far. Within
the scope of the paper at hand, the inclusion of operator
state was only of secondary interest, since the goal was
to present the feasibility and benefits of path-based fault
tolerance in DSP. In order to support stateful operators, the
according methods from [9], [11], [14] could be integrated
into Pathfinder.

In their seminal work on Spark Streaming [12], Zaharia
et al. argue that active replication is too expensive and



therefore novel solutions should be applied in fault-tolerant
DSP. The authors propose discretized streams, allowing
parallel recovery, which is also able to tolerate stragglers.
In contrast to most of the related work and Pathfinder, the
authors abstain from a continuous operator model. Instead,
stream processing is done in micro-batches. This is surely
a very interesting approach, but not compatible with the
operator-based streaming model applied in the work at hand.

Apart from the abovementioned approaches which have
been specifically developed for distributed SPEs, there are
also related approaches from the field of service-oriented
computing. In fact, the roles of services in service-oriented
computing and of operators in SPEs are very similar, since
these entities are independent building blocks that are com-
posed to realize a functionality. While there are also signif-
icant functional differences between services and operators,
the commonalities allow us to adopt some basic approaches
to fault tolerance from the field of service-oriented comput-
ing. Especially, fault-tolerant frameworks for microservice
architectures like Netflix’ Hystric [20] are of interest, since
the underlying principles of custom fallback and fail fast are
adopted in Pathfinder.

6. Conclusion

DSP has become a commodity in many application
areas, with distributed SPEs like Apache Storm being used
widely by the industry. Despite the significant advances in
distributed SPEs, there is nevertheless a lack of sophisticated
fault tolerance mechanisms in state-of-the-art SPEs. Today,
most existing SPEs rely on active replication in order to
ensure continuous operation. However, active replication of
single operators features a number of shortcomings since
the interactions between single stream processing operators
are not taken into account.

In order to mitigate this, we have presented Pathfinder,
a framework to introduce functional redundancy on the
level of operator paths into distributed SPEs. At runtime,
Pathfinder reacts to faults by switching to a fault-free path
with a similar functionality. To restore the main path once a
failed operator has recovered, Pathfinder applies the circuit
breaker pattern. While we have evaluated Pathfinder in the
research SPE VISP, integrating and testing it with further
distributed SPEs such as Apache Storm or Kafka would
surely also be an interesting exercise. As a second major part
of our future work, we aim to improve the presented failure
detection mechanisms in order to decrease the time to adapt.
We are currently working on a solution that compares data
from a failure-free operation with the current metrics of an
operator. For this, statistical and machine learning methods
are applied. Last but not least, we plan to integrate existing
mechanisms for the handling of faulty stateful operators.

Acknowledgments

This work is partially funded by COMET K1, FFG –
Austrian Research Promotion Agency, within the Austrian
Center for Digital Production (Contract No. 854187).

References

[1] A. McAfee and E. Brynjolfsson, “Big Data: The Management Revo-
lution,” Harvard Business Review, vol. 90, no. 10, pp. 61–67, 2012.

[2] H. Andrade, B. Gedik, and D. Turaga, Fundamentals of Stream
Processing. Cambridge University Press, 2014.

[3] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 Requirements
of Real-Time Stream Processing,” ACM SIGMOD Record, vol. 34,
no. 4, pp. 42–47, 2005.

[4] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data,” Information
Sciences, vol. 275, pp. 314–347, 2014.

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm @Twitter,” in 2014 ACM SIGMOD
Int. Conf. on Management of Data, 2014, pp. 147–156.

[6] C. Hochreiner, S. Schulte, S. Dustdar, M. Nardelli, and B. Knasmüller,
“VTDL: A Notation for Data Stream Processing Applications,” in
12th IEEE Int. Symp. on Service Oriented Syst. Engineering. IEEE,
2018, pp. 76–85.

[7] B. Allen, J. Bresnahan, L. Childers, I. T. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a Service for Data Scientists,” Comm. of
the ACM, vol. 55, no. 2, pp. 81–88, 2012.

[8] Z. Zheng, J. Zhu, and M. R. Lyu, “Service-Generated Big Data and
Big Data-as-a-Service: An Overview,” in IEEE Int. Cong. on Big
Data. IEEE, 2013, pp. 403–410.

[9] Q. Huang and P. P. C. Lee, “Toward High-Performance Distributed
Stream Processing via Approximate Fault Tolerance,” Proc. of the
VLDB Endowment, vol. 10, no. 3, pp. 73–84, 2016.

[10] L. Su and Y. Zhou, “Tolerating correlated failures in Massively
Parallel Stream Processing Engines,” in 2016 IEEE 32nd Int. Conf.
on Data Engineering. IEEE, 2016, pp. 517–528.

[11] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker,
“Fault-Tolerance in the Borealis Distributed Stream Processing Sys-
tem,” ACM Trans. on Database Syst., vol. 33, no. 1, pp. 1–44, 2008.

[12] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized Streams: Fault-Tolerant Streaming Computation at Scale,” in
24th ACM Symp. on Operating Syst. Principles. ACM, 2013, pp.
423–438.

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
T. on Dependable and Secure Comp., vol. 1, no. 1, pp. 11–33, 2004.

[14] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R. Lax, S. Mcveety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
Wheel: Fault-Tolerant Stream Processing at Internet Scale,” Proc. of
the VLDB Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[15] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,”
IEEE T. on Software Engineering, vol. 11, pp. 1491–1501, 1985.

[16] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Elastic Stream
Processing for the Internet of Things,” 2016 IEEE 9th Int. Conf. on
Cloud Comp., pp. 100–107, 2016.

[17] M. Fowler, “Circuit Breakers,” 2014. [Online]. Available: https:
//martinfowler.com/bliki/CircuitBreaker.html

[18] C. Hochreiner, M. Vögler, P. Waibel, and S. Dustdar, “VISP: An
Ecosystem for Elastic Data Stream Processing for the Internet of
Things,” in 20th Int. Enterprise Distributed Object Comp. Conf.
IEEE, 2016, pp. 1–11.

[19] M. Couceiro, D. Suarez, and D. Manzano, “Data stream processing
on real-time mobile advertisement: Ericsson research approach,” in
IEEE 12th Int. Conf. on Mobile Data Management. IEEE, 2011,
pp. 313–320.

[20] Netflix Inc., “Hystrix,” 2013. [Online]. Available: https://github.com/
Netflix/Hystrix


