
Optimized Container-based
Process Execution in the Cloud

Philipp Waibel1,2[0000−0002−5562−4430], Anton Yeshchenko1[0000−0002−5346−8358],
Stefan Schulte2[0000−0001−6828−9945], and Jan Mendling1[0000−0002−7260−524X]

1 Institute for Information Business, WU Wien, Austria
{philipp.waibel,anton.yeshchenko,jan.mendling}@wu.ac.at

2 Distributed Systems Group, TU Wien, Austria
{p.waibel,s.schulte}@infosys.tuwien.ac.at

Abstract. A key challenge for elastic business processes is the resource-
efficient scheduling of cloud resources in such a way that Quality-of-
Service levels are met. So far, this has been difficult, since existing ap-
proaches use a coarse-granular resource allocation based on virtual ma-
chines.
In this paper, we present a technique that provides fine-granular resource
scheduling for elastic processes based on containers. In order to address
the increased complexity of the respective scheduling problem, we de-
velop a novel technique called GeCo based on genetic algorithms. Our
evaluation demonstrates that in comparison to a baseline that follows an
ad hoc approach a cost saving between 32.90% and 47.45% is achieved
by GeCo while considering a high service level.

Keywords: Elastic Processes, Optimization, Scheduling, Business Pro-
cess Management, Software Containers.

1 Introduction

Business process management (BPM) is concerned with the efficient and effective
organization of business processes [9]. Business Process Management Systems
(BPMS) and other types of process-aware information systems help to flexibly
redesign business processes, but have paid less attention to flexibility during pro-
cess execution [28]. The advent of cloud computing provides new opportunities to
make process execution at runtime more flexible by providing the means to scale
the underlying computational resources in an ad hoc manner [26]. It is the ambi-
tion of elastic BPMS (eBPMS) to dynamically lease and schedule cloud resources
on-demand in order to meet Quality-of-Service (QoS) levels while avoiding over-
or under-provisioning [10,28]. While an over-provisioning scenario, i.e., more re-
sources are allocated than required, leads to a waste of resources and, therefore,
unnecessary cost, an under-provisioning scenario, i.e., less resources are available
than required, can lead to decreased QoS [10].

Recent approaches to eBPMS utilize virtual machines (VMs) in order to
achieve scalability, e.g., [13,14]. One of the downsides of VMs is their coarse-

2 P. Waibel et al.

granular packaging of functionality at the level of a full-fledged operating sys-
tem. Beside the additional computational resources that are allocated by the
operating system, also the deployment and start time of a VM are affected by
the requirement of an own operating system, which reduces the ad hoc elasticity
of VM-based systems [21]. To eliminate this problem inherent with VMs, the
concept of containers is a promising solution. In comparison to a VM, a con-
tainer eliminates the requirement of an own operating system, thus offering a
lightweight virtualization solution [8,24].

While the usage of containers as an execution environment for business pro-
cesses already offers a solution that helps to reduce resource consumption (in
comparison to VM-based process execution) further reductions can be achieved
by performing resource and task scheduling, aiming at resource efficiency [14].
However, state-of-the-art resource optimization and task scheduling approaches
rely on VMs. The according optimization approaches aim for more coarse-grained
solutions and are not tailored for the usage of containers, thus not fully mobi-
lizing the potential of elastic business processes with regard to efficient resource
utilization.

In this paper, we present a fine-granular task scheduling and resource allo-
cation optimization approach, called GeCo (Genetic Container). This approach
provides a cost-efficient process execution on containers that are deployed in
a cloud environment while considering user-defined Service Level Agreements
(SLAs). We address the increased complexity of the scheduling problem by us-
ing a genetic algorithm to meet our requirements. The evaluation demonstrates
the efficiency of our approach and its capability to consider SLAs. In comparison
to a baseline that follows an ad hoc approach, GeCo achieves a cost saving of
32.90% and 47.45% while considering the user-defined SLAs.

The remainder of the paper is organized as follows: Section 2 provides back-
ground information on containers and elastic business processes and discusses
the preliminaries of our approach. Section 3 discusses our genetic algorithm op-
timization approach. The evaluated of our approach is presented in Sect. 4. The
related work is discussed in Sect. 5 and Sect. 6 concludes this paper and presents
our future work.

2 Background

Next, we discuss some necessary background information about containers, elas-
tic process execution, as well as further preliminaries needed to comprehend the
approach presented in this paper.

2.1 Containers

A container is, similar to a VM, a virtualization solution that bundles custom
software and required dependencies (e.g., a database or specific libraries) to-
gether to form an executable package [24]. However, in comparison to a VM, a
container uses the operating system of the host environment and, thus, needs

Optimized Container-based Process Execution in the Cloud 3

less computational resources than a VM. This is achieved by partitioning the
host operating system and computational resources to create isolated user space
instances for each container [1,8,24]. This leads to configurable virtualization
solutions similar to VMs but with smaller resource requirements and shorter
deployment and startup times [29].

A container image configures and holds the custom software and possible
required additional software (e.g., a database, or libraries) [24]. The distribution
of those container images is done by so-called container registries such as Docker
Hub, by uploading (push), sharing, and downloading (pull) the container images.
By deploying a container image, a container instance is created.

2.2 Elastic Business Process Execution

A business process is composed of activities, called process steps (in the following
called steps), and transitions, described in a process model [33]. The structure of a
process model can contain sequential steps, parallel branches, called AND-blocks
(started by an AND-split and closed by a join), exclusive branches, called XOR-
blocks (started by an XOR-split and closed by a join), and loops. By executing
a business process, a process instance is generated corresponding to the specific
process model. Unless explicitly stated otherwise, the term process denotes a
process instance in the remainder of this paper. A process is called an elastic
process when cloud resources are used for the elastic execution of the process [10].
In the work at hand we concentrate on structured process models.

For a step to be executed, a software service is used. By deploying the ser-
vice on a container, a service instance is created. To fulfill a specific step, the
corresponding service instance is invoked. Each invocation runs for a specific
execution time to complete its task.

2.3 Preliminaries

For our optimization approach, we assume that an eBPMS exists that serves
as a middleware between the process owner, which requests the execution of
a process, and the cloud, which is used for the execution of the processes. An
example for such a middleware is presented in [27]. Furthermore, we assume
that the process contains only software-based process steps, respectively that all
human-based process steps are represented by a software-based service.

Similar to the concept of a microservice, each container image holds exactly
one service of a specific type, with this service representing a particular step.
Each container image can be deployed at any time (also several times in parallel)
in the cloud. The service instance which is deployed with the container, can
then be invoked several times simultaneously (i.e., as part of different process
instances) as long as the container has sufficient computational resources. Once
the service instance is not needed anymore, the container instance is removed.

The process owner defines for each process execution the required SLAs. If
these SLAs are not fulfilled, penalty cost are charged by the process owner. In the
current state the deadline until when the execution has to be finished is defined

4 P. Waibel et al.

as a SLA. The deadline is also most commonly regarded in the related work [28].
The aim of our optimization approach is to optimize the process execution in a
cost-efficient way by considering the computational resource and penalty cost.

3 The GeCo Algorithm

Our algorithm, called GeCo, aims to reduce the resource consumption of the
process execution by performing scheduling of the steps in a way that a timely
overlapping is achieved. Thus, the steps can share a container instance that can
be invoked several times simultaneously (see Sect. 2.3). This results in a reduced
resource consumption and, as a consequence, in reduced computational resource
leasing cost. To also minimize the penalty cost, which are part of the overall
process execution cost, the algorithm also considers the user-defined SLA, i.e.,
process execution deadline, during scheduling. Therefore, the result of GeCo
is a schedule when each step should be executed in which particular software
container, to minimize execution cost while considering the user-defined SLA.

Since the problem of task scheduling is NP-hard [14], we use the concept of
genetic algorithms in order to find a cost-efficient task scheduling. Genetic algo-
rithms have shown their capability for task scheduling in different areas [16,36].

3.1 Genetic Algorithms

A genetic algorithm mimics an iterative, evolutionary process that applies the
genetic operations selection, mutation, and crossover on each generation of possi-
ble solutions to a problem [34]. A generation contains several individual possible
solutions called chromosomes, and each chromosome is a composition of sev-
eral genes. For each iteration, the selection operator selects some chromosomes
from the previous generation according to the fitness score of a chromosome.
The fitness score is calculated by the fitness function for each chromosome and
determines how well the chromosome solves a given problem (here: task schedul-
ing). The selected chromosomes are then altered by the crossover and mutation
functions to form a new generation. The crossover function swaps the genes of
two chromosomes to form an offspring. The mutation function changes random
genes to maintain the diversity of the generations. In addition to those newly
created chromosomes a small number of elite chromosomes, i.e., chromosomes
with the best fitness score, are added unaltered to the new generation. This pro-
cess is repeated until a stop criterion, e.g., a defined optimization duration, is
reached. At this point, the chromosome with the best fitness score is returned
as a result. By this iterative approach, a genetic algorithm can browse a large
search space to find a near-optimal solution in polynomial time [35].

3.2 Concepts of GeCo

As input, GeCo gets the current running and requested processes, their single
steps (including the information if the execution of the step is currently ongoing,

Optimized Container-based Process Execution in the Cloud 5

Start Time: 12:37 Start Time: 12:50Start Time: 12:20 Start Time: 12:38

P1S1 P1S2 P1S3 P2S1 PNS1 ... PNSNP1S4 P2SN
Process 1 Process 2 Process N

... ...
...

(a) Example Chromosome with a Detailed Representation of Process 1

P1S2

P1S3
P1S4P1S1

(b) Process 1 in BPMN

Fig. 1. Example Chromosome Representation

or has to be scheduled), the defined deadlines of the processes, and the status
of the already running container instances. Furthermore, GeCo gets the infor-
mation how long the service execution duration is and how much computational
resources, with respect to CPU and RAM, are required for a particular amount
of invocations. The execution duration and required computational resources
have to be known upfront, e.g., via historical data [4].

The optimization is performed by GeCo each time a new process execution
request is received. Furthermore, a re-optimization takes place if the execution
times calculated by GeCo cannot be met, e.g., due to a longer execution duration
of a preceding step. Otherwise, the calculated execution time is waited for before
the execution of a step starts.

To further minimize the execution duration of the processes, GeCo deploys
the container instance, required by a step, already during the execution of the
preceding step to ensure that the container instance is up and running at the
time it is needed. However, for the first step after the optimization, this is not
possible since only after the optimization it is known which container instances
have to be deployed. To consider this, GeCo schedules the execution time of the
first steps in a way that there is enough time to deploy a container if needed.

Stopping Criteria As stopping criteria, we employ time-based criteria. These
criteria can be of two kinds, i.e., according to the number of iterations or ac-
cording to the calculation time of the genetic algorithm [3]. In GeCo, we employ
a stopping criterion based on the execution time of the algorithm, since the ex-
ecution time of the algorithm plays an important role in the problem at hand,
as it affects the actual schedule of the service start times.

Chromosome Representation Our chromosome is a composition of all run-
ning and not yet running steps, which are the genes of the chromosome, and
presents the schedule of the steps. Each gene holds the information when the
execution of the step should start. This time is calculated by GeCo. Figure 1a
shows a simplified example of a chromosome with a detailed representation of
the process shown in Fig. 1b.

6 P. Waibel et al.

Algorithm 1 Initial Population

Require: processes, optEndTime
1: function generateInitialChromosome
2: chromosome← NULL
3: for all process ∈ processes do
4: lastStep← getLastProcessStep(process)
5: maxBufferTime← (process.deadline− lastStep.endTime)/process.steps.size
6: for all step ∈ process.steps do
7: randomTime← getRandomNumber(0,maxBufferTime)
8: newStartTime← getPrecedingStepEndTime(step) + randomTime
9: if timeForDeployment(newStartTime, optEndTime) is false then

10: newStartTime← newStartTime + getReqTime(step, optEndTime)
11: end if
12: moveStep(step,newStartTime)
13: end for
14: chromosome← chromosome.add(process)
15: end for
16: return chromosome
17: end function

Initial Population In GeCo, the initial population, i.e., first generation of
chromosomes that is used as an input for the genetic algorithm [7], consists
of randomly assigned task scheduling plans and, thus, already encodes possible
solutions to the problem. As a priori knowledge, GeCo uses the deadlines of
the processes and limits the random movement of the steps in a way that the
deadlines are not violated in the initial population [3].

Algorithm 1 shows the process of creating a chromosome. This algorithm is
executed several times, depending on the defined population size, to form the
initial population. As an input, the algorithm gets all running and requested
processes (processes), including the corresponding steps and the deadlines, and
the end time of the optimization (optEndTime). The end time of the optimization
is known since we use time-based stopping criteria. As a preliminary step (not
shown in Algorithm 1), all start times of the steps are preset by setting the start
time of a step to the end time of the preceding step. If a step is after a join
gateway of an AND- or XOR-block, the end time of the latest step is used.

Beginning with line 3, Algorithm 1 iterates over all running and requested
processes. The method getLastProcessStep returns the process step with the lat-
est end time. To ensure that the deadline of a process is not violated, a maximal
time that the execution start time of a step can be moved (maxBufferTime)
is defined in line 5. This time is calculated by dividing the time between the
process deadline (process.deadline) and the execution end time of the last step
of the process (lastStep.endTime, as defined in line 4) by the number of process
steps (process.steps.size). In case the process contains a loop structure, the al-
gorithm uses a default amount of loop iterations, since the correct amount of
loop iterations is not known at that point in time. This default amount of loop
iterations has to be known upfront, e.g., via historical data.

Optimized Container-based Process Execution in the Cloud 7

In line 6–13, the random movement of the steps takes place. In line 7, a
random number between 0 and maxBufferTime is selected and assigned to ran-
domTime. This random number is then added to the end time of the latest
preceding step of a step leading to the new start time newStartTime (line 8).
The latest preceding step of a step is found by the method getPrecedingSte-
pEndTime. If a step does not have a preceding step, i.e., it is the first step of a
process, optEndTime is returned since this marks the time when the execution
of the process can start.

As discussed before, the algorithm has to ensure that there is enough time to
deploy the required container instances after the optimization is done. For this,
the method timeForDeployment checks if newStartTime allows enough time for
the deployment. If this is not the case, line 10 adds the time required to deploy
the container instance, calculated by getReqTime, to newStartTime.

The start time of the step is then moved to the new start time in line 12.
Eventually, the new process is added to the chromosome (line 14), and the chro-
mosome is returned (line 16).

Fitness Function The fitness function assigns to each chromosome a fitness
score. Finding a chromosome with the lowest container leasing cost and lowest
penalty cost essentially yields a minimum fitness score.

The container leasing cost are the combination of all cost that arise due to
the leasing of the required containers for the execution of the steps:∑

c∈C
(ccpu ∗ pcpu + cram ∗ pram) ∗ cduration ∗ fleasing (1)

In Eq. (1), C determines the list of required container deployments for the ex-
ecution of the steps represented by the chromosome. One container is defined
as c ∈ C = {c1, c2, ...} and c = (cpu, ram, duration) defines the required CPU
and RAM of this container, and the duration how long the container has to
be deployed. The price of a container is defined by pcpu, i.e., the price for one
CPU core, and pram, i.e., the prize for one GB of RAM. Finally, the configurable
weighting parameter fleasing determines how much the leasing cost should be
considered in the final fitness score.

The penalty cost is the combination of all cost that arise due to missed
deadlines, i.e., the time between the termination of the last step and the deadline:∑

w∈W
x(w) ∗ (wend − wdeadline) ∗ fpenalty (2)

In Eq. (2), W is the set of all processes of the chromosome and one pro-
cess is defined as w ∈ W = {w1, w2, ...}. Each process contains the tuple
w = (end, deadline), where end is the execution end time of the process, i.e.,
the end time of the latest executed step, and deadline defines the deadline of the
process. The weighting factor fpenalty defines how much the penalty should be
considered in the final fitness score. The term x(w) ∈ {0, 1} considers if process
w violates the deadline (x(w) = 1) or not (x(w) = 0).

The final fitness score is the sum of Eq. (1) and (2).

8 P. Waibel et al.

Mutation The mutation operation varies the start time of a step represented
by a randomly selected gene of the chromosome. The resulting service execution
time may not overlap the execution time of a preceding or upcoming step, which
would violate the control flow defined by the process model.

How much the start time of a selected step (step) is changed is random.
However, to ensure that no overlapping happens, the selection of how much the
start time should be changed is bound by a lower (blower) and upper (bupper)
bound. There are three situations for blower and bupper:

1. step is the first one in the process: In this situation, blower and bupper are
defined as shown in Eq. (3). If the container is not running, blower is de-
fined by optendTime + cdeployDur, where optendTime is the optimization end
time and cdeployDur the container deployment duration. Otherwise, i.e., the
container was started by an already running step from another process,
blower = optendTime. The bound bupper is defined by the earliest start time
of the next steps (stepens) minus the duration of step (stepduration).

blower =

{
optendTime + cdeployDur, if deployment needed

optendTime, otherwise

bupper = stepens − stepduration

(3)

2. step is between two other steps: This situation is defined by Eq. (4) whereas
steplps defines the latest end time of the preceding steps. Again for blower it
has to be considered that maybe an additional deployment time is needed for
the container, e.g., step is the second step in the process and the preceding
step duration is shorter than the deployment time. This is considered by
additionalDeployDur = cdeployDur−(steplps−optendTime), where cdeployDur

and optendTime are defined as for Eq. (3).

blower =

{
steplps + additionalDeployDur, if deployment needed

steplps, otherwise

bupper = stepens − stepduration

(4)

3. step is the last one in the process: This situation is defined by Eq. (5) whereas
deadline is the deadline of the process and additionalT ime a configurable
time (e.g., 1 hour). The remaining terms are defined as for Eq. (3) and (4).

blower =

{
steplps + additionalDeployDur, if deployment needed

steplps, otherwise

bupper = deadline+ additionalT ime

(5)

The final random time, which lies in the interval (blower, bupper), is then used
to adapt the start time of step, which resolves in a new chromosome.

Optimized Container-based Process Execution in the Cloud 9

P1S1 P1S2 P1S3 P2S1P1S4 P2SN
Process 1 Process 2

...

P1S1' P1S2' P1S3' P2S1'P1S4' P2SN'...

Parent 1:

Parent 2:

(a) Parent Chromosomes

P1S1 P1S2 P1S3' P2S1P1S4' P2SN
Process 1 Process 2

...

(b) Offspring Chromosome

Fig. 2. Two-Point Crossover Operation

Crossover The crossover operation is a genetic algorithm operation that creates
a new chromosome by splitting two chromosomes, called parent chromosomes,
and combining them to create a new chromosome, called offspring chromosome.
Our crossover operation is a two-point crossover [34] where the first point is a
random gene in the chromosome, i.e., a random step of a random process, and
the second position is the end of the process to which the step belongs.

Fig. 2 shows an example two-point crossover operation. The parent chromo-
somes are depicted in Fig. 2a. The highlighted genes show the genes that are
selected for the crossover, i.e., P1S3 is the randomly selected gene and P1S4 is the
end of the process (P1S3’ and P1S4’ are the representative steps in Parent 2).
Eventually, the crossover operation results in the chromosome represented by
Fig. 2b. It can be seen that the selected genes are taken from Parent 2 (i.e.,
P1S3’ and P1S4’) and the remaining genes are taken from Parent 1.

After the crossover is performed, a check if the offspring chromosome does
violate the process structure, defined by the process model, or does not consider
the deployment duration of the first container, is performed. If one of those
constraints is violated, another crossover point, i.e., another gene, is selected. If
both constraints are fulfilled, the offspring chromosome is returned.

4 Evaluation

As a proof of concept, GeCo has been thoroughly evaluated with respect to its
allocation efficiency and SLA compliance. As underlying eBPMS, we apply the
platform ViePEP [14,27]. A process owner can request the execution of processes
by ViePEP, which then uses VMs on cloud resources for the execution of the
services corresponding to the steps. Each service type has thereby an own VM
image, similar to a container image as discussed in Sect. 2. Each VM can be
deployed at any time, and the corresponding services can be invoked several
times concurrently.

For our evaluation, we extend ViePEP in a way that it uses containers for
the execution of the services. ViePEP and the services are written in Java.
As application server for the services, we use Jetty. Each service uses the load
generator library fakeload3, which simulates a configurable RAM and CPU load
for a given time span. For the evaluation, ViePEP is running on a VM on the
Microsoft Azure Cloud4 and the containers are deployed on the Azure Cloud

3 https://github.com/msigwart/fakeload
4 https://azure.microsoft.com

https://github.com/msigwart/fakeload
https://azure.microsoft.com

10 P. Waibel et al.

by using the functionality Container Instances. As container registry, the Azure
Cloud Container Registry is used. The source code of ViePEP, the services,
and the evaluation client are available at https://github.com/piwa/ViePEP-C,
https://github.com/piwa/ViePEP-C-Backendservice, and https://github.com/
piwa/ViePEP-C-Testclient.

4.1 Evaluation Setting

The evaluation is based on an adapted version of the settings used in [14].

Test Collection For the evaluation, we choose 10 representative process models
from the SAP reference process models [6,18]. The SAP reference models are a
common testset in the BPM field [22]. The 10 selected process models possess
different levels of complexity. Table 1a presents the characteristics of the selected
models by showing the number of steps, XOR-blocks, AND-blocks, and repeat
loops. Each XOR- and AND-block contains a split and join gateway.

While the SAP reference models also contain human-provided services, in
our evaluation we only use software-based services. For the evaluation, we use
8 different software service types, each with different resource requirements and
execution durations. Table 1b summarizes the required CPU load (in percentage)
and total makespan (in seconds) of the services for one invocation. We further
consider that the actual CPU load and execution duration of a service can vary
to some extend. To consider this variation, we assume a normal distribution
σ1 = µcpu/10 of the CPU load and σ2 = µmakespan/10 of the total makespan,
both with a lower bound of 95% and an upper bound of 105%.

To consider that a service needs more computational resources when it is
invoked several times in parallel, we add for each invocation 2/3 of µcpu defined
in Table 1b. For instance, if a service of type 1 is invoked two times in parallel the
resource requirements are µcpu = 15 + 15 ∗ 2/3 = 25, while the service makespan
stays the same. This way we consider that for a second invocation no additional
resources are required for secondary software, e.g., the application server. Since
most cloud providers have a upper resource limit for container instances (e.g.,
the CPU limit is 4 cores at Azure) a second container is deployed if the amount
of invocations requires more resources than this limit.

In addition, we assume that each service is stateless and fully parallelizable
among the available CPUs. For instance, if a service has a load of 100% on a
single-core CPU, then the same service has a 50% load on a dual core (i.e., 50%
on each core) with the same execution time.

Applied SLAs To tolerate some execution delay, due to the container deploy-
ment time and service start-up time, we apply a lenient and a strict SLA level
as process execution deadline. In the lenient scenario, the deadline is 2.5 times
of the average makespan of the whole process. The average makespan is the
time that the execution of the whole process needs by considering the historical
execution duration of each step and the order of them defined by the process
model. In the strict scenario, the deadline is 1.5 times of the average makespan.

https://github.com/piwa/ViePEP-C
https://github.com/piwa/ViePEP-C-Backendservice
https://github.com/piwa/ViePEP-C-Testclient
https://github.com/piwa/ViePEP-C-Testclient

Optimized Container-based Process Execution in the Cloud 11

Table 1. Evaluation Process Models and Service Types

(a) Evaluation Process Models

Name |Steps| |XOR| |AND| |loops|
1 3 0 0 0
2 2 1 0 0
3 3 0 1 0
4 8 0 2 0
5 3 1 0 0
6 9 1 1 0
7 9 1 0 0
8 3 0 1 1
9 4 1 1 1
10 20 0 4 0

(b) Evaluation Services

Service
No.

CPU Load
in % (µcpu)

Service Makespan
in sec. (µmakespan)

1 15 40
2 20 320
3 25 480
4 40 80
5 55 400
6 65 120
7 80 160
8 135 80

Process Request Arrival Patterns For the evaluation, we apply two different
process request arrival patterns. The first one, called constant arrival pattern,
requests in a 240 second interval the execution of 5 different processes. The
processes are selected from Table 1a in a round-robin fashion. This is repeated 20
times, which results in the execution of 100 processes.

The second request arrival pattern, called pyramid arrival pattern, follows the
pattern shown in Eq. (6), where n represents a point in time and a the amount
of process execution requests at this time. The processes are again selected from
Table 1a in a round-robin fashion in a 120 second interval.

f(n) = a


1 if 0 ≤ n ≤ 3 and 20 ≤ n ≤ 35
d(n+ 1)/4e if 4 ≤ n ≤ 17
0 if 18 ≤ n ≤ 19
d(n− 9)/20e if 36 ≤ n ≤ 51

(6)

Baseline We compare our optimization approach against a baseline that uses an
ad hoc process execution approach. The baseline executes each process without
task scheduling, but by executing one step after another according to the process
model. However, for each new container that has to be deployed, it is checked if a
compatible container is already deployed. If this is the case, this container is used,
otherwise, a new container is deployed. When applying the baseline, containers
are also deployed while a possible preceding step is running. This baseline is an
adapted version of the OneVMPerTask provisioning strategy presented in [11].

Genetic Algorithm Parameter Setting For the evaluation, we use a popu-
lation size of 2,000 with 100 elite chromosomes per population. The optimization
duration is set to 40 seconds. Furthermore, we set fleasing = 10 (see Eq. (1)),
fpenalty = 0.001 (see Eq. (2)), and additionalT ime = 1 hour (see Eq. (5)). These
settings resolved in promising results in several pre-evaluation executions.

12 P. Waibel et al.

Table 2. Evaluation Results (Standard Deviation in Parenthesis)

Constant Arrival Pattern Pyramid Arrival Pattern

GeCo Baseline GeCo Baseline

SLA Level Strict Lenient Strict Lenient Strict Lenient Strict Lenient

SLA Adherence
(%)

82.67
(3.06)

96.67
(2.08)

90.00
(0.00)

100.00
(0.00)

83.67
(2.31)

97.67
(1.15)

90.00
(0.00)

100.00
(0.00)

Process
Makespan (min)

21.02
(15.20)

30.16
(22.97)

16.96
(12.74)

16.90
(12.69)

21.42
(15.92)

31.75
(25.46)

17.01
(12.73)

17.03
(12.75)

Leasing Cost
360.25
(19.71)

330.00
(15.22)

547.69
(16.26)

554.50
(9.32)

316.74
(2.67)

300.67
(13.90)

612.58
(17.67)

624.54
(31.94)

Penalty Cost
52.67
(5.77)

5.33
(5.13)

13.33
(0.58)

0.00
(0.00)

35.0
(4.58)

3.0
(1.0)

10.00
(0.00)

0.00
(0.00)

Total Cost
412.91
(14.56)

335.34
(17.82)

560.70
(16.26)

554.50
(9.32)

351.74
(7.13)

303.67
(14.60)

622.58
(17.67)

624.54
(31.94)

Metrics As evaluation metrics we use the average process makespan, the SLA
adherence, and the total cost of the execution. The process makespan is the
duration between receiving a process execution request and the termination of
the final step in minutes. The SLA adherence determines how many processes
terminated without violating the deadline in percentage.

The total cost is composed of the leasing cost, i.e., the charged cost due to
the leasing of the cloud resources, and the penalty cost, i.e., the charged cost due
to a deadline violation. The penalty cost is calculated by a linear model based
on [19]. This model assigns 1 unit of penalty cost for a delay of 10% of time
units, i.e., seconds, of delay. For the leasing cost we use e0.0043 per GB-second
and e0.0127 per CPU-second which are adapted real-world values from Azure
prizing model5. For all evaluation results, we provide the mean value and the
standard deviation.

4.2 Results and Discussion

In the evaluation, we evaluate the efficiency of our optimization approach, in
comparison to the baseline, with both process request patterns and both SLA
levels. Each evaluation step is performed three times over a timespan of 7 days
to minimize external influences. The results of the evaluation are presented
in Table 2. In addition, the constant arrival pattern results are presented in
Fig. 3a and 3b and the pyramid arrival pattern results in Fig. 3c and 3d.

First, we discuss the constant arrival pattern results for both SLA levels, i.e.,
strict and lenient. In Table 2, it can be seen that our GeCo approach results in a
lower SLA adherence than the baseline. This is due to the fact that the baseline
executes each step directly after the preceding one without any delay between
them. GeCo, in contrast, postpones the execution of a step if a more resource-
efficient execution can be achieved. The postponing of the step execution in case

5 https://azure.microsoft.com/en-us/pricing/details/container-instances/

https://azure.microsoft.com/en-us/pricing/details/container-instances/

Optimized Container-based Process Execution in the Cloud 13

0 20 40 60 80 100 120 140
Time in Minutes

0

10

20

30

40

50

60

70

80

0

2

4

6

8
GeCo
Baseline
Process Arrivals

(a) Constant Scenario - Lenient SLA

0 20 40 60 80 100 120 140
Time in Minutes

0

10

20

30

40

50

60

70

80

0

2

4

6

8
GeCo
Baseline
Process Arrivals

(b) Constant Scenario - Strict SLA

0 20 40 60 80 100 120 140
Time in Minutes

0

10

20

30

40

50

60

70

80

0

2

4

6

8
GeCo
Baseline
Process Arrivals

(c) Pyramid Scenario - Lenient SLA

0 20 40 60 80 100 120 140
Time in Minutes

0

10

20

30

40

50

60

70

80

0

2

4

6

8
GeCo
Baseline
Process Arrivals

(d) Pyramid Scenario - Strict SLA

Fig. 3. Evaluation Results

of GeCo also results in a longer process makespan as observable in Table 2.
While the process makespan stays nearly the same for both SLA levels in case
of the baseline (i.e., 16.96 and 16.90 min), it varies in case of GeCo. Since GeCo
has less room to postpone a step (before the deadline is violated) in case of the
strict SLA level the process makespan is shorter for this SLA level, i.e., 21.02
min, than for the lenient one, i.e., 30.16 min.

While the baseline SLA adherence is better than in case of GeCo, GeCo
achieves in average 37.37% lower leasing cost than the baseline. This cost-saving
results from a better resource utilization achieved by GeCo. This can also be seen
in Fig. 3a and Fig. 3b, where GeCo leases fewer CPU cores than the baseline.

The lower SLA adherence, achieved by GeCo, results in higher penalty cost.
However, the baseline results for both SLA levels in higher total cost, due to
higher leasing cost. The total cost saving of GeCo, in comparison to the baseline,
is 26.35% in case of the strict SLA level and 39.52% in case of the lenient one.
This cost saving was achieved despite higher penalty cost than in case of the
baseline. This shows us that in some situations accepting some penalty cost can
help to reduce the leasing cost, and thus the total cost, to quite some extent.

Second, we discuss the pyramid arrival pattern results. As can be observed
in Table 2, the SLA adherence and process makespan stayed nearly the same, in

14 P. Waibel et al.

comparison to the results of the constant arrival pattern. However, the leasing
cost of GeCo and the baseline changed significantly. In case of GeCo, it can be
seen that the pyramid arrival pattern allows GeCo to reduce the resource require-
ments even more. For the baseline the leasing cost increased, in comparison to
the constant arrival pattern. This can be explained by the fact that the constant
arrival pattern results in more parallel running processes, which increases the
chances that an already running container can be re-used. In Fig. 3c and Fig. 3d,
it can also be observed that the pyramid arrival pattern allows GeCo to achieve
a much more resource-efficient solution than the baseline.

Table 2 shows that the penalty cost for GeCo and the pyramid arrival pattern
with the strict SLA are lower than for the constant arrival pattern with the
strict SLA, while the SLA adherence of both is nearly the same. This shows us
that a similar amount of process deadlines are violated, however, in case of the
pyramid arrival pattern the average duration between the end of the processes
and deadlines is smaller. The total cost saving of GeCo in comparison to the
baseline are 43.50% in case of the strict SLA level and 51.38% in case of the
lenient one.

In summary, the best result, in respect of total cost, was achieved by our
GeCo approach in case of the pyramid arrival pattern with the lenient SLA level
with a cost saving of 51.38% and an SLA adherence of 97.67%. The second best
result was achieved in case of the pyramid arrival pattern with the strict SLA
level with a cost saving of 43.50% and SLA adherence of 83.67%. In respect of
the SLA adherence our GeCo approach achieved for both lenient SLA levels an
average of 83.17% and 97.17% for the strict one.

5 Related Work

The research in this paper relates to work on elastic BPM. In the following, we
discuss selected contributions to this research field.

In our former work, we have presented the eBPMS platform ViePEP [27].
ViePEP offers several resource optimization and task scheduling approaches.
Those approaches perform a resource allocation optimization and task scheduling
for cost-efficient process execution while considering predefined SLAs. Especially,
the work presented in [14] has to be mentioned, where the task scheduling and
resource optimization problem is formulated as a Mixed Integer Linear Program
(MILP). However, until now ViePEP relies on VMs as an execution environment
for the services, which results in a much more coarse-grained deployment and
may increase cost in comparison to the work at hand.

In [17], the authors present a BPEL engine containing a scheduling algo-
rithm for the cost-efficient execution of process steps on cloud resources in the
form of VMs. The scheduling algorithm is based on a genetic algorithm and
allows the execution and optimization of several processes in parallel. The pre-
sented scheduling algorithm considers the leasing cost of the VMs and the data
transfer duration. However, since the approach uses VMs instead of containers,
it results in a much more coarse-grained solution and may increase resource

Optimized Container-based Process Execution in the Cloud 15

cost. Furthermore, in comparison to our work, it does not consider user-defined
SLAs, e.g., the deadline until when the process has to be done. The same ap-
plies to the approach presented in [2]. In this work, the authors present a process
scheduling approach that allows parallel execution of processes. The presented
approach aims for a cost or execution time optimization or a pareto-optimal
solution covering both, cost and execution time. Again, this approach uses VMs
as the execution environment of the process steps and does not consider the
process execution deadline. Hence, it is not possible to perform an optimization
by postponing the execution of particular steps to the future as GeCo allows.

Wei and Blake present in [32] a resource utilization optimization approach
that considers service levels. However, in contrast to our work, the approach does
not consider a deadline for the process execution. Furthermore, while our ap-
proach follows the “classic” service composition model that allows the invocation
of a service instance from different processes, this is not allowed in [32].

An approach for supporting a customer in finding the optimal cloud pricing
strategy is presented in [13]. The approach selects a cost-efficient resource con-
figuration (i.e., RAM and CPU size), the cloud provider, and the cloud pricing
model (e.g., on-demand VM or reserved VM). Similar to our approach, the aim
of the approach is to reduce the execution cost, including possible penalty cost,
while considering QoS constraints and without violating temporal constraints.
However, in comparison to our approach, the temporal constraints are on process
step level and not on the process level.

In [25], the author’s present migration-aware optimization strategies for multi-
tenant process execution in the cloud. The presented strategies migrate a tenant,
including the corresponding processes, from one BPMS to a different BPMS if
the process execution needs more cloud resources or a new cost-efficient solution
can be achieved. The BPMSs are thereby executed on VMs. The paper presents a
linear optimization model and a heuristic optimization approach. The optimiza-
tion aims to minimize the resource consumption while maintaining an acceptable
migration amount for each tenant. While our approach considers the structure of
the process and optimizes the execution of the steps on containers, the approach
presented in [25] is more coarse-grained since it migrates the process as a whole
and does not consider the single steps.

In [30] an approach for optimal resource provisioning for enterprise appli-
cations on cloud resources is presented. The authors present a linear program
that finds the optimal setup of VM instances that minimizes the resources con-
sumption while still able to fulfill all incoming requests. In comparison to our
approach, which performs task scheduling to reduce the execution cost, their
approach reduces the cost by finding the optimal VM instance configuration.

All of the aforementioned approaches are using VMs as an underlying ex-
ecution environment and do not consider containers. As has been mentioned
before, this leads to a more coarse-grained resource allocation, which may re-
sult in increased resource cost. For the usage of containers for scheduling and
resource allocation of arbitrary services, several solutions have been proposed,
e.g., [15,24,31,23]. Those publications discuss the usage of containers for scalable

16 P. Waibel et al.

and isolated application execution in the cloud. However, none of them consider
the execution of processes that are composed of several, interdependent steps.

In [5], the authors present a linear program that finds a global optimal cost-
efficient solution for the deployment of a business process on containers. These
containers are then deployed on VMs running on cloud resources. While this
approach is the most comparable to the work at hand, the algorithm does not
consider SLAs and considers only one process at a time. Thus, the usage of
the same container for several service invocations is not facilitated. Moreover, in
comparison to our work, the containers are deployed on VMs. For the evaluation,
the authors extended ContainerCloudSim, while we make use of a cloud-based
testbed for the evaluation.

In [12], the scientific workflows (SWF) platform Skyport is presented. The
platform uses Docker containers for the deployment of the workflow services to
achieve a reproducible software deployment solution with isolated software ap-
plications. In [37], the authors present a two-level resource scheduling model for
an efficient resource sharing among different SWFs. They show that a container-
based scheduling platform increases the system efficiency while decreasing the
risk of performance issues. However, the differences between SWFs and business
processes prevent a direct adaptation of the approaches for our purposes [20].

To sum things up, most of the presented publications are considering VMs
as execution environment. This leads to rather coarse-grained deployment solu-
tions in comparison to a container-based deployment as provided by GeCo. In
addition, most of the above-discussed publications do not consider the usage of
an already deployed container, respectively the deployed service instance, several
times. This further reduces the resource consumption and, thus, the overall cost.

6 Conclusion

Within this paper, we present a novel scheduling approach for the fine-granular
execution of process steps on containers, which are deployed on cloud resources.
This scheduling approach aims for a resource-efficient execution while consid-
ering user-defined SLAs, by scheduling the execution times of the steps of a
complete process landscape. The resulting schedule minimizes the overall execu-
tion cost, which is a composition of the cloud resource leasing cost and penalty
cost. The presented optimization approach, called GeCo, is based on a genetic
algorithm. Our evaluation has shown that using such an optimization approach
results in reduced leasing cost in comparison to an ad hoc baseline solution:
In average our optimization approach issues 47.45% less cost for the pyramid
arrival pattern and 32.90% less cost for the constant arrival pattern.

In our future research, we want to further analyze different genetic algorithm
parameter settings. Furthermore, we want to examine different approaches for
an automatic selection of the genetic algorithm parameter settings by using, for
instance, machine learning. Another crucial point is the prediction of the service
execution duration and the required computational resources. We will analyze
in this respect how a combination of monitoring and prediction can be made.

Optimized Container-based Process Execution in the Cloud 17

Acknowledgments. This work is partially funded by FFG – Austrian Research
Promotion Agency (FFG – project number: 866270).

References

1. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing 1(3), 81–84 (2014)

2. Bessai, K., Youcef, S., Oulamara, A., Godart, C.: Bi-criteria strategies for business
processes scheduling in cloud environments with fairness metrics. In: 7th Int. Conf.
on Research Challenges in Information Science (RCIS). pp. 1–10 (2013)

3. Bhandari, D., Murthy, C., Pal, S.K.: Variance as a stopping criterion for genetic
algorithms with elitist model. Fundamenta Informaticae 120(2), 145–164 (2012)

4. Borkowski, M., Schulte, S., Hochreiner, C.: Predicting cloud resource utilization.
In: 2016 IEEE/ACM 9th Int. Conf. on Utility and Cloud Computing (UCC). pp.
37–42 (2016)

5. Boukadi, K., Grati, R., Rekik, M., Abdallah, H.B.: From VM to Container: A
Linear Program for Outsourcing a Business Process to Cloud Containers. In: OTM
Confederated Int. Conf. On the Move to Meaningful Internet Systems. LNCS, vol.
10573, pp. 488–504 (2017)

6. Curran, T.A., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice Hall PTR, Upper Saddle River (1997)

7. Diaz-Gomez, P.A., Hougen, D.F.: Initial population for genetic algorithms: A met-
ric approach. In: Proceedings of the 2007 Int. Conf. on Genetic and Evolutionary
Methods (GEM 2007). pp. 43–49 (2007)

8. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs Containerization to Support
PaaS. In: 2014 IEEE Int. Conf. on Cloud Engineering. pp. 610–614 (2014)

9. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, Second Edition. Springer (2018)

10. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of Elastic Processes.
IEEE Internet Computing 15(5), 66–71 (2011)

11. Frincu, M.E., Genaud, S., Gossa, J.: On the efficiency of several vm provisioning
strategies for workflows with multi-threaded tasks on clouds. Computing 96(11),
1059–1086 (2014)

12. Gerlach, W., Tang, W., Keegan, K., Harrison, T., Wilke, A., Bischof, J., D’Souza,
M., Devoid, S., Murphy-Olson, D., Desai, N., Meyer, F.: Skyport: Container-based
execution environment management for multi-cloud scientific workflows. In: 5th
Int. Works. on Data-Intensive Computing in the Clouds. pp. 25–32 (2014)

13. Halima, R.B., Kallel, S., Gaaloul, W., Jmaiel, M.: Optimal Cost for Time-Aware
Cloud Resource Allocation in Business Processes. In: 14th Int. Conf. on Serv.
Computing. pp. 314–321 (2017)

14. Hoenisch, P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization of
complex elastic processes. IEEE Trans. on Serv. Computing 9(5), 700–713 (2016)

15. Hoenisch, P., Weber, I., Schulte, S., Zhu, L., Fekete, A.: Four-fold auto-ccaling on
a contemporary deployment platform using docker containers. In: 13th Int. Conf.
on Service-Oriented Computing. pp. 316–323. LNCS (2015)

16. Hou, E.S., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling.
IEEE Trans. on Parallel and Distributed systems 5(2), 113–120 (1994)

17. Juhnke, E., Dörnemann, T., Bock, D., Freisleben, B.: Multi-objective Scheduling
of BPEL Workflows in Geographically Distributed Clouds. In: 4th Int. Conf. on
Cloud Computing. pp. 412–419 (2011)

18 P. Waibel et al.

18. Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation: Iterative Process
Prototyping. Addison-Wesley Longman Publishing Co. (1998)

19. Leitner, P., Hummer, W., Satzger, B., Inzinger, C., Dustdar, S.: Cost-Efficient and
Application SLA-Aware Client Side Request Scheduling in an Infrastructure-as-a-
Service Cloud. In: 5th Int. Conf. on Cloud Computing. pp. 213–220 (2012)

20. Ludäscher, B., Weske, M., McPhillips, T., Bowers, S.: Scientific workflows: Business
as usual? In: Int. Conf. on Business Process Management. pp. 31–47 (2009)

21. Mao, M., Humphrey, M.: A performance study on the VM startup time in the
cloud. In: 5th Int. Conf. on Cloud Computing. pp. 423–430 (2012)

22. Mendling, J., Verbeek, H., van Dongen, B.F., van der Aalst, W.M.P., Neumann,
G.: Detection and prediction of errors in EPCs of the SAP reference model. Data
& Knowledge Engineering 64(1), 312–329 (2008)

23. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines
for container deployment. In: 8th ACM/SPEC on Int. Conf. on Performance En-
gineering Companion. pp. 5–10 (2017)

24. Pahl, C.: Containerization and the PaaS Cloud. IEEE Cloud Computing 2(3),
24–31 (2015)

25. Rosinosky, G., Youcef, S., Charoy, F.: Efficient migration-aware algorithms for
elastic bpmaas. In: 15th Int. Conf. of Business Process Management. vol. 10445,
pp. 147–163 (2017)

26. Schulte, S., Hoenisch, P., Hochreiner, C., Dustdar, S., Klusch, M., Schuller, D.:
Towards process support for cloud manufacturing. In: Int. Enterprise Distributed
Object Computing Conf. pp. 142–149. IEEE (2014)

27. Schulte, S., Hoenisch, P., Venugopal, S., Dustdar, S.: Introducing the Vienna Plat-
form for Elastic Processes. In: Performance Assessment and Auditing in Service
Computing Works. at 10th Int. Conf. on Service-Oriented Computing. vol. 7759,
pp. 179–190 (2013)

28. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: State of the art and open challenges for BPM in the cloud.
Future Generation Computer Sys. 46, 36–50 (2015)

29. Seo, K.T., Hwang, H.S., Moon, I.Y., Kwon, O.Y., Kim, B.J.: Performance compar-
ison analysis of linux container and virtual machine for building cloud. Advanced
Science and Technology Letters 66(105-111), 2 (2014)

30. Srirama, S.N., Ostovar, A.: Optimal resource provisioning for scaling enterprise
applications on the cloud. In: Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on. pp. 262–271. IEEE (2014)

31. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. ACM SIGCOMM Computer Comm. Review 41(1), 45–52 (2011)

32. Wei, Y., Blake, M.B.: Proactive virtualized resource management for service work-
flows in the cloud. Computing 96(7), 1–16 (2014)

33. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, 2nd edn. (2012)

34. Whitley, D.: A Genetic Algorithm Tutorial. Stat. Computing 4, 65–85 (1994)
35. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based QoS-aware service

compositions in cloud computing. In: Int. Conf. on Database Systems for Advanced
Applications. pp. 321–334 (2011)

36. Yoo, M.: Real-time task scheduling by multiobjective genetic algorithm. Journal
of Systems and Software 82(4), 619–628 (2009)

37. Zheng, C., Tovar, B., Thain, D.: Deploying high throughput scientific workflows
on container schedulers with makeflow and mesos. In: 17th IEEE/ACM Int. Sym-
posium on Cluster, Cloud and Grid Computing. pp. 130–139 (2017)

	Optimized Container-basedProcess Execution in the Cloud
	Introduction
	Background
	Containers
	Elastic Business Process Execution
	Preliminaries

	The GeCo Algorithm
	Genetic Algorithms
	Concepts of GeCo

	Evaluation
	Evaluation Setting
	Results and Discussion

	Related Work
	Conclusion

