
A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

A Framework for Optimization, Service Placement, and

Runtime Operation in the Fog

Olena Skarlat, Vasileios Karagiannis, Thomas Rausch, Kevin Bachmann, Stefan Schulte
Distributed Systems Group, TU Wien

Email: {o.skarlat, v.karagiannis, t.rausch, s.schulte}@infosys.tuwien.ac.at, kevin.bachmann@gmx.at

Abstract—Fog computing provides a paradigm for executing

Internet of Things services. Enabling the coordinated coopera-

tion among computational, storage, and networking resources

in the fog can be challenging due to the volatility of resources.

For this reason, we design an architecture and implement a

representative framework called FogFrame that defines the

necessary communication mechanisms for instantiating and

maintaining service execution in the fog. To evaluate our

approach, we conduct a series of experiments that show how

service placement, deployment, and execution is performed by

the framework, and how the framework operates at runtime,

i.e., adapts to changes in the available resources, balances the

workload and recovers from resource failures and overloads.

Keywords-fog computing; fog computing framework, internet

of things, service placement, service deployment

I. INTRODUCTION

The advent of the Internet of Things (IoT) together with
cloud technologies enables small- and large-scale applica-
tions for various domains, e.g., smart cities, smart grids,
smart healthcare [1]–[3]. However, the decentralized nature
of the IoT does not match the centralized structure of
the cloud which leads to high link delays and low data
transfer rates [4]. Furthermore, the computational resources
offered by IoT devices at the edge of the network are often
neglected, although these resources could be used for data
processing [5]. Therefore, decentralized processing of data
by devices at the edge of the network in combination with
the advantages of cloud and virtualization technologies has
been named as a promising approach to account for delay-
sensitive, bandwidth-efficient, and resilient services in the
IoT [6]. This distributed computing paradigm is known as
fog computing [7].

To realize fog computing, it is necessary to introduce
an ecosystem which involves the different computational
resources offered in the cloud and at the edge of the
network [8], in order to execute distributed IoT applica-
tions efficiently. This ecosystem has to provide the means
for exploiting such a heterogeneous resource pool (also
referred to as a fog landscape). To this end, we design
and implement the fog computing framework FogFrame.
FogFrame provides the means to create a real-world fog
testbed based on single-board computers, i.e., Raspberry
Pis, providing functionalities to establish and manage a fog
landscape and to execute IoT applications. In this paper,

fo
g
 l
a
n
d
s
c
a
p
e

sensors/actuators

fo
g
 c

o
lo

n
y

sensors/actuators

re
q
u
e
s
t

la
y
e
r

fog cell

fo
g
 c

o
lo

n
y

fog cell

cloud

fog node

fog node

fog node

fog controller

fog cellfog cell

Figure 1. High-level architecture of a fog landscape

we explicitly show how a FogFrame-based fog landscape is
formed and maintained, how it evolves at runtime, and how
IoT applications are submitted, processed, and executed in
FogFrame.

The main contribution of this paper is the FogFrame
framework, which is novel in that: (i) it defines and imple-
ments functionalities that have been previously introduced
in a conceptual architecture of a fog computing framework,
i.e., establishment and maintenance of a fog landscape, and
application management [9], [10], (ii) it implements two
heuristic algorithms for service placement in the fog, namely
a first-fit algorithm and a genetic algorithm, and (iii) it
introduces mechanisms for adapting to dynamic changes in
the fog landscape and for recovering from overloads and
failures.

The remainder of this paper is organized as follows:
First, we present background information on fog landscapes
(Sect. II). Next, we describe how to configure a fog land-
scape in FogFrame (Sect. III), how to perform application
management (Sect. IV), and how the fog landscape evolves
at runtime (Sect. V). Afterwards, we evaluate the perfor-
mance of FogFrame (Sect. VI). Finally, we overview the
state-of-the-art works (Sect. VII) and conclude the paper
giving insights into future work (Sect. VIII).

II. BACKGROUND

Since fog computing is a recent research topic, there are
different definitions of ‘fog’ and ‘fog computing’. For the
purposes of our work, we use the notion of fog landscapes
which follows the OpenFog consortium [8]. The high-level
architecture of a fog landscape consists of the following
components [10] (Fig. 1):

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

Fog cells represent virtual resources in IoT devices con-
nected to sensors and actuators. These virtual resources are
used for deploying and executing arbitrary IoT services.

Fog nodes are fog cells that implement additional func-
tionalities and act as access points for other fog cells. They
perform resource provisioning and deployment of services.
Their own resources are also considered in the resource pool
for service placement. Fog nodes can also connect to other
fog nodes in a hierarchical manner (see Fig. 1) resulting in
larger resource availability.

Fog colonies consist of: (i) sensors and actuators con-
nected to fog cells and (ii) fog cells connected to a fog
node. Each fog colony has one head fog node, i.e., the fog
node highest in the hierarchy inside the colony. Fog colonies
act as dynamic micro data centers composed of distributed
resources used for deploying services.

The fog controller is a central component used for the
discovery of new resources, i.e., it receives join-requests by
new fog cells and nodes, and responds with the required
information to join the fog landscape. The fog controller
also provisions virtual resources in the cloud, i.e., virtual
machines (VMs) used as additional computational power to
execute services. There is only one fog controller in each fog
landscape which is placed in the cloud if the fog landscape
intends to host large-scale applications or at the edge for
localized IoT scenarios.

The cloud represents virtual resources in data centers.
Fog landscapes define the architecture for deploying and

executing IoT applications. An application starts with input
from sensors or other data sources and includes all the
processing required until output commands are executed by
the corresponding actuators or other data sinks. Thus, an
application is a set of services needed for achieving a certain
goal. Each application is submitted for execution through
an application request initiated by users or external appli-
cations (denoted as request layer in Fig. 1). An application
request containing information about the involved services
is submitted to an arbitrary fog node, which distributes the
services in the colony and the cloud. A service request

is the request for deployment of a certain executable of a
service image which implements the corresponding service.
If this executable is deployed and running, it is called a
service. If all services are deployed, the application can be
executed. This application model is discussed thoroughly
in [11]. Representative examples of this model are, e.g.,
stream processing applications [7], [12], [13].

III. FOG LANDSCAPE CONFIGURATION

In the following, we provide an answer to an important
question of how to create a fog landscape, establish and
maintain communication within it. We begin with technical
assumptions to clearly delineate our work, afterwards, we
provide detailed workflows.

We assume that all computational resources in the fog are
virtualized [1]. In the cloud, services are placed in VMs, e.g.,
by the means of Docker containers. At the edge, using VMs
to provision resources is inefficient due to the high start-up
times and significant resource consumption which are unfit
for resource- and delay-sensitive IoT applications [7]. Thus,
IoT devices are assumed to be using a container-compatible
operating system that can be used for the execution of
containerized services [5]. Another assumption is that all
fog nodes and cells are able to provide location coordinates.
In addition, fog nodes integrate a proximity range used
for accepting fog cells, i.e., if the cell’s coordinates are
within this range, the cell joins the corresponding fog node.
Finally, all devices are assumed to be pre-configured with
the address of the fog controller which is used for joining
the fog landscape. Below, we describe how fog nodes and
cells join a fog landscape, i.e., how they form colonies, and
how colonies establish communication with each other for
delegating application execution.

A. Creating a Fog Colony

A colony is established if a new fog node joins the fog
landscape. A join-request including the fog node’s location
coordinates and range is sent from the new fog node to the
fog controller. The controller maintains global knowledge of
addresses as well as corresponding coordinates and ranges
of all the fog nodes. If the new fog node is within the range
of a previously joined fog node, the new fog node joins the
landscape as a fog node at the lower tier in the hierarchy as
depicted in Fig. 1. Otherwise, the joining fog node becomes
the head of a new colony. When a fog cell requests to join,
the controller responds with the address of the fog node
which has a range that includes the coordinates of this cell.
If the cell’s coordinates are within the range of multiple fog
nodes, the controller selects the one closest to the cell based
on Euclidean distance. Cells are only able to join a landscape
if their coordinates are within the range of a fog node.

B. Communication Between Fog Colonies

The head fog node of each colony also maintains the
address of the head fog node of one neighbor colony. This
address is sent to each head fog node upon joining by
the controller. The controller selects this address based on
proximity, i.e., minimum Euclidean distance calculated using
the coordinates of the head fog nodes. The neighbor fog
colony could also be selected based on different criteria,
e.g., Quality of Service (QoS) statistics implemented in
each fog colony and stored in the fog controller. Such
statistics may include deployment delays, service execution
times, resource capacities etc. In FogFrame, we choose the
proximity criterion because link delays between devices may
affect the deployment times of services [9].

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

IV. APPLICATION MANAGEMENT

This section presents the mechanisms implemented by
FogFrame to share service images and to place and deploy
services.

A. Sharing Service Images

A fog landscape consists of both cloud and edge resources
which operate on different computing architectures [5].
Therefore, the service images of each application have to
be compiled for the processor architecture they are intended
to be executed on. To manage this heterogeneity, FogFrame
implements two different solutions for sharing service im-
ages. Service images that are intended to be executed in the
cloud are pushed to an online repository. In this case, service
images are downloaded via a link address included in the
service request. Service images intended to be executed at
the edge are pushed to a fog node along with the initial
application request. Since applications are executed in a
distributed manner inside fog colonies, every device in a
colony requires access to the service images. For this reason,
the devices of each fog colony share the service images using
a shared service registry. FogFrame uses a distributed key-
value store as underlying data management system within
each colony to enable a flexible schema for sharing the
service image data among fog nodes and cells.

B. Service Placement

Application requests can be initially submitted to any
fog node or cell, yet they are always forwarded to the
head fog node for service placement. The head fog node
resides at the top of the hierarchy in the fog colony and
is aware of all the resources of the colony. After receiving
an application request, the head fog node processes it to
generate a set of service requests. Each service request
includes a flag value indicating whether the corresponding
service must be executed in the cloud or at the edge.
Service requests intended to be executed in the cloud are
separated and kept in a queue for being sent to the cloud.
All other service requests are used as input to the placement
algorithm. Since the placement algorithm needs to be aware
of resource availability, the utilization of resources at the
edge is monitored using a light-weight service called host

monitor, which is automatically initiated in all fog nodes and
cells. It periodically probes system resource and utilization
data which are stored and used as input for the service
placement and resource provisioning mechanisms.

The placement algorithm generates a service placement

plan that consists of the following subsets of decisions: (i)
which services have to be placed on fog nodes and cells
of the colony, (ii) which services have to be placed on the
resources of the head fog node, (iii) which services have
to be deployed in the cloud, and (iv) whether the entire
application has to be delegated to the neighbor fog colony.

First-fit Algorithm. The first-fit algorithm finds first most
appropriate resource to deploy a service according to avail-
able resource capacities. In this algorithm [10], the resource
pool of the fog colony is sorted by available resource
capacities and by the types of services that can be hosted
there, e.g., resources with sensor equipment can host sensing
service. The algorithm iterates over each service request and
the resource pool of the fog colony, and checks if the current
resource satisfies the service according to its service type
and utilization. If these constraints are met by a fog cell,
then it is able to host a service, and the head fog node
sends a deployment request to the fog cell. Upon successful
deployment, the details about the deployed container are
saved in the head fog node to keep track of all the deployed
containers in the fog colony. The placement of services at
the edge is prioritized over placement in the cloud. If the fog
colony cannot host an application, the application request is
sent to the neighbor colony.

Genetic Algorithm. Genetic algorithms have been shown
to provide good results for service composition prob-
lems [14]. A genetic algorithm iteratively browses a large
search space and finds near-optimal solutions in polynomial
time [15]. The genetic algorithm is light-weight and there-
fore is able to run on resource-constrained devices at the
edge of the network.

In the following, we briefly discuss common principles of
genetic algorithms. Each iteration is a process of applying
the genetic operators of selection, crossover, and mutation
on a generation of possible solutions of a problem [16]. A
generation consists of individuals represented by their chro-
mosomes, which are characterized by fitness function values.
The algorithm iterates until a certain stopping condition is
activated. The challenge in the implementation of a genetic
algorithm is (i) to create a chromosome representation
corresponding to the desirable solution of the problem, (ii)
to apply necessary parameters of genetic operators, (iii) to
design a fitness function that would reflect the desirable
optimization goal, and (iv) to construct an efficient stopping
condition. The genetic algorithm applied in FogFrame is
implemented as follows:

The chromosome is a vector corresponding to a service
placement plan of the length of the total number of services
in the requested application. Each value in this vector is
an integer identifier of a resource in the fog colony, or the
cloud. If a service cannot be placed to any of the devices or
in the cloud, the value in the vector is 0. In this case, the
application is supposed to be sent to the neighbor colony.
Such vector ensures the placement of all services, i.e., all
chromosomes are valid. The chromosome stores necessary
data to estimate utilization of devices and response time of
the application.

In this work, we use the following parameters of the
operators based on pre-experiments [9]: A 80%-uniform
crossover because the genes are integer values, crossover

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

mixing ratio of 0.5, tournament selection with the arity 2,
random gene mutation with 2% mutation rate, 20% elitism
rate, and a population size of 1000 individuals.

The fitness function is calculated based on the constraints
of resources and QoS. We encourage a chromosome if
it fulfills certain constraints, and apply penalties, if the
constraints are violated [17]. We have defined three possible
sets of constraints which influence the fitness function in
different ways, i.e., (i) a set Ψ of constraints indicating if
resource constraints of CPU, RAM and storage resources
are met, (ii) a set Γ of implicit binary constraints derived
from the goal function, i.e., conformance to service types,
indications whether cloud or fog colony resources have to
be used, and prioritization of local fog colony resources
compared to the cloud and resources in the neighbor fog
colony, and (iii) a set Υ constraints causing the ‘death’ of
the chromosome, i.e., when the service types, number of
containers in devices, and QoS constraints are violated.

Let c denote a chromosome. As it can be seen in (1),
for constraints ∀βp ∈ Ψ, if βp(c) ≤ 0, the constraints are
satisfied and δβp(c) = 0. If βp(c) > 0, then the constraints
are not satisfied and δβp(c) = 1 as in (1). Similarly, for
∀βγ(c) ∈ Γ, ∀βυ(c) ∈ Υ. The sum of violated constrains in
Υ is

∑

βυ∈Υ δβυ(c).
The fitness function is calculated according to (2), where

ωβp(c) is a weight factor of βp ∈ Ψ, ωβγ(c) is a weight
factor of βγ ∈ Γ, and ωp is the penalty weight factor
for constraints in Υ. If constraints βp or βγ are satisfied
in c, then δβp(c) and δβγ(c) become 0, and the according
values within the first and the second terms are added to
the fitness function. When the constraints are not satisfied,
δβp(c) and δβγ(c) become 1, and the fitness function is
decreased by those values. The third term provides the death
penalty ωp

∑

βυ∈Υ δβυ(c) for having the sum of violated
constraints other than 0, where the penalty factor ωp has to
be big enough to forbid the worst chromosomes from being
selected for crossover. During the runtime of the algorithm,
the fitness function increases as less penalties are applied to
the chromosomes.

δβp(c) =

{

0, if βp(c) ≤ 0

1, if βp(c) > 0
(1)

F (c) =
∑

βp∈Ψ

ωβp
(1− 2δβp(c))+

∑

βγ∈Γ

ωβγ
(1− 2δβγ(c))− ωp

∑

βυ∈Υ

δβυ(c)

(2)

The algorithm stops based on several conditions. First, the
fitness value of the fittest individual in the generation has to
be a positive number, which means that no death penalties
have been applied to the chromosome. Then, if this condition
is fulfilled, specific stopping conditions are checked. The
first condition is variance-based, i.e., the tolerance of the
fitness function is calculated by dividing the incremental

operating system (Hypriot)

local

storage

container

fog cell

container

Docker hook

service container service container

service container service container

service container service container

Figure 2. Deployment on a fog cell

operating system (Hypriot)

local

storage

container

Docker hook

service container

service container

service containershared service

registry

container

fog node

container

Figure 3. Deployment on a fog node

variance of the fitness values by the maximum fitness value
over generations [18]. We set the tolerance value of the
fitness function to be less than ǫ = 0.01, which is enough to
obtain the solution and not to converge in local maxima. To
limit unproductive search, we add an auxiliary time-based
stopping condition, i.e., a limit on the number of iterations.

C. Service Deployment and Execution

Since the two computational environments in fog land-
scapes (i.e., cloud and edge) are different, deployment mech-
anisms for services also need to differ. In the cloud, services
are deployed in Docker containers on VMs, which need to
be deployed and managed. When a service request is sent to
the fog controller from a fog colony and there is no deployed
VM in the cloud, the fog controller leases and starts a new
VM. If a VM is already running, the corresponding Docker
container of the necessary service image is deployed on that
VM. The containers are deployed on a cloud VM until a
certain limit of containers is reached to ensure the stability of
the computational environment. If there are no free resources
for another container to be deployed on a VM, a new VM is
leased and a container is deployed there. When the execution
is finished, containers are stopped. If the VM is running
with no load, the VM is stopped and the cloud resources
are released again.

For fog colonies, the deployment mechanisms differ. To
make it possible for fog cells and fog nodes to deploy, start,
and stop further Docker containers on the host device, we
make use of a Docker hook (see Fig. 2 and Fig. 3) [19].
This Docker hook resolves the problem of instantiating other
Docker containers on the Docker runtime of the host device
from inside the Docker containers of the running fog cells
and fog nodes.

V. FOG LANDSCAPE RUNTIME

A fog landscape is dynamic in its nature, as devices may
appear and disappear arbitrarily. Since failures and overloads
are inevitable in such systems, the fog landscape refines the
network based on periodic and event-based mechanisms at

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

runtime by redeploying running applications. In the follow-
ing, we describe redeployment and placement replanning
mechanisms for fog colonies as implemented in FogFrame.

A. Overloaded Devices

Resource utilization in all devices in a colony is polled
periodically by the head fog node. If a device is identified
as overloaded, i.e., it surpasses preconfigured utilization
thresholds (related to CPU, RAM and storage capacities),
the head fog node redeploys one random service from the
overloaded device to another one inside the colony using the
placement procedure. This process continues until resource
utilization drops below the threshold.

B. Disconnected Devices

All devices in a colony are polled periodically by the
head fog node. Devices that do not respond are considered
disconnected. When a head fog node discovers a discon-
nected device, it redeploys the services that were running
on the disconnected device (based on the service placement
plan) to other devices in the fog colony using the placement
procedure. If the head fog node is disconnected, a fog node
lower in the hierarchy becomes the new head fog node
triggered by the absence of the previous head fog node’s
polling. If there is no other fog node in the fog colony, the
colony fails. If a neighbor fog colony is unresponsive, the
head fog node requests the address of a different neighbor
fog colony from the fog controller. If the fog controller is
unresponsive, fog nodes are also able to accept join-requests
(as long as the new device knows the fog node’s address)
which leads to placing the new device in the lower tier of
the hierarchical structure of the colony.

C. New Devices

Each time a new fog node or cell joins a colony, it triggers
the replanning mechanism executed by the head fog node.
More specifically, the head fog node of the colony examines
the available resources to identify resource utilization and
the number of deployed services in all the devices of the
colony. Then, the head fog node opportunistically redeploys
services that could be executed in the colony, but are cur-
rently running in the cloud, to the new fog cell. Afterwards,
services that run on devices operating at maximum capacity
are scheduled for redeployment so that some of them will
be deployed on the new device. Therefore, through the
replanning mechanism, fog colonies react to the increase
in the available resources and re-balance the workload to all
the devices.

In order to briefly summarize the presented functionalities
of fog cells and fog nodes, we discuss their high-level ar-
chitecture (see Fig. 4). A fog cell consists of a database ser-
vice which operates a local database and stores connection
data, identification data, and application execution data as
mentioned at the beginning of Sect. III. The communication

fog node

shared database
service

shared
database

delegation
service

watchdog

resource
provisioning service

fog device
discovery

fog device
overload

fog node’s REST API

fog cell

fog cell’s REST API

database
service

database

compute
unit

fog action
control

Docker
service

R

host
monitor

R

RR

communication
service

reasoning
service

fog device
failure

Figure 4. High-level architecture of fog cells and fog nodes.

service establishes and maintains the communication with
the fog controller and a parent fog node. The compute unit
executes services and transfers data between services. The
fog action control service follows the orders from the head
fog node of the fog colony, and deploys necessary services
by the means of the Docker service. There is a dedicated
host monitor service, which monitors the utilization of the
fog cell. These components have been described in Sect. IV.

A fog node consists of all the components of a fog cell
and provides some extensions. The extensions of the fog
node are the shared database service which operates the
shared database with the service registry. The watchdog
monitors the utilization data of all the connected fog cells,
and triggers the reasoning service to react on runtime
events as was presented at the beginning of Sect. V. The
delegation service sends application requests to the closest
neighbor fog colony and service requests to the cloud. The
reasoning service is triggered when an application request
is submitted for execution to the fog node. For this, it
calls the resource provisioning service, which implements a
certain service placement algorithm. The reasoning service
also triggers device discovery mechanism to react on new
devices, and collective healing mechanisms for fog colonies
to react on disconnected and overloaded devices as described
in Sect. V-A to V-C, i.e., new device discovery, device
overload and device failure mechanisms. To summarize, the
FogFrame framework provides all necessary functionalities
for application management and accounts for the volatile
nature of the fog landscape.

VI. EVALUATION

To evaluate FogFrame, we examine how services are dis-
tributed in the fog landscape under different arrival patterns
of service requests, and how FogFrame reacts to different
runtime events in the fog landscape.

A. Metrics

In order to show the results of the evaluation, we measure
the following metrics: (i) deployment time per service at the

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

AWS

fog controller
192.168.1.101:8282

fog node FN1

192.168.1.105:8080
(7;10), [(0;0),(7;10)],[]

fog node FN3

192.168.1.107:8080
(9;10), [(8;8),(12;12)],[t3]

fog cell FC2

192.168.1.111:8081
(4;7),[t1,t3]

fog node FN2

192.168.1.106:8080
(6;7), [(2;2),(7;7)],[t3]

fog cell FC3

192.168.1.112: 8081
(10;10),[t1,t2,t3]

fog cell FC1

192.168.1.110:8081
(3;3),[t1,t2,t3]

Figure 5. Evaluation setup

edge and in the cloud, (ii) time-to-recover per service due to
failures, and accordingly (iii) number of redeployed services
due to failures, (iv) percentages of successful recovery, and
(v) time-to-redeploy a service due to overloads. In order
to examine the behavior of FogFrame, we also record the
workload of each device in terms of number of deployed
services over time. We examine this load in a stacked form,
i.e., the load in each device and the total load.

B. Experimental Setup

FogFrame is implemented using Java 8 and the Spring
application framework. Services in FogFrame interact by
means of REST APIs and JSON messages. The database
technology used both for local databases and the shared
database is Redis. The fog controller is executed on a Ubuntu
16.04 LTS VM on a standard notebook. For cloud resources,
we use Amazon AWS EC2 services, specifically t2.micro
VMs with CoreOS, which has a Docker environment setup
by default. Fog nodes and fog cells are deployed on Rasp-
berry Pi 3 units with the Hypriot operating system. More
details about the Raspberry Pi configuration can be found
in [19]. The framework is available under an open source
license at Github1.

As can be seen in Fig. 5, fog nodes FN1 and FN3 are
connected to the fog controller. The fog colony controlled
and orchestrated by FN1 consists of a fog node FN2, and
two fog cells FC1 and FC2. The fog colony controlled and
orchestrated by FN3 has one connected fog cell FC3. As
data sources, temperature and humidity sensors are installed
on the Raspberry Pis by the means of GrovePi sensor boards.

In the experimental setup, each application consists of
a number of service requests of certain service types. For
the purposes of the evaluation, we have defined and im-
plemented three possible service types: Services of type t1
receive data from temperature and humidity sensors and are
executable only on fog cells because services of this type
need sensor equipment; services of type t2 and t3 simulate
processor load by continuously writing into a string, and
are executable either in fog colonies or in the cloud. We

1https://github.com/softls/FogFrame-2.0

have also developed a dedicated cloud service which receives
sensor readings and writes them to a cloud database.

C. Experiments

To evaluate the behavior of FogFrame, we apply differ-
ent arrival patterns of application requests, i.e., constant,
pyramid, and random walk, and observe service placement.
The arrival patterns are shown along with the representative
results of experiments in Fig. 6. The baseline for evaluation
is the uninterrupted operation of the fog landscape observed
during the first ten minutes of each run of the experiment.
After 10 minutes, failures are automatically introduced.
Specifically, failures are generated with the probability
P (Failure) = 0.05% per second, i.e., P (Failure) = 30%
in 10 minutes, and recorded to be introduced in each run.
Failures happen at about the 11th and 16th minute of each
run. The device failure is simulated by stopping the fog
cell application container at the chosen device. In reality,
device failures can be hardware, software, or communication
problems. Whenever a fog cell has a failure, we use its
Raspberry Pi to deploy a new fog cell. We observe how the
system redeploys services running on the disconnected fog
cell and measure time-to-recover per service. The overloads
may occur in the course of execution, e.g., if the CPU load is
100%. In the case of an overload, the device is still operating,
however, some services have to be redeployed to release
resources, e.g., using a newly joined fog cell, already ex-
isting resources, or cloud resources. We run the experiment
ten times for each arrival pattern in combination with each
placement algorithm and provide statistical distributions of
results.

D. Results and Discussion

The evaluation results for the six combinations of the
two algorithms (first-fit, genetic algorithm) and three arrival
patterns (constant, pyramid, random walk) are shown in
Fig. 6. During the first ten minutes of each run, in the first-
fit placement, the services are placed on the fog cells to
the maximum capacity. If both fog cells FC1 and FC2 are
loaded, and a new application request arrives with services
which need sensor equipment, the deployment in the current
fog colony becomes impossible, and the fog node decides
to delegate the application to the closest neighbor colony. In
the genetic algorithm, more time is spent for the deployment
of single services compared to the first-fit placement because
the algorithm requests device utilization information before
starting calculations. However, more application requests are
delegated to the neighbor fog colony, and the load on the
resources is better balanced, which allows to avoid overloads
and is crucial if new services need sensor equipment.

After ten minutes, we observe how FogFrame reacts
on different runtime events. The first case to consider is
when a connected and successfully paired fog cell loses its
connection with the fog landscape due to a device failure.

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

0 200 400 600 800 1000 1200 1400

0
1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4
FN 2

(a) first−fit & constant

0 200 400 600 800 1000 1200 1400

0
1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4

(b) genetic & constant

0 200 400 600 800 1000 1200 1400

0
1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4

FN 2 FN 2 FN 2

(c) first−fit & pyramid

0 200 400 600 800 1000 1200 1400

0
1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4

 (d) genetic & pyramid

0 200 400 600 800 1000 1200 1400

0
1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4

FN2

(e) first−fit & random walk

0 200 400 600 800 1000 1200 1400
0

1
0

2
0

3
0

4
0

5
0

Time, sec

T
o
ta

l
n
u
m

b
e
r

o
f

 d
e
p
lo

y
e
d
 s

e
rv

ic
e
s

FC 1 FC 4

(f) genetic & random walk

Setup: FC 1 FC 2 FN 2 FC 3 FN 3 Cloud New fog cells: FC 4 FC 5

Arrived service requests Failure Overload

Figure 6. Results of experiments with different placement algorithms and arrival patterns

In this experiment, the device to fail is the Raspberry Pi
of FC1. In order to demonstrate how the framework reacts
when a new device appears in a fog colony, its coherent
mechanisms and service redeployment, a new fog cell not yet
associated with the fog colony is instantiated. The Raspberry
Pi of FC1 is used to deploy new fog cells FC4 after
the first failure, and FC5 after the second failure. In the
first-fit placement, the percentage of successful recovery is
lower than in the genetic algorithm placement. This happens
because in the first-fit placement both fog cells are fully
loaded, and some services which need sensor equipment
cannot be redeployed in the fog colony. In the genetic
algorithm, the fog colony’s resources are not loaded to the
maximum capacities, and therefore less services need to be
redeployed, and consequently the fog colony has enough
resources to perform such redeployment. In the course of
the experiments, overloads occur mostly in FN2 because
this fog node apart from executing services also handles
the communication between the connected fog cells and the
cloud. In the genetic algorithm placement, the underlying
fog cells and FN2 are not fully loaded, and FN2 has enough
utilization capacities to deal with the communication.

To summarize this experiment (see Tab. I), the genetic
algorithm performs better with regard to distributing service
requests within the fog colony and between the fog colonies.
The positive aspect in the genetic algorithm placement is that
the resources in the fog landscape are not close to overload,
as can be also seen in Fig. 6, giving more opportunities for
newly requested services to be deployed, i.e., because of
better availability of sensor equipment.

Table I
EXPERIMENT RESULTS OVERVIEW

Metrics Algorithm Constant Pyramid Random
Deployment
time
per service,
edge (sec)

First-fit 2.41 3.07 3.06
σ =1.10 σ =0,93 σ =1.08

Genetic 2.92 3.02 3.05
σ =1.16 σ =0.92 σ =1.17

–”–
cloud (sec)

Genetic
2.78 2.69 3.18

σ =0.18 σ =0.13 σ =0.63

Number
of services
delegated

First-fit 26 24 24
σ =21 σ =21 σ =10

Genetic 59 46 26
σ = 9 σ = 20 σ = 13

Number of
services to
recover

First-fit 21 11 10
σ =3 σ =6 σ =5

Genetic 6 7 6
σ = 4 σ = 4 σ = 2

Time-to-
recover per
service (sec)

First-fit 3.88 2.49 1.98
σ =3.12 σ =1.18 σ =0.12

Genetic 2.09 2.02 2.07
σ =0.24 σ =0.18 σ =0.10

Successful
recovery
(%)

First-fit 90.00 89.36 99.11
σ =12.84 σ =14.62 σ =2.36

Genetic 100.00 100.00 100.00
σ =0.00 σ =0.00 σ =0.00

Time-to-
redeploy per
service (sec)

First-fit 1.80 9.41 3.16
σ =0.06 σ =2.95 σ =1.13

Genetic 2.46 2.49 2.37
σ =0.05 σ =0.05 σ =0.17

VII. RELATED WORK

Fog computing is still an emerging computing paradigm.
The conceptual and theoretical work about fog computing
use cases, definitions and conceptual architectures is quite
extensive, however there is a lack of concrete implemen-

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

tations of fog computing frameworks. In this section, we
provide an overview of existing approaches and frameworks
focusing on how to establish and maintain fog landscapes.

A conceptual work by Varshney and Simmhan [20] de-
scribes coordination models to be applied in fog computing.
In their work, three different coordination models in fog
computing are considered, i.e., (i) hierarchical, (ii) peer-to-
peer, and (iii) hybrid. It is emphasized that the hierarchical

model allows only vertical communication. The cloud is
defined as the root of this hierarchy and is responsible
for all the coordination, orchestration, and execution of
applications. In the peer-to-peer model, horizontal com-
munication is considered between different devices in the
fog landscape. Such communication has to be set up by a
central entity, which can be located either in the cloud or
at the edge of the network, and which has a global view
on the overall pool of resources. The network topology
has to be maintained by the means of a distributed hash
table. In the hybrid coordination model, the authors consider
both horizontal communication between different resources
as well as vertical communication to establish an ordered
fog landscape infrastructure. We place our work in such a
hybrid model. In FogFrame, a central entity to form and
maintain a fog landscape is the fog controller. Fog colonies
are interconnected and collaboratively can recover from
failures and execute applications even if the fog controller
is not available. With regard to the fog landscape operation,
Varchney and Simmhan propose to change the coordination
model depending on changes of the fog landscape at runtime.

Byers [21] provides a conceptual description of architec-
tural imperatives for fog computing, i.e., critical require-
ments for fog computing architectures and techniques to
resolve the mentioned problems. One of the considered
imperatives is geographic locality and control. This impera-
tive requires the fog landscape to control the information
flow based on physical and logical boundaries, and tells
that there is no valid reason to send data beyond those
boundaries. Another imperative is reliability and robustness,
which requires to maintain operation of the fog landscape.
This necessitates adaptive approaches to migrate applications
in response to runtime events by applying fault tolerance
and redundancy scenarios at different levels of the fog land-
scape hierarchy. The hierarchical organization imperative
assumes a tree-like hierarchy of the fog landscape. Another
imperative is agility that requires fast reaction on runtime
events and adapting the fog infrastructure accordingly. Last
but not least, a coordination-related imperative is scalability,
which is considered both from physical and software point
of views. The fog is expected to grow continuously, and
therefore the architectural design of the fog computing
environment has to be adaptive to such growth. In our
work, we address such imperatives, i.e., our framework
is hierarchical, it allows for both horizontal and vertical
communication within the fog landscape, it is adaptive and

scalable, it accounts for the geographical distribution of its
resource pool, and ensures collaboration between entities in
the fog landscape to provide a certain level of QoS and
infrastructure reliability.

Zhang et al. [22] propose a conceptual regional coop-
erative fog computing architecture. The authors distinguish
between edge and fog layers, and a cloud center. The
fog layer is coordinated by a separate local coordination

server. The cloud center is a super fog server, however
the coordination is an exclusive responsibility of the local
coordination server. The authors focus on cooperation in
the fog landscape in terms of service migration, maintain-
ing uninterrupted service and reliability. With regard to
communication, intra-fog and inter-fog communication and
management is envisioned. The virtualization mechanism
proposed in their work is by the means of VMs. Compared to
our work, we use containers instead of VMs, since VMs are
heavy-weight and therefore not suited for rather light-weight
IoT devices [5]. Similarly to Zhang et al., we also do not
design any coordinating fog landscape entities in the cloud.
A local coordination server resembles a fog node being a
head of a fog colony, however, we provide communication
and collaboration between different fog colonies by the
means of their corresponding fog nodes.

Tsai et al. [23] introduce an analytic fog computing
platform based on TensorFlow and Kubernetes. This Rasp-
berry Pi-based platform consists of a centralized server and
fog devices. Fog devices in their work are defined as all
possible resources from data centers and edge networks.
The programming of the application model is performed
by the means of TensorFlow. Kubernetes manages the fog
landscape, identifies the available resources, and deploys
containers of operators. In our work, the orchestration
mechanism is not centralized as it it done with Kubernetes.
Compared to Kubernetes, fog nodes are light-weight, they
are deployed on the devices at the edge of the network.

In the work of He et al. [24], a multi-tier fog computing
model is simulated, which consists of dedicated fogs and
opportunistic fogs. Dedicated fogs are static, while oppor-
tunistic fogs are volatile and consist of various computa-
tional, storage and networking resources which may enter
or leave the fog. He et al. propose the use of fog masters

and fog workers. Considering the question of how to form a
fog landscape, in opportunistic fogs, fog devices are joined
by invitation from fog masters. Each fog has at least one
fog master. An interesting aspect is that one fog can have
multiple fog masters to improve reliability. However, it is not
described in detail , how the coordination and management
is performed by those multiple fog masters. Compared to
our work, FogFrame is not a simulation framework, but a
real-world fog computing framework. Fog masters resemble
fog nodes in FogFrame, and fog workers resemble fog cells.
We also enable multiple fog nodes in one fog colony. In
order to enter the fog landscape we use self-announcement

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

mechanism, while He et al. propose invitations mechanism.
Self-announcement is also proposed in the work of de Brito
et al. [25]. They propose an IoT testbed that is built on
Docker Swarm and the OpenMTC M2M Framework and
consists of two main entities, a fog orchestration agent and
a fog orchestrator. However, the communication between
different fog orchestrators is not envisioned.

Yigitoglu et al. [26] implement a fog computing frame-
work called Foggy. Foggy has a three-tier infrastructure,
namely edge devices, network infrastructure, and cloud
services. Their network infrastructure tier consists of nodes
and an orchestration server. The orchestration server creates
and maintains a resource catalog which contains data about
the available resource pool, i.e., capacities, connections,
and utilization. The authors also propose different strategies
to promote reliability when performing deployments of
services. Compared to our work, we distinguish between
different types of nodes, i.e., fog cells and fog nodes. Also,
our fog nodes perform orchestration in their own colonies,
hence we do not have only one orchestration server, but
many interconnected fog colonies.

In the work of Vögler et al. [27], a framework for dynamic
generation of deployment topologies for IoT applications
called DIANE is proposed. This framework monitors the
deployment infrastructure, groups it according to available
resources, and stores the results for later analysis. The frame-
work dynamically deploys topologies for IoT applications
by the means of a rule-base algorithm, and provides their
monitoring. While in DIANE, only a rule-based algorithm is
used for resource provisioning, in our work, we formulate a
concrete optimization problem. We also consider in details
and implement a hierarchical structure of a fog landscape
focusing specifically on establishing communication be-
tween different devices in the fog landscape, and providing
application management.

To summarize, the contribution of FogFrame is the coor-
dinated control over the physical and virtual infrastructure
of the resources both in the cloud and at the edge of the net-
work. For this, FogFrame provides mechanisms to manage
and support fog colonies, i.e., to establish communication
within the fog landscape and handle data transfer, with
the ability to optimally provision necessary computational
resources and execute applications. Furthermore, it auto-
matically discovers resources at the edge of the network
and forms a fog landscape network topology and reacts on
its dynamic changes during runtime. The summary of our
findings from the related work is given in Tab. II.

Compared to our former work [9], [10], the work at hand
provides an implemented framework. It describes specific
details on runtime operation of a fog landscape. In contrast,
within our former work, we were operating on a conceptual
framework and primarily focused on finding solutions to the
service placement problem.

Table II
RELATED WORK OVERVIEW

Work Im
pl

em
en

t

V
M

s

C
on

ta
in

er
s

C
en

tr
al

iz
ed

D
is

tr
ib

ut
ed

In
tr

a-
fo

g
C

om
m

un
.

In
te

r-
fo

g
C

om
m

un
.

Zhang et al. [22] ✓ ✓ ✓ ✓

Tsai et al. [23] ✓ ✓ ✓ ✓

He et al. [24] ✓ ✓

de Brito et al. [25] ✓ ✓ ✓ ✓

Yigitoglu et al. [26] ✓ ✓ ✓ ✓ ✓

Vögler et al. [27] ✓ ✓ ✓ ✓ ✓

FogFrame ✓ ✓ ✓ ✓ ✓ ✓

VIII. CONCLUSION

In this paper, we introduced FogFrame2, a framework
for building and maintaining fog landscapes. By using this
framework and Raspberry Pi computers, it is possible to
build a real-world fog computing testbed for the execution
of IoT applications. Apart from the necessary mechanisms
for configuring a fog landscape, FogFrame provides all the
application management mechanisms needed to support a
full life-cycle of applications.

We evaluated FogFrame and the proposed mechanisms us-
ing the testbed. For this, we recorded the workload on differ-
ent computational resources at the edge of the network and
in the cloud, deployment times of services, times-to-recover
and recovery rates in the case of failures and overloads.
Our findings show that the framework dynamically reacts
to runtime events, i.e., when new devices appear or dis-
connect in the fog landscape, and when devices experience
failures or overloads, and performs necessary redeployments.
FogFrame records information for measuring efficiency and
for evaluating performance based on application execution
and resource utilization monitor.

Having addressed the question of how to create a fog
landscape, it is possible now to use these results as a
basis for developing other communication and application
management mechanisms. The framework allows easy inte-
gration of new components due to well-defined interfaces.
In future work, in the infrastructure of fog landscapes,
mechanisms to connect multiple different fog landscapes
have to be further considered. This would allow to establish
a meta-level of infrastructure for additional optimization
and reconfiguration. In the application management, other
service placement algorithms can be introduced to optimize
service placement according to different goals, e.g., with
regard to different cost models of fog resources.

ACKNOWLEDGMENT

This paper is supported by TU Wien research funds. This
work is partially funded by COMET K1, FFG – Austrian
Research Promotion Agency (Contract Nr. 854187), within

2https://github.com/softls/FogFrame-2.0

A
cc

ep
te

d
to

th
e

11
th

IE
E

E
/A

C
M

U
C

C
20

18
C

on
fe

re
nc

e

the Austrian Center for Digital Production, and the H2020
FORA project (grant No.: 764785).

REFERENCES

[1] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog
computing: architecture, key technologies, applications and
open issues,” J Netw. Comput. Appl., vol. 98, pp. 27–42, 2017.

[2] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and
J. Alonso-Zarate, “A survey on application layer protocols for
the Internet of Things,” Trans. on IoT and Cloud Computing,
vol. 3, no. 1, pp. 11–17, 2015.

[3] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J.
Morrow, and P. A. Polakos, “A Comprehensive Survey on Fog
Computing: State-of-the-Art and Research Challenges,” IEEE
Commun. Surv. Tutor., vol. 20, no. 1, pp. 416–464, 2018.

[4] V. Karagiannis and A. Papageorgiou, “Network-integrated
edge computing orchestrator for application placement,” in
13th IEEE Int. Conf. on Network and Service Management
(CNSM’17). Tokyo, Japan: IEEE, 2017, pp. 1–5.

[5] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and
J. Ott, “Consolidate IoT Edge Computing with Lightweight
Virtualization,” IEEE Network, vol. 32, no. 1, pp. 102–111,
2018.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Com-
puting: A Platform for Internet of Things and Analytics,”
in Big Data and Internet of Things: A Roadmap for Smart
Environments. Springer, 2014, vol. 546, pp. 169–186.

[7] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh,
and R. Buyya, “Fog Computing: Principles, Architectures,
and Applications,” in Internet of Things: Principles and
Paradigms. Morgan Kaufmann, 2016, ch. 4, pp. 1–26.

[8] “OpenFog Reference Architecture for Fog Computing,”
www.openfogconsortium.org/ra, 2016, online; Accessed: 14
Jun. 2018.

[9] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and
P. Leitner, “Optimized IoT service placement in the fog,”
SOCA J., vol. 11, no. 4, pp. 1–17, 2017.

[10] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Re-
source Provisioning for IoT Services in the Fog,” in 9th IEEE
Int. Conf. on Service Oriented Computing and Applications
(SOCA’16). Hong Kong, China: IEEE, 2016, pp. 32–39.

[11] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards
QoS-aware Fog Service Placement,” in 1st IEEE Int. Conf.
on Fog and Edge Computing (ICFEC’17). Madrid, Spain:
IEEE, 2017, pp. 89–96.

[12] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “On
QoS-aware scheduling of data stream applications over fog
computing infrastructures,” in 2015 IEEE Symposium on
Computers and Communication (ISCC’15). Larnaca, Cyprus:
IEEE, 2015, pp. 271–276.

[13] C. Hochreiner, M. VÃűgler, S. Schulte, and S. Dustdar, “Cost-
efficient enactment of stream processing topologies,” PeerJ
Comput. Sci., vol. 3, no. e141, pp. 1–36, 2017.

[14] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing
algorithms for virtual machines placement in cloud comput-
ing,” Concurr. Comput., vol. e4123, pp. 1–16, 2017.

[15] Z. Ye, X. Zhou, and A. Bouguettaya, “Genetic Algorithm
Based QoS-Aware Service Compositions in Cloud Comput-
ing,” in 16th Int. Conf. Database Systems for Advanced
Applications (DASFAA’11). Hong Kong, China: Springer,
2011, pp. 321–334.

[16] D. Whitley, “A Genetic Algorithm Tutorial,” Stat. Comput.,
vol. 4, pp. 65–85, 1994.

[17] Özgür Yeniay, “Penalty Function Methods for Constrained
Optimization with Genetic Algorithms,” Math. Comput.
Appl., vol. 10, no. 1, pp. 45–56, 2005.

[18] D. Bhandari, C. A. Murthy, and S. K. Pal, “Variance As
a Stopping Criterion for Genetic Algorithms with Elitist
Model,” Fundam. Inf., vol. 120, no. 2, pp. 145–164, 2012.

[19] K. Bachmann, “Design and Implementation of a Fog Com-
puting Framework,” Master’s thesis, Vienna University of
Technology (TU Wien), Vienna, Austria, 2017.

[20] P. Varshney and Y. Simmhan, “Demystifying Fog Computing:
Characterizing Architectures, Applications and Abstractions,”
in 2017 IEEE 1st Int. Conf. on Fog and Edge Computing
(ICFEC). Madrid, Spain: IEEE, 2017, pp. 115–124.

[21] C. C. Byers, “Architectural Imperatives for Fog Computing:
Use Cases, Requirements, and Architectural Techniques for
Fog-Enabled IoT Networks,” IEEE Commun. Mag., vol. 55,
no. 8, pp. 14–20, 2017.

[22] W. Zhang, Z. Zhang, and H. C. Chao, “Cooperative Fog Com-
puting for Dealing with Big Data in the Internet of Vehicles:
Architecture and Hierarchical Resource Management,” IEEE
Commun. Maga., vol. 55, no. 12, pp. 60–67, 2017.

[23] P. H. Tsai, H. J. Hong, A. C. Cheng, and C. H. Hsu, “Dis-
tributed Analytics in Fog Computing Platforms using Ten-
sorflow and Kubernetes,” in 19th Asia-Pacific Network Op-
erations and Management Symposium (APNOMS’17), Seoul,
Korea, 2017, pp. 145–150.

[24] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang,
“Multi-tier Fog Computing with Large-scale IoT Data Ana-
lytics for Smart Cities,” IEEE Internet Things J., vol. 5, no. 2,
pp. 677–686, 2018.

[25] M. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner,
D. Nehls, O. Keilsa, and F. Schreiner, “A service orchestration
architecture for fog-enabled infrastructures,” in 2nd Int. Conf.
on Fog and Mobile Edge Computing (FMEC’17), Valencia,
Spain, 2017, pp. 127–132.

[26] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy:
A Framework for Continuous Automated IoT Application
Deployment in Fog Computing,” in IEEE Int. Conf. on AI
Mobile Services (AIMS’17). Honolulu, Hawaii, USA: IEEE,
2017, pp. 38–45.

[27] M. Vögler, J. Schleicher, C. Inzinger, and S. Dustdar, “Op-
timizing Elastic IoT Application Deployments,” Trans. Serv.
Comput., vol. PP, no. 99, pp. 1–14, 2016.

