
Nomadic Applications Traveling in the Fog

Christoph Hochreiner1, Michael Vögler1, Johannes M. Schleicher1, Christian
Inzinger2, Stefan Schulte1, and Schahram Dustdar1

1 Distributed Systems Group, TU Wien, Austria
{c.hochreiner, m.voegler, j.schleicher, s.schulte, s.dustdar}@infosys.tuwien.ac.at

2 S.E.A.L, University of Zürich, Switzerland
inzinger@ifi.uzh.ch

Abstract. The emergence of the Internet of Things introduces new chal-
lenges like network congestion or data privacy. However, it also provides
opportunities, such as computational resources close to data sources,
which can be pooled to realize Fogs to run software applications on the
edge of the network. To foster this new type of resources, we revisit the
concept of mobile agents and evolve them to so-called nomadic applica-
tions, which allow addressing vital challenges for the Internet of Things.
In this paper, we propose a system design to realize nomadic applications
and discuss several challenges that need to be addressed in order to apply
them to real-world scenarios.

Key words: Fog Computing, Cloud Computing, Internet of Things,
Mobile Agents

1 Introduction

With the growing maturity of Internet of Things (IoT) concepts and technolo-
gies over the last years, we see an increase in IoT deployments. This increase
fosters the integration of IoT devices and Cloud-based applications to realize
information aggregation and value-added services. While the first IoT devices
were only capable of emitting sensor data, today more and more IoT devices
as well as network infrastructure, e.g., routers, provide computational resources
to process and store data. To cope with the large volumes of data originating
from IoT sensors in geographically distributed locations, IoT devices can pool
their resources to create Fogs based on the Fog computing paradigm [1]. Fogs
are inspired by the principles of Clouds [9], such as virtualization and pooling of
resources but due to their location on the edge of the network and the limited
amount of computational resources, they can not support the concepts of rapid
elasticity and broad network access. However, they excel at other aspects such
as low latency, location awareness, or data privacy [1].

Today’s software applications are typically running in public Clouds, like
Amazon EC2, or within private Clouds. Clouds provide on-demand resource scal-
ability as well as easy software maintenance and have become the de-facto stan-
dard for today’s software deployments. However, the Cloud computing paradigm
is also confronted with several challenges, especially in the area of the IoT.



2 Christoph Hochreiner et al.

Due to the fact that applications are running in a remote data center, it is re-
quired to transfer all data to these data centers over the Internet. This approach
is feasible for applications that process low volumes of data, but it becomes
infeasible for IoT scenarios. In IoT scenarios, sensors produce large volumes of
data, which cannot be processed by today’s network infrastructure in real-time.
Cloud-based applications are furthermore often in conflict with tight security re-
strictions since data owners want to ensure that no privacy-sensitive data leaks
outside their companies’ premises [10]. Therefore, it is often not feasible to trans-
fer data to Cloud-based applications, because the data owner cannot control the
data access after the data leaves the premises of the company.

To solve these challenges, it is required to refrain from deploying Cloud-based
applications only in centralized remote data centers, but to consider a federated
cloud architecture [2], and evolve Cloud-based applications into nomadic appli-
cations. In contrast to Cloud-based applications, which often require dedicated
runtime environments, nomadic applications are self-contained software applica-
tions, which can transfer themselves autonomously among Fogs and Clouds and
run directly on hypervisors due to unikernel architectures [8].

The idea is inspired by the principles of temporary workers or consultants,
who move from one workplace to another to perform activities and led to the
architectural design of mobile agents [6]. Mobile agents carry out operations
in close proximity to the data source to reduce latency and network traffic [7].
These properties make them a perfect fit to tackle today’s challenges for the IoT.
Nevertheless, although mobile agents have been proposed around two decades
ago, this concept never took off, mainly due to security considerations and the
need for dedicated execution environments [5].

Since the initial proposal of mobile agents, the technological landscape has ad-
vanced and the Cloud computing paradigm has fostered the technical foundation
for the execution of arbitrary applications on virtualized and pooled resources.
Given the technical requirements for nomadic applications, Fogs provide a con-
trolled and secure execution environment, which is managed by the owner of the
data. Therefore, nomadic applications allow for a more efficient data transfer
among IoT devices and processing applications due to the elimination of the
transfer over the Internet. Furthermore, due to the fact that Fogs are often fu-
eled by IoT devices who are already within the control of the data owner, it is
also feasible to enforce strict privacy policies.

Although nomadic applications are the most promising approach to process
privacy-sensitive data on already existing computational resources on the edge
of the network, there are still a number of challenges, like data transfer or data
recovery, which need to be resolved as discussed in Section 5.

The remainder of this paper is structured as follows: First, we provide a
short discussion on the related work in Section 2. Then, we provide a moti-
vational scenario in Section 3. Based on the motivational scenario we identify
several requirements and present the foundation of our system design in Sec-
tion 4. Furthermore, we discuss open research challenges in Section 5 before we
conclude the paper in Section 6.



Nomadic Applications Traveling in the Fog 3

2 Related Work

The only recent manifestation of Fog computing, which is often also consid-
ered as edge computing, leads to a plethora of definitions (e.g., [1, 3, 12, 13]).
Literature as well as the OpenFog Consortium1 consider Fog computing as an
evolution of Cloud computing, which extends established data centers with com-
putational resources that are located at the edge of the network. This enables
Fog computing to bridge the currently existing geographic gap between IoT de-
vices and the Cloud by providing different deployment locations to cater for the
different requirements of data processing applications, e.g., low latency or cost
efficiency [1].

Bonomi et al. [1] propose a layered model, which categorizes the different
computing platforms ranging from embedded sensors from IoT devices over field
area networks to data centers, where each layer provides a distinct level of qual-
ity of service. Furthermore, Dastjerdi et al. [3] provide a reference architecture
for Fog computing that can be used to leverage the computational resources at
the edge of the network and outline several research challenges, such as security
and reliability. Another challenge for the realization of Fogs is the heterogene-
ity of devices that are used to build Fogs [13]. Nevertheless, there is already
some preliminary work, such as the LEONORE framework proposed as part
of our previous work, which accommodates the diversity for the deployment of
applications on IoT devices [14].

3 Motivational Scenario from the Manufacturing Domain

Our motivational scenario originates from the manufacturing domain, which is
one of the most advanced areas regarding the realization of the IoT. Today’s
manufacturing companies operate specialized manufacturing machines in differ-
ent geographic locations [11], as depicted in Fig. 1. These machines are contin-
uously monitored by sensors to assess their status as well as the quality of the
manufactured products. The product quality often decreases over time, because
expendable parts wear off and the machines need to be recalibrated from time to
time. This recalibration requires the use of a dedicated application that analyzes
sensor data and calculates the optimal configuration for each machine. Further-
more, the application maintains a knowledge base that is continuously updated
to improve recalibration results based on reinforced learning. Now, there are two
approaches on how to execute the recalibration application.

The first approach is to run the application within the factory’s premises.
This approach is optimal in terms of data privacy since the data never leaves the
company. However, this approach requires dedicated computational resources to
perform the recalibration. To reduce the cost for the recalibration, it is also pos-
sible to operate the recalibration application in a Software-as-a-Service manner
on Cloud resources in a remote data center.
1 https://www.openfogconsortium.org



4 Christoph Hochreiner et al.

Knowledge 
Base

Factory 3

Factory 1

Factory 2

B

A

Assignment
 List

C

1

2

3

4

Fog

Cloud

Nomadic Application

Deposit Data

1 Nomadic Application Transfer

A Deposit Data Transfer

Shared Data Transfer

Fig. 1. Motivational Scenario

Although this second approach reduces the cost, it also has its disadvantages.
For this approach, the data needs to be transferred to a data center over the
Internet. This data transfer potentially conflicts with legal or organizational
policies, which may forbid any data transfer to remote locations or it simply
may not be feasible to transfer a huge volume of sensor data over the Internet.

Fortunately, the concept of nomadic applications running in Fogs combines
the benefits of the two previously described approaches. Whenever a machine
is in maintenance mode to perform the recalibration, some of its computational
resources are not used and can be contributed to a local Fog to host applica-
tions, such as the nomadic recalibration application. Another benefit of hosting
the application on the Fog is that the recalibration is performed within the com-
panies’ premises and the data owner can control all activities performed by the
application. The high trust level facilitated due to the tight control, entitles the
recalibration application to also access internal interfaces of the machine, which
is not possible for Cloud-based applications (due to security and data privacy
reasons).

Fig. 1 shows an exemplary order of events for a nomadic application, which
travels among three factories to recalibrate machines. At the beginning of the
journey, the application is residing at the knowledge base, since it is not re-
quired for any recalibration. Here, the application updates its configuration, i.e.,
becomes a stateful application, for future calibrations based on historic data.

Then, the application relocates immediately, as depicted by number 1, from
the knowledge base to its first working assignment at Factory 1. At Factory 1,
the application is running on the Fog of Factory 1, where it can access the sensor
data as well as any other factory-specific configuration data. This data is then
processed using the Fog, i.e., pooled and virtualized computational resources
provided by different IoT devices. After completing its task, the application is
ready to relocate to the next working assignment based on the information from
a remote assignment list.



Nomadic Applications Traveling in the Fog 5

Due to the fact that the recalibration operation at Factory 1 generated new
insights, which can be used to refine the recalibration operation, it is required to
transfer these insights to the knowledge base. This transfer may contain a large
amount of non-privacy-sensitive data, which does not exhibit any time-related
transportation constraints and can be carried out independently from the travel
route of the nomadic application as shown by migration A in Fig. 1.

These two operations are repeated twice, to also recalibrate the machines
for Factory 2 respectively Factory 3 and collect the obtained insights in the
knowledge base for future refinement. At the end of the journey, the nomadic
application returns to the knowledge base to update its configuration and to be
ready for future recalibration activities.

4 System Design

Our system design to realize a nomadic application infrastructure encompasses
Clouds and Fogs, which are connected by a network, i.e., the Internet. To ad-
dress the requirements, we propose the Nomadic Application Infrastructure, as
depicted in Fig. 2. For our discussion, we distinguish between application man-
agement aspects, which are designed to run in the Cloud, and data management-
oriented ones because these two management topics expose different require-
ments.

4.1 Application Management

Requirements The requirements for the application management ensure that
nomadic applications can travel from Fog to Fog over the Internet and cover
all aspects of the nomadic application lifecycle. The first requirement is that
applications need a location where they can reside, whenever they do not run
on any Fog. Furthermore, the application management also needs to provide a
mechanism to upgrade applications, e.g., to fix faulty applications or improve
existing ones.

While some applications carry application data, i.e., are stateful, and can
only exist once, the majority of nomadic applications is stateless and can be
replicated to operate in multiple locations at the same time. Here, the application
management needs to ensure that stateful applications are never replicated, i.e.,
the management needs to keep track of all running applications and the number
of instances thereof. Furthermore, the application management needs to provide
a recovery mechanism when one application crashes or the Fog is permanently
disconnected from the Internet.

Besides the infrastructural aspects, it is also required to support a fast and
secure application transfer. Here, it is crucial to ensure the integrity of the ap-
plication at any time so that the applications cannot be abused for malicious
purposes, e.g., as attack vectors for sabotage operations or data leakage.



6 Christoph Hochreiner et al.

Fog

Fog

Fog

Computational Ressources

Nomadic Application

Application Data

Nomadic Application

On-site Data

Internet

Cloud

Application Housing

Nomadic Application

Application Data

Nomadic Application

Application Evolution

Application 
Census & Recovery

Deposit Data

Shared Data

Application Transport

Fig. 2. Nomadic Application Infrastructure

Architecture Although nomadic applications are designed to operate in a de-
centralized manner, it is required to provide a centralized component to support
the application management whenever they are not deployed on any Fog.

Application Housing and Transport The housing component stores a shadow
copy of each application to enable replication for stateless applications. Imple-
mentation-wise, we propose a similar infrastructure as the Docker Registry to
cater for the required functionalities. Originating from the housing infrastruc-
ture, the applications can start their journey towards the Fogs over the Internet.
These movement operations are supported by a dedicated application transport
layer, which ensures a fast and reliable transport. Besides the basic transport
aspects, this layer also ensures that applications are not modified or tampered
with at any point in time, by validating the application’s integrity based on
cryptographic hash functions after each transport. The application housing also
allows applications to update their application data, i.e., the state, before they
continue their journey towards the privacy-sensitive Fogs.

Application Evolution To comply with the need for continuous evolution for no-
madic applications, the housing component furthermore needs to provide the
possibility to update existing applications at any time and to inform applica-
tions that are running on Fogs about the update. These updates can be only
applied when the applications have finished their tasks they must not be altered
while processing data. To solve this challenge, we require the application housing
component to support versioning of applications to facilitate the update of ap-
plications in the housing component. The applications are required to regularly
check whether a new version is available. If this is the case, stateful applications
need to return to the application housing to transfer their application data to
the evolved application and then they are able to continue their work.



Nomadic Applications Traveling in the Fog 7

For stateless applications, i.e., applications without application data attached,
the housing component updates the shadow copy. The stateless application
checks each time, before it moves to another location, whether the application
has evolved. If this is the case, the application returns to the housing component
to apply the updates or is discarded and new instances of the application are
spawned from the updated shadow copy.

Application Census and Recovery The application census and recovery compo-
nent keeps track of all nomadic applications that are currently running on Fogs.
This census is required to ensure that stateful applications are not replicated
at any time. Besides the census functionality, this component is also required to
provide a recovery mechanism for stateful applications. This recovery mechanism
needs to decide whether a stateful operation will or will not return from the Fog,
either due to an application crash or due to the fact that the Fog is permanently
disconnected from the network. In this situation, the recovery mechanism re-
stores the application alongside with its application data from a previous point
in time and appoints the reconstructed application as the new sole instance of
the nomadic application.

4.2 Data Management

Requirements The data management is responsible for storing and transfer-
ring data of different data types that are used by nomadic applications.

The first data type is the application data, which represents information that
is stored within the application. This type is rather small, e.g., configuration
settings or initialization values, does not contain any privacy-sensitive data, and
remains the same for every Fog location. This application data only contains
static information to avoid any data leakage, e.g., by embedding privacy sensitive
information within the application data when the application is running in a
Fog. Therefore, it must be ensured that this state can be only updated within
a specific location that does not contain any privacy-sensitive information, e.g.
the application housing.

The second type represents information that comprises both static data,
which is stored in the Fog, and dynamic data, such as streaming data, e.g.,
sensor data, which cannot be stored due to its large volume. Although these
two data types have entirely different requirements towards data management,
both data types contain privacy-sensitive information, which must be processed
according to the owner’s policies. Due to the geographic colocation of this data
and the application at runtime, this data is not moved outside the companies
premises, which mitigates a potential data leakage.

Besides the application data and the owner’s data, applications also require
remote data repositories. Here, the data storage infrastructure needs to support
two different scenarios. For the first scenario, the applications must be able to
have a shared data storage, which can be used to either communicate with Fog
providers, to retrieve new next job assignments or to share non-privacy-sensitive
information with all replicas of an application.



8 Christoph Hochreiner et al.

This shared repository is required to be ACID-compliant [4] and to support
different access policies, e.g., a permissive one for the job assignments and a
restricted one to restrict the access to a specific application. In addition to the
shared repository, the application also requires a storage location, where it can
deposit any arbitrary information that is generated while operating in one of the
Fogs. This storage also needs to be partitioned into different segments, which can
be only accessed by the assigned application. In contrast to the shared repository,
this data storage only requires eventual consistency and any data transfer to this
storage does not need to comply with any time-based restrictions. Nevertheless,
the data needs to be persisted and provided at any point in time. The Fog
operator needs to be able to check, whether the data transferred to the shared
repository and the data deposit complies with the owner’s policies and does not
contain any privacy-sensitive information.

Architecture To address the identified requirements for the different data
types, we propose different data management techniques, as illustrated in Fig. 2.

Application Data To realize tight coupling between the nomadic application and
its application data, we propose to employ unikernels [8]. This tight coupling
ensures that the data is always available for the application and the integrity
check after the transfer over the network can be applied to the application and
the application data at the same time.

On-site Data Although the on-site data can be either static or dynamic, both
data types must not leave the Fog, i.e., the premises of the data owner. Therefore,
the data needs to be protected by methods originating from information rights
management. These methods ensure that the data can be only read within the
Fog and any data leakage outside the Fog renders the data useless due to the
information rights management restrictions.

Shared Data For the realization of the shared data, we propose a storage infras-
tructure similar to Amazon S3, where each application and potential replicas
are able to read and write from a dedicated storage bucket. This storage infras-
tructure furthermore provides a high and instant availability regarding read and
write operations, which distinguish the shared data from the deposit data.

Deposit Data The deposit data follows the principles from Amazon Glacier. This
makes it possible to store arbitrary information at any point in time, but it may
take some time until the information is persisted within the storage respectively
accessible for the application to be read. Furthermore, it is required to implement
a data transport layer, which ensures both the integrity of the data as well as
the compliance with the policy of the data owner at any time.

5 Discussion

Even though nomadic applications build on established principles and concepts,
we have identified four research challenges, which are essential to realize them:



Nomadic Applications Traveling in the Fog 9

Scalable Privacy Protection for On-site Data One of the most important
challenges is the development of a scalable privacy protection mechanism for
dynamic data. While there are already solutions to enforce fine-grained access
policies for static data, like office documents, there is still a lack of solutions
for dynamic data. This is mainly due to the large volume of data that needs to
be processed in real-time. Furthermore, it needs to be ensured that malicious
applications cannot store any of this privacy-sensitive information within their
own application data and transfer the data out of the owner’s premises. Here,
the data transport layer needs to ensure that only non-privacy-sensitive data,
which is permitted to be sent to the deposit data, is transferred out of the Fog.

Target Scheduling for Stateful Applications While stateless applications
can be replicated on demand to be deployed in arbitrarily many Fogs, it is more
complex for stateful applications to select their next assignment because they can
exist only once and may be required at several locations at the same time. A first
solution approach is the implementation of the first-come, first-served principle,
but it is more desirable to implement a more flexible scheduling mechanism to
avoid that one Fog operator occupies a specific application by spamming the
waiting queue. To solve this issue it is desirable to implement an auctioning
mechanism, which ensures a fair assignment of applications across all Fogs. This
auctioning mechanism needs to be implemented on top of the transport layer in
a decentralized manner to avoid any single point of failure.

Support Different Speeds in the Transport Layer Due to the fact that
the network transfer capabilities among the Fogs, application infrastructures,
and storage facilities are limited, it is required to design a transport scheduling
algorithm that ensures that each entity, i.e., a nomadic application or data, is
transferred as efficiently as possible. Therefore it is required to design a trans-
port protocol, which allows the different entities in the system to negotiate the
transportation capabilities. This protocol should allow delaying those entities,
which are not required to be transferred in a time critical manner, such as no-
madic applications without any further job assignments returning to the housing
component or deposit data. Nevertheless, it must be guaranteed that no entity
suffers starvation in terms of transportation capabilities and all entities reach
their destination eventually.

Recovery Mechanism The final challenge is the development of a recovery
mechanism which allows the reconstruction of application data. This reconstruc-
tion is required, when an application is unable to return to the housing compo-
nent due to an application crash, a network disruption between the Fog and the
network, or simply a failure of a single IoT device, which contributes to the Fog.
Therefore, it is required to design a lightweight and efficient solution to track
application states, e.g., data synchronization points, to be able to reconstruct
applications. Furthermore, it is necessary to implement an algorithm to decide
whether an application is lost forever and needs to be recovered or whether the
application just needs longer than expected to finish its job. This functionality
is crucial to avoid instances of a stateful application at any future point in time.



10 Christoph Hochreiner et al.

6 Conclusion

The growing use of IoT devices enables the emergence of the Fog computing
paradigm which represents an evolution of the Cloud-based deployment model.
In this paper, we identify opportunities of Fogs and introduce the concept of
nomadic applications. These nomadic applications promise to solve both the
challenges regarding the constantly growing volume of data and to enable a
tight control of the data’s privacy. In our future work, we will further develop the
infrastructure for nomadic applications and apply them to real world scenarios.

Acknowledgements This paper is supported by TU Wien research funds and
by the Commission of the European Union within the CREMA H2020-RIA
project (Grant agreement no. 637066).

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proc. of the 1st edition of the MCC workshop on Mobile
Cloud Computing. pp. 13–16. ACM (2012)

2. Celesti, A., Fazio, M., Giacobbe, M., Puliafito, A., Villari, M.: Characterizing cloud
federation in iot. In: 30th Int. Conf on Advanced Information Networking and
Applications Workshops (WAINA),. pp. 93–98. IEEE (2016)

3. Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog Com-
puting: principles, architectures, and applications. In: Buyya, R., Dastjerdi, A.V.
(eds.) Internet of Things, pp. 61–75. Morgan Kaufmann (2016)

4. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Computing Surveys (CSUR) 15(4), 287–317 (1983)

5. Kotz, D., Gray, R.S.: Mobile agents and the future of the internet. Operating
systems review 33(3), 7–13 (1999)

6. Lange, D.B., Mitsuru, O.: Programming and Deploying Java Mobile Agents Aglets.
Addison-Wesley Longman Publishing Co., Inc. (1998)

7. Lange, D.B., Mitsuru, O.: Seven good reasons for mobile agents. Communications
of the ACM 42(3), 88–89 (1999)

8. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,
Smith, S., Hand, S., Crowcroft, J.: Unikernels: Library operating systems for the
cloud. ACM SIGPLAN Notices 48(4), 461–472 (2013)

9. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
10. Schleicher, J.M., Vögler, M., Inzinger, C., Hummer, W., Dustdar, S.: Nomads-

enabling distributed analytical service environments for the smart city domain. In:
Int. Conf. on Web Services (ICWS). pp. 679–685. IEEE (2015)

11. Schulte, S., Hoenisch, P., Hochreiner, C., Dustdar, S., Klusch, M., Schuller, D.: To-
wards process support for cloud manufacturing. In: 18th Int. Enterprise Distributed
Object Computing Conf. (EDOC). pp. 142–149. IEEE (2014)

12. Shi, W., Dustdar, S.: The promise of edge computing. Comp. 49(5), 78–81 (2016)
13. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: Towards a compre-

hensive definition of fog computing. ACM SIGCOMM Computer Communication
Review 44(5), 27–32 (2014)

14. Vögler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: A scalable framework for
provisioning large-scale IOT deployments. Trans. on Internet Technology (TOIT)
16(2), 11 (2016)


