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Abstract. In stream processing, elasticity is often realized by adapting
the system scale and topology according to the volume of input data.
However, this volume is often fluctuating, with a high degree of noise,
which can trigger a high amount of scaling operations. Since these scaling
operations introduce additional overhead and cost, systems employing
such approaches are at risk of spending a significant amount of time
scaling up and down, nullifying the positive effects of scalability.
To overcome this, we propose an approach for moderating the scaling
behavior of stream processing applications by reducing the number of
scaling operations, while still providing quick responses to changes in in-
put data volume. Contrary to existing approaches, instead of using linear
smoothing techniques, we show how to employ non-linear filtering tech-
niques from the field of signal processing to pre-process the raw volume
measurements, mitigating superfluous scaling operations, and effectively
reducing the number of such operations by up to 94%.
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1 Introduction

A major aspect of modern stream processing systems is elasticity [11], a feature
well-established in cloud computing [6]. In short, an elastic system is capable
of scaling up during times of increased load, and scaling down during times
of reduced load, instead of constantly over- or under-provisioning computational
resources. This allows the system to adapt to new situations, reducing cost while
maintaining Quality of Service (QoS) [10]. A system with less capacity than the
volume is said to be under-provisioned, whereas on the other hand, a system
with more capacity than is needed is called over-provisioned [14]. Scaling is not
limited to cloud computing, but has also been applied in stream processing [12].

In order to make scaling decisions, certain properties of the system are ob-
served. On the one hand, these properties may be intrinsic to the system, i.e.,
its CPU utilization [10], memory usage [5], network traffic [26], or its perfor-
mance [3]. On the other hand, the observed properties may be extrinsic to the
system, for instance, the amount of incoming data to be processed [25, 12],
as observed in our work. Generally, every scaling operation requires resources
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by itself, i.e., it incurs a delay, consumes energy without creating revenue, and
leads to computational overhead [9, 18], and therefore additional cost. This is
especially the case for scaling up, since additional operators on corresponding
resources must be activated. Therefore, scaling operations should be kept at a
minimum [5, 18].

In cloud computing, current approaches assume thresholds of utilization be-
tween which an operator must be [2]. In stream processing, this translates to
the notion that an operator can only handle a certain amount of input data
volume [13]. For any amount of data exceeding this volume, an additional op-
erator is instantiated. However, using this threshold-based scaling in a simple
way results in relatively frequent scaling operations, which causes an overhead
of resource usage and cost, as discussed before [5, 18, 9]. In certain cases, this
cost is necessary in order to benefit from the additional computing power made
available by scaling up, avoiding under-provisioning, or saving power by scaling
down, but on a large scale, excessively frequent scaling operations increase the
risk of losing too much cost on the overhead of scaling.

We consider the volume of incoming data as a time series, and argue that both
long-term trends in volumes, as well as short-term variances (spikes and valleys)
are observable. The long-term trend, for instance, can be the development of
input data depending on the time of day, time of year etc., while short-term
spikes rather represent spontaneous and short-lived events, i.e., noise that we
aim to ignore for scaling decisions.

Following this, we propose to improve classic threshold-based scaling by
changing the way scaling mechanisms react to changes of the input volume.
Instead of using the raw input value of the measured input volume, or using
simple smoothing techniques, we employ advanced, non-linear noise reduction
techniques from the field of signal processing. We apply these techniques to the
raw input values, creating a filter. Using this approach, we aim to separate the
actual data to be used for scaling (the long-term trend) from noise (the short-
term variance), and focus on scaling only based on the long-term trend. The
intuition is that this reduces the frequency of scaling decision while still being
adaptive to the fluctuations in input data volume.

To this end, the remainder of this paper is structured as follows: In Section 2,
we discuss work found in literature related to the topic of scaling in stream
processing. In Section 3, we present in detail our approach of minimizing the
number of scaling operations in stream processing systems, followed by a detailed
description of our implementation in Section 4. We evaluate the approach and
its implementation in Section 5. Finally, we conclude and give an overview of
possible future work in Section 6.

2 Related Work

A fundamental assumption in our work is the claim that computational overhead
caused by scaling, as explained in Section 1, causes significant cost. The general
impact of overhead introduced by frequent scaling of cloud resources has been
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studied by Corradi et al. [5] (in the context of overhead within cloud data centers)
and by Mao et al. [18] (in the context of auto-scaling in cloud workflows) and
the common result is that indeed, such overhead has significant impact and
should be kept to a minimum. Other work in this field has been presented by
Gong et al. [9], where the impact of scaling overhead is quantified by showing
that the CPU consumption using shorter scaling intervals is up to four times as
high, compared to longer intervals.

Scaling in stream processing systems has been thoroughly considered and
surveyed in the literature [1, 12]. Abadi et al. [1] present the Borealis stream
processing engine, along with a flexible and QoS-based optimization model. How-
ever, the scaling mechanisms presented do not take into account the volume of
input data. No detailed information is given about whether any pre-processing
of recorded data (e.g., denoising) is used. Hochreiner et al. [12] present a model
for elastic stream processing, and discuss the methodologies, advantages and
drawbacks of scaling within stream processing systems.

Mencagli et al. [19] use the Model-based Predictive Control (MPC) technique
to create a trade-off between reconfiguration stability and amplitude. While the
context (streaming application) is the same, and the aim (reduction of reconfig-
uration overhead) is similar to ours (reduction of the amount of scaling opera-
tions), the authors focus on the use of a distributed and cooperative approach,
while we focus on the noise reduction in the input signal.

The usage of input data volume for scaling decisions has repeatedly been
considered in literature [12, 25], as was using threshold-based systems to deduce
concrete scaling decisions [4, 13]. All of those approaches, however, suffer from
the same overhead problem as described before.

Some work has been done specifically to tackle this problem of overhead due
to fluctuating input. A general recommendation seems to be the usage of low-pass
filters [5], with a concrete instance of such a filter proposed by Shen et al. [23]. In
this work, the authors employ a moving-average filter, similar to linear smooth-
ing (LS). However, the authors do not use advanced non-linear approaches, like
Total Variation Denoising (TVD) or Extended Kalman Filters (EKF).

Another example of linear filters is found in the work by Gong et al. [9],
where scaling decisions are based on a Fast Fourier Transform (FFT) and pattern
recognition. To avoid overhead, the authors use a delayed scaling mechanism,
i.e., hysteresis. We argue that this is a rather basic approach in the context of
signal filtering, and has the disadvantage of a fixed delay with which even the
most extreme changes in input data volume are processed to scaling decisions.
In contrast, the TVD approach presented in the work at hand reacts quickly to
clear edges in the input data volume signal.

To the best of our knowledge, the only approach explicitly using a non-linear
approach is presented by Khan et al. [16], where workload time series processing
using clustering is proposed. Variations of workload patterns are predicted using
hidden Markov models. Nevertheless, the authors do not take into account any
normalization methods for processing the time series.
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3 Approach

As stated in Section 1, the goal of our work is to minimize the amount of scaling
operations performed, based on the volume of incoming data, using methods from
the field of signal processing referred to as noise reduction or regularization.

We consider a stream processing system, which is receiving incoming data,
e.g., from a message queue, processing it using an arbitrary amount of opera-
tors, and forwarding the resulting data as output. As stated in Section 1, we
observe the volume of incoming data. This is done at the operators initially
ingesting the data, either explicitly by measuring the incoming data, or by uti-
lizing already-available data, for instance, statistics stemming from the incoming
message queue.

The primary input for our approach is the time series of recorded measure-
ments of input data volume. We denote a volume measurement at a time t as vt.
Figure 1 presents the intuition behind our approach. The dashed line represents
the trend of the volume of input data of a stream processing system. However,
due to temporally local variance and fluctuation, the measured amount varies,
as denoted by the solid line. It is visible that while the recorded data generally
follows the long-term trend, there is a substantial amount of noise overlapping
the signal.

Time

Volume

Raw Measurements v
Trend

Fig. 1. Long-term volume trend (dashed) and actual, measured values (solid).

Naturally, if a stream processing system bases scaling decisions purely on the
raw data, an excessive amount of scaling operations occurs [5, 18, 9]. In Figure 2,
this is shown in the lower graph. Our approach applies filters to this process to
reduce the number of scaling operations, i.e., reduce the number of steps in the
operators line in Figure 2.

Therefore, we formally define our approach as follows. We regard a history
of raw volume measurements, V , at various points in time t out of all measured
times T , where vt, as mentioned above, is the measured volume at time t:
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Fig. 2. Scaling of operator count according to thresholds of the actual volume, resulting
in a high amount of scaling operations.

T = {t0, t1, . . . , tn} (1)

V =
⋃
t∈T

vt = {vt0 , vt1 , . . . , vtn} (2)

Based on the raw measurements v ∈ V , we define a filter f , which we apply
to each value. The filter is applied at a given measurement time t and has access
to all other measurement values in V , with the practical limitation that it can
only access past measurements. We therefore define fV (t) as the filtered value
for the time t, given all other values vi ∈ V where i ≤ t. The concrete definition
of f is not fixed, i.e., f is a parameter of our approach. Various concrete filters
are described in the following section.

We then define the set of filtered measurements V :

∀vt ∈ V : vt = fV (t) (3)

V =
⋃
t∈T

vt = {vt0 , vt1 , . . . , vtn} (4)

Figure 3 shows a possible resulting graph of the same volume measurement
data, using a filter, along with the resulting scaling behavior of the system. When
compared to Figure 2, it becomes clear that the amount of scaling operations
has decreased. Note that this approach does not guarantee that the volume is
met with correct scaling at each point in time. There is the possibility of under-
provisioning for short periods in time, depending on the used filter.
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Fig. 3. The same scenario, with additional filtering of volume measurements. Instead
of 23 scaling operations, the system only had to perform 7.

4 Implementation

We have implemented the approach described in Section 3 in different ways.
The most important distinction between these approaches is the type of filter
that is being used to reduce the noise in the signal, and to smoothen the time
series of observed data volume used for scaling, i.e., the concrete function used
for f . Stemming from the field of signal processing, a common approach of
separating noise from signal is employing a low-pass filter [5]. We seek to improve
the performance regarding detection of edges and separability in the Fourier
domain [17] by proposing two non-linear filters: TVD [21] and EKF [15].

4.1 Linear Smoothing

Amongst the most basic methods in signal processing is linear smoothing (LS).
Its essence is the smoothing of a noisy signal by setting each time series element
to the arithmetic mean of its neighbors. In scenarios where live data is processed,
only the past neighbors can be used, i.e., the window is set to end at the current
element. Therefore, in its general variant, for a time series v0, v1, . . . , vn, and a
given window width w, each filtered element vx is set to the following:

fV (t) = vt =
1

w

t∑
x=t−w

vx (5)

Alternative versions include weights for more recent elements or exponential
smoothing. However, since all of those methods essentially build a mean over a
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window of past elements, we implemented LS as a baseline reference. A major
flaw of all LS algorithms is the fact that they do not detect edges well. In the
context of elasticity of stream processing, this means that changes in the volume
are not detected immediately, and thus scaling operations are delayed by design.

4.2 Total Variation Denoising

A more advanced approach to smoothing is the approach originally proposed
in [21], commonly called TVD [22], or ROF, after the authors’ names [20]. The
basic notion is that the total variation of a signal is to be minimized. Intuitively,
TVD aims to remove the variation induced by noise while keeping the denoised
signal as close to the original signal as possible, with respect to the least squares
distance function. TVD is insensitive to the frequency ranges of noise and signal,
making it more suitable to detecting sudden changes in near-real time, compared
to linear methods like low-pass and high-pass filters or Fourier transforms.

Similarly to LS, TVD has one hyperparameter. In the case of TVD, this hy-
perparameter α determines the degree of smoothing. α = 0 indicates no smooth-
ing at all, i.e., the output of TVD is equal to its input, while α→∞ means that
more smoothing is performed, and this smoothing converges towards a steady
state which is the denoised signal [21].

In its essence, the underlying TVD minimization problem proposed in the
original work [21] is based on the assumption that the functional

v(x, y) = v(x, y) + n(x, y) (6)

expresses the raw signal v as a function of the actual (smooth) signal v, and
n, the additive noise1. Following this, the minimization problem is stated as a
problem of minimizing the variation (i.e., the integral of changes in gradients):

minimize

∫
Ω

(vxx + vyy)2 (7)

where Ω is the variable domain, vxx denotes the second derivative of v with
respect to x. Two additional constraints provided in [22], binding the mean and
variance of the raw and the reproduced signal to each other, are not shown here.

In our application of TVD, we have no multivariate functions, i.e., our v0, v
and n only depend on one (discrete) variable, which is the time t. Thus, we do not
need to apply partial derivations. Since we record discrete, digital measurements,
our definition of variation is also discretized and reduced, as shown in (8).

minimize

n∑
x=1

|vx − vx−1| (8)

1 Note that in the original work [21], the raw measured signal was named u0, and the
filtered signal was named u. We have adapted the names to v and v, respectively, to
maintain consistency within our work.



8

We have used this minimization problem, together with the original con-
straints, and applied the majorization-minimization algorithm described in [22],
which majorizes the total variation minimization problem by its quadratic func-
tion, a methodology described in [7].

4.3 Extended Kalman Filter

The EKF is a nonlinear generalization of the Kalman filter [15]. Kalman type
filters work by defining state transition and state observation models, and taking
into account the noise and its (co-)variance. Again, since we do not have a mul-
tivariate function, we only have one variable, which simplifies the computation.

The EKF is based on the notion that there is a transition model F and an
observation model G:

dx

dt
= F (t)x+G(t)c(t) (9)

z(t) = H(t)x(t) + n(t) (10)

where F (t) denotes the state transition, G(t) is the control (input) transition,
c(t) is the control function, i.e., the input applied to a system, and x is the state.
H(t) is the observation model, i.e., the measurement transformation, n(t) is the
additive noise added to the signal, and z is the observed state2.

In our application, we have simplified the model in that we do not apply any
input to the system, but only observe it. Thus, the entire term G(t)c(t) can be
eliminated. As state x in the EKF notation, we have used the current volume (v
in our notation), as well as the derivative (i.e., change in time, v′) of the current
volume. Therefore, in our application of EKF, x = [ vv′ ].

The term z(t) from the EKF notation corresponds to the resulting, filtered
volume measurement v in our notation. We have used this model in order to
apply an unknown input to the estimation. In our case, the unknown input is
the actual reason for the volume change, which is a factor we are not able to
(generally) include in our model. We therefore allow the change in volume v′

to be estimated by the EKF filter using only measurable data [8]. As a state
transition, we use a matrix applying v′ to v, i.e., we assume that without further
input, the volume change will be constantly applied to the volume. The source
of the change itself is, in this model, part of the noise, i.e., n(t).

5 Evaluation

In order to evaluate our approach, we simulated a stream processing system using
the three presented filters (LS, TVD, EKF) with varying input data volumes,
and measured the resulting performance.

2 Again, in the original approach [15], the control function is denoted as u(t), and the
noise is denoted as v(t). We have changed the names to c(t) and n(t), respectively,
in order to avoid overloading and maintain consistency.
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Fig. 4. Excerpt from a simulation with raw volume and filtered values.

To find commonly used and realistic values, we have surveyed literature, and
decided to use values from [25]. Following this, we used volumes in the range
of 200 to 500 tuples per second, and assumed a scaling threshold was 50 tuples
per second. We introduced noise with varying signal-to-noise ratios (SNR). Since
the Rose criterion states that an SNR of 5 is necessary to discern signal from
noise with 100% confidence [24], we used various SNR values near that value
for our evaluation (0.5, 0.8, 1.0, 5.0 and 10.0). All experiments were executed
for a duration of 1,500 seconds. Volume measurements and filter applications
were performed every second. An example is shown in Figure 4, where a few
characteristics are visible. Most prominently, the piecewise constant nature of
TVD can be seen. TVD also visibly misinterprets the mean of certain segments,
since TVD depends on the entire history of the data, not only the values of
the range shown, and those values influence its operation. For EKF, a certain
momentum is visible, with which it reacts to changes in value.

As metrics, we have used the filtered values for scaling decisions, as described
in Sections 3 and 4, and recorded (i) the number of scale-up and scale-down
operations, denoted as s+ and s−, respectively, and (ii) the amount of time (in
seconds) the system spent either over-provisioned, or under-provisioned, denoted
as p+ and p−, respectively. The resulting metrics from the simulations are shown
in Tables 1 and 2 (for SNR = 0.5 and 1.0), as well as Tables 3 and 4 (for
SNR = 5.0 and 10.0). Note that in this work, we did not consider a cost model,
but rather recorded the number of scaling operations performed throughout the
simulation. For the work at hand, we consider each scaling activity as equally
expensive, nevertheless we aim to refine the cost model in our future work.

The primary goal of reducing the frequency of scaling operations (s+ and
s−) has been reached by both TVD and EKF, in high-noise environments even
by over 93% (TVD) and 44% (EKF). However, the results clearly show that
regarding scaling performance alone (p+ and p−), LS still outperforms EKF and
TVD. This was expected, as LS has the tendency to scale without restriction
(heavily impacting s+ and s−). Nevertheless, we argue that the advantages of
reducing scaling frequency outweigh this drawback. For instance, in the case of
SNR = 1.0, using TVD, a reduction of s+ and s− by around 90% causes an
increase of p+ and p− of only around 8%, i.e., the positive impact in s+ and s−

is still one order of magnitude higher than the negative impact in p+ and p−.
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Filter s+ s− p+ p−

LS (Baseline) 208 209 262 332
TVD 13 13 312 335

−195 −196 +50 +3
EKF 115 114 373 335

−93 −95 +111 +3

Table 1. Results for SNR = 0.5. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (Baseline) 130 130 186 220
TVD 8 7 154 224

−122 −123 +32 +4
EKF 79 78 319 224

−51 −52 +133 +4

Table 2. Results for SNR = 1.0. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (Baseline) 33 32 54 72
TVD 7 6 115 86

−26 −26 +61 +14
EKF 26 25 110 86

−7 −7 +56 +14

Table 3. Results for SNR = 5.0. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (Baseline) 27 26 44 64
TVD 7 6 113 73

−20 −20 +69 +9
EKF 23 22 100 73

−4 −4 +56 +9

Table 4. Results for SNR = 10.0. Best
result per metric printed in bold.

Considering the difference in performance between TVD and EKF, it be-
comes clear that TVD is a promising approach in high-noise situations, espe-
cially if SNR < 1.0. However, with increasing SNR, EKF starts to outperform
TVD, especially in p+ and p−. We can observe this for SNR = 10.0. From a
purely numeric point of view, this means that EKF is the most promising ap-
proach in low-noise situations. For s+ and s−, however, EKF, does not reach the
performance of TVD, even in low-noise (high SNR) situations. However, looking
in detail at the excerpt shown in Figure 4, we also argue that the performance
of EKF can be further fine-tuned if the dynamics of the system, expressed in the
matrices of EKF, are studied better.

6 Conclusion and Future Work

In this work, we have presented a novel approach of scaling in stream processing
systems. Contrary to current state of the art, which uses simple linear filtering to
process the volume of incoming data and applies this to make scaling decisions,
our approach exploits advanced non-linear filtering methodologies from the field
of signal processing to pre-process these volume measurements. This reduces the
amount of scaling operations by 15% for low-noise scenarios, and over 94% for
high-noise scenarios, while maintaining a comparable provisioning performance.

The two filters presented in detail, TVD and EKF, have been used to show
the feasibility of this approach. We therefore propose further research in this
area. For EKF, we argue that deeper understanding of the dynamics of volume
changes in stream processing would allow for modeling of increasingly precise
transformation matrices, further increasing its performance. Therefore, we plan
to invest more research into different variations of the EKF parameters, possibly
adding QoS metrics from the system itself as inputs for EKF. Furthermore,
our next focus is to investigate in detail the computational complexity of our
approach, and to use a cost model, similar to existing literature [19]. Finally, we
want to evaluate the approach in more detail, and use a real-world data set for
the simulation.
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