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Abstract—Nowadays, the usage of cloud storages to store data
is a popular alternative to traditional local storage systems.
However, besides the benefits such services can offer, there
are also some downsides like vendor lock-in or unavailability.
Furthermore, the large number of available providers and their
different pricing models can turn the search for the best fitting
provider into a tedious and cumbersome task. Furthermore, the
optimal selection of a provider may change over time.

In this paper, we formalize a system model that uses several
cloud storages to offer a redundant storage for data. The accord-
ing optimization problem considers historic data access patterns
and predefined Quality of Service requirements for the selection
of the best-fitting storages. Through extensive evaluations we
show the benefits of our work and compare the novel approach
against a baseline which follows a state-of-the-art approach.

Index Terms—Cloud storage; Redundant storage; Erasure
coding; Vendor lock-in; Long-term storage; Fault tolerance

I. INTRODUCTION

The usage of cloud storages is a popular way to store data
in an accessible and reliable way. Companies, government
organizations and even private persons use cloud storages as an
alternative to maintaining their own storage systems [1]. Apart
from increasing the availability and durability of data, these
services can lower the cost of the storage for the customer.
While a private storage system may be feasible and economical
for big enterprises, it is in many cases not cost-efficient
for small and medium-sized enterprises [2]. Cloud storage
systems can lead to cost reductions due to the decrease in
IT maintenance cost that would occur for a private storage.

Nowadays, several publicly available cloud storage
providers exists, e.g., Amazon S31, Google Cloud Storage2,
or RackSpace CloudFiles3 [3]. These providers offer the
customer easy to use Web and API interfaces that hide the
complexity of the storage systems.

The decision where the data should be stored is not trivial.
To choose the best-fitting provider, a customer has to take
several constraints into account, e.g., which providers to
avoid, which geographical locations and pricing models of
potential providers to select, or the offered storage technology.
Also, cost should usually be minimized. Pricing models vary
significantly depending on the data amount to be stored and
the individual data access patterns. Also, apart from “standard”
storages, specialized long-term storage services like Amazon
Glacier4 exist, which offer lower cost but also decreased
Quality of Service (QoS), e.g., data retrieval may take hours.

1https://aws.amazon.com/s3/
2https://cloud.google.com/storage/
3http://www.rackspace.com/cloud/files
4https://aws.amazon.com/glacier/details/

Relying on only one cloud provider may lead to additional
issues: A provider could, e.g., increase the price of the storage
or go out of business [4]–[6]. This can result in the need to
migrate the data to another provider, which involves migration
cost and implementation or administration efforts. If a provider
goes out of business, the data may even be lost, if there is no
further replica of the data available. In addition, even big cloud
storage providers struggle with service outages [7]. Moreover,
cloud providers’ terms of usage and customer properties may
evolve over the time, e.g., because cloud providers modify
their pricing models or simply the amount of data a customer
stores changes. To avoid these issues, the redundant use of
several providers is necessary. Besides decreasing the level of
vendor lock-in [8], the usage of different providers increases
the durability and availability of the data.

Within the work at hand, we address the problem of cost-
efficient data redundancy in the cloud. We do this by formulat-
ing an optimization problem that optimizes the placement of
files, in the remainder of this paper called data objects, on sev-
eral cloud storage providers in a redundant and cost-efficient
way. Furthermore, the optimization ensures that predefined
storage requirements (i.e., availability, durability and vendor
lock-in factor) of the customer are satisfied at any time. The
optimization takes also the access pattern for the data objects,
which is a significant cost factor [9], into account. We, further,
present a cloud-based storage middleware, called CORA, that
uses Mixed Integer Linear Programming (MILP) to solve the
optimization problem. The middleware continuously monitors
the usage of the stored data objects and dynamically rearranges
the placement, with the help of the optimization, if a new cost-
efficient storage solution can be realized.

The remainder of this paper is organized as follows: In Sec-
tion II, we provide background information for our approach.
Subsequently, we describe CORA in Section III. Afterwards,
we present the linear optimization problem. The evaluation
setup is described in Section V and the results of the evaluation
are described in Section VI. Section VII discusses the related
work. Section VIII concludes the paper and provides an
outlook on our future work.

II. BACKGROUND

Before we discuss the data object placement approach, we
need to define some preliminaries.

A. Quality of Service

Several QoS aspects need to be considered when storing
data in the cloud. These include availability, durability, and



the vendor lock-in factor, which will be regarded within our
optimization approach as follows:

1) Availability: Defines the probability that a service (here:
a storage service), is up and running for a specific time
span [10]. This parameter is declared as the availability of
the service over a given time span in percent, e.g., 99.99%
over a year.

2) Durability: Defines the probability that data in a storage
service does not get lost, e.g., due to a hardware failure. This
parameter is declared as the durability of stored objects in
percent over a given time span, e.g., 99.999999% over a year.

3) Vendor lock-in factor: Defines the situation when data
is locked on one provider and, thus, cannot be migrated to
another one [9]. For example, if the service provider is not
accessible for some time or, in the worst case, goes out of
business [7], [8]. This parameter is declared as a value between
(0, 1] and is calculated by lockin = 1

N where N is the number
of providers that are used to store a file.

Usually, consumers define the required QoS attributes in
Service-Level Objectives (SLOs) [10]. The optimization and
CORA are designed to meet the customer-defined SLOs while
minimizing the overall storage cost.

B. Erasure Coding

Erasure Coding is a redundancy mechanism where a data
object is split into n data object chunks in a way that the
whole data object can be reconstructed by any subset of size
m (m < n) of those data object chunks [11]–[13]. Erasure
coding is defined by the tuple (m,n). With this characteristic,
erasure coding is a superset of a RAID system but also of a
normal replication system [14]. For example, a RAID 5 can be
described by setting m = 4 and n = 5. Furthermore, a normal
replication can be achieved by setting m = 1 and n = 3 which
will generate three replications. The main advantage of using
erasure coding instead of replication is the smaller additional
storage needed to achieve the same level of redundancy [14].

C. Pricing Models

Pricing models vary between different cloud storage
providers. Nevertheless, most of the models are based on
a similar notion: The pricing models account for the used
storage, the used outgoing transfer and the number of read and
write requests. Notably, most providers do not charge anything
for incoming transfer as well as for deleting data. Further, most
providers reduce the price for a higher usage of the system,
e.g., the more storage space is leased, the cheaper it is to store
additional data. This is also known as a Block Rate Pricing
model [15]. If data has to be migrated from one provider to
another, additional migration cost may be charged. In general,
for migration the outgoing transfer and the incoming transfer
are charged. However, especially large providers have often
several geographical distributed data centers, called regions,
and charge a reduced price to migrate data among the regions.

Beside conventional storages, some providers also offer
long-term storages. Those storage solutions are optimized for
longer storage with none or rare access and have therefore

TABLE I
SLO ATTRIBUTE EXAMPLE

File Name Availability (%) Durability (%) Vendor lock-in
image.png 99.8 99.999 0.4
backup.tar 99.9 99.99999 0.5

a reduced storage price but a higher access price, which
may also include data retrieval cost. Additionally, long-term
storage solutions often have a minimum storage duration, i.e.,
a Billing Time Unit (BTU). After storing a file on such a
long-term storage, charging is done for the complete BTU,
independent of the fact that the storage may no longer be used.
For some storage systems there is also a minimum object size
that defines the minimum size that is billed, i.e., a Billing
Storage Unit (BSU). Smaller data objects will be charged for
the complete BSU, despite the fact that only part of the storage
size is actually utilized.

Besides several geographically distributed regions several
cloud storage providers also offer different storage technolo-
gies. For example, Amazon offers following storage solutions:
Standard Storage, Reduced Redundancy Storage, Standard-
Infrequent Access (IA) Storage, and Glacier Storage. Each
storage option has different properties and prices, e.g., the
Standard-IA storage has a cheaper storage price, but also a
smaller availability in comparison to the standard storage.
Further, the Standard-IA storage has a BTU of 30 days and a
BSU of 128 KB.

While the pricing models of most large cloud storage
providers are based on a similar notion there are some dif-
ferences between them. For instance, while Google Cloud
Storage also offers a price reduction for the outgoing data
transfer, they do not apply a Block Rate Pricing model for the
used storage.

III. CORA

Before we formulate the optimization problem we describe
the middleware that uses MILP to solve the problem. CORA
is a middleware with the following core features:
• CORA stores data objects on different cloud storages in

a redundant way by applying erasure coding.
• CORA optimizes the placement of data objects on all

storages in a cost-efficient way without violating user-
defined SLOs.

• CORA uses long-term storages to store not or rarely used
data objects.

• If CORA recognizes the unavailability of a storage, it
recreates the missing data object chunks and uploads
them to alternative storages to restore data redundancy.

With these core features, CORA provides a cost-efficient
solution to store data with a high availability, while not relying
on only one specific storage provider.

As mentioned before, the predefined SLOs that are taken
into account for the data object placement selection are avail-
ability, durability and vendor lock-in factor. These SLOs are
defined for each data object by the data owner. Table I presents



Fig. 1. CORA – Architecture

two example files with defined SLOs. For example, the file
with the name image.png has to be stored in a way that it
has an availability of 99.8% over a year and a durability of
99.999% over a year. Further, it has to be stored in a way
that the file can be recreated by using the data from at most
three storages, due to the defined lock-in value of 0.4. While
the SLOs availability and durability are used for the selection
of the particular storages, the vendor lock-in factor is used to
select the required erasure code configuration values.

Figure 1 depicts the general architecture of CORA using
FMC notation. The central component of the middleware is the
Data Manager. It is responsible for the coordination between
the components of CORA and, thereby, for the read and write
process of data objects from and to the cloud storages.

To be able to store the data objects in a redundant way, we
apply erasure coding. The component Coder is responsible for
this redundancy mechanism. It transforms the data according
to the erasure coding parameters n and m, as discussed in
Section II-B. The output of the Coder is, for a storage process,
the data object transformed into multiple data object chunks
and, for the read process, a single data object that was created
from several data object chunks. To decrease the read cost,
CORA does not read all data object chunks, instead it only
reads enough data object chunks to restore a data object.
Furthermore, the component is responsible for the recreation
of a data object chunk if a data object chunk is damaged or
the storage is not available. The recreation is done by using
the remaining available data object chunks.

The Optimizer component is responsible for optimizing the
placement of data objects in a cost-efficient way, taking into
account the user-defined SLOs. The component is executed
each time an (i) interaction (i.e., read, write, or update) with
a data object takes place, (ii) the set of available storages
changes, and (iii) in predefined optimization intervals. During
the optimization, the component finds the cheapest placement
solution for a data object, respectively its data object chunks.
Furthermore, the optimization guarantees that the SLOs avail-
ability, durability and vendor lock-in are not violated.

By applying the assumption that the usage pattern of a data
object chunk stays the same in the nearer future [16], the
optimization process applies historical usage information to
predict the future usage of a data object chunk. By optimizing
only the placement of the data object chunk of one data object,
CORA is able to handle a huge amount of objects, while
by applying a global optimization for all objects at the same
time, the optimization duration increases non-linearly with the
amount of objects [17]. To consider also not used objects,

CORA regularly performs an optimization that includes not
or rarely used data object chunks. By applying this regular
optimization, such chunks are migrated to long-term storage
systems. After the optimization is done, the transfer to and
from the storages, and the erasure coding mechanism is
handled in a separate thread so that a new optimization, from
a new request, can be handled in parallel.

The historical access and storage information of each data
object is stored in a local Database. Finally, the API compo-
nent is responsible for the interaction between the user and
the CORA middleware. The Transfer Handler is responsible
for the interaction with the cloud providers.

Since CORA features a loosely coupled architecture, each
component could be substituted. In future revisions of CORA,
especially, arbitrary optimization approaches can be integrated
and used as foundation for the Optimizer. In the next section,
we will formulate the MILP-based optimization approach
currently applied in CORA.

IV. DATA OBJECT PLACEMENT

In the following we discuss the applied system model and
the formal specification of the optimization model.

A. System Model

As already defined, our optimization suggests the placement
of a data object, or more precisely for data object chunks,
on several cloud storage providers in the most cost-efficient
way without violating the defined SLOs. For this optimization,
we provide a MILP-based data placement approach. In the
following, we will introduce the used variables, the cost model,
and the used decision variables, before we will discuss the
objective function in greater detail.

1) Variables: In our model, the set of available storage
systems is labeled with S, where s ∈ S = {s1, s2, . . .}
indicates a specific storage. Furthermore, the data object is
labeled with F . f ∈ F = {f1, f2, . . .} indicates a specific
data object chunk, where |S| ≥ |F |. The amount of chunks
depends on the erasure coding configuration, e.g., for an
erasure coding of (3,4) there will be four data object chunks;
each chunk belongs to one data object. For each data object
chunk, information about past data access (i.e., size changes,
used incoming and outgoing traffic and amount of operations)
is stored in the Database. Under the assumption that the usage
pattern of a data object stays the same over a period of
time [16], this historical time steps are analyzed to predict
the future usage of each data object chunk. The parameter τ
defines the amount of historic information that is taken into
account for the optimization, e.g., τ = 300 minutes means that
the last 5 hours of access history is considered.

2) Cost Model: The cost that are billed to store a data
object chunk, are composed of the used storage cost, data
transfer cost and access operation cost. In addition, there may
also be migration cost. Furthermore, if the chunk is stored on
a long-term storage, the BTU and BSU have to be considered.

The overall cost calculation is shown in (1). This equation
calculates the cost that occur if the data object chunk f is



stored at storage s by taking the usage history of the past τ
minutes of f into account.

c(s,f,τ) = cS(s,f,τ) + cR(s,f,τ) + cW(s,f,τ) + cTin

(s,f,τ) + cTout

(s,f,τ) (1)

The equation to calculate the storage cost that occur to
store a data object chunk f on storage s is shown in (2).
The term pS(s,γ(s,f))

calculates the storage price. Since many
storage providers offer a price reduction that is correlated to
the space consumption, this has to be taken into account in
the calculations. To incorporate this price reduction, the cost
model uses γ(s,f) to calculate the used space of the current
billing period, e.g., a month. If a data object chunk f is
currently not stored at storage s, f is added to the calculation
of γ(s,f). This value is then multiplied with the data object
chunk size, defined by σ(f,τ). This term includes the last τ
minutes of historic usage information of f . If the storage s
has a BSU defined and the size of f is smaller than the BSU,
the value of the BSU is used for σ(f,τ).

If f is currently located on a long-term storage but the end
of the BTU has not yet been reached, the remaining BTU cost
need to be integrated into the calculations as well. This is done
by σ̂(f,BTU) · vŝf . The term σ̂(f,BTU) returns the size of the
data object chunk f that is charged for the remaining time
until the end of the BTU. vŝf ∈ {0, 1} defines if a data object
chunk is currently stored on a long-term storage (vŝf = 1) or
not (vŝf = 0). It has to be noted that our approach only takes
the storage that our system uses into account. If the customer
uses the storage additionally to save other data our cost model
does not include this used storage into the calculation.

cS(s,f,τ) = pS(s,γ(s,f))
· (σ(f,τ) + σ̂(f,BTU) · vŝf ) (2)

The cost that occur due to the performed write operations is
calculated by (3) and the read operation cost by (4). The values
rW(f,τ), respectively rR(f,τ), consider the amount of performed
write and read operations of data object chunk f in the
last time period τ . The term pWs defines the price of n

write operations; n is defined by p
Wstep
s . The terms pRs and

p
Rstep
s are the corresponding read values. Delete operations

are handled analogously to (3) and (4). However, it should be
noted that there are only few providers charging for deleting.

cW(s,f,τ) = rW(f,τ) ·
pWs

p
Wstep
s

(3)

cR(s,f,τ) = rR(f,τ) ·
pRs

p
Rstep
s

(4)

(5) and (6) provide the cost calculations for the performed
incoming and outgoing transfer of data object chunk f . In
the following, we will only discuss (5) in detail, since the
description is analogously applicable for (6). In (5), tout(f,τ)

defines the amount of bytes that were read from the provider
during τ . Furthermore, pTout

(s,β(s,f))
defines the outgoing transfer

price for the storage. Same as for the storage cost, most
providers offer price reductions for the transfer cost. Analogue
to γ(s,f) in (2), β(s,f) calculates the amount of transferred
bytes of the storage s in the current billing period, including

the amount of transferred bytes of the current data object
chunk f . If the storage is a long-term storage, additional data
retrieval cost can be charged. The data retrieval price is defined
by pret(s,β(s,f))

and vŝf is the same as in (2).

cTout

(s,f,τ) = tout(f,τ) · (p
Tout

(s,β(s,f))
+ pret(s,β(s,f))

· vŝf ) (5)

cTin

(s,f,τ) = tin(f,τ) · p
Tin

(s,β(s,f))
(6)

If f has to be migrated from one storage to another, the oc-
curring cost have to be included in the calculation as well. This
calculation depends on the migration: If the providers of the
source and destination storages are different, the migration cost
is calculated by an addition of the outgoing cost of the source
storage and the incoming cost of the destination storage.
Those cost are calculated according to (7), where σ̂f specifies
the current size of the data object chunk and pTout

(s,β(s,f))
,

respectively pTin

(s,β(s,f))
, are the same as in (5) and (6). Further,

rRs1 and rWs2 specify the amount of required read and write
requests. The terms pRs , pRstep

s , pWs and p
Wstep
s are also the

same as in (3) and (4). If f is stored on a long-term storage,
the data retrieval cost has to be included. This is done by
the term pret(s,β(s,f))

· vŝf where pret(s,β(s,f))
and vŝf are also the

same as in (5). If the source and destination storages have the
same provider, but the storages are in different regions and
this provider offers a reduced migration price, (8) is applied.
The first term, p

T(out,reg)
s1 , defines the outgoing price from

one region to another. The second term, p
T(in,reg)
s2 , defines the

incoming price. The remaining terms are the same as in (7).

cM(s1,s2,f) =(pTout

(s1,β(s1,f))
+ pTin

(s2,β(s2,f))
+ pret(s,β(s,f))

· vŝf )

· σ̂f + rRs1 ·
pRs1

p
Rstep
s1

+ rWs2 ·
pWs2

p
Wstep
s2

(7)

c
Mreg

(s1,s2,f)
=(p

T(out,reg)

(s1,β(s1,f))
+ p

T(in,reg)

(s2,β(s2,f))
+ pret(s,β(s,f))

· vŝf )

· σ̂f + rRs1 ·
pRs2

p
Rstep
s2

+ rWs2 ·
pWs2

p
Wstep
s2

(8)

3) Decision Variables: To mark if a data object chunk f
is stored on a particular storage s, we use the binary decision
variable x(s,f) ∈ {0, 1}. x(s,f) = 1 indicates that f is stored
at s; x(s,f) = 0 otherwise. Furthermore, the system model
uses g(S̃,F ) ∈ {0, 1} where S̃ = {s1, s2, . . . , sn} is the set
of selected storages with |S̃| = |F | and S̃ ⊆ S. g(S̃,F ) = 1

indicates that each storage in S̃ has one data object chunk of
F stored. g(S̃,F ) = 0 indicates that at least one of the storages
in S̃ does not have a data object chunk of F stored.

The decision variables z(s1,s2) and y(s1,s2) specify if two
storages are identical or do have the same storage provider
but are different storage regions. z(s1,s2) ∈ {0, 1} defines if
two storages s1 and s2 are not identical and have different
storage providers. z(s1,s2) = 1 indicates that this is true,
z(s1,s2) = 0 otherwise. Analogously, y(s1,s2) ∈ {0, 1} defines
if two storages s1 and s2 are not identical, but have the same



storage provider. Finally, the decision variable vŝf ∈ {0, 1}
defines if a data object chunk is currently stored on a long-term
storage, indicated by vŝf = 1, or not, indicated by vŝf = 0.

B. Placement Problem

After defining the system model, we are now able to
discuss the optimization problem. As already described, the
optimization problem defines the problem of finding the most
cost-efficient placement of each chunk of a data object F .
Therefore, the optimization problem is provided with the data
object F and the available storage providers S. Additionally,
the problem takes the time period τ as input.

1) Objective Function: (9) shows the objective function,
which is set to minimize the overall cost to store F :

min
∑
f∈F

∑
s∈S

(
c(s,f,τ) · w(s,f) + cM(ŝf ,s,f) · z(ŝf ,s)

+ c
Mreg

(ŝf ,s,f)
· y(ŝf ,s)

)
· x(s,f)

(9)

c(s,f,τ) · w(s,f) calculates the overall cost to store the data
object chunk f on the storage provider s by taking the last
τ minutes of the data object chunk usage history information
into account. The term c(s,f,τ) was already discussed in
Section IV-A2. The term w(s,f) ∈ [1, BTU ] is a multiplier
that helps to specify if the overall storage cost can be reduced
by storing a data object chunk on a long-term storage or not.
If s is a long-term storage, the calculation of the resulting
value of the term is initialized with the value of the BTU,
i.e., w(s,f) = BTU . The algorithm decreases w(s,f) each
time there was no or rare usage of the data object chunk
according to the history information, where the amount of
history information is defined by the BTU. This is done until
all history information is checked or until w(s,f) = 1. If s is
a standard storage without BTU, the value is always 1.
cM(ŝf ,s,f)·z(ŝf ,s) and cMreg

(ŝf ,s,f)
· y(ŝf ,s) calculate the migration

cost from one storage to another, without and with special
migration prices. Finally, the decision variable x(s,f) decides
if the data object chunk f is stored on storage s or not.

2) Constraints: Constraint (10) ensures that the vendor
lock-in factor lF , which was defined by the owner of the data
object as an SLO, is fulfilled.

1∑
f∈F

∑
s∈S x(s,f)

≤ lF (10)

Further constraints ensure that the required availability (11)
and durability (12) are fulfilled. Since (11) and (12) are defined
in a similar manner, we only discuss the former:∑

S̃′∈v(S̃,k)

[∏
s∈S̃′ âs ·

∏
s∈S̃\S̃′(1 − âs)

]
calculates the

availability of the storage set S̃′. S̃′ holds all possible com-
binations of size k of the storage set S̃. Those combinations
are represented by v(S̃,k). The term âs defines the availability
of s. Conclusively, this part of the equation calculates the
probability that there are k simultaneously available storages.
To complete (11), we have to include the functionality that
a system which uses erasure coding with a (m,n) coding
configuration, can withstand up to n−m simultaneous storage

failures. This is done by increasing k starting from m (i.e., the
amount of minimum required data object chunks of F depicted
by Fm) to |S̃|. In the equation this is achieved by

∑|S̃|
k=|Fm|.

|S̃|∑
k=|Fm|

∑
S̃′∈v(S̃,k)

[ ∏
s∈S̃′

âs ·
∏

s∈S̃\S̃′

(1− âs)
]
≥ aF ·g(S̃,F ) (11)

|S̃|∑
k=|Fm|

∑
S̃′∈v(S̃,k)

[ ∏
s∈S̃′

d̂s ·
∏

s∈S̃\S̃′

(1− d̂s)
]
≥ dF ·g(S̃,F ) (12)

Finally, the calculated value is compared to aF · g(S̃,F ).
aF defines the owner-defined required data object availability
of the data object. g(S̃,F ) defines if each storage in S̃ has
one data object chunk stored or not. g(S̃,F ) is defined by
constraints (13) and (14), with i ∈ {1, . . . , |S̃|}.

g(S̃,F ) ≥
∑
s∈S̃

∑
f∈F

x(sn,f) − (|F | − 1) (13)

g(S̃,F ) ≤
∑
f∈F

x(si,f) (14)

Furthermore, constraint (15) ensures that only |F | assign-
ments from data object chunks f ∈ F = {f1, f2, . . .} to the
storages s ∈ S = {s1, s2, . . .} exist. (16) ensures that each
data object chunk is stored at only one storage.∑

f∈F

∑
s∈S

x(s,f) = |F | (15)

∑
s∈S

x(s,f) ≤ 1;
∑
f∈F

x(s,f) ≤ 1 (16)

V. EVALUATION SETUP

To evaluate our optimization approach and the proposed
middleware CORA, both have been prototypically imple-
mented. For the evaluation, we use a real world cloud storage
access trace [18].

A. Prototype

The prototype is implemented in Java and uses CPLEX5

to solve the optimization problem, Apache jclouds6 to con-
nect to different storages and an erasure coding library7 that
implements the Reed-Solomon codes [11].

B. Storages

In the evaluation, we evaluate and analyze the behavior of
our optimization with real world cloud storage systems. Beside
the public cloud storage solutions from Amazon (AWS S3) and
Google (Google Cloud Storage), we use a self-hosted Swift8

storage system. Table II provides an overview of the cloud
storages used for the evaluation.

5http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
6https://jclouds.apache.org
7https://www.backblaze.com/blog/reed-solomon/
8https://wiki.openstack.org/wiki/Swift



TABLE II
EVALUATION STORAGES

Provider Region Storage Class
AWS S3 US Oregon Standard Storage
AWS S3 US Oregon Infrequent Access (IA)
AWS S3 US North California Standard Storage
AWS S3 EU Frankfurt Standard Storage
AWS S3 EU Frankfurt Infrequent Access (IA)
AWS S3 Asia Pacific Tokyo Standard Storage
AWS S3 Sao Paulo Standard Storage
Google Cloud - Standard Storage
self-hosted - Standard Storage
self-hosted - Long-term Storage

The evaluation uses the pricing models from AWS S39,
respectively Google Cloud Storage10. For the self-hosted stan-
dard storage we apply the AWS S3 Frankfurt standard storage
pricing model and for the self-hosted long-term storage the
AWS S3 Frankfurt IA pricing model.

C. Evaluation Data

For the evaluation, we use an access trace from the public
available dataset discussed in [18]. This dataset contains 30
days of anonymised data objects access information on cloud
storages used by > 1,000,000 users.

For our evaluation, we use the access logs of 5,021 data
objects of this trace. To include heavily used data objects, as
well as seldom used data objects, the data objects are selected
equally among all data objects of the dataset. Besides the
normal usage of the cloud storage by the user, the dataset
also includes three DDOS attacks to the storage. During those
attacks the usage of the storage increases drastically. In our
evaluation we did not include those attacks, because we only
consider the normal usage of a cloud storage at the moment.

The used dataset also includes data objects that were up-
loaded to the storage before the trace was created, but read
during this time. For those data objects we upload the data
objects at the beginning of the evaluation to make sure that
the data objects are available at the time when they are used.

As SLOs, we define that each data object has to be stored
with, at least, an availability of 99.99%, a durability of
99.9999999% and a vendor lock-in factor of 0.5.

D. Evaluation Process

During the evaluation, we iterate through the access traces
of the 5,021 selected data objects and perform the logged
operations (read, write, and delete).

All evaluations use the entire 30 days of the trace. To
evaluate the complete behavior of our optimization we set the
billing period and the BTU to one week. Further, the prototype
generates a new history time step every 30 minutes and the
optimization analyzes the last 5 history steps.

During the evaluation we also log the duration of the
optimizations and the amount of used metadata, to be able
evaluate the effort, in terms of time and memory, that our
optimization approach requires.

9https://aws.amazon.com/s3/pricing/
10https://cloud.google.com/storage/pricing
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Fig. 2. With long-term storage evaluation results.

E. Baseline

As a baseline for each scenario, the cost are calculated that
would have been charged if the data objects would have been
uploaded and accessed without our optimization. For this we
disable the optimization and define a fixed set of storages that
is then used equally by the middleware.

VI. EVALUATION SCENARIOS

A. With Long-Term Storages

Within this evaluation scenario, we evaluate how our op-
timization handles the placement of the data objects when
long-term storages are available and different erasure coding
configurations are used. This scenario includes the complete
storage set from Table II. For the optimization evaluation,
CORA is configured to perform an optimization of all not
used data objects every 8 days.

Evaluation Hypotheses: At the beginning the optimization
should select the cheapest standard storages. After each 8
days all not used data object chunks should be transferred
to long-term storages. Ideally, the data object chunks that are
transferred to long-term storages should be well placed and
stay unused for a longer time.

Baseline: As baselines, we use two fixed storage provider
subsets that include only standard storages. The first subset is:
AWS S3 US Oregon standard storage, AWS S3 EU Frankfurt
standard storage and the self-hosted standard storage. Further,
this baseline uses the erasure coding configuration (2,3). The
second subset contains the most expensive storages of our
storage set. This storage subset contains: AWS S3 Tokyo
standard storage, AWS S3 Sao Paulo standard storage and the
AWS S3 North California standard storage. This baseline uses
the erasure coding configuration (1,3).

Evaluation Execution: Figure 2 shows the results of this
evaluation. Figure 2a shows the cumulative cost that would
have been charged with and without our optimization and with
different erasure coding configurations. Figure 2b shows the
distribution of the data object chunks on the storages during
the evaluation with an active optimization and the erasure
coding configuration (2,3). For a clearer graph the storages
that are not selected by the optimization are omitted.

As can be seen, at the beginning, the cost for all approaches
increases steadily. The cost of the second baseline, i.e., the
expensive storages, increases most rapidly. The first baseline



and the runs using active optimization and an (2,3) erasure
coding configuration, respectively (3,4), are the ones with the
slowest cost increase.

This cost difference is, besides the usage of different stor-
ages, due to the different m values of the (m,n) erasure coding
configurations. By storing a data object with a (1,3) configura-
tion the data object is stored by replication of the data object
chunk, as described in Section II-B. A (2,3) configuration
stores the data in a way that two of three data object chunks
are needed to restore the data object and, thus, the data object
chunks are smaller than for a (1,3) configuration [14].

After 192 hours, the optimization of the not used data
objects took place. This optimization step transferred several
not used data object chunks to long-term storages. This can be
observed in Figure 2b, where several data object chunks are
copied from AWS S3 US Oregon standard storage, AWS S3
EU Frankfurt standard storage and the self-hosted standard
storage to AWS S3 US Oregon IA storage, AWS S3 US
Frankfurt IA storage and the self-hosted long-term storage.
Figure 2a shows that this optimization of the not used data
object chunks increases the overall cost for the executions with
active optimization. This is due to the fact that the long-term
storages charge for the whole BTU as soon as a data object
chunk is stored on it. Nevertheless, this also means that as
long as the BTU is not over, no additional storing cost for the
long-term storages are added. Due to the huge amount of data
object chunks that has to be optimized and migrated, including
the need to process customer issued read and write requests in
between, this process takes time and is done after 312 hours.

After 480 h, all additional cost due to the BTU are charged
and the storage cost of the long-term storages are added and,
thus, the graph rises faster again. However, the executions with
active optimization and the erasure coding configuration (2,3)
and (3,4) are already cheaper than the baseline.

After the BTU is over, it can be seen that all cost rises
steadily without bigger changes. Also in Figure 2b no big
changes happen. This is due to the fact that the data object
chunks, which were selected by our optimization for the long-
term storage, are well placed and are still not used.

Results: Altogether, with the help of our optimization we
were able to save 12.61% of the cost in comparison to the
first baseline and 57.59% of the cost in comparison to the
second baseline. Furthermore, we showed that the optimization
selects the data object chunk placement, especially the not or
rarely used chunks, in a well placed manner. Consequently, for
longer evaluation runs, the cost savings would be even better
in comparison to the baseline, due to the linear cost increase
after the optimization of the not used files.

B. Temporary Unavailable Storage

The aim of this scenario is to evaluate the behavior of the
optimization if a storage is temporarily not available. For this,
we do not include the long-term storages. At the beginning of
this evaluation, the storage set includes all standard storages.
After 14 days, the AWS S3 Frankfurt storage is taken from
the storage set, simulating the unavailability of it.
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Fig. 3. Storage unavailability and repair functionality.

Evaluation Hypotheses: The unavailability of the storage
should lead to the repair process that recreates the missing
data object chunks, the chunks that were stored on AWS
S3 Frankfurt, by downloading the remaining available chunks
and use them to recreate the missing ones. The optimization
should then select a new storage solution for the data object
chunks. After further 48 hours, the AWS S3 Frankfurt storage
is added to the storage set again, which simulates the situation
where the storage is available again. This should lead to a re-
optimization process with all available storages.

Baseline: As a baseline, we use the following fixed storage
subset: AWS S3 US Oregon standard storage, AWS S3 US
Frankfurt standard storage and the self-hosted standard stor-
age. The baseline uses a (1,3) erasure coding configuration.

Evaluation Execution: Figure 3 shows the results of this
evaluation. Figure 3a shows the cumulative cost of the baseline
and the evaluation with the active optimization. Figure 3b
shows the distribution of the data object chunks on the storages
during the evaluation with the active optimization.

As can be seen in Figure 3b, after 336 hours the AWS
S3 Frankfurt storage is removed from the storage set, which
leads to a loss of all data object chunks that are stored on this
storage. Furthermore, it can be observed that simultaneously
several data object chunks are stored at the self-hosted storage
and the Google Cloud storage. Those two storages were se-
lected by the optimization as a replacement of the unavailable
AWS S3 Frankfurt storage, so that the required redundancy
and availability is restored again.

After another 48 hours the AWS S3 Frankfurt storage is
available again. The first step after a storage is available again,
is to delete all data object chunks on that storage which are
now inconsistent. Following to this step the optimization starts
to use the storage again, which can be observed in Figure 3b.

In the case of the baseline, it can be seen that the cumulative
cost increases faster than for the evaluation run with active
optimization. This is due to the bigger data object chunks
of the (1,3) erasure coding configuration, which are three
identical replications of the original data object. Moreover,
due to the missing optimization which is needed by the repair
functionality, the system has only two replications left, instead
of three, after the storage is unavailable.

Results: For this evaluation scenario we were able to show
that our approach guarantees the redundancy and availability
of the data, even if a storage is temporarily unavailable.



TABLE III
AVERAGE OPTIMIZATION DURATIONS IN MILLISECONDS (STANDARD DEVIATION)

Period of time Erasure Coding configurations
(1,3) (2,3) (2,4) (3,4)

2014-01-11 - 2014-01-16 65.73 (σ = 19.85) 70.44 (σ = 21.04) 145.12 (σ = 35.00) 147.40 (σ = 35.41)
2014-01-16 - 2014-01-21 89.00 (σ = 18.05) 96.68 (σ = 20.36) 187.18 (σ = 33.49) 180.20 (σ = 28.87)
2014-01-21 - 2014-01-26 226.03 (σ = 74.23) 220.29 (σ = 67.11) 394.10 (σ = 108.53) 347.91 (σ = 107.42)
2014-01-26 - 2014-01-31 214.81 (σ = 27.03) 227.88 (σ = 29.14) 296.43 (σ = 40.93) 287.29 (σ = 40.26)
2014-01-31 - 2014-02-05 209.32 (σ = 52.69) 195.79 (σ = 44.52) 332.59 (σ = 87.71) 324.72 (σ = 64.01)
2014-02-05 - 2014-02-10 244.48 (σ = 37.03) 320.39 (σ = 57.32) 371.93 (σ = 62.35) 373.69 (σ = 51.28)
2014-02-10 - 2014-02-11 295.73 (σ = 27.44) 255.57 (σ = 22.65) 300.89 (σ = 33.31) 383.67 (σ = 36.13)

Furthermore, it can be seen that, even without the usage of
long-term storages, our approach saved 44.64% of the cost
compared to the baseline.

C. CORA Performance Assessment

In the following we analyze the performance of CORA, by
analyzing the optimization duration and amount of metadata
that is used during the evaluation.

Duration: During the execution of the first evaluation sce-
nario (see Section VI-A) we logged the duration of each
execution of the optimization. Table III shows the average
duration of the optimizations, including the standard devi-
ation, in milliseconds. As can be observed, for all erasure
coding configurations, the execution durations start with lower
durations, e.g., 65.73 ms for a (1,3) configuration, and then
increase. In the beginning the durations increase faster, but
after one week of evaluation the durations are getting constant.

This is due to the fact that the complexity of the optimiza-
tion problem depends on the amount of data object chunks
and the amount of history information. At the beginning
there are less data object chunks in the database and the
data object chunks only have a small amount of history
information. Therefore, the optimization can quickly process
the data. During the runtime, the amount of data object chunks
and the history information of them increase and, thus, the
optimization duration increases as well. However, for the
evaluation we set the billing period and the BTU to one
week. Therefore, the optimization only processes the history
information of one week and so the average duration, gets
constant after some time.

Metadata: Our optimization and the proposed middleware
produces and uses metadata, like the history information of the
data object chunks, which are stored in the database. However,
the optimization only needs the metadata of the last billing
period and BTU time for the optimization, therefore CORA
prunes the metadata. For example, for the first evaluation
scenario (see Section VI-A) the size of the metadata after
the execution with active optimization and an erasure coding
configuration of (2,3) was 53MB and after the execution with
an (3,4) configuration the size was 71MB.

VII. RELATED WORK

In recent years, the redundant storage of data in the cloud
has been a vivid field of research. Substantial efforts have been
undertaken, however, with some important limitations.

Similar to our own work, Scalia aims at minimizing the cost
for redundant data storage in the cloud [17]. To achieve this,
the system focuses on performing a runtime analysis of the
access patterns of the data objects and uses this information
to adapt data placement. For that, the system holds historical
access information, e.g., the size of a data object chunk or
input and output traffic for each data object, which are then
used in a placement algorithm. Similar to CORA, Scalia ap-
plies erasure coding. In contrast to our work, where an optimal
solution to the data placement problem is computed using
MILP, Scalia relies on a heuristic to find a cost-efficient data
placement solution. The heuristic resembles the well-known
multi-dimensional knapsack problem. In addition, Scalia does
not include long-term storage solutions and therefore does not
recognize BTUs, i.e., the minimum storage duration for cloud
storages is not regarded. Further, Scalia also does not include
the Block Rate Pricing models of some providers. Instead,
it uses a simplified pricing model. As a result, the pricing
model applied by Scalia is not completely realistic. While
Scalia applies heuristics and does not take into account the
BTU, it nevertheless comes closest to our own work.

Similar to Scalia, RACS uses erasure coding to split data
objects into several data object chunks and to store them on
several cloud providers [6]. In contrast to Scalia and CORA,
RACS does not monitor the usage of the data objects. Hence,
RACS is not able to take this information into account for
finding a cost-efficient data placement.

Another cost-efficient multi-cloud storage system is
CHARM [9]. Similar to CORA, CHARM offers the functional-
ity to find the cheapest storage solution from a set of available
cloud storage providers to offer a high availability and to avoid
vendor lock-in. However, in comparison to CORA the system
uses two separate redundancy mechanisms, replication and
erasure coding. The system uses the access history of a data
object to determine if the storage cost are lower for one of
these two mechanisms. CHARM uses a similar pricing model
as Scalia, leading to the same limitations.

MetaStorage uses full replication to store data objects on
several cloud storage providers aiming at a high data avail-
ability [19]. To distribute data objects among the available
providers, the system uses a distributed hashtable, which
makes the MetaStorage highly scalable. In contrast to our
work, MetaStorage does not include any optimization of the
placement to find the cheapest provider set. Furthermore, all
data objects are fully replicated among the different storage



providers. This redundancy mechanism raises the amount of
needed traffic and storage and therefore increases the cost.

While storage cost are regarded in further approaches [20],
[21], data transfer cost are not regarded. HAIL [22] does not
take into account any cost for storing and transferring data
objects. Beside the usage of a redundant storage functionality
in the cloud, there are also several Peer-to-Peer (P2P) systems
that are offering similar functionalities, like [23], [24]. The
usage of different redundancy mechanisms, i.e., replication and
erasure coding, were also analyzed in P2P [13], [14].

Apart from Scalia and CHARM, none of the abovemen-
tioned approaches provides a cloud-based redundant storage
system that monitors the usage of the data objects and dy-
namically optimizes the placement of the data objects in a
cost-efficient way while taking into account SLOs. To the best
of our knowledge, none of the discussed approaches includes
the usage of long-term storages to store not or rarely accessed
data objects. Therefore, state-of-the-art solutions, as discussed
above, do not recognize BTUs and BSUs. Last but not least,
none of the discussed works models the problem using MILP.

VIII. CONCLUSIONS

Using several cloud-based storage systems to store data in
a reliable, redundant and cost-efficient way seems to be an
obvious choice in order to avoid vendor lock-in. Within this
work, we formulate a data object placement model that is
able to optimize the storage of data objects on several cloud
storage providers in a cost-efficient and redundant way. The
optimization, further, ensures that predefined storage require-
ments of the customer are fulfilled at any time. Furthermore,
we presented CORA, a framework that uses MILP to solve
the optimization problem. In the end, we thoroughly evaluated
the approach with a real world access trace and compared the
results with placement solutions without an optimization but
with a fixed provider set.

In our evaluation we were able to show that our optimization
approach is able to provide a much cheaper solution, compared
to the baselines. Nevertheless, due to the high complexity of
our optimization we are planning to analyze different heuristic
approaches to solve the optimization problem. Further, we will
extend the architecture of CORA to a distributed architecture,
to be scalable in terms of throughput. Additionally, we want
to evaluate different approaches to predict the future data
object access more precisely. Besides the analysis of historic
usage information to optimize the placement (as applied in
this paper), this extension will also include approaches for the
prediction of future data access.
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