
A Service Framework for Smart Mobility Scenarios
Stefan Schulte∗, Philipp Hoenisch∗, Kristof Kipp†, Daniel Burgstahler‡, Sven Abels§, Giuseppe Liguori¶

∗Distributed Systems Group, TU Wien, Austria, {s.schulte, p.hoenisch}@infosys.tuwien.ac.at
†University of Bremen, Germany, kkipp@informatik.uni-bremen.de

‡Multimedia Communications Lab, TU Darmstadt, Germany, daniel.burgstahler@kom.tu-darmstadt.de
§Ascora GmbH, Germany, abels@ascora.de

¶SRM - Reti e Mobilita, Italy, giuseppe.liguori@srmbologna.it

Abstract—In Smart Mobility scenarios, users depend on re-
liable and timely provision with travel-related information. The
application of service-oriented concepts for bringing this informa-
tion to the end user is a promising approach. Nevertheless, there
has been surprisingly little work on service frameworks which
explicitly take into account specific demands of Smart Mobility.

Within this paper, a software framework aiming at service
consumption in Smart Mobility scenarios is presented. The
framework features specific functionalities for such scenarios,
taking into account both functional and non-functional require-
ments. This includes the means to push information from services
to the end user, data prefetching mechanisms, and support of
context-based adaptation. The applicability of the framework is
demonstrated through representative use case scenarios.

Index Terms—Smart Mobility, Service-oriented Computing,
Context-based Service Adaptation

I. INTRODUCTION

Today, a multitude of data sources and services allows
the interested user to gather mobility-related information [1].
These data sources and services range from the omnipresent
online route guidance systems and online trip planners to sen-
sors offering real-time information about the traffic situation at
a location, vehicle telematics, cooperative systems combining
information from different entities (like vehicles, infrastruc-
ture, drivers) to deliver services, or open (government) data
sources [2]. Data from such sources is potentially beneficial for
all people involved in some form in traffic and transportation,
e.g., motorcyclists, car or truck drivers, bicyclists, pedestrians,
and other road users.

Mobility information is very often consumed while the
user is en route. Usually, this is done in an ad hoc manner
on a mobile device like a smartphone [3]. Today, mobility-
related data sources and services do not necessarily aim at
interoperability and end-to-end integration [1], [4]. Even in
simple use cases such as the integration of routing information
needed by a navigation app and information from a travel
schedule (e.g., stored in a personal online calendar), users have
to cope with different Web content or apps, if not making use
of proprietary, closed solutions like Google Now. Information
the user receives from one app has to be inserted manually into
other apps instead of being automatically transferred, making
data handling unnecessarily difficult. Obviously, alone for
safety reasons, too much interaction with different apps should
be avoided, especially for vehicle drivers. Hence, end-to-end
integration of data sources and software services is necessary

to support users with a uniform, yet intuitive, interface to
access mobility-related functionalities.

The usage of service mashups and compositions, as well as
Cloud technologies to integrate data from different sources is a
promising approach. While such techniques have been applied
in many domains, e.g., manufacturing [5], [6], smart cities [7],
or smart grids [8], to the best of our knowledge, there is little
work on service frameworks for the Smart Mobility domain.
Smart Mobility describes the integration of mobility-related
data in order to provide energy-efficient, secure, individual,
and comfortable mobility solutions [9], and can be treated
standalone or as part of smart cities. Still, there are important
domain specifics, which require attention: First, road users
are especially affected by volatile network conditions, e.g.,
because a car is driving through a tunnel or crosses an
area with low network coverage [10]. The integration of
functionalities to mask insufficient connectivity is therefore
an important prerequisite in Smart Mobility. Second, mobility-
related information may change at a rapid pace, e.g., data about
free parking spaces, traffic conditions, or delays of trains,
needs to be communicated to mobile users immediately [11].

To take into account volatile network conditions, we propose
the usage of data prefetching. Data prefetching allows to
retrieve data before the data is actually required [12]. For
prompt information updates, we integrate push functionalities.
While pushing of information is very common in mobile com-
puting [13], this approach is partially contradicting the request-
response invocation pattern in Service-oriented Computing
and is therefore rarely applied in service frameworks. Both
functionalities – data prefetching and pushing of information
– depend on the user context. Therefore, it is necessary to
exploit data about the user context and integrate according
mechanisms into a service framework for Smart Mobility.

To provide these functionalities, we present the SIMPLI-
CITY Service Framework. This software framework features
different functional and non-functional service adaptation
mechanisms for Smart Mobility scenarios. To implement data
prefetching, data pushing, and helper functionalities like mon-
itoring and accounting in a transparent way, we extend a state-
of-the-art service framework by several software components.

The remainder of this paper is organized as follows: First,
we will comment on the related work in the fields of ser-
vice frameworks, Smart Mobility, and context-based service
adaptation (Section II). Afterwards, we define the design of



the envisioned software framework (Section III) and present
the framework implementation (Section IV). We assess the
usability of the proposed framework by discussing exemplary
use cases in Section V. Eventually, we identify upcoming
research topics and conclude this paper (Section VI).

II. RELATED WORK

Recently, Smart Mobility has gained a lot of attention from
both the research community and the software industry. In
short, Smart Mobility describes the usage of mobility-related
data sources in order to increase the user experience. These
mobility-related data sources are heterogeneous with regard
to content and used technologies. Smart Mobility can be seen
as an advancement of Intelligent Transportation Systems [9],
which has also evolved into a data-driven discipline [1], [14].

From the perspective of the work at hand, two particular
aspects of Smart Mobility are of importance: First, the trend
towards integrating different mobility-related data services and
related functional services and their provision to the user
on a mobile device. Examples for this are, e.g., a mobility
assistant aiming at promoting sustainable travel choices [15],
the decentralized traffic information system (TIS) D4V [3], or
the work by Gisdakis et al., who provide a privacy-preserving
TIS [16]. While these solutions share a common basic idea
with the SIMPLI-CITY Service Framework, they are not
aiming at an open ecosystem. In contrast, the SIMPLI-CITY
Service Framework is not limited to a particular use case, but
offers the functionalities to integrate arbitrary services and data
sources, and to provide the results to the end user.

Second, data integration is very often done using Internet
of Things (IoT) technologies [17]. While transportation and
logistics are named as primary application areas for IoT
technologies [18], there are still only few service frameworks
explicitly aiming at this area [19]. However, there are frame-
works for smart cities, e.g., [7], [20], [21], which partially
address the field of Smart Mobility. These frameworks provide
complimentary functionalities to the SIMPLI-CITY Service
Framework with regard to data integration and data processing.
However, the named IoT frameworks omit functionalities to
provide services to the mobile end user, since the frameworks
focus on large-scale applications, e.g., smart city management.

The mobile usage of Web services and Cloud services
has gained some momentum in recent years. One particular
research focus is on the adaptation of communication between
the Web or Cloud and a mobile device. For this, Papageorgiou
et al. propose the automated selection of the most appropriate
communication protocol in a particular context [22]. The
same authors also propose the usage of reactive caching in
order to decrease the amount of transmitted data [23]. Apart
from reactive caching mechanisms, several researchers have
worked on proactive caching, i.e., prefetching. In an early
approach, Schreiber et al. propose a piggybacking approach
for prefetching in SOAP messages [24], where prefetching is
controlled by a server-based middleware. Other prefetching
solutions apply a dual prefetching approach for Web services,
i.e., on the client and on the server/proxy side [25], [26], [27].

The SIMPLI-CITY Service Framework is able to encapsulate
such mechanisms in order to increase the Quality of Service
(QoS) or Quality of Experience (QoE) of the end user.

To the best of our knowledge, there has only been little
work on pushing technologies for information updates from
Web services. The energy efficiency of pushing and polling of
data has been investigated by Burgstahler et al. [28], [29]. A
comparison of popular push services is presented in [30].

While the aforementioned research has focused on single
functionalities to improve the usage of Web and Cloud services
on mobile devices, there has also been some work on service
frameworks supporting mobile service consumption. An ac-
cording extension to the OSGi framework called MA-OSGi
has been proposed by Lee et al. [31]. The main motivation for
MA-OSGi is the need to invoke services remotely, which is a
prerequisite to use OSGi-based services on a mobile device.
MA-OSGi provides four major features, aiming at (i) energy
efficiency of service consumption, (ii) the definition of mobile
itineraries, (iii) service matchmaking to take into account
context changes, and (iv) asynchronous communication for
reliable communication. While MA-OSGi requires explicitly
defined itineraries, the SIMPLI-CITY Service Framework
takes into account implicit and context information to adapt
to the user’s needs. Despite the fact that MA-OSGi is not
explicitly aiming at mobility scenarios, this research comes
closest to our own work. Interestingly, MA-OSGi and our own
work largely complement each other, i.e., a future integration
of the different functionalities is reasonable.

In many cases, mobility demands depend on the views and
options of a single person. Therefore, as a third major area
of related work for the SIMPLI-CITY Service Framework,
context-based service adaptation needs to be discussed. Most
adaptation and personalization approaches for services focus
on the user’s location. The possible applications range from
data tailoring [32] to the offloading of computational tasks
[33]. We refer for an in-depth discussion on context-based
adaptation for mobility scenarios to [34]; a broader overview
can be found in [35], [36]. However, it should be noted that the
current state-of-the-art in the field of context-based adaptation
for Smart Mobility focuses on single applications and use
cases, while we aim at providing an extensible framework
which supports arbitrary adaptation and personalization mech-
anisms.

To sum up the discussion of the related work, there are
a number of single functionalities related to the SIMPLI-
CITY Service Framework, but none of them provides a holistic
service framework.

III. DESIGN OVERVIEW

In the following subsections, we discuss the basic design
considerations to implement the three main functionalities
mentioned above, i.e., context-based service adaptation in
general, pushing of information, and data prefetching. Details
about their integration into the SIMPLI-CITY Service Frame-
work and implementation details are provided in Section IV.



SIMPLI-CITY Data 
and Service Cloud

SIMPLI-CITY Service Framework

Monitoring

Backend
ServiceBackend

ServiceBackend
ServiceBackend

Service

SLA
Manager

R

Context-based Service 
Personalization

Proxy
Service

Proxy 
Service

Proxy
Service

R

REST Proxy

R

Fig. 1: Scenario Overview

As it can be seen in Figure 1, the SIMPLI-CITY Service
Framework aims at exploiting mobility-related online data
sources like sensors, cooperative systems, telematics, or open
data repositories. Concrete example data sources as depicted
in Figure 1 might be (but are not limited to) live traffic in-
formation including traffic accidents, data from infrastructure
sensors, personal calendar data, map and route data, weather
information, and many more. In addition, vehicle data could
also be exploited. Data sources may be directly or indirectly
accessed via value-adding services, but in any case, through
the SIMPLI-CITY Service Framework.

In Smart Mobility scenarios, services and data sources are
often consumed on mobile devices like smartphones. The
tremendous success of mobile apps has shown that end users
are willing to either pay for software functionalities or accept
advertisements, which is also an important revenue stream for
app developers. Naturally, the commercial exploitation of data
sources and Web services is of interest to data and service
providers alike. Hence, a Smart Mobility service framework
needs to be able to support monitoring of service invocations
for accounting purposes. This allows different pricing models
like pay-per-use or flatrates and reduces the overhead for
software developers. Service invocations need to be monitored
with regard to the success of the actual invocation as well
as QoS properties in order to make sure that predefined
Service Level Agreements (SLAs) between service consumer
and service provider are respected.

Since the focus in Smart Mobility scenarios is on mobile
consumption of online (Web) services, there is a clear dis-
tinction between the server-side and the client-side: While
the server-side provides more heavyweight functionalities, the
client-side is by design a lightweight thin client. This means
that large computational efforts, the actual business logic, etc.
are done on the server-side, while the client-side provides the
frontend to these functionalities. Integration of non-local data
sources is also done on the server-side. However, it should be
noted that the integration of sensor data from the client device
(e.g., GPS data on a smartphone) could be done on both the
server-side and the client-side.

With the Google-lead Open Automotive Alliance1 or Apple
CarPlay2, direct interaction with apps via a car’s dashboard
unit is very likely to enter the mass market in the near future.
Hence, the smartphone may act as an intermediary between
the car and the Internet, or the car may directly communicate
with the Internet. As depicted in Figure 1, the SIMPLI-CITY
Service Framework can deliver its functionalities independent
from the technical nature of the client device, i.e., it does
not matter if the client device is a smartphone or an in-
vehicle (entertainment) system. In general, the user requires
a stable and reliable Internet connection, which may not
always be available. In order to mitigate this risk, prefetching
mechanisms are integated into the SIMPLI-CITY Service
Framework, as discussed in Section III-B.

Last but not least, Smart Mobility scenarios naturally de-
pend on the remote invocation of services. While this ap-
pears to be a frequently requested functionality in service
frameworks, it should be noted that standard framework spec-
ifications like the OSGi framework indeed do not support
remote service invocation if the client is not an OSGi container
itself. This means that without according extensions, a mobile
client cannot directly access services hosted by a OSGi-
based service framework. To enable remote invocation of
services, a service framework for Smart Mobility scenarios
needs to be extended by a proxy component which acts as
a gateway for remote service invocations. As positive side
effect, a proxy is able to provide additional functionalities,
e.g., for retrieving information about the client like the location
(see below), network conditions, etc. Also, the monitoring of
service invocations as mentioned above can be achieved via
proxy functionalities.

Summarized, the basic design considerations of the
SIMPLI-CITY Service Framework are as follows:

• The SIMPLI-CITY Service Framework allows the ex-
ploitation of arbitrary data sources.

• While the framework may also be accessed from station-
ary computers, user interaction is primarily done remotely

1http://www.openautoalliance.net/
2http://www.apple.com/ios/carplay/



via mobile clients.
• Hence, the server-side (i.e., the framework itself) deliv-

ers the main functionalities, while the client-side is a
lightweight thin client.

• Monitoring and accounting functionalities are integrated
in order to allow different business models for service
and data providers.

After the basic design considerations of the SIMPLI-CITY
Service Framework have been defined, we are now able to
discuss the three major functionalities which are necessary
to provide mobile users with on-time, personalized data in a
Smart Mobility scenario, i.e., context-based service adaptation,
data prefetching, and pushing of information to the client.

A. Context-based Service Adaptation

In Smart Mobility scenarios, context-based service adapta-
tion and personalization can be done with different goals in
mind: Obviously, if the user is mobile, especially the current
and future location of the user is of primary importance. The
location can be used for context-based adaptations both with
regard to non-functional aspects (e.g., adapting the communi-
cation between a service framework and a client device [22]),
and functional aspects (e.g., to provide the user with location-
aware information updates [37]).

According to Baldauf et al. [38], the detection of context
changes and the actual usage of this information should be
separated in order to allow extensibility of a system. Following
a service-based data integration approach, the SIMPLI-CITY
Service Framework supports this feature. Also, distributed
context-based systems should provide a middleware and ex-
tend it by a context server, which allows concurrent data
access by different parties. In a multi-user Smart Mobility
scenario, this can be done, e.g., by providing publish-subscribe
functionalities, which decouple sender and receiver. Also, a
publish-subscribe middleware can be used to detect context
changes, while the information is used on a mobile device.

To recognize context data changes as well as the unavail-
ability of external data sources, a context-based system needs
to be able to monitor arbitrary context data sources. This
is usually achieved by using logical sensors [38]. Logical
sensors combine information from physical sensors with busi-
ness logic, e.g., to prefilter data. This is helpful in order to
decrease the amount of data which needs to be handled by the
context middleware and therefore increases the scalability of
the overall system. Also, one logical sensor may encapsulate
a multitude of physical sensors which are placed in different
locations. Thus, location-aware sensor selection is enabled – a
client interacts with a service wrapping the logical sensor in-
stead of directly interacting with various physical sensors. By
supporting late binding and loose coupling, different physical
sensors may be used within the same software context, e.g., in
the same app. Finally, logical sensors are not limited to solely
encapsulate physical sensors. In fact, any context data source,
e.g., open (government) mobility data, could be provided via
a logical sensor.

B. Data Prefetching

Data prefetching allows to retrieve data from online sources
before it is actually needed on a client device. This is
especially important in Smart Mobility scenarios, where the
user usually gets information updates on her mobile device.
Prefetching could be done for short-term scenarios, i.e., if
prefetching needs to be done for a short time period, or for
long-term scenarios, i.e., if prefetching needs to be done for
a longer amount of time. Scenarios for short-term prefetching
include driving through a tunnel or another clearly identifiable
area with limited network coverage, while long-term prefetch-
ing could be done, e.g., if the user needs to save data volume
and therefore prefers to use WiFi instead of mobile networks,
lingers in a large area with limited connectivity, or is abroad
and wants to avoid roaming fees.

Especially in long-term prefetching, it is not really helpful
to prefetch volatile data, since there is a high chance that this
data is invalid once it is actually needed [39]. For instance,
the prefetching of traffic data, which is constantly changing,
is only of limited value. However, there is more stable data,
e.g., map data, media data, or historical traffic data [40], where
prefetching is helpful.

It should be noted that the success of data prefetching
significantly depends on the effectiveness of the prefetching
decision algorithm, i.e., an algorithm to decide which data
items should (not) be prefetched at a particular point of time
[12]. On the one hand, if data items eligible for prefetching
are prefetched too early, the data will not be fresh any longer,
i.e., the user will receive expired data. If data is not prefetched
at all, there will be information gaps. On the other hand,
prefetching of unsuitable data items leads to unnecessary
energy and storage consumption at the client-side. Hence,
optimization of data prefetching is important in order to
avoid negative side-effects. For particular algorithms for data
prefetching in mobility scenarios, which are able to take into
account the current and future locations of the user, we refer
to our former work [39], [41].

C. Pushing

Context-enabled pushing of information allows proactive
user notifications, i.e., to recognize in which situations a
user may be provided with a certain piece of information. In
Service-oriented Computing, services usually follow a pull-
based request-response invocation, while push-based informa-
tion updates are common in mobile computing, e.g., as imple-
mented for the Android platform in Google Cloud Messaging3.

Instead of regularly pulling data from a service, which may
not lead to any information gain, information should only
be pushed to the client if it provides a significant update.
The significance can be determined manually or automatically,
based again on the user context. For instance, the user’s
network conditions could define if information updates should
be pushed in any case or only when connectivity is above a
predefined level. Another benefit of push-based notifications

3https://developers.google.com/cloud-messaging/



SIMPLI-CITY Service Framework

Apache Karaf/Felix

Monitoring

& Accounting

Service

Registry

Service
Service

Service
Service

SLA

Manager
R

Context Server

Data

Service

External

Service

Proxy

Service

Proxy 

Service

Logical

Sensor

R

Service 

Marketplace

Application Runtime

Environment

R

REST 

Facade
R

Push Service / 

Google Cloud 

Messaging

R

R

R

R

Fig. 2: SIMPLI-CITY Service Framework – Architecture

is the fast availability of information updates. While this
could also be achieved via frequent pulling, this is potentially
battery-draining on mobile devices. However, it needs to be
noted that pushing does not always lead to better energy effi-
ciency than pulling [28]. Therefore, pushing should primarily
be done in scenarios where latency is of importance [42].

To push data to a client, at least two software components
are needed: First, a management service that permits clients
(here: the mobile device of a user) to register for or unregister
from push notifications, possibly specifying the information
which is of interest. This service can follow a traditional
request-response approach, i.e., it is only executed when
requested. Second, an actual notification service establishes
the link between an arbitrary data source (e.g., a traffic
information-providing logical sensor) and pushes relevant no-
tifications to the registered clients. The latter service has to be
a continuous background service of the SIMPLI-CITY Service
Framework, thus minimizing latency between data updates and
push notifications.

IV. IMPLEMENTATION

In order to realize the functionalities discussed in Sec-
tion III, the SIMPLI-CITY Service Framework has been
implemented as an extension to the OSGi framework (R4)4.
In general, the OSGi specification is not tailored towards a
specific application area, but allows the bundling of arbitrary
software functionalities as separate modules. While this makes
OSGi-based frameworks very flexible, it also implies that
there are no specific functionalities aiming at mobile service
consumption or mobility scenarios. Therefore, it was necessary
to implement the functionalities discussed in Section III as
extensions, i.e., support of pushing, prefetching, context-based
service adaptation, the integration of remote service access,
and monitoring and accounting capabilities.

It should be noted that we have implemented prototyp-
ical apps, which interact with the SIMPLI-CITY Service
Framework, for mobile devices running the Android operating

4https://www.osgi.org/release-4-version-4-3/

system. However, as discussed in Section III, arbitrary client
devices could interact with the SIMPLI-CITY Service Frame-
work, as long as the clients are able to invoke the RESTful
services hosted by the framework.

Figure 2 shows an overview of the main components of
the SIMPLI-CITY Service Framework (in FMC Notation5),
which will be discussed in more detail in the following
paragraphs. Apache Felix6 is used as the core OSGi framework
implementation, while Apache Karaf7 is used as the runtime
container, providing higher level features specifically designed
for creating OSGi-based servers.

The most important extension provided by the SIMPLI-
CITY Service Framework is the REST Facade. This com-
ponent provides external users with a single point of entry
for invoking services hosted in the SIMPLI-CITY Service
Framework, and therefore allows the necessary remote service
invocations for mobile clients. The REST Facade provides
a RESTful interface, and enables proxy functionalities. The
REST Facade invokes the SLA Manager upon every service
invocation. After completion of a service invocation, whether
successful or not, the REST Facade will call the SLA Manager
again to let it know the invocation has been finished. The SLA
Manager in turn calls the Monitoring & Accounting subcompo-
nent, which controls that the Service Level Objectives (SLOs)
defined for a particular service are met. If there is a SLA
violation or the service is not responsive, the SLA Manager
can start according countermeasures, e.g., restart a service
instance. As another important functionality, the Monitoring
& Accounting subcomponent provides billing information to
the Service Marketplace (see below), if a pay-per-use pricing
model has been defined for a particular service. In any case,
the REST Facade checks if there is a valid license for a service
invocation, before the service is actually invoked.

Three different types of software services run within the
SIMPLI-CITY Service Framework: (Internal) Services, Proxy
Services, and Logical Sensors. (Internal) Services are simply

5http://www.fmc-modeling.org/
6http://felix.apache.org/
7http://karaf.apache.org



software services running within the OSGi container, which
do provide a specific business logic. Proxy Services are also
running within the OSGi container, but delegate their function-
ality to External Services. Proxy Services can aggregate data
from several Internal and External Services, relay service calls
to External Services, translate input from a mobile client to
the format an External Service requests (and vice versa), and
interact with the Context Server (see below) in order to en-
able different context-based service adaptations, including late
binding of Data Services. Logical Sensors are a specific kind
of Proxy Services, which provide functionalities to prefilter
and fuse data. Also, sensor abstraction and interoperability
mechanisms are provided by Logical Sensors in order to wrap
different sensor technologies and data formats. In contrast
to the three service types running within the SIMPLI-CITY
Service Framework, Data Services and External Services are
not hosted by the framework, but might nevertheless be in-
voked via the SIMPLI-CITY Service Framework, using proxy
functionalities. External Services are equivalent to Internal
Services, but hosted externally. Data Services are a specific
subtype of External Services, and encapsulate a particular,
arbitrary data source, e.g., a specific sensor.

The Context Server allows concurrent access to different
data sources wrapped by Logical Sensors and acts as the basic
management service needed for the pushing of information
(see Section III-C). To provide only significant information
updates to interested users, the core of this component is an
Apache Camel-based publish-subscribe middleware8. Impor-
tantly, Camel allows the definition of rules for subscriptions to
particular Logical Sensors, e.g., “all data from Logical Sensor
X with a value lower than Y”. This is actually the basic
functionality for pushing data to a client device. For this,
the user (respectively the app running on her device) signs
up for particular data updates at the Context Server. Apart
from enabling pushing of information to the user, the Context
Server also facilitates further context-based service adaptation
functionalities, namely location-based data service selection,
which allows the adaptation of a service’s output based on the
location of a user by late binding to the correct data source or
service. Also, data prefetching functionalities may be invoked
through the Context Server.

The Application Runtime Environment (ARE) provides the
notification service needed for pushing of information (see
Section III-C). The notification service is encapsulated in
the Push Service subcomponent. Notably, the ARE is not
an integral part of the SIMPLI-CITY Service Framework.
Instead, it is hosted on a different Cloud server. This has been
done in order to provide scalability for the ARE. The Push
Service allows services running in the SIMPLI-CITY Service
Framework to notify mobile apps in case of significant events,
as determined when a client (respectively an app running on
a client device) has signed up for receiving push messages.
The server-based Push Service has been implemented using
Google Cloud Messaging for the delivery and distribution of

8http://camel.apache.org/

messages to the different client devices. Google Cloud Mes-
saging has been chosen since it allows an in-depth integration
with the mobile operating system, i.e., Android. Furthermore,
it provides a messaging infrastructure for the queuing of
messages. Thus the integration of push messages into the
aforementioned prototypical Android-based client apps can be
achieved straightforward.

Last but not least, the Service Registry and Service Mar-
ketplace offer helper functionalities to establish a business
environment for Smart Mobility services. The Service Registry
allows to store software service artifacts along with their
description in order to be accessible by services or apps. It
provides Java and RESTful interfaces to create, update or
delete services including their descriptions. Thus, software
developers can deploy their services in the SIMPLI-CITY
Service Framework, update the service description of the
whole service, or delete everything. The Service Registry
is based on the registry which is already part of the OSGi
framework, but extends the standard implementation by means
for service management and extended service descriptions.
These descriptions provide the basic information for advertis-
ing services on the Service Marketplace, i.e., the descriptions
primarily include advertisement-related information including
figures, videos, and payment models.

V. USE CASES

As proof-of-concept, different use case services and mo-
bile apps have been implemented during the course of the
implementation of the SIMPLI-CITY Service Framework. In
the following paragraphs, two exemplary functionalities are
briefly discussed. These have been chosen in order to illus-
trate the major functionalities of the SIMPLI-CITY Service
Framework as discussed in Sections III and IV. In general,
arbitrary services can be implemented and hosted within the
SIMPLI-CITY Service Framework. For example, apart from
the services described below, further use case services covering
environmental awareness rising, information pushing about
nearby points of interests, cognitive driving, and routing [40]
have been implemented. All these use cases take into account
the user context and/or user preferences.

a) Use Case I: Location-based Service Personalization:
In many Smart Mobility scenarios, the user wants to be
provided with data that is related to her (current) location.
For example, if a user is looking for a parking space or
bike sharing facilities in Barcelona, data sources providing
information about parking or bike sharing in Amsterdam will
not help. There are two ways to achieve that the user is
provided with the right data depending on her current location:
Either, there could be a separate software service and end user
app for each city, which are tightly coupled to each other and
the local data sources. However, this means that the user needs
to download and install a new app for each city. The second
solution is to provide one general end user app, which invokes
Data Services depending on the location of the user. Within
the SIMPLI-CITY Service Framework, the second option is
directly facilitated: The Context Manager supports the end user



(a) With Permission (b) Without Permission

Fig. 3: Use Case II End User App – Example Screenshots

app by looking up the right External (Data) Service based on
the user’s location. For this, a Proxy Service or Logical Sensor
(as discussed in Section IV) is generated, which reroutes user
requests accordingly to the correct Data Service, and maps the
input and output data based on the requirements of the Data
Service.

Another example for location-based service personalization
is data prefetching, since the actual decision when prefetching
is meaningful is also based on the user’s current and future
location. For use cases on data prefetching, refer to [39], [41].

b) Use Case II: Personalized Traffic Restrictions: The
second use case deals with personalized traffic restrictions.
Such restrictions apply in many European cities. Permissions
to enter a particular area may change on a daily basis or
several times during the day, or be adapted in real-time
based on the amount of traffic in a certain area. Different
traffic restrictions may apply to different groups of people,
e.g., residents, commuters, tourists, and deliverymen all have
different permissions. Also, the type of vehicle may be taken
into account, e.g., the emission level or the power source
(gasoline, electric vehicle, etc.) of a particular car.

Hence, even residents may not be aware if they are allowed
to enter a certain area at a certain point of time. In order
to overcome this issue, according use case services and an
end user app have been implemented for the SIMPLI-CITY
Service Framework, using data sources from the Municipality
of Bologna, Italy.

From a technical point of view, different functionalities of
the SIMPLI-CITY Service Framework are used in this sce-
nario. First, an Internal Service running in an OSGi container
provides the business logic identifying if an individual user is
allowed to enter a certain area. The Internal Service makes use

of the Context Server in order to gather the necessary user-
related information to make this decision, i.e., context data
about the user and her car. This includes information if the user
owns a permit to enter the area at a certain point of time. The
user interacts with the Internal Service via an end user app (see
Figure 3). In order to get real-time updates from the Internal
Service, the end user app subscribes to information updates
via the Push Service and Context Server (see Section IV).

As a proof-of-concept implementation, the Internal Service
is used within a routing algorithm. As it can be seen in
Figure 3, different users get different routing instructions in
the end user app. Figure 3a shows the route for a user who
is allowed to cross the city center of Bologna (and especially
Via Irnerio), while Figure 3b shows a route for a user who is
not allowed to do so. The screenshots have been taken from
the end user app mentioned above.

VI. CONCLUSION

Within this paper, we have discussed the specific needs of
service frameworks in Smart Mobility scenarios. A special fo-
cus has been on the invocation of mobility services via mobile
devices like smartphones. We have presented the SIMPLI-
CITY Service Framework, which implements functionalities
addressing the needs of Smart Mobility scenarios, namely
remote mobile access of services, monitoring and accounting
functionalities, context-based service adaptation, pushing of
information, and data prefetching.

The SIMPLI-CITY Service Framework has been imple-
mented as an extensible software system with open interfaces.
Therefore, the integration of further functionalities, e.g., like
the ones offered by MA-OSGi (as discussed in Section II), is
a promising starting point for our future work. We are also
looking for ways to extend the framework’s basic toolset: At
the moment, the SIMPLI-CITY Service Framework provides
a centralized architecture, i.e., all service requests are routed
through the framework. However, if the mobile client directly
needs to interact with the environment in order to exploit
infrastructure data sources, it might be sensible to deliver some
services in a decentralized manner. To substantially reduce
latency between data sources and the client’s device, it is
necessary to distribute heavyweight computing tasks between
local devices, e.g., a smartphone, the in-vehicle entertainment
system of a car, or sensor motes, instead of invoking services
hosted in the Cloud. With the advent of Fog Computing, i.e.,
the possibility to bring virtualization and resource sharing to
the edge of the network, this might be feasible. Hence, we want
to investigate the usage of Fog Computing for distributed data
integration in Smart Mobility scenarios.

ACKNOWLEDGMENT

This work is partially supported by the Commission of the
European Union within the SIMPLI-CITY FP7-ICT project
(Grant agreement no. 318201).

The SIMPLI-CITY Service Framework and extensive doc-
umentation can be downloaded from http://simpli-city.eu/
deliverables.html.



REFERENCES

[1] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
Driven Intelligent Transportation Systems: A Survey,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–
1639, 2011.

[2] N. Shadbolt, K. O’Hara, T. Berners-Lee, N. Gibbins, H. Glaser, W. Hall,
and M. Schraefel, “Linked Open Government Data: Lessons from
Data.gov.uk,” IEEE Intelligent Systems, vol. 27, no. 3, pp. 16–24, 2012.

[3] M. Picone, M. Amoretti, and F. Zanichelli, “A Decentralized Smart-
phone Based Traffic Information System,” in 2012 Intelligent Vehicles
Symposium, 2012, pp. 523–528.

[4] F. Lécué, R. Tucker, V. Bicer, P. Tommasi, S. Tallevi-Diotallevi, and
M. Sbodio, “Predicting Severity of Road Traffic Congestions Using Se-
mantic Web Technologies,” in 11th Extended Semantic Web Conference
(ESWC), 2014, pp. 611–627.

[5] F. Jammes and H. Smit, “Service-Oriented Paradigms in Industrial
Automation,” IEEE Transactions on Industrial Informatics, vol. 1, no. 1,
pp. 62–70, 2005.

[6] S. Schulte, P. Hoenisch, C. Hochreiner, S. Dustdar, M. Klusch, and
D. Schuller, “Towards Process Support for Cloud Manufacturing,”
in 18th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2014), 2014, pp. 142–149.

[7] F. Li, M. Vögler, S. Sehic, S. Qanbari, S. Nastic, H. L. Truong,
and S. Dustdar, “Web-Scale Service Delivery for Smart Cities,” IEEE
Internet Computing, vol. 17, no. 4, pp. 78–83, 2013.

[8] M. Postina, S. Rohjans, U. Steffens, and M. Uslar, “Views on Service
Oriented Architectures in the Context of Smart Grids,” in First IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm 2010), 2010, pp. 25–30.

[9] A. Sassi and F. Zambonelli, “Coordination Infrastructures for Future
Smart Social Mobiliy Services,” IEEE Intelligent Systems, vol. 29, no. 5,
pp. 78–82, 2014.

[10] W. L. Tan, F. Lam, and W. C. Lau, “An Empirical Study on 3G Network
Capacity and Performance,” in 26th IEEE International Conference on
Computer Communications (INFOCOM 2007), 2007, pp. 1514–1522.

[11] I. Leontiadis and C. Mascolo, “Opportunistic Spatio-Temporal Dissem-
ination System for Vehicular Networks,” in 1st International MobiSys
Workshop on Mobile Opportunistic Networking, 2007, pp. 39–46.

[12] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed Mobile Prefetching,” in 10th International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2012, pp. 155–
168.

[13] I. Podnar, M. Hauswirth, and M. Jazayeri, “Mobile Push: Delivering
Content to Mobile Users,” in 22nd International Conference on Dis-
tributed Computing Systems (ICDCSW ’02) – Workshops, 2002, pp.
563–570.

[14] N.-E. El Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent
transportation systems: Progress and challenges – A survey,” Information
Fusion, vol. 12, pp. 4–10, 2011.

[15] D. Magliocchetti, M. Gielow, F. D. Vigili, G. Conti, and R. D. Amicis,
“A Personal Mobility Assistant based on Ambient Intelligence to Pro-
mote Sustainable Travel Choices,” Procedia Computer Science, vol. 5,
pp. 892–899, 2011.

[16] S. Gisdakis, V. Manolopoulos, S. Tao, A. Rusu, and P. Papadimitratos,
“Secure and Privacy-Preserving Smartphone-Based Traffic Information
Systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 3, pp. 1428–1438, 2015.

[17] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[18] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, pp. 2787–2805, 2010.

[19] J. A. G. Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Integration Chal-
lenges of Intelligent Transportation Systems with Connected Vehicle,
Cloud Computing, and Internet of Things Technologies,” IEEE Wireless
Communications, vol. 22, no. 6, pp. 122–128, 2015.

[20] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City Internet of
Things Platform with Microservice Architecture,” in 3rd International
Conference on Future Internet of Things and Cloud, (FiCloud 2015),
2015, pp. 25–30.

[21] M. Vögler, J. M. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and
S. Dustdar, “LEONORE – Large-Scale Provisioning of Resource-

Constrained IoT Deployments,” in 2015 IEEE Symposium on Service-
Oriented System Engineering (SOSE 2015), 2015, pp. 78–87.

[22] A. Papageorgiou, A. Miede, S. Schulte, D. Schuller, and R. Steinmetz,
“Decision Support for Web Service Adaptation,” Pervasive and Mobile
Computing, vol. 12, pp. 197–213, June 2014.

[23] A. Papageorgiou, M. Schatke, S. Schulte, and R. Steinmetz,
“Lightweight Wireless Web Service Communication Through Enhanced
Caching Mechanisms,” International Journal of Web Services Research,
vol. 9, no. 2, pp. 42–68, 2012.

[24] D. Schreiber, A. Göb, E. Aitenbichler, and M. Mühlhäuser, “Reducing
User Perceived Latency with a Proactive Prefetching Middleware for
Mobile SOA Access,” International Journal of Web Services Research,
vol. 8, no. 1, pp. 68–85, 2011.

[25] X. Liu and R. Deters, “An Efficient Dual Caching Strategy for Web
Service-Enabled PDAs,” in 2007 ACM Symposium on Applied Comput-
ing (SAC), 2007.

[26] M. S. Qaiser, P. Bodorik, and D. N. Jutla, “Differential Caches for
Web Services in Mobile Environments.” in 9th IEEE International
Conference on Web Services (ICWS 2011), 2011, pp. 644–651.

[27] N. D. R. Armstrong and P. A. S. Ward, “Just-In-Time Push Prefetching:
Accelerating the Mobile Web,” in 27th IEEE International Conference
on Advanced Information Networking and Applications (AINA 2013),
2013, pp. 1064–1071.

[28] D. Burgstahler, U. Lampe, N. Richerzhagen, and R. Steinmetz, “Push
vs. Pull: An Energy Perspective,” in 6th IEEE International Conference
on Service-Oriented Computing and Applications (SOCA 2013), 2013,
pp. 190–193.

[29] D. Burgstahler, N. Richerzhagen, F. Englert, R. Hans, and R. Steinmetz,
“Switching Push and Pull: An Energy Efficient Notification Approach,”
in IEEE Third International Conference on Mobile Services (MS 2014),
2014, pp. 68–75.

[30] W. Chen, S. Zhou, Y. Tang, and L. Yu, “On Measuring Cloud-based
Push Services,” International Journal of Web Services Research, vol. 13,
no. 1, pp. 53–68, 2016.

[31] J. Lee, S.-J. Lee, H.-M. Chen, and K.-H. Hsu, “Itinerary-Based Mobile
Agent as a Basis for Distributed OSGi Services,” IEEE Transactions on
Computers, vol. 62, no. 10, pp. 1988–2000, 2013.

[32] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca,
“A Data-oriented Survey of Context Models,” ACM SIGMOD Record,
vol. 36, no. 4, pp. 19–26, 2007.

[33] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC:
Mobility-Aware Optimal Service Allocation in Mobile Cloud Com-
puting,” in IEEE Sixth International Conference on Cloud Computing
(CLOUD 2013), 2013, pp. 75–82.

[34] W. Hummer and S. Schulte, “Context-Aware Personalization for Smart
Mobile Cloud Services,” in 2nd Workshop on Intelligent Service Clouds
(ISC) at the 13th International Conference on Service Oriented Com-
puting (ICSOC), 2015, pp. 171–183.

[35] H.-L. Truong and S. Dustdar, “A Survey on Context-aware Web Service
Systems,” International Journal of Web Information Systems, vol. 5,
no. 1, pp. 5–31, 2009.

[36] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey
of Context Data Distribution for Mobile Ubiquitous Systems,” ACM
Computing Surveys, vol. 44, no. 4, 2012.

[37] M. Kenteris, D. Gavalas, and D. Economou, “An innovative mobile elec-
tronic tourist guide application,” Personal and Ubiquitous Computing,
vol. 13, pp. 103–118, 2009.

[38] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, pp. 263–277, 2007.

[39] W. Hummer, S. Schulte, P. Hoenisch, and S. Dustdar, “Context-Aware
Data Prefetching in Mobile Service Environments,” in The 4th IEEE
International Conference on Big Data and Cloud Computing (BDCloud
2014), 2014, pp. 214–221.

[40] F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L.
Sbodio, and P. Tommasi, “Smart Traffic Analytics in the Semantic Web
with STAR-CITY: Scenarios, System and Lessons Learned in Dublin
City,” Journal of Web Semantics, vol. 27–28, pp. 26–33, 2014.

[41] M. Borkowski, O. Skarlat, S. Schulte, and S. Dustdar, “Prediction-Based
Prefetch Scheduling in Mobile Service Applications (forthcoming),” in
IEEE 5th International Conference on Mobile Services (MS 2016), 2016.

[42] D. Hasenfratz, A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele,
“If You Have Time, Save Energy with Pull,” in 8th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’10), 2010, pp. 423–424.


