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Abstract—Emerging trends like Big Data and the Internet of
Things pose new challenges to established data stream processing
engines. Especially, with the advent of the Internet of Things,
the data that has to be processed can become very large.
Since companies usually aim for cost efficiency, engines need
to support resource elasticity to minimize the operational cost
while maintaining real-time processing capabilities.

In the work at hand, we propose and realize the distributed
Platform for Elastic Stream Processing (PESP). An extensive
evaluation demonstrates the practical feasibility and efficiency
of the system design. The evaluation shows that PESP is able to
reduce cost by 20% with minimal effects on the Quality of Service
in comparison to an over-provisioning baseline. Compared to an
under-provisioning baseline, PESP allows a Quality of Service
improvement of 72%.

Index Terms—Stream processing, Distributed data processing,
Hybrid clouds

I. INTRODUCTION

Although data stream processing is an established research
area, it gained additional momentum in recent years. The
emerging Big Data trend, along with the advent of the Internet
of Things (IoT), poses new challenges to traditional stream
processing engines (SPEs) like System S [1], Borealis [2] or
STREAM [3]. These challenges arise from the large amounts
of data, which can be found in social networks [4], as well as
in IoT-based scenarios that exhibit a distributed deployment
of data sources [5], e.g., in a Smart City scenario. The huge
amount of data requires massive parallel stream processing
capabilities, which have been tackled by several SPEs, like
MillWheel [6], Apache Storm1 or Apache Spark2. These SPEs
are designed to process large amounts of data within fixed
processing topologies, i.e., a choreography of different data
sources as well as stream processing operators like filters,
transformations or even complex business logic [7], [8]. How-
ever, traditional topologies are provided initially with fixed
computational resources and are not able to adapt at runtime.

These fixed resources are likely to render over-provisioning
or under-provisioning scenarios for changing streaming data
rates [9]. In an over-provisioning scenario, the SPE has more
resources at its disposal than it needs to process the average
streaming data rate, which renders unnecessary high cost
during non-peak times. In an under-provisioning scenario,
there are not enough computational resources, which results in
delays, i.e., affects the real-time processing capabilities [10].

Even though modern SPEs already resolve several chal-
lenges for Big Data scenarios [4], there are still open chal-

1https://storm.apache.org
2http://spark.apache.org

lenges for SPEs in the context of IoT [9]: In contrast to other
stream processing scenarios, e.g., for social networks [4], IoT-
based topologies are often deployed across several geograph-
ical locations, since the data sources are only available where
the observed activities take place.

First, this requires SPEs to support distributed deployment,
e.g., across a hybrid cloud, to reduce the data transfer distance
between data sources and the stream processing operators [11].

Second, IoT landscapes often evolve over time [9]. These
evolutionary changes are triggered by failures, e.g., commu-
nication outtakes, or emerging data sources and processing
operators. This requires SPEs to support self-configuration and
integration of operators at runtime, since it is often not feasible
to maintain a centralized configuration node [5].

Third, the IoT implies changing data rates, e.g., an induction
loop-based sensor detecting cars driving past provides fewer
data in the middle of the night than in the rush hour [12]. If
an SPE is not able to adapt to changing data rates, a consistent
level of Quality of Service (QoS), e.g., maximum processing
time, is not achievable. This requires SPEs to be elastic in
terms of processing capabilities.

Fourth, since companies usually aim for cost efficiency, the
amount of computational resources that are used for processing
streaming data needs to be minimized. This aspect is not only
required to minimize the total cost, but also to reduce the
ecological footprint of an SPE.

These four major challenges for IoT infrastructures pose
new requirements towards SPEs. Up to now, to the best of our
knowledge, these challenges were only tackled to some extent.
Especially, there is no SPE tackling all of these challenges in
a holistic approach (see Section III). In this work, we present
the Platform for Elastic Stream Processing (PESP) which is
suited to realize data stream processing solutions for the IoT.
We implement PESP, evaluate it extensively, and demonstrate
its capabilities as well as cost efficiency.

The remainder of this paper is structured as follows: First,
we will provide a Motivational Scenario in Section II. Then
we discuss the Related Work in Section III and present the
System Design of PESP in Section IV. Section V presents the
testbed-driven Evaluation and Section VI concludes the paper,
and provides an outlook on our future work.

II. MOTIVATIONAL SCENARIO

In the following, we provide a representative scenario to
illustrate and motivate our work. For this, we consider a
scenario from the transportation domain. In this scenario, the
provider of a worldwide operating taxi fleet wants to analyze
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Fig. 1. Motivational Scenario

the rides of its taxis in order to optimize the operational
planning in real-time. The taxi provider maintains several fleets
in different cities across the world, whereas the operational and
analytics center is located in Europe.

To realize a recommendation system for increasing the taxi
usage rate as depicted in Figure 1, it is required to process a
constant stream of location information from the taxis to derive
metrics such as the average speed or distance of each single
ride. These metrics are then analyzed to derive optimization
measures. Before this can happen, preprocessing activities are
needed, e.g., a speed calculation between two geolocations and
an aggregation of all locations for a single ride to derive the
distance. Each processing step depicted as a single entity in
Figure 1 represents a dedicated stream processing operator for
this stream processing topology.

Figure 1 also considers two different types of data flow
connections among stream processing operators, which are
depicted by fine respectively bold arrows. A fine arrow
represents stream processing operations, where the operator
emits the same amount of streaming data as it receives. Bold
arrows represent aggregation operations, which aggregate the
streaming data over a specific time window and emit fewer
data after processing compared to the incoming data.

Since the taxis emit a new location information every
second, it is necessary to process the data geographically as
close as possible to the data providers, i.e., taxis, to reduce
the data transfer duration between the data sources and the
stream processing operators. Furthermore, there are also other
limitations towards the deployment of the stream processing
operators, e.g., the analytics operator must only be deployed
within a private cloud on the premises of the taxi operator to
protect the intellectual property of the algorithm. Last, the SPE
also needs to be configurable at runtime to adjust to the ever
changing taxi fleet and to allow updating and tweaking the
analysis routines without stopping the data stream processing.

III. RELATED WORK

Although Cherniack et al. [15] have outlined the founda-
tions of scalable distributed stream processing already several
years ago, to the best of our knowledge, there are still open
challenges to realize a reliable and cost-efficient elastic SPE.

In general, the roots for data stream processing are located
in the database area. Two of the first SPEs are Aurora [16]
and its successor Borealis [2]. While Aurora is designed in
a monolithic manner, Borealis already considers a distributed
deployment on a cluster system. This allows to increase the
fault tolerance of the engine and to provide a higher perfor-
mance due to parallel data processing [17]. Since Borealis

was designed before the appearance of the cloud paradigm,
i.e., resource elasticity at runtime [10], it only considers load-
shedding mechanisms to cope with changing data rates. Other
established SPEs, like System S [1] or STREAM [3] pursue
a centralized system design instead of a distributed one.

In contrast to the previously mentioned approaches, there
are also more recent engines, which leverage elastic compu-
tational resources to process huge amounts of data in real-
time, e.g., [6], [18], [19], [20]. A basic system design for
integrating cloud resources and data stream processing has
initially been proposed by Ishii and Suzumura [21]. Their
approach integrates cloud resources to cope with changing data
rates and to realize a more cost-efficient data stream processing
solution compared to an over-provisioning solution with fixed
resources.

While Ishii and Suzumura rely on a hybrid cloud model,
there are also several SPEs that are designed to be deployed
in a single cloud. The most prominent representatives are
the open source engines Apache Storm, Apache Spark and
Apache Samza3. These SPEs originate from the Big Data
domain and are designed to efficiently process huge amounts
of data in real-time. Up to now, these SPEs support only
fixed stream processing topologies, and each modification of
a topology needs to be redeployed with the updated topology
configuration. This approach is not feasible for the volatile
IoT.

In order to leverage geographically distributed computa-
tional resources, Cardellini et al. [14] propose an extension to
Apache Storm. Their approach supports an adaptive scheduler,
which places operators on the most suitable computational
resources. More recent projects, like Spring Cloud Data Flow4,
pick up the concept of individual resource usage for each
operator and allow that resources may be scaled individually,
depending on the system load. Nevertheless, Spring Cloud
Data Flow does not support reconfiguration at runtime nor
stateful operators.

Besides open source projects, there are also corporate so-
lutions like Amazon IoT5 or Google Cloud Dataflow6, which
provide an SPE to connect their existing services and to apply
simple queries on data flows. Although these systems provide
similar functions as traditional stream processing systems, they
operate on numerous topologies in parallel and are able to
distribute the load on a large pool of resources [22].

While the scaling mechanisms for stateless stream pro-
cessing operators are straightforward, there are still several
challenges for stateful processing operators, since their state
has to be synchronized among replicated operators [15]. Nev-
ertheless, some preliminary work has already been presented
in this area. Fernandez et al. [23] suggest a checkpointing
mechanism and Gedik et al. [24] propose a key-value store to
synchronize the state among multiple operators.

3http://samza.apache.org
4http://cloud.spring.io/spring-cloud-dataflow/
5https://aws.amazon.com/iot/
6https://cloud.google.com/dataflow/



TABLE I
COMPARISON OF SPES

Spring Distributed Google
IBM Cloud Apache Apache Apache Cloud AWS

Borealis [2] System S [1] StreamCloud [13] Data Flow Spark Storm Storm [14] Dataflow IoT
Hybrid clouds D D (D) (D)

Reconfiguration at runtime (D)
Elastic resources D D D D D

Cost efficiency (D) (D)

Finally, there are also open challenges regarding the scaling
policies that are used to elastically scale the computational
resources for the SPE. These challenges are picked up by
Heinze et al. [25] who discuss the benefits and downsides of
different scaling approaches, e.g., threshold-based approaches
or scaling based on reinforcement learning.

Table I provides an overview on how existing SPEs cope
with the four major challenges introduced in Section I. The
checkmarks indicate that the SPE is capable of addressing
the challenge. Although all of the SPEs support a distributed
deployment, e.g., on a cluster, only some of them support
the deployment within a hybrid cloud, which is distributed
across more than one geographical location. Altogether, there
are already solutions for individual challenges, but a holistic
approach considering all challenges is still missing.

The table also shows that resource elasticity is available
for some SPEs. Only the two commercial providers support
cost efficiency. Nevertheless, it has to be mentioned that these
providers operate on a large resource pool for numerous
users, which makes it difficult to compare their capabilities
to other engines that are only deployed for single users.
Finally, it can be seen that none of the presented SPEs are
capable of dealing with a reconfiguration at runtime, although
StreamCloud already provides operation migration techniques
which can be used to realize this [13].

IV. PLATFORM FOR
ELASTIC STREAM PROCESSING

This section presents the system design of the Platform for
Elastic Stream Processing (PESP) and the rationales behind
the design decisions.

A. System Design

The system design of PESP aims at addressing IoT spe-
cific challenges as discussed in Section I, while respect-
ing the requirements for real-time SPEs defined by Stone-
braker et al. [26]. These requirements not only cover the
aspects of keeping the data moving and to integrate stored
and streaming data, but also to provide capabilities to handle
stream imperfections and to deliver reliable results.

PESP is a distributed SPE, which consists of arbitrary many
Operator Nodes. Each of these Operator Nodes represents one
specific stream processing operator within a stream processing
topology. The topology is configured in a publish-subscribe
manner, where each Operator Node subscribes to relevant
Sensors or other Operator Nodes. This flexible and decentral-
ized configuration approach allows PESP to be reconfigured

at runtime in contrast to centralized SPEs, where it is harder
to update the topology configuration at runtime. Nevertheless
it has to be mentioned that the reconfiguration at runtime
also implies organisational challenges, e.g., synchronization
challenges for stateful operators. Omitting a centralized or-
chestration component or message broker also avoids any
single point of failure, which is present in established SPEs.

As depicted in Figure 2 (using an FMC Block Diagram),
each Operator Node maintains at least one, but up to arbitrary
many, Processing Nodes. The bold arrows indicate the message
flow, while the fine ones represent the control flow within
PESP. While the Operator Nodes maintain the communica-
tion, state management, and cloud resource management, the
Processing Nodes host the Processing Logic, which performs
the required operations. Both nodes are composed of several
subcomponents, which are discussed in the following.

1) Operator Node:
Incoming Queue: The Incoming Queue is the entry point
for streaming data to the Operator Node and is part of
the communication infrastructure of PESP. This component
obtains data from other data providers, such as preceding
Operator Nodes or Sensors, and buffers the incoming data for
processing. The buffering capabilities do not only provide the
flexibility to cope with changing data rates, but also feature
load distribution capabilities among the Processing Nodes.
Each Processing Node fetches the streaming data individually
and allows for a balanced system load across all Processing
Nodes according to their processing capabilities, i.e., available
computational resources. The Incoming Queue is the key
component regarding the decentralized orchestration of the
processing topology at runtime, since the list of data providers
can be updated on the fly based on information stored in the
Configuration component.

Usage Monitor: The Usage Monitor observes the load of the
Incoming Queue, i.e., data throughput and currently buffered
data. Furthermore, this component gathers the system load of
the Processing Nodes, i.e., CPU and RAM usage, which are
provided periodically by the System Monitor of the Processing
Nodes. This monitoring data is preprocessed within the Usage
Monitor to derive key metrics such as the average system
load/minute and is used by the Reasoner.

Reasoner: The Reasoner is the core component for optimiz-
ing the throughput of data items while minimizing the amount
of Processing Nodes to reduce the total cost for data stream
processing. Therefore, the Reasoner obtains the usage data
from the Usage Monitor and continuously analyzes the current
resource usage (see Section IV-D).
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Fig. 2. System Design

Processing Node Management: This component takes care
of provisioning new Processing Nodes to ensure the real-time
processing capabilities of PESP. Therefore, the Processing
Node Management allocates computational resources, e.g., a
Virtual Machine (VM), and deploys the Processing Node on
these resources. If Processing Nodes are not required any-
more, the Processing Node Management informs the selected
Processing Node that it will be removed and that the node
must not fetch additional streaming data from the Incoming
Queue. After a predefined grace period to finish the current
stream processing operation, the Processing Node is removed
and the respective computational resources are released.

Data Repository: The Data Repository allows the oper-
ator to maintain a synchronized state across all Processing
Nodes, similar to the concept proposed by Gedik et al. [24].
This synchronized state enables PESP to implement stream
processing operations for query windows [18], or to merge
semantically annotated data across multiple data items. By
using a shared data repository, there is no need to partition the
data in advance to realize parallel data processing, as required
for other solutions, e.g., StreamCloud [13].

Outgoing Queue: The Outgoing Queue gathers data from
all Processing Nodes of a specific operator and forwards the
data, based on the configuration, to all subscribed entities of
the stream processing topology, e.g., other Operator Nodes or
subscribed Users. The Outgoing Queue acts as a short-term
buffer to realize a basic fault tolerance mechanism, whenever
subscribers are currently not available.

Configuration API: The Configuration API is used to update
the topology, i.e., update the list of subscriptions, as well as
to update the thresholds, which are used within the Reasoner
to tune cost efficiency and QoS at runtime. The data is stored
locally on the Operator Node to be either accessed by the
Reasoner to configure the elastic resource provisioning or the
Outgoing Queue to obtain the recipients of the data.

2) Processing Node:
Processing Logic: The Processing Logic represents the actual
processing functionality of the stream processing operator.
This functionality comprises simple filtering operations over
SQL-like aggregations, or complex business logic [8]. PESP

provides a toolkit for developers to access the shared state as
well as a basic set of aggregation and filtering functionalities.
This eases the implementation of arbitrary stream processing
operators to realize stream processing topologies for the IoT.

System Monitor: The System Monitor records the current
CPU and RAM usage of the Processing Node and reports
this data to the Usage Monitor of the Operator Node in a
configurable interval.

B. Data Flow

Within PESP, two layers of data flow are relevant for the
system design: The first layer constitutes the data flow among
the Operator Nodes. This data flow represents the stream
processing topology, where each Operator Node receives data
from preceding entities and emits processed data.

The second layer represents the data flow within one Opera-
tor Node, as well as among the Operator Node and the associ-
ated Processing Nodes. As soon as the Operator Node receives
streaming data, the data is buffered in the Incoming Queue
of the Operator Node. This streaming data is then fetched
from one of the Processing Nodes for processing. When the
stream processing operation is finished, the streaming data is
transferred back to the Operator Node, i.e., to the Outgoing
Queue, to be provided to all subscribed entities.

C. Deployment of Topologies

In order to create a stream processing topology, the user,
e.g., the taxi fleet provider discussed in Section II, needs
to carry out two steps. First, the user deploys a dedicated
Operator Node for each operator of the topology on the
desired cloud and defines a specific operator for each Operator
Node, i.e., the specific Processing Logic, with the help of the
Configuration API. Second, the user needs to configure the
topology, by chaining the Operator Nodes together according
to the data processing requirements, which is also done by
using the Configuration API. As soon as the initial setup
and the wiring are finished, PESP automatically spawns the
required Processing Nodes and is ready to process the data.
Whenever the processing topology needs to be updated, the
user can reconfigure the wiring at runtime by invoking the
Configuration API.



D. Elastic Resource Provisioning

PESP supports elastic resource provisioning for each opera-
tor of the topology based on monitoring information. The aim
of our elastic resource provisioning strategy is to minimize the
cost for computational resources, i.e., VMs, while processing
the data in real-time. This cost optimization is based on leasing
Processing Nodes that are required to guarantee real-time
processing capabilities and to use the leased resources in the
best possible manner according to their Billing Time Unit
(BTU). The BTU expresses the minimum leasing duration
unit and may differ for each cloud provider. If resources are
released before the end of the BTU, this effectively leads to
a waste of paid resources. Therefore, it is desirable to only
remove those Processing Nodes which have already used most
of their BTU.

To realize elastic resource provisioning, we define an op-
timization problem, which consists of the objective function
given in (1) and nine constraints given in (2)–(10).

In our optimization problem, we use the decision variable
pi to denote one particular Processing Node out of the set
of all possible Processing Nodes P , which can be obtained
by PESP for a single operator. The variable PU indicates the
set of all currently running Processing Nodes. A Processing
Node’s current CPU load is given by cpi

, its current leasing
duration is defined by ldpi , and we denote the load of the
Incoming Queue as qin.

min
∑
p∈P

pi +
∑
p∈P

piBTU
+ u ·N + d ·N (1)

The objective function (1), which is subject to minimization,
comprises four terms. In the first term we compute the total
leasing cost by summing up the assigned values for all
Processing Nodes. These values can either take the value
1 when currently leased or the value 0 when not leased,
as defined by (8). The second term sums up the remaining
leasing time for each Processing Node, which has already
been paid according to the BTU, as defined by (6). This
term ensures that those Processing Nodes with the smallest
remaining usage duration are released first. The remaining two
decision variables u (upscaling) and d (downscaling) indicate
the required scaling operations. A value of 1 indicates a
required scaling operation and the default value of 0 indicates
that no scaling operation is required.∑

p∈PU

cpi

PU
< CPUmax + u (2)

qin < Qmax + u ·N (3)

(2) represents the constraint which triggers an upscaling,
whenever the average CPU usage of all running Processing
Nodes exceeds the CPUmax threshold. The second upscaling
constraint, defined by (3), represents the upscaling decisions
based on the load of the incoming queue. As soon as the load
qin exceeds the threshold of Qmax, the variable u becomes
1 and triggers an upscaling operation. The variable N was
introduced to decouple the values of u and the values of Qmax

and qin. Therefore it needs to be an arbitrary large number,
which must be larger than any possible value for qin.∑

p∈PU

cpi

PU
> CPUmin − d (4)

qin > Qmin − d ·N (5)

(4) and (5) represent the constraints for downscaling oper-
ations. These constraints work in a similar manner as those
for the upscaling operations, but consider the lower thresholds
Qmin for the Incoming Queue and CPUmin for the average
CPU usage.

piBTU
=

{
ldpi

% BTU
BTU , if pi = 1

0 , else
(6)

(6) defines the remaining usage duration for a specific
Processing Node, while respecting the BTU. The result of
this constraint is the remaining and already paid usage leasing
duration in minutes, while ldpi represents the time for which
the specific Processing Node is already running.∑

p∈P

pi ≥ 1 (7)

(7) ensures that there is at least one Processing Node
running for a specific operator.

pi, u, d ∈ {0, 1} (8)

0 ≤ cpi
, piBTU

, CPUmax, CPUmin ≤ 1 (9)

P, PU , ldpi
, Qmax, Qmin ∈ N0 (10)

(8)–(10) define the possible values for the variables.

V. EVALUATION

As a proof of concept, we implemented a prototype based
on the previously discussed system design and evaluated the
prototype in a testbed. The prototype is implemented in Java
and reused parts of the software stack of Spring Cloud Data
Flow. The Nodes run as web services within Tomcat 7.0.647.
The communication infrastructure, i.e., the Incoming Queue
and the Outgoing Queue, relies on RabbitMQ 3.2.48. This
infrastructure is also used for the communication among the
System Monitors of the Processing Nodes and the Usage Mon-
itor. The shared Data Repository is built upon Redis 3.0.49.

Each of the Operator Nodes as well as the Processing Nodes
are bundled within separate VMs, which eases the deployment
on cloud-based computational resources. The deployment
functionality of the Processing Nodes is implemented within
the Processing Node Management and is capable of deploying
Processing Nodes on OpenStack10 as well as Amazon EC211.

7http://tomcat.apache.org
8https://www.rabbitmq.com
9http://redis.io
10https://www.openstack.org
11https://aws.amazon.com/ec2/
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A. Setting

1) Streaming Data: In order to evaluate PESP, we picked
up the motivational scenario as described in Section II. There-
fore, we selected 75 rides from the T-drive trajectory data
sample [27], which provides GPS trajectories within Beijing.
Each of these rides consists of multiple locations with a
timestamp and a unique ID for each ride. This allows to replay
the rides over a given time span in order to obtain a real world
data stream. The streaming data exposes changing data rates,
since the rides took place across the course of a week and
require a reconfiguration of the SPE to consider all rides at
runtime. In our evaluation, we replayed the data according to
the actual timely sequence of events within 110 minutes for
each evaluation run. To evaluate the motivational scenario, we
introduced an additional monitoring operator to the topology
to observe the data flow of the SPE. The revised topology is
depicted in Figure 3. The streaming data is provided to the
Speed, Aggregation, and Monitor operators at the same time.

2) Thresholds: For our evaluation, we chose the following
concrete values for the elastic resource provisioning strategy:
First, we enabled PESP to allocate a maximum amount (P )
of 50 VMs for each operator, whereas the BTU for each VM
is 60 minutes based on the pricing model of Amazon EC2.
The scaling thresholds for the Incoming Queue are set to 5
for scaling down (Qmin) and 150 for scaling up (Qmax),
respectively 90% (CPUmax) and 10% (CPUmin) for the
thresholds for the average CPU usage of the Processing Nodes.

3) Baselines: To evaluate the elasticity aspects of PESP,
we selected two baselines. These two baselines represent an
under-provisioning as well as an over-provisioning scenario
with a fixed amount of processing nodes, as listed in Table II.
These fixed resource baselines represent the deployment for
current state-of-the-art SPEs. Although there are already some
autoscaling approaches available for Amazon IoT or Google
Cloud Flow, we opted for a fixed baseline, since these services
apply a pricing scheme based on the amount of processed
items rather than on the actually used computational resources.
Each Operator Node has an individual amount of Processing
Nodes, due to different workload within the topology as well
as the complexity of the stream processing operator. The
baseline configuration has been selected based on the minimal
respectively maximal usage within the elastic scenario based
on our resource provisioning strategy (see Section IV-D).

4) Testbed: The evaluation was carried out within Amazon
EC2 as well as a private OpenStack cloud. The selection of
the EC2 regions is based on the motivational scenario, as
one can see in Figure 3 indicated by the flags. The Speed
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Under-provisioning 5 6 2 1 1 1
Over-provisioning 8 10 3 1 1 1

and Aggregation operators are deployed in the Singapore
respectively Sydney region of Amazon EC2. Furthermore, the
Average Speed operator is deployed in the Tokyo region, the
Distance operator is deployed in the Ireland region, and the
Monitor operator is hosted in the Oregon region. The Analysis
operator is deployed on a private OpenStack instance within
Europe as already discussed in Section II. In terms of size,
we have used t2.small instances for the Operator Nodes and
t2.micro instances for the Processing Nodes on Amazon EC2.
VMs on OpenStack implement the same configurations as
t2.small and t2.micro on Amazon EC2.

5) Metrics: To assess the functionality as well as the
total cost for our evaluation scenario, we have used different
metrics. Since PESP aims not only at providing a distributed
SPE, but also at reducing the total execution cost by applying
an elastic provisioning strategy, we have assessed the Cost
for Processing Nodes. This metric aggregates the number of
Processing Nodes assigned to all Operator Nodes over the
whole evaluation run, where one Processing Node amounts for
one cost unit for each minute running. We further assess the
Total Makespan in Seconds, which represents the time span
between the first location recorded by the Monitor operator
until the last report is recorded. This allows us to assess the
overall stream processing performance.

The Average Duration for the Report Generation in Seconds
describes the duration which passes between the last location
information of a single ride and the issuing of the report. This
metric allows us to assess the real-time processing capabilities
of PESP. Based on the previous metric we also assess the QoS,
i.e., Total Delays, by applying a Service Level Agreement
(SLA) to the report generation process. We assume that the
report needs to be finished within 60 seconds after the last
location is recorded, i.e., the Average Duration for the Report
Generation in Seconds has to be lower than 60. This further
results in the SLA Adherence that describes how many delays
were recorded in relation to the total amount of rides.

B. Results and Discussion

In order to evaluate our prototype, each provisioning sce-
nario was executed three times over two days. This was done
to reduce the risk of any corruption of the results, which may
occur due to different system loads as well as communication
channels among the different regions in Amazon EC2. The
raw data of the individual evaluation runs is available in our
evaluation repository12.

12http://www.infosys.tuwien.ac.at/staff/hochreiner/evaluation/cloud2016/



TABLE III
EVALUATION RESULTS

Elastic Provisioning Over-Provisioning Under-Provisioning
Total Rides 75 75 75
Location Information Items 50742 50742 50742
Cost for Processing Nodes 2160.66 (σ = 13.61) 2664 (σ = 0.00) 1856 (σ = 0.00)
Total Makespan in Seconds 6653 (σ = 9.60) 6655 (σ = 0.00) 6975 (σ = 1.00)
Average Duration for the Report Generation in Seconds 77 (σ = 10.69) 35 (σ = 0.00) 355 (σ = 0.57)
Total Delays 21 (σ = 5.29) 0 (σ = 0.00) 75 (σ = 0.00)
SLA Adherence in % 28.00 (σ = 7.40) 100.00 (σ = 0.00) 0.00 (σ = 0.00)

Table III lists the average values for all three evaluation runs
alongside with the standard deviation σ. Figure 4 presents the
number of Processing Nodes across the evaluation alongside
with the incoming rate of streaming data. While Figure 4
presents the resource usage of all operators combined, Figure 5
presents the resource usage as well as the load of the Incoming
Queue for the Speed Operator Node for the elastic provision-
ing scenario. In both figures, the horizontal axis represents
the time in minutes. The vertical axis represents the total
number of Processing Nodes on the left side and the amount
of incoming streaming data, as well as the buffered streaming
data for Figure 5 on the right side.

The evaluation shows that the system behavior follows a
predictable outcome as required by Stonebraker [26]. This
outcome is derived from the low standard deviations across the
different evaluation runs, despite the fact that the evaluation
was carried out in a public cloud environment.

Furthermore, the evaluation also shows the relation between
the amount of computational resources, i.e., Processing Nodes,
and the total makespan. The under-provisioning scenario ex-
poses the longest makespan, while the total makespan for
the over-provisioning and the elastic provisioning scenario
are almost the same. This additional required time can be
explained due to a shortage of Processing Nodes in the
under-provisioning scenario compared to the over-provisioning
one. The elastic provisioning scenario only requires 15%
more resources than the under-provisioning scenario, while
performing as fast as the over-provisioning one. This fact can
be attributed to the elastic scaling mechanism, which only
allocates additional Processing Nodes when they are required.
This can also be seen in Figure 4, which represents the total
amount of Processing Nodes over time. Figure 5 provides an
even better representation of the relation between the stream-
ing data rates and the amount of Processing Nodes. Each time,
the streaming data rates rise, the amount of Processing Nodes
also increases to cope with the increased system load.

Since PESP applies a threshold-based scaling approach, it
takes some time, i.e., 60-200 seconds, for the SPE to fully
adapt to the increased system load. This delay is caused
by reasoning the resource provisioning as well as the setup
time of the Processing Nodes, i.e., system startup of the VM.
Although the resource provisioning represents an optimization
problem, its solution amounts only for a small fraction of the
overall delay due to the typically small number of Operator
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Nodes. This can be observed in Figure 5, where the Incoming
Queue buffers the streaming data, until the Operator Node
adapts to the changing streaming data rates. Nevertheless, it
takes PESP only twice as long to issue a report compared to
the over-provisioning scenario, whereas the under-provisioning
scenario requires ten times as much time. This observation is
also supported by the total delay as well as the SLA adherence
metric shown in Table III, where we can see that the over-
provisioning scenario has no issues with complying with the
applied SLAs. The elastic provisioning scenario has an SLA
adherence rate of 28%, although the report generation took
on average only 17 seconds longer than required by the SLA.
In the under-provisioning scenario, we can observe an SLA
adherence of 0%, i.e., no report was issued in time, which is
consistent with the other observations.

Our evaluation shows that it is possible to implement a
distributed streaming topology where the stream processing
operators are distributed across several regions.



Additionally, it also demonstrates that the elasticity mech-
anism allows for a cost-efficient realization of a stream pro-
cessing scenario while being compliant with applied SLAs.

Furthermore, the evaluation shows that PESP provides a so-
lution approach that addresses the major challenges discussed
in Section I. Due to the decentralized system design of PESP, it
is easy to deploy different nodes in different clouds to support
the first challenge of hybrid cloud deployments. Our system
design allows for reconfiguration at runtime, which is currently
not possible for other SPEs. Finally, our approach also allows
for elastic resources and implements a resource allocation
algorithm that aims for minimal cost while maintaining a high
level of QoS that resolves both challenges of resource elasticity
and cost efficiency.

VI. CONCLUSION

Within this paper, we have shown that it is possible to realize
distributed stream processing scenarios, which are typical for
the IoT. We further introduced a resource elasticity mechanism
to deal with changing rates of streaming data. This allows us
to operate a cost-efficient SPE due to a flexible adoption of
Processing Nodes.

In our future work, we would like to further investigate
resource provisioning approaches. Threshold-based scaling al-
gorithms can only react based on the current system load, and
therefore the reaction is often slightly delayed. To cope with
these issues, we plan to investigate other scaling approaches,
e.g., to predict the future amount of streaming data based on
pattern recognition. We further plan to design and implement
a control channel alongside the data channel, to propagate the
system requirements across the whole SPE in a peer-to-peer
manner.
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