
Context-Aware Personalization for Smart
Mobile Cloud Services

Waldemar Hummer, Stefan Schulte

Distributed Systems Group, TU Wien, Austria
{lastname}@dsg.tuwien.ac.at

Abstract. The advent of the Internet of Things and the increasing sen-
sorization of smart devices that surround us in our everyday lives are
spurring the demand for context-aware applications to offer personal-
ized services. With the rapid advances in sensor technology, distributed
software architectures and backend infrastructures need to be able to sys-
tematically deal with increasing amounts of real-time context data. In
this paper, we present an approach for intelligent service clouds to cater
for the new challenges associated with complex context-aware applica-
tions. Based on an illustrative scenario from the connected car domain,
we introduce a detailed system model and approach for context-based
personalization of mobile services. Our solution focuses on a three-phase
approach with context change analysis, context state management, and
context-triggered adaptation actions. We discuss details of our prototype
implementation and put the contributions into perspective with the re-
lated work. After discussing our preliminary results, we draw a roadmap
for future work towards context-aware vehicle information systems.

1 Introduction

Over the past years, we have been witnessing a steep rise in the number of de-
vices and sensors being connected to the so-called Internet of Things (IoT) [1], a
phenomenon which spans across a multitude of industry verticals, including con-
nected cars, smart homes, e-health, and more. Our increasingly connected world
of cyberphysical systems and smart things opens up a wealth of unprecedented
opportunities for applications that are specifically tailored towards the needs of
mobile users with the ability to adapt to their current contextual environments.

Both the amount as well as the level of integration of context data in the IoT
are rapidly increasing. In the automotive industry, real-time machine data from
the vehicle (e.g., fuel level) is matched with driver-related biometrics data (e.g.,
fatigue sensor) and combined with other contextual information (e.g., time, lo-
cation) in order to satisfy the driver’s preferences (e.g., navigate to a gas station
for coffee and fuel). This trend has been referred to as the quantified car [24],
in a reference to this novel combination of connected car and quantified self. In
light of the leaps in progress being made on the device and data collection layer,
the cloud service and application providers need to catch up with the techni-
cal challenges introduced by the increased dynamism and context-awareness of
smart applications for predominantly mobile, permanently connected users.

Catering for the personal preferences and individual user contexts is becom-
ing a critical requirement for state-of-the-art cloud applications. The processing
logic of applications that deal with user context requires integrated support from
intelligent service clouds, which are able to capture and monitor user context,
adapt to changing environments, and optimize the application delivery.

In this paper, we tackle this issue and discuss an approach for context-aware
personalization of mobile cloud services. We illustrate our solution based on
a scenario from the connected car domain, with a multitude of personalized
services offered to the drivers in a vehicular information system. In particular,
we follow a three-phase approach with context change analysis, context state
management, and context-triggered adaptation actions.

The remainder of this paper is structured as follows. In Section 2 we intro-
duce an illustrative scenario which serves as the basis for presentation. Section 3
introduces the assumed system model and details our proposed solution. Imple-
mentation details are covered in Section 4, and our work is evaluated in Section 5.
In Section 6 we discuss previous work related to our approach. Section 7 con-
cludes the paper and highlights topics for active ongoing research efforts.

2 Scenario

Engine off,
battery
15%

u1

1 2 3 4 5 6 7 8 9 10
Time

User Contexts

s3: Media
Service

Audio / Media
Streaming

In-Car
Applications

Backend
& Car2Car
Services

Navigation Support
System

s2: Gas
Stations

s4: Car2Car
Service

Fuel
level < 5l

Engine
on, phone
connected

Fatigue
sensor:

driver tired

Brake
wear

indicator

reduce
data
rate

get gas
station
deals

find best
route

alert &
assist
driver

s1: Geo
Routing

Calendar

schedule
repair

s5: Repair
Shops

Connectivity Layer

Fig. 1: Scenario: Connected Car with Context-Based Personalized Services

We consider a scenario from the connected car domain. Figure 1 illustrates a
vehicle used by a driver under different user contexts over time (t ∈ {1, . . . , 10}).
The car operates a multitude of applications, including navigation, media stream-
ing, driver support system, and more. Additionally, the car is equipped with a
multitude of sensors to regularly monitor the operational status (fuel, battery
level, brake wear, etc.) as well as the behavior of the driver (e.g., fatigue sensor).

To enable seamless operation of the in-car applications, the continous context
changes are reflected in the applications. At time t = 1, the engine is turned on,
which triggers the navigation service to determine the target location and find
the best route. At time t = 4, the fuel drops to a critically low level (< 5 liters),
hence the navigation app queries gas stations in the vicinity, and displays com-
mercials for special deals. At t = 5, the engine is turned off and battery level
is below 15%, which causes the audio streaming application to reduce the data
rate to save power. At t = 7, the fatigue sensor of the car alerts that the driver
gets tired, which turns on driving assistance in the support system. Finally, at
t = 10, the brake wear indicator reports that the brakes require maintenance,
causing the calendar app to automatically schedule a service with a repair shop.

Table 1: Context-Based Service Personalizations in Scenario
Service Context Config. Effect Application Action

Category: User Preferences

Streaming timeOfDay = morning station = news subscribe to
respective media
service

timeOfDay = afternoon station = pop
timeOfDay = evening station = jazz

Category: User Experience and Safety

Navigation offTrack = true - re-calculate route

Support System fatig = 1 assist = yes alert cars in vicinity

Category: Service Optimizations

Streaming country = X proxy = X use national proxy

Streaming battery > 20% dataRate = high adjust data rate and
bufferingbattery ≤ 20% dataRate = low

Personalized configurations are applied depending on the current context. Ta-
ble 1 contains an exemplary listing of context settings, plus the configuration ef-
fects and associated application actions. We distinguish between user preferences
(explicitly defined by users), user experience and safety (predefined rules encoded
within the respective services), as well as service optimizations (non-functional
aspects). For instance, during morning hours (timeOfDay = morning) the
driver prefers to listen to news radio, whereas the rest of the day she likes pop or
jazz music. If the driver departs from the course (offTrack = true), the context
triggers a re-calculation of the best route in the navigation service. Or, if the
fatigue sensor alerts fatigue = true, the in-car driving assistance gets enabled.

Based on this illustrative scenario, we identify the following key challenges:

• Manage Application-Level Context Changes: Context data is often
imprecise (e.g., precision radius of a GPS sensor) or prone to transient sensor
errors. A mechanism is needed to reliably identify relevant context changes.

• Application Actions and Adaptations: Context changes result in appli-
cation actions, which may also involve adaptation of the backend services.
A systematic approach for reconfigurations at different levels is needed.

• End-to-End Cloud Support: Support for context handling and personal-
ization should be offered on the Cloud layer. Integration with existing Cloud
application development paradigms is desirable.

3 Approach

This section presents our approach for context-aware personalization of mobile
Cloud services. We introduce the basic system model in Section 3.1, outline the
approach in Section 3.2, and discuss selected details in Sections 3.3, 3.4, and 3.5.

3.1 System Model

Table 2 lists the elements of the assumed system model with the respective
symbols, description, and a brief example with reference to our scenario. In our
formalization, P(Y) denotes the power set of a given set Y , and [f] := {f ′ :
dom(f)→ codom(f)} denotes the function space of a function f .

Table 2: System Model
Symbol Description Example

S Set of services S = {s1, . . . , s5}
U Set of mobile service users U = {u1, u2, u3}
M : K → V Domain of key-value maps, mapping

a key (K) to a value domain (V).
-

T ⊂ V Domain of time T = {t = 1, . . . , t = 10, . . .}
X ⊂M Domain of user contexts, mapping

context attributes (K) to values (V).
ctx1 = {location 7→ (47.1, 10.2)}

c : U → X Current context of a user c : u1 7→ ctx1

p : (U × S) →
M

Current service personalizations,
mapping users (U) of a service (S)
to a configuration map (M).

(u1, s3) 7→ {proxy = AT}

d : P(T×X)→
X

Query rules for derived context at-
tributes

{(t, fatig = 1), (t + 1, fatig = 1)}
7→ (fatigWarn = 1)

t : U ×X → [p] Context-based configuration triggers (u1, country = DE) 7→
{(u1, s3) 7→ {proxy = DE}}

The model contains a set of services (S) which are consumed by different
mobile service users (U). Each user is associated with a context (X) that changes
over time (e.g., vehicle location). The context attributes are captured via a
mapping from key (K) to value domain (V). The domain of time (T) is also
encoded in the context. The current context of a user is determined by the
function c. The function p represents user-specific service personalizations which
apply at a certain point in time. Assuming user u1 is currently driving in Austria,
the media service (s3) utilizes the local proxy (proxy = AT) for music streaming.

Function d models derived context attributes, for instance if the fatigue sensor
alerts (fatig = 1) consecutively at time points t ∈ T and t + 1, a warning
event is issued and added to the user’s context attributes (fatigWarn = 1).
This technique can be used to eliminate the impact of false positives caused by
the fatigue sensor. Finally, function t defines a set of triggers where a certain
context configuration leads to a change in a user’s service personalization. In our
example, if the driving user u1 crosses the border to Germany (country = DE),
the local proxy (proxy = DE) should be used for service s3.

3.2 Approach Overview

Figure 2 illustrates an overview of our approach, based on the services and
context data in our scenario. The figure depicts a timeline for three mobile
service users, with different context changes.

location
=(.., ..)

User u1:

location
=(.., ..)

ctxu2,1

User u2:

ctxu2,2
fatigWarn=1

Context Change Analysis State Management

User u3: t

t

Cloud App. Actions

ctxu3,1
country=AT

ctxu3,2
country=DE

t=1 t=4

ctxu1,2
findGas=yes

t=1 t=4

ctxu1,1
fuel=ok

ctxu1,2
fuel=low

tfuel=20 fuel=5

ctxu3,1
proxy=AT

ctxu3,2
proxy=DE

ctxu1,1
findGas=no

fatig=
no

fatig=
yes

fatig=
yes ctxu2,2

assist=yes
ctxu2,1

assist=no

location
=(.., ..)

location
=(.., ..)

Media
Service

DE Proxy

Media
Service

AT Proxy

Cache

Gas
Stations

query

Support
System

Cars

alert

subscribe

Context
Attributes

Cloud Application
Service

External / Third Party
Service

Service
Configurations

Fig. 2: Illustration of the Overall Approach

The first part in our three-stage approach is context change analysis, where
context events are analyzed over time to derive higher-level context attributes
(see Section 3.3). In the second stage, the context changes need to be propagated
to the state management which tracks the current configurations for all users
(see Section 3.4). Based on the state management, adaptations are performed to
cater for the personalized service configurations (see Section 3.5).

3.3 Identification of Context Changes

We distinguish “raw” (or low-level) context changes which are typically measured
by sensor devices, and “complex” (or higher-level) context changes which reflect
the actual context information that is relevant to the application services.

In Figure 2, the raw context changes for fuel level in liters (fuel), fatigue
sensor (fatig), and current GPS location (location), need to be analyzed and
enriched with additional information in order to have a meaningful impact on
the service personalization. We distinguish the following mechanisms to derive
relevant context changes:

– Discretization: Context attributes with a continuous value domain are
mapped to a discrete value domain. For instance, a fuel level above 5 liters
is considered “ok”, whereas levels below 5 liters are considered “low”. Ev-
idently, the discretization varies from vehicle to vehicle, and also depends
on the geographic area in which the vehicle is operated (in a deserted area,
5 liters of fuel may be insufficient to reach the next gas station).

– Sampling: The raw context values should only be propagated to the appli-
cation if they are deemed to properly represent the user’s environment. The
technique of sampling can be used to identify statistically significant context
changes, and eliminate the impact of false positives in the sensor measure-
ments. For instance, the fatigue warning in Figure 2 (fatigWarn = 1) is only
issued if there are two consecutive fatigue sensor measurements (fatig = 1
at time points 3 and 4). Clearly, this simple example can be extended to
more meaningful statistical significance levels.

– Pattern Detection: For more sophisticated cases, we utilize complex event
processing (CEP) [9] to derive high-level context changes from raw events.
The context changes are modeled as a stream of events over time, and CEP
window queries allow for complex pattern detection. In Figure 2, if we com-
bine the current GPS location of user u3 with map data, we can derive the
current country (AT) and anticipate the entry into a new country (DE) if
the event pattern indicates that the driver approaches the country border.

Currently, rules and CEP queries are defined manually, yet for convenience
we offer a set of predefined rule templates which can be parameterized accord-
ing to individual scenarios. For instance, a geo fence template reports whether
any tracked objects are within a circular geographical region; parameterizations
are 1) the center location, and 2) the radius of the geo fence. In future work,
we envision a hybrid approach, mixing manually specified rules for identifying
context changes with automatically learned rules for predicting context changes.
The necessary underlying machine learning techniques are readily available, as
evidenced, for instance, by the Prediction API1 in the Google Cloud offering.
A specialized module to learn rules for deriving context changes will become an
important offering as part of intelligent service clouds.

3.4 Multi-User Context Propagation and State Management

Having a mechanism to identify application-relevant changes (Section 3.3), we
need to propagate the context information and maintain user-specific configura-
tion states for the Cloud services. The context propagation happens in multiple
steps, as demonstrated in the connected car scenario: the values from multiple
sensors within the car need to be collected to form the user context (step 1),
which is transmitted to the Cloud and transformed into user-specific service
personalizations (step 2), and then combined into optimized configurations and
variants of the Cloud services shared among the users (step 3).
1 https://cloud.google.com/prediction/

Service s1User u1

Service
Variant v1,2

Service s2

Service
Variant v1,1

Configuration
c1,1

Configuration
c1,2

Service
Personalizations

User
Contexts

p(u1,s1)

p(u2,s1)

Service
Variants

p(u3,s1)

p(u3,s2)

p(u2,s2)

R
eq

ue
st

R
ou

te
r

Configuration
c2

Context x1

User u2

Context x2

User u3

Context x3

Fig. 3: Propagation of Context Values and Management of Configuration State

Figure 3 illustrates the approach based on exemplary context request flows
from three service users (u1, u2, u3). The contexts (x1, x2, x3) on the left hand
side are transmitted and transformed into service personalizations, via function t
in our system model in Section 3.1. Any interaction of a user um with a back-
end service sn carries the service personalization state p(um, sn) that helps the
request router to select the respective service variant. A service variant is an
instance of the service that has a particular configuration associated, yet this
configuration is shared by a multitude of users (as opposed to service personal-
izations, which are user-specific). For example, in our scenario the media service
is configured with two variants for high-quality and low-quality streaming, re-
spectively. Detailed discussion of service variability engineering are out of the
scope of this paper, and for details we refer to specialized literature [21].

Currently, we apply state management for single services and their service
variants only, and do not take into account the interactions between groups of
services or business processes. In future work, we plan to integrate support for
more comprehensive service ontologies [23] allowing to model service workflows.

3.5 Context-Triggered Actions and Adaptations

Based on changes in the service configurations, application actions are triggered
which result in adaptation of the Cloud environment. We distinguish three types:

• Application: Any actions encoded in the business logic of the application.

• Infrastructure: Any adaptations related to current allocation of resources
on the infrastructure layer (e.g., virtual machines, disk volumes, databases).

• Topology: Any changes in the relationships and interconnections of the
components (e.g., master-slave election in a clustered service).

Table 3 contains three examples of context-triggered adaptations, applied to
our scenario. If a driver is running out of fuel, a cache infrastructure component
is configured before the application starts querying for gas stations. To adjust
the dataRate for the streaming service, an adaptation is required in the request
router to pick the respective service variant. Finally, switching to a different
streaming proxy induces a topology change with a new service variant. Our
approach also integrates previous work on service prefetching [18], an application
adaptation that is necessary to handle unreliable connectivity (e.g., in tunnels).

Table 3: Context-Triggered Adaptations (Examples)
Trigger Type(s) Adaptation

findGas = true Infrastr., Application Instantiate cache, query gas stations

dataRate = high|low Topology, Application Configure request router to pick respec-
tive variant of media service

proxy = X Topology Create a service variant that subscribes
to the stream proxy of country X

4 Implementation

We are currently working towards a full-stack implementation of our approach,
embedded in Google’s scalable services cluster management tool Kubernetes2.
Here we discuss the architectural design and selected details of our prototype.

Personalization Manager

Service
UserContext

Gateway

monitors

Client Side
Server Side

has

Rules & Triggers

Configuration
Management

Appl. Services Cluster
(Kubernetes)

Context
Listener

External
Services

invokes

Service
Container

Access
Control

Prefetching
Manager

Service
Container

Service
Container

Service
Container

Service
Container

Service
Container

Service
Cont.

invokes

Context Change
Analyzer

notifies

CEP Engine

Service
Cont.

Service
Cont.Rules Engine

Request
Router

Request
Router

Request
Router

Fig. 4: System Architecture

Figure 4 depicts the architecture of the deployed system (third-party tools
are in grey boxes). On the client side (e.g., in-car application platform) each user
operates under a specific Context, which is monitored by the Context Listener.
For the external client-server connectivity, we assume a cellular network connec-
tion (e.g., UMTS/HSPA). Upon notification, the Context Change Analyzer uses
a CEP engine (Esper [5]). We build on our previous work and develop a Domain
Specific Language (DSL) for specifying rules to derive application-relevant con-
text changes, based on the MONINA language [19]. The context changes are fed
into the Rules & Triggers component, which incorporates a Rules Engine.

Our implementation caters for the principles of the 12-factor app [20], which
has gained high popularity for scalable Cloud applications. Application services

2 http://kubernetes.io/

are mostly stateless, the state (e.g., current user context) is maintained in a con-
figuration management tool (we use the distributed key-value store etcd provided
by CoreOS). For deployment, we utilize DevOps automation scripts which de-
ploy the services and reliably bring the infrastructure into the desired state [17].

The user accesses the services via a Gateway which is responsible for perform-
ing Access Control, deciding over service prefetching (via the Prefetching Man-
ager [18]), and finally forwarding requests. The Request Routers select among
the available service variants (each deployed in a separate service container).
Currently, this is tailor-made, because Kubernetes merely performs simplistic
round-robin load balancing; we plan to integrate our context-based routing di-
rectly into the Kubernetes code base, which we deem a highly useful extension.

5 Evaluation

In this section we evaluate our approach and discuss some of the preliminary
results that we have collected. We have set up a test bed on a machine with
quad-core 2.5GHz CPU and 16GB RAM. For experimentation, we utilize a real-
life data set published by Volkswagen as part of a programming contest3. The
data set contains traces of eight driving cars with a rich set of context attributes
(including: speed, battery, fuel, fatigue sensor, brake wear sensor, etc.).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500

Time (hours)

Fuel Level (liters)

(a) User Context over Time: Fuel Level

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

Time (days)

Context Updates (Raw)
Context Changes (Derived)

(b) Raw vs. Derived Context Changes

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

C
P

U
 U

s
a

g
e

 (
%

)

Time

1000 Cars
10000 Cars
50000 Cars

100000 Cars

(c) CPU Usage (4× 100% per CPU core)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30

M
e

m
o

ry
 (

M
B

)

Time

1000 Cars
10000 Cars
50000 Cars

100000 Cars

(d) Memory Usage (Java heap space)

Fig. 5: Evaluation Results

3 Volkswagen CodeFest8, http://group-it.volkswagenag.com/codefest/codefest.html

Context snapshots of the vehicles are recorded approximately every 5-30
seconds, resulting in a total of roughly 800K data points with some 25M context
attribute values. Figure 5a plots the fuel level of one of the car traces, recorded
over a period of 143 days (apprx. 3500 hours). The values are aggregated over
periods of one hour; in fact, for our scenario we are not interested in the detailed
fuel levels, but only in the critically low levels. The same applies for the fatigue
sensor where we only need to monitor the application-relevant transition from
fatig = no to fatig = yes, or vice versa. This ratio of raw events to derived
context changes is illustrated in Figure 5b (note the logarithmic scale on the
y-axis). That is, the majority of context data can be pre-processed inside the
car (by the Context Listener) and need not be transmitted to the server, which
leaves huge space for optimization of network utilization, as well as energy usage.

Yet, with increasing numbers of cars, the burden on the infrastructure can
become significant. In our experiments we have evaluated the end-to-end stress to
the backend, for increasing number of cars (1K, 10K, 50K, 100K), assuming each
car sends one context update (e.g., location) every 5 seconds. Figures 5c and 5d
depict the CPU usage and memory usage of the Personalization Manager, which
hosts the CEP Engine, Rule Engine, Configuration Management etc. The CPU
spikes at the beginning due to high initialization efforts for the CEP engines, and
the intermittent CPU spikes (e.g., time points 23/24) are due to Java garbage
collection (see corresponding drops in heap space memory). We observe that for
100K cars the single-node deployment operates almost at its limit; currently,
we are extending our implementation with a distributed setup, to evaluate even
larger scenarios. In a large-scale setup we further need to evaluate the reliability
of the system under different faults during processing of the context events [15].

6 Related Work

In this section, we discuss related work in the areas of context-aware computing,
Web service personalization, and adaptive service-oriented systems.

Early work on context-aware systems [2] and pervasive/ubiquitous systems [3]
dates back to the early 2000s, with seminal contributions achieved in various ar-
eas, including ontologies for context monitoring [8], service-oriented middlewares
for context-based computing [12], intelligent context dissemination in vehicular
networks [10], as well as context-based human-computer interaction [4]. Recently,
topics revolving around context-aware computing have found new application in
the area of IoT in general, and the domain of connected vehicles in particular.
Gansel et al. [11] introduce a context-aware access control concept for automo-
tive systems, focusing on human interactions with the car computer. Bolchini et
al. [6] discuss a taxonomy of context models, along different dimensions like con-
text attributes, representations, and management. The approach by Ouedraogo
et al. [22] uses models@run.time techniques for contextualized deployment of se-
curity policies in intelligent service clouds. Their approach discusses the design
of context-based security mediators, while our focus is on end-to-end context
propagation and context-triggered adaptations in service clouds.

Previous approaches to Web service personalization have focused on rules
modeling, service matching, and personalized adaptation. Yu et al. [26] present
a framework for rules-based personalization in Web service workflows, which
uses aspect-oriented programming (AOP) with hooks to allow dynamic switching
between user contexts. Hella et al. [13] use Semantic Web technologies to perform
service matching based on user preferences. Wang et al. [25] propose rule nets
as a technique to express rules for personalized needs. While their work presents
a formal model and language for expressing rules, our focus is on applying CEP
and rules for analysis of context changes in adaptive cloud applications.

A large body of research has been done in the area of adaptive service-based
systems. Hu et al. [14] discuss a rule-based approach for dynamic adaptation
of business processes based on context changes. Their assumed model is a busi-
ness process definition, whereas we target cloud applications with service vari-
ants and context-triggered configuration changes. Inzinger et al. [19] introduce
event-based monitoring and adaptation of application configurations, which has
influenced our technical solution. Brogi et al. [7] discuss dynamic contextual
adaptation for behavioural interfaces, e.g., between a client and server process.
Their contextual environments provide interface mappings, but do not take com-
plex patterns of context updates into account, which is at the core of our work.

7 Conclusion

The advance of the Internet of Things poses novel challenges with regards to
massive amounts of real-time context data generated by devices and sensors sur-
rounding us in our everyday lives. The ubiquity of contextual information opens
up novel opportunities for personalization in modern user-centric applications.
Built-in support for personalization is hence becoming a critical requirement for
intelligent service clouds. In this paper we introduce and discuss techniques for
context-aware personalization of mobile cloud services.

Based on our illustrative scenario from the connected cars domain, we pro-
vide a detailed system model and outline our solution, following a three-stage
approach. First, we utilize CEP techniques to aggregate raw context events
into higher-level information, in order to identify application-relevant context
changes. Second, we apply triggers to propagate context changes into user-
specific service configurations. Third, we illustrate the integration with cloud
services to apply context-triggered adaptation actions. We discuss our proto-
type implementation which is embedded into Kubernetes, a state-of-the-art cloud
technology for cluster management of service containers. In our future work, we
extend our approach with various advanced aspects of context processing and
service personalization, including high scalability, multi-tenant optimization of
the event processing logic [16], as well as privacy and data protection aspects.

Acknowledgements

This work is partially supported by the European Union within the SIMPLI-CITY

FP7-ICT project (Grant agreement no. 318201).

References
1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer

Networks 54(15), 2787–2805 (2010)
2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-

ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)
3. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data

distribution for mobile ubiquitous systems. ACM Comp. Surveys 44(4), 24 (2012)
4. Bellotti, V., Edwards, K.: Intelligibility and accountability: human considerations

in context-aware systems. Human–Computer Interaction 16(2-4), 193–212 (2001)
5. Bernhardt, T., Vasseur, A.: Esper: Event stream processing and correlation. ON-

Java, in http://www.onjava.com/lpt/a/6955, OReilly (2007)
6. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-

oriented survey of context models. ACM Sigmod Record 36(4), 19–26 (2007)
7. Brogi, A., Cámara, J., Canal, C., Cubo, J., Pimentel, E.: Dynamic contextual

adaptation. Electronic Notes in Theoretical Computer Science 175(2), 81–95 (2007)
8. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing

environments. The Knowledge Engineering Review 18(03), 197–207 (2003)
9. Cugola, G., Margara, A.: Processing flows of information: From data stream to

complex event processing. ACM Computing Surveys (CSUR) 44(3), 15 (2012)
10. Eichler, S., Schroth, C., Kosch, T., Strassberger, M.: Strategies for context-adaptive

message dissemination in vehicular ad hoc networks. In: MOBIQUITOUS (2006)
11. Gansel, S., Schnitzer, S., et al.: An access control concept for novel automotive

HMI systems. In: ACM SACMAT’14. pp. 17–28. ACM (2014)
12. Gu, T., Pung, H., Zhang, D.Q.: A service-oriented middleware for building context-

aware services. Journal of Network and Computer Applications 28(1), 1–18 (2005)
13. Hella, L., Krogstie, J.: Using Semantic Web for Mobile Services Personalization.

Int. Journal of u-and e-Service, Science and Technology 7(2), 221–238 (2014)
14. Hu, G., Wu, B., Chen, J.: Dynamic adaptation of business process based on context

changes: a rule-oriented approach. In: PACEB Workshop @ ICSOC (2014)
15. Hummer, W., Inzinger, C., Leitner, P., Satzger, B., Dustdar, S.: Deriving a unified

fault taxonomy for event-based systems. In: 6th ACM DEBS Conference (2012)
16. Hummer, W., Leitner, P., Satzger, B., Dustdar, S.: Dynamic migration of process-

ing elements for optimized query execution in event-based systems. In: DOA 2011
17. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for in-

frastructure as code. In: 14th ACM Middleware Conference. pp. 368–388 (2013)
18. Hummer, W., Schulte, S., Hoenisch, P., Dustdar, S.: Context-aware data prefetch-

ing in mobile service environments. In: BDCloud Conf. pp. 214–221. IEEE (2014)
19. Inzinger, C., Hummer, W., et al.: Generic event-based monitoring and adaptation

methodology for heterogeneous distributed systems. SPE 44(7), 805–822 (2014)
20. Kemp, C., Gyger, B.: Professional Heroku Programming. John Wiley & Sons (2013)
21. Kumar, A., Yao, W.: Design and management of flexible process variants using

templates and rules. Computers in Industry 63(2), 112–130 (2012)
22. Ouedraogo, W., Biennier, F., Merle, P.: Contextualised security operation deploy-

ment through mds@run.time architecture. In: ISC Workshop @ ICSOC (2014)
23. Pahl, C., Casey, M.: Ontology support for web service processes. In: ACM SIG-

SOFT Software Engineering Notes. vol. 28, pp. 208–216. ACM (2003)
24. Swan, M.: Connected car: Quantified self becomes quantified car. JSAN 4(1) (2015)
25. Wang, W., Zong, S., Yu, J., Yongchareon, S.: Modelling web service personalization

with rule nets. In: Web Information Systems Engineering. pp. 228–238 (2013)
26. Yu, J., Han, J., Sheng, Q.Z., Gunarso, S.O.: PerCAS: an approach to enabling

dynamic and personalized adaptation for context-aware services. In: ICSOC (2012)

