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Abstract—Cloud computing is becoming increasingly impor-
tant for executing business processes. This development con-
tributes to a novel class of Business Process Management Systems,
called eBPMS, that inherit elasticity from cloud computing.

The aim of eBPMS is to improve the efficiency of process
enactment, in particular regarding scalability and cost-efficiency.
However, there is hardly any research that investigates scheduling
for eBPMS so far. Against this background, we design an elastic
scheduling approach for eBPMS and a corresponding formal
problem definition in order to evaluate its data transfer capabili-
ties – this is especially important for hybrid cloud environments.
Through extensive evaluations, we are able to show that our
approach reduces the total cost by a considerable share.
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Optimization, Scheduling, Business Process Management

I. INTRODUCTION

Business Process Management (BPM) is a well-established
concept to provide value-added services to customers [1].
Business processes are composed of software-based or human-
provided services and span from simple sequences comprising
a few process steps up to complex structures which involve
splits, e.g., AND, XOR or loops over several dozens of
process steps [2]. In order to execute such business processes,
Business Process Management Systems (BPMS) are required.
BPMS support the complete BPM lifecycle, including process
enactment [3]: For this, a BPMS receives new process instance
requests and assigns the process steps to designated services
and also manages the resource allocation for these services.

Process requests may occur in regular intervals or in
an ad hoc manner. Due to these changing process request
patterns, a BPMS is exposed to continuously changing re-
source requirements to enact the requested processes. This is
especially the case in extensive and volatile process landscapes
where software services implement the corresponding process
steps. Rapidly changing resource requirements can lead to
either over- or under-provisioning scenarios if the BPMS is
working on a fixed amount of resources [4]: In an over-
provisioned system environment, the BPMS is provided with
too many resources which are not fully used during off-peak
times and hence, this over-provisioning leads to a waste of
resources and money. In contrast, in an under-provisioned
system environment, the BPMS is negatively affected by a
lack of resources. Thus, the system will not be able to handle

peak loads. Consequently, process executions may result in a
low Quality of Service (QoS) and Service Level Agreements
(SLAs) may be violated which may result in penalty cost [5].

The emergence of cloud computing offers a promising so-
lution to address these issues: Instead of constantly supplying
potentially over- or undersized fixed resources, the resources
are only leased when required [6]. Thus, a BPMS is able
to provide elastic processes, i.e., business processes enacted
in an elastic manner using cloud resources. Elastic BPMS
(eBPMS) inherit 3 distinctive features of cloud computing: (i)
leasing and releasing of computational resources for process
execution in an on-demand, utility-like fashion, (ii) rapid
elasticity through scaling resources up or down dynamically,
and (iii) metered service, allowing pay-per-use [6], [7].

Nevertheless, up to now, there are only very few approaches
which consider the usage of cloud resources for process
enactment [4]. Especially, dedicated approaches towards pro-
cess scheduling are missing, even though the introduction of
dynamic resource provisioning for BPMS increases the com-
plexity of process scheduling substantially [8], [9]. There are,
to the best of our knowledge, so far no scheduling approaches
for elastic processes which take into account data transfer
aspects. This may be explained by the fact that scheduling
approaches for elastic processes usually address a private cloud
setting, where data transfer is not considered to be a crucial
factor [10]. However, outsourcing of particular services from
a private cloud to a public cloud provider is often named as an
important business area [11]. Also, the usage of interconnected
cloud computing environments, i.e., the combination of cloud
resources due to benefits like avoidance of vendor lock-ins,
geographical distribution (low latency), or wider resource
availability, has recently gained much popularity [12].

This work contributes to the emerging research area of elas-
tic processes by considering data transfer aspects for schedul-
ing and resource provisioning. Furthermore, we facilitate the
usage of hybrid clouds for elastic process enactment. For this,
we formulate data transfer-aware process scheduling in hybrid
clouds as an optimization problem. The optimal solution to
the optimization model is then computed by applying Mixed
Integer Linear Programming (MILP) techniques. We imple-
ment our solution, evaluate it extensively and demonstrate the
cost savings that can be obtained if data transfer aspects are
explicitly considered for elastic process scheduling.



The remainder of this paper is structured as follows: We
start with a motivational scenario in Section II and state
different prerequisites for our approach in Section III. Af-
terwards, we present our scheduling approach in Section IV.
In Section V, our solution is evaluated using a testbed-
driven approach, Section VI discusses the related work and
Section VII concludes the paper and provides an outlook on
our future work.

II. MOTIVATIONAL SCENARIO

In this section, we provide a motivational scenario to illus-
trate our work. We consider a scenario from the manufacturing
domain [13] since the manufacturing industry is currently
undergoing a massive transition towards more effective and
interconnected factories [14]. The most important objective is
to obtain cost-efficient production processes, which includes
an optimal process enactment of the corresponding business
processes.

We consider a large factory, which is structured by nu-
merous business processes consisting of different kinds of
software-based services. These services range from short, but
resource intensive operations, like model rendering or image
processing for quality monitoring purposes, to long-running
analytic processes. Fig. 1 represents one exemplary business
process which is composed of the software-based services S1
to S6. The services deal with images as well as detailed mod-
els, which have to be transferred from one service to the next
one. This transfer requires time that has to be considered by
the BPMS. The factory maintains a fixed set of computational
resources, represented by the private cloud in Fig. 1, which
is sufficient to instantiate all software-based services in off-
peak times. In peak times, when there are numerous parallel
process enactments, it is required to lease additional resources
from a public cloud to cope with the resource requirements
for the services. Fig. 1 represents a snapshot regarding the
resource allocation for a peak time scenario, where services
S1, S2, S5 and S6 are executed on the fixed resources and
services S3 and S4 have to be executed on the public cloud
since there are too little resources on the private cloud. The
data transfer capabilities within one cloud are very good, so
that data transfer of images only requires a short period of time.
In contrast, the transfer capabilities between the private cloud
and the public cloud are limited, since they are routed over
the Internet. These inter-cloud data transfers also issue data
transfer cost [10]. They are marked with the exclamation marks
in Fig. 1 and the goal is to avoid these costly data transfers
during process enactment. Since the in-time completion of
the process executions is vital for a cost-efficient production
process, each process execution is assigned with a deadline and
when a process execution does not meet this deadline, penalty
cost accrue.

The magnitude of the process landscape and the strict pro-
cess execution deadlines can be also found in other domains,
like the financial industry [15]. Therefore, the work at hand
can also be applied to other domains.

III. PRELIMINARIES

Based on the motivational scenario, we define some prelim-
inaries to realize a data transfer aware scheduling and resource
provisioning approach in hybrid clouds.

S1 S2

S5

S3 S4

S6

Public Cloud

Private Cloud

Fig. 1: Motivational Scenario

Our work extends the Service Instance Placement Problem
(SIPP) approach, which was originally conceptualized for a
private cloud setting [16], and so far neither considers hybrid
clouds nor any data transfer aspects. The SIPP approach pro-
vides a MILP-based solution to a multi-objective scheduling
and resource provisioning problem, which is described in detail
in Section IV.

The process landscape is made up from process instances,
which can be requested by clients by instantiating process
models. Process models are composed of single process steps,
which are executed by invoking a service instance of a partic-
ular service type that is deployed on a Virtual Machine (VM).
Process models include sequences as well as more complex
process patterns, i.e., AND, XOR or loops [2].

VMs are leased and released on demand; for practical
reasons they only run one service type at the same time.
Nevertheless, VMs are capable of processing multiple service
invocations in parallel. Further, it is possible to instantiate
the same service type on more than one VM. Every process
request is accompanied with a SLA that states the deadline for
the process instance and therefore represents an elastic QoS
constraint for the SIPP optimization model [6]. If a process
instance does not meet its predefined deadline, penalty cost
accrue which increase the total process enactment cost.

As already stated in the motivational scenario, we consider
a hybrid cloud that is composed of a private cloud and a
public cloud hosted in two geographically different locations.
The eBPMS is deployed in the private cloud and covers
both the functionalities of a BPMS and of a cloud controller.
Although both, the private and the public cloud, are capable
of hosting all service types, we assume that the private cloud
should be utilized first as its running cost, e.g., energy cost or
maintenance cost, are cheaper compared to the leasing cost for
the VMs in the public cloud. Therefore, the natural goal of the
optimization model is to achieve a high resource utilization of
the private cloud before leasing VMs from the public cloud.
In general, we only consider inter-cloud data transfer in terms
of data transfer cost, as intra-cloud data transfers are free of
charge [10]. However, intra-cloud data transfer also takes some
time, which has to be considered. Further, we assume that
every service instance maintains its own data repository and
that data is only transferred on a process step to process step
communication basis.

IV. PROCESS SCHEDULING

Based on the discussed preliminaries, we are now able to
define our elastic process scheduling approach. For this, we
first briefly present the SIPP [16]. Afterwards, we extend the
scheduling problem to also support hybrid clouds.



A. The Service Instance Placement Problem

To execute elastic processes, software services are deployed
on cloud-based computational resources, i.e., VMs. As already
mentioned in Section I, companies often suffer from the provi-
sioning problem, i.e., to lease enough resources to handle peak
loads and prevent over-provisioning during off-peak times.
Therefore, the challenge is to lease as many resources as
needed while satisfying required QoS levels.

In order to satisfy these aspects, we define a system model
and an optimization model which is aiming at minimizing the
total leasing cost for computational resources, potential penalty
cost and through our extension, data transfer cost. Besides
of minimizing the cost, the most important outcome of the
optimization problem is an assignment of service invocations
to computational resources, i.e., VMs, in an optimal manner.
The SIPP, including all its constraints, variable definitions and
utility functions is described in a detailed way in [16], however
in the remaining section we will provide a short summary of
the system as well as the optimization model.

1) System Model: In order to explain the SIPP’s underlying
optimization problem (see Equation 1) we first have to define
the system model. At this point, it has to be mentioned that
the optimization problem refers to a certain time period τt,
and in order to consider time-dependent variables we make
use of the parameter t as index. This allows us to trigger
the generation of a scheduling and resource provisioning
plan by SIPP at an arbitrary point of time, e.g., in the case
information gets outdated or new information is available, like
additional process instances have been requested, resources
are leased or released, or an unexpected error, like a VM
connection failure, occurred. We consider multiple process
models, and therefore state the set of process models with P
where p ∈ P = {1, ..., p#} indicates one process model. In a
certain time period t, a set of process instances are considered
for execution (Ip), where ip ∈ Ip = {1, ..., i#p } refers to one
certain process instance.

Considering a particular process instance does not neces-
sarily result in invoking the corresponding service instances,
since the SIPP tries to minimize the total cost, i.e., the sum of
VM leasing cost and penalty cost. Therefore, at the beginning
of time period t, it might not yet be required to start the
execution of a process instance, as its deadline is far enough
in the future and the execution of the process instance can be
delayed to a later optimization period.

Service instances which have to be executed for a par-
ticular process instance ip are defined as the set Iip , where
jip ∈ Jip = {1, ..., j#ip} refers to a certain service instance.
There are 2 special type of steps: those which have already
been scheduled in a previous optimization period (defined by
jip

run ∈ Jip ) and those which have to be scheduled in the
next optimization period (defined as j∗ip ∈ Jip ).

The optimization model is able to support different types
of VMs, which vary in their configuration and their cost per
Billing Time Unit (BTU). The set of VM types is indicated
by V where v ∈ V = {1, ..., v#} refers to a certain VM type.
Each VM type has a specific resource supply, e.g., available
CPU power and RAM, indicated by sCv and sRv . Analogously,
the resource demand of a certain service jip is defined by

rC(jip ,v)
(for CPU) and rR(jip ,v)

(for RAM). A specific VM is
defined by kv ∈ Kv = {1, ..., k#v }. The leasing of a VM of
type v results in cost cv . The available resources of one VM
regarding CPU and RAM are referred to as fCkv and fRkv which
define whether the VM can serve a service instance or not.

B. Optimization Model

min
∑
v∈V

cv · γ(v,t)

+
∑
p∈P

∑
ip∈Ip

cpip · e
p
ip

+
∑
v∈V

∑
kv∈Kv

(ωCf · fCkv + ωRf · fRkv )

−
∑
p∈P

∑
ip∈Ip

∑
jip∈J∗

ip

1

DLip − τt
x(jip ,kv,t)

+ CD

(1)

Equation 1 shows the main objective of the SIPP model. The
objective comprises 5 terms. The first 4 terms form the original
SIPP and are presented in the following. The fifth term CD is
an extension to the SIPP, i.e., this term is dedicated to enable
and optimize hybrid cloud deployment of service instances and
their invocations, which is explained in detail in Section IV-C.

The first term in Equation 1 computes the total cost
accruing due to leasing γ(v,t) VMs of type v in a certain
leasing period t. The second term computes the cost which may
accrue if deadlines are violated, i.e., penalty cost which have
to be paid for delayed process instances. For computing these
penalties we apply a linear penalty function as described in
[5]. This means that each process instance (or more precisely:
the SLA of this process instance) includes defined penalty cost
cpip which are due if the process instance gets delayed. This
value is multiplied with the actual period of time epip for which
the process instance is delayed. The third term in the equation
is used to consider the cost of wasted resources, i.e., the sum
of free resource capacities fCkv and fRkv . The fourth term is
used to compute the urgency of process instances, i.e., we
subtract the current period in time τt from the deadlines DLip
and compute the corresponding reciprocal value. This way, a
process instance having a closer deadline is assigned with a
higher priority since the value 1

DLip−τt
gets larger.

C. Scheduling under Consideration of Hybrid Clouds

Usually, private clouds provide a fixed amount of compu-
tational resources and therefore suffer from over- and under-
provisioning. Having this problem in mind, many companies
choose to extend their private cloud with a public cloud to lease
theoretically unlimited additional resources to deploy resource-
intensive service types [11], [17].

The proposed optimization model from Section IV-B is
able to optimize the scheduling and placement of service
invocations on computational resources provided by a single
cloud (independent from the fact whether it is either a private
or a public cloud). However, the support of hybrid clouds raises
additional challenges especially in terms of data transfer, i.e.,



the duration it takes to transfer data and the cost which accrue
when a large amount of data is moved from or into a cloud.
In order to address these challenges, we extended the original
SIPP model in Equation 1 with the fifth term CD. This, and
additional constraints and utility functions (Equations 2-6) are
explained in the following.

1) Data Transfer Cost: First we consider the data transfer
cost, which are represented by the new variable CD (see
Equation 4). This variable represents all data transfer cost
which are issued by the inter-cloud data transmission between
currently running respectively already finished process steps
and future process steps that are currently considered in the
scheduling plan.

To distinguish between private cloud VMs and public cloud
VMs, we extend the concept of the VM variable Kv: We
introduce 2 subtypes of this variable, Kvpriv which represents
VMs in the private cloud and Kvpub

which represents VMs in
the public cloud. Since the original system model of SIPP does
not consider any data transfer between 2 sequenced process
steps, we introduce the additional variable jpastip

. This variable
represents all process steps which are currently running or
have already been completed to determine whether 2 adjoining
process steps issue any data transfer cost. 2 successive process
steps can follow 4 different deployment scenarios: In the first 2
scenarios both process steps are either deployed in the private
cloud or in the public cloud. As intra-cloud data transfer is
free of charge, no data transfer cost will accrue within this
scenario. In contrast to that, in the 2 remaining deployment
scenarios, the predecessor step can either be deployed in the
private cloud and the successor step in the public cloud or vice
versa. Within this scenario, data transfer cost will accrue and
have to be considered.

The actual deployment situation is evaluated using the util-
ity function l(jpastip

, j∗ip) (see Equation 2). In case a scheduling
plan consists of a deployment spanning across private and
public clouds, we assign data transfer cost based on the output
result size of the first task, since hosting providers usually
only charge for outgoing data transfer (see Equation 3). In any
other case, we assign no data transfer cost. These individual
transfer cost C#

Djip

are accumulated by an additional constraint
(see Equation 4) to be considered for the overall optimization
objective (see Equation 1) as CD.

l(jpastip
, j∗ip) =



0, if k1, k2 ∈ Kvpriv , x(jpast
ip

,k1,t)
,

x(j∗ip ,k2,t)

0, if k1, k2 ∈ Kvpub
, x(jpast

ip
,k1,t)

,

x(j∗ip ,k2,t)

1, else

(2)

C#
Djip

=

{
CDjip

, if l(jpastip
, j∗ip) = 1

0 , else
(3)

∑
v∈V

∑
k∈Kv

∑
jip∈Jip

x(jip ,kv,t) ∗ C
#
Djip

≤ CD (4)

2) Collocation of Service Invocations: The amount of
accruing data transfer cost depends on the service type in
combination with the deployment location, i.e., whether it is
deployed in the public or private cloud. Using this information,
the collocation of successive service invocations is realized
based on the data transfer cost constraints in an implicit
manner, as the objective function aims at minimizing the
overall cost.

3) Selective Usage of Public Resources: To implement the
conditional usage of the public cloud, we introduce the utility
function u (see Equation 5) and the functionality to assign the
future leasing cost for the public VMs based on the current
usage of the private cloud. The utility function u sums up the
cores of all currently leased private VMs. In order to have
a VM-independent resource usage calculation function, the
usage calculation is carried out on the basis of VM cores.
As long as the usage of the private cloud is below 70%, the
leasing cost of the public VMs are multiplied with 100 to
make them a non-desirable option for the scheduling plan (see
Equation 6). The concrete figure of 70% was chosen based
to achieve a high resource utilization for the private cloud,
while maintaining necessary reserves in case of VM failures
to achieve a data transfer optimized scheduling plan, even if
some VMs have to be replaced [18].

u =
∑

kv∈Kvi

core(g(kvpriv , t)) (5)

cvex =

cvex , if u >

( ∑
kv∈Kvi

core(kvpriv )

)
∗ 0.7

cvex ∗ 100 , else

(6)

This constraint does not completely rule out the usage of VMs
provided by the public cloud, since the scheduling plan may
require a specific type of a VM, which is currently not available
in the private cloud and an expensive VM may be a better
option than paying penalty cost. Nevertheless, since the cost
are higher than for the private resources, the selection of such
an expensive VM is unlikely. In general, we assign leasing
cost for the private cloud as well as the public cloud. The
cost structure for the private cloud enables us to implement a
fine-grained selection of different VM types to use the private
cloud as efficient as possible.

V. EVALUATION

For evaluating our scheduling and provisioning approach
we made use of the Vienna Platform for Elastic Processes
(ViePEP) [19]. As ViePEP was originally designed for a sin-
gle private cloud environment, we implemented an extension
allowing to lease VMs from an Openstack-based cloud1 as well
as from Amazon’s EC22. While the private cloud is restricted
in terms of computational resources, the public cloud provides
virtually unlimited resources. The BTU for both clouds is set
to 5 minutes.

1http://www.openstack.org/software/folsom/
2http://aws.amazon.com/ec2/

http://www.openstack.org/software/folsom/
http://aws.amazon.com/ec2/
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On the one hand ViePEP operates on a Platform as a
Service (PaaS) level and accepts new process instance requests
and on the other hand it operates on the Infrastructure as
a Service (IaaS) level to lease and release computational
resources in order to enact the requested process instances.
Further, ViePEP makes use of CPLEX3 for solving the SIPP
model. The result is a full scheduling and resource allocation
plan, i.e., a scheduling plan telling on which VM instance a
particular service instance has to be invoked in order to fulfill
a certain process instance.

In the following subsections, we first present the evaluation
setup in Section V-A. Afterwards, we present the quantitative
evaluation including a discussion in Section V-B.

A. Evaluation Setup

1) Process Models: To perform a realistic evaluation we
selected 10 representative process models from the SAP ref-
erence model [20]. This reference model has been evaluated
and used for many scientific papers, e.g., [21] and provides a
solid basis for our evaluation. The selected process models
are composed from different process patterns and different
levels of complexity, i.e., the process models may be composed
of AND-splits, XOR-splits or loops. The former two types
consist of a split (AND, XOR) and an appropriate merge
pattern, which either is blocking (AND) or simply continues
the process execution, as soon as 1 optional process step is
completed (XOR). Figure 2 shows two sample process models,
namely process model 5 which contains an XOR-split, and
model 9, which contains an AND-split with a nested loop in
one of the AND-paths. The remaining process models range
from a simple sequential process with 3 process steps up to
complex ones consisting of 20 process steps that are connected
with complex process patterns.

2) Test bed: Although real world processes like those in
the SAP reference model are composed of software-based and
human-provided services, our work focuses on software-based
services. For these software-based services, we simulate 10
software service types with different resource requirements
and makespans. Table I provides a detailed overview about
the 10 simulated service types. The table states the required
mean CPU load in percent, the mean makespan in seconds,
and the size of outgoing data in cost units. The services’
CPU load describes the required amount of CPU in percent
on a single core VM. If a service is deployed on a multi-
core VM, the load is equally distributed among all of them,

3http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

TABLE I: Service Types

Service Type No. CPU Load in % Makespan in sec. Outgoing data
(µcpu) (µmakespan) cost

1 50 30 2
2 75 80 4
3 75 120 6
4 100 20 2
5 120 100 4
6 125 30 6
7 150 40 2
8 175 20 4
9 250 60 6
10 310 30 2

i.e., we assume that each service is fully parallelizable. This
leads to the fact that only the first 3 services of Table I can be
deployed on a single core VM. All other services require at
least a dual core VM or an even larger one. Notably, with an
increasing number of CPU cores, the makespan remains the
same. For generating the CPU load, we use the lookbusy load
generator4. This is a configurable tool to generate CPU load
on a VM for a given time span and enables us to simulate
the resource consumption. The values µcpu and µmakespan
provided in Table I represent mean values of 2 general normal
distributions where we assume σ1 = µcpu/10 respectively
σ2 = µmakespan/10. ViePEP is able to lease 7 different VM
types: 4 VM types from the private Openstack-based cloud,
and 3 VM types from Amazon’s EC2 public cloud.

3) Applied SLAs: Each process instance is applied with
a SLA defining its deadline, i.e., the latest point of time
when the process instance has to be finished. To evaluate the
applicability of our approach, we choose two different SLA
scenarios. First, we apply a strict scenario, i.e., the deadline is
defined by 1.5 times the process model’s average makespan.
Second, we apply a lenient scenario, i.e., the deadline is
defined by 2.5 times the process model’s average makespan.
The 2 values were chosen due to the fact that VMs require
some time for the deployment of the services and individual
VMs may fail, so that ViePEP has to lease replacement VMs
which affects the overall process execution negatively.

4) Request Patterns: We apply 2 different request patterns:
First, we follow a constant request pattern, for which we select
7 process models every 120 seconds. In order to vary the
process models, we create different instances based on the
round-robin principle, i.e., in the first round process models
1 to 7 are requested, in the next round 8 to 10 and 1 to 4, and
so on. This is repeated until a total of 70 process instances are
requested in a timeframe of about 20 minutes.

The second arrival pattern follows a pyramid-like function,
which is represented by Equation 7. Variable a represents the
amount of process instance requests at the single points in time
n every 120 seconds. The actual process selection aims for a
realistic distribution among common and rare process models.
To achieve this variable distribution, we start for every new
request batch with process number 1 and increment the process
number to match the amount of process requests. The second
request pattern issues in total 118 process instances within a
timeframe of 48 minutes.

4http://devin.com/lookbusy/

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://devin.com/lookbusy/


f(n) =



a = n if 0 ≤ n ≤ 5

a = n/2 if n = 6

a = 1 if 7 ≤ n ≤ 10

a = n− 10 if 11 ≤ n ≤ 19

a = 10 if 20 ≤ n ≤ 24

(7)

5) Baseline for the Evaluation: We compare our evaluation
against a baseline which follows a basic scheduling and
resources provisioning strategy [22]: As soon as a service
instance needs to be invoked and no VM hosting a specific
service is available, a quad core VM is leased and the cor-
responding service type is deployed. In addition, to prevent
under-provisioning, an additional quad core VM will be leased
and the needed service type will be deployed, if a VM’s
resource utilization level reaches 80%. If a VM’s resource
load is below 20%, the VM will be released as soon as all
service invocations on this VM have been finished. Within
the baseline, VMs are equally leased from the public as
well as from the private cloud without considering any data
transfer aspects. Nevertheless, all restrictions applied to the
SIPP model, like only 1 service type per VM, QoS constraints,
i.e., the given deadline, and the issued cost are also applied
for the baseline approach.

6) Metrics: To assess the performance of our scheduling
approach, we apply different metrics: First, the Total Makespan
is measured, i.e., the overall time span from the first process
instance request until the successful termination of the last
process step of the last process instance. Second, the Total
Cost are computed. They are composed from Private Leas-
ing Cost representing the leasing cost for the private cloud,
Public Leasing Cost which represent the leasing cost for the
public cloud and Data Transfer Cost which are charged for
transferring data across the different clouds. In addition, the
Total Cost also include Penalty Cost which accrue if a process
instance is delayed. For that, we apply according to the delay,
1 cost unit penalty for every 10% of the overall makespan
of the process model. We further assess the SLA Adherence,
i.e., the percentage of process executions which are compliant
with their SLA. Regarding the leasing cost, we assume that it
is cheaper to lease a dual core VM than two single core VMs,
i.e., we follow a cost model with decreasing marginal cost.

To receive significant data, we perform 3 iterations for each
process request pattern combined with the 2 different SLA
levels resulting in a total of 12 runs for our approach as well
as 12 for the baseline.

B. Results and Discussion

The following section presents and discusses the results of
our evaluation by listing all key metrics in Table II. Notably,
the numbers in this table, as well as the numbers below in
the discussion represent the mean value over the 3 runs. The
standard deviation σ is also presented in the table.

First we discuss the constant request pattern for both SLA
scenarios: The most prominent difference between the baseline
and our extended SIPP approach are the higher total cost for
the baseline approach. The baseline approach for the lenient
SLA scenario issues 1.84 times the total cost of the extended
SIPP approach and the strict SLA scenario even requires 2.59

times the total cost for the same amount of process requests.
As it can be seen in the table, the leasing cost represent the
major part of the overall cost. Overall, in our approach, less
VMs from the public cloud were leased leading to significant
smaller leasing cost. These results show that the selective usage
of public resources works as intended and the extended SIPP
only leases public resources when they are required to comply
with the SLA. This has a large impact on the overall data
transfer cost. The baseline issued about 14 times as much data
transfer cost which represent almost a third of its total cost, i.e.,
26% for the strict SLA scenario and 30% for the lenient one.
Compared to our approach, where data transfer cost amounts
to only 4% of the total cost for the strict scenario (and none
for the lenient one). While observing the SLA adherence, we
see that hardly any SLAs are violated in the constant scenario.
The fact that we experienced no SLA violations in the strict
scenario for our approach, can be reduced to the fact that the
overall deadlines are close which results in a higher risk of
delay compared to the lenient scenario. As penalty cost are an
important factor, closer deadlines force earlier scheduling. If a
VM is already leased, the SIPP model aims at reducing wasting
resources, hence, future process instances are preponed.

Next to the SLA adherence it remains to discuss the overall
makespan: In general, the strict scenario finishes faster than the
lenient one, and further, the baseline finishes faster than our
approach. This can be reduced to the fact that the baseline
leases more VMs, hence, has more resources available and
is able to perform more service invocations in parallel. In
contrast, the extended SIPP only leases additional resources
when they are cost-efficient in respect to the penalty cost
model. However, although the baseline was faster than the
extended SIPP, it also results in much higher cost (∼2.5 times).

Second, we discuss the pyramid request scenario where
48 additional process instances were requested. Due to the
nature of this scenario, both approaches had to lease in total
more resources than in the constant scenario leading to higher
leasing cost of both, public VMs and private VMs. Interesting
to see is the ratio between data transfer cost and leasing cost:
For our approach, this ratio amounts to 8% for the strict
SLA and 5% for the lenient one. For the baseline it is 36%
for the strict SLA scenario and 59% for the lenient one.
This means, that our approach preferred to schedule service
invocations within the same cloud over switching between the
public and private cloud. As the baseline does not consider
any data transfer cost for its scheduling plan, it results in much
higher cost. Due to the used penalty cost model, the overall
SLA adherence is in general lower (57%-86%) compared to
the constant request scenario (90%-100%) as penalty cost are
comparably cheaper than leasing additional resources. The
reason that we experienced more SLA violations using the
extended SIPP model in the pyramid request scenario than for
the constant request scenario, can be attributed to the fact that
in total more process instances are processed.

The evaluations have shown that the usage of our approach
for creating a scheduling plan which considers leasing cost,
penalty cost, and data transfer cost significantly decreases the
overall cost comparing to an ad hoc approach. The numbers
in Table II reveal that the extended SIPP approach was able to
reduce the overall cost by an average of 53% for the constant
requests and an average of 45% for the pyramid requests.



TABLE II: Evaluation Results

Constant Pyramid
Extended SIPP Baseline Extended SIPP Baseline

SLA Level Strict Lenient Strict Lenient Strict Lenient Strict Lenient
Number of
Process Requests 70 118

Interval between
two Process Requests 120 seconds

Number of Parallel
Process Requests y = 7

f(n)
(see Equation 7)

Total Makespan in Minutes
(Standard Deviation)

26.33
(σ=2.30)

33.00
(σ=3.00)

23.67
(σ=1.15)

32.67
(σ=7.51)

62.00
(σ=2.00)

67.33
(σ=0.59)

58.67
(σ=0.59)

61.67
(σ=0.59)

SLA Adherence in %
(Standard Deviation)

100.00
(σ=0.00)

90.00
(σ=7.95)

94.76
(σ=6.60)

100.00
(σ=0.00)

57.91
(σ=4.67)

76.27
(σ=5.29)

60.92
(σ=5.06)

86.72
(σ=3.42)

Penalty Cost
(Standard Deviation)

0.00
(σ=0.00)

10.33
(σ=8.02)

15.00
(σ=24.24)

0.00
(σ=0.00)

155.33
(σ=34.43)

58.00
(σ=19.28)

123.33
(σ=15.00)

27.33
(σ=9.87)

Private Leasing Cost
(Standard Deviation)

963.33
(σ=77.36)

1284.00
(σ=300.39)

1061.67
(σ=20.20)

385.00
(σ=121.24)

1793.00
(σ=47.70)

1934.67
(σ=199.58)

1458.33
(σ=253.20)

1540.00
(σ=185.20)

Public Leasing Cost
(Standard Deviation)

45.00
(σ=0.00)

0.00
(σ=0.00)

945.00
(σ=242.49)

1061.67
(σ=80.83)

420.00
(σ=108.17)

548.33
(σ=137.69)

1796.67
(σ=225.02)

1563.33
(σ=359.21)

Data Transfer Cost
(Standard Deviation)

52.00
(σ=13.85)

0.00
(σ=0.00)

724.00
(σ=187.06)

937.33
(σ=244.79)

170.67
(σ=94.77)

136.67
(σ=28.94)

1184.67
(σ=193.67)

1051.33
(σ=204.92)

Total Cost
(Standard Deviation)

1060.33
(σ=91.22)

1294.33
(σ=308.39)

2745.67
(σ=474.00)

2384.00
(σ=204.38)

2539.00
(σ=111.53)

2677.67
(σ=216.15)

4563.00
(σ=153.27)

4182.00
(σ=481.38)

VI. RELATED WORK

While scheduling for elastic processes is still an emerging
research topic, a small number of corresponding solution
approaches have emerged in recent years [4]. Furthermore,
there are several resource provisioning strategies for single
applications, e.g., [5], [23]. These approaches do not take into
account any process perspective. Instead, they focus on ad hoc
scheduling and resource provisioning of single applications.
In addition, there are a number of scheduling approaches for
scientific workflows, e.g., [10], [24].

Resource constraints – the primary driving force behind
scheduling for elastic processes – are a relatively neglected
topic in process enactment [25]. To the best of our knowledge,
there is currently no approach providing optimal scheduling in
hybrid clouds while taking into account data transfer aspects.
Nevertheless, there are some approaches which are related to
our work: Juhnke et al. provide an extension to a BPEL engine
which allows to apply cloud-based computational resources
to carry out process steps [9]. Notably, the authors take
into account data transfer duration and cost. SLAs for single
process enactments are not regarded, since the optimization
aims at (weighted) pareto-efficient scheduling related to cost
and turnaround duration. Also, scheduling is done with regard
to one single cloud and for single processes. Bessai et al.
provide a similar approach, also aiming at optimization of
either cost, turnaround duration or a priority-based pareto-
efficient combination thereof [26]. Processes do not share VMs
and SLAs for single processes are not regarded. Nevertheless,
data transfer duration and cost are taken into account for the
optimization. Although the authors take into account different
public clouds, they do not consider hybrid ones.

In our former work [16], [27], [28], we have provided the
basics for scheduling elastic processes in the cloud, taking
into account sharing of services among concurrently running
processes and SLAs for single process instances. Optimizations
have been done with regard to cost and deadline constraints.
However, we have not taken into account data transfer issues
and hybrid clouds. Therefore, the work at hand provides a
substantial extension of our former work.

Apart from the already discussed scheduling solutions,
there are several other approaches to elastic process scheduling
which do not take into account data transfer aspects: Wei et
al. aim at optimizing overall resource utilization, but deadline-
constrained scheduling is not explicitly considered [29]. Euting
et al. apply fuzzy theory in order to ensure deadline-aware
scheduling [30]. Wu et al. explicitly aim at minimizing the
cost for a hybrid cloud-based process landscape [31]. For this,
a hierarchical scheduling approach is provided, which first tries
to locate services; if services are not available, new service
instances are deployed in a local cloud and in a second step,
service allocations in a private cloud are optimized.

Taking into account the methodology applied in our con-
tribution, an approach by Cai et al. comes closest to our
optimization solution, as the authors also apply MILP [32].
However, scheduling is only done for single process instances
and resources are not shared amongst processes.

VII. CONCLUSION AND FUTURE WORK

Within this paper we have shown that considering data
transfer aspects while creating a scheduling plan for hybrid
clouds can heavily reduce the total cost. In order to achieve
an optimal scheduling plan we integrated additional constraints
into the original SIPP model [16]. Our evaluations have
shown that our optimization model is able to schedule service
invocations among hybrid cloud resources in a cost-efficient
way. It also does not just reduce the leasing cost but also
reduces the data transfer cost compared to an ad hoc baseline.
Using the extended SIPP approach, we achieved total cost
savings of up to 45%-53%, depending on the process requests.

However, our evaluations have also shown that the cost
reduction depends on the underlying cost model, e.g., we
experienced some SLA violations since it was cheaper to
accept a delay instead of leasing additional resources. Based
on this insight, we plan to use different cost models for penalty
cost, data transfer cost and leasing cost in our future work. In
addition, up to now we focused on process step to process
step communications, i.e., the output of one process step is
directly used as input for the next process step. However, real



world use cases often incorporate more complex data patterns,
like shared global storage systems as well as different cloud
providers.

Another important research area for hybrid clouds are pri-
vacy restrictions for service types or the processed data. These
privacy restrictions could either be issued by the legislation
for sensitive data or are based on precautions not to deploy
sensitive trade secrets, on a public cloud. These constraints
require an extended set of SLAs which have to be considered.
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