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he rapid evolution of Internet of Things (IoT) devices 
(e.g., sensors and gateways) and the almost ubiqui-
tous connectivity (e.g., 4G, Wi-Fi, RFID/NFC, Blue-
tooth, IEEE 802.15.4) are forcing us to radically 

rethink how to effectively deal with massive volume, velocity, 
and variety of big data produced by such IoT devices. There 
are currently 6.4 billion IoT devices in use around the world 
and their number, capabilities, as well as the scope of their 
use, keeps growing rapidly. According to Gartner (http://www 
.gartner.com/newsroom/id/3165317) the number of IoT devic-
es will reach 20.8 billion by 2020, and, by then, IoT service 
spending will reach $1,534 billion and hardware spending 
$1,477 billion.

As IoT expands into various application domains 
such as healthcare, utility grids, cities, agriculture, 
transportation, industry 4.0, and disaster manage-
ment, need for investigating on-the-fly computa-
tion over the IoT data streams is ever more pressing. 
Indeed, most IoT applications are modeled as data 
transformation workflows that consists of: i) mul-
tiple interdependent, heterogeneous data analysis 
computational and  programming models that re-
alise various data transformation tasks from data 
ingestion to analysis, ii) virtualised/non-virtualised 
computational and network infrastructure, iii) 
communication media of various kinds (including 
wireless). Currently, powerful Cloud Datacentres 
(CDCs, e.g. AWS1)  provide computation and data 
storage resources for IoT workflows, but they suffer 
from limited bandwidth and network latency, and 
support neither latency-sensitive applications nor 
applications that rely heavily on the data streaming 
from IoT data sources for computing intelligence 

in real-time (in the form of data ingestion and data 
analysis).

A possible solution to augment the scalability of 
CDCs lies in taking advantage of the ever-increasing 
computational and storage capabilities available at 
the network edge.2,3,4 We note in the previous instal-
ment of “Blue Skies” sensing and networking devices 
available at the network edge constitute a new type 
of computing infrastructure, the Edge Datacentre 
(EDC).5 An EDC may vary in scope and capability, 
including gateways (Raspberry Pi 3, UDOO board, 
esp8266, Meshlium Xtreme, Arduino), software de-
fined network solutions (e.g. Cisco IOx), or smart 
phones equipped with sensors. To facilitate highly 
distributed and federated computing environments, 
we proposed Osmotic Computing paradigm5 that en-
ables the automatic deployment of microservices over 
inter-connected EDC and CDC.  The benefits of in-
tegrating EDC and CDC has already been recognised 
by several companies and open source initiatives, in-
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cluding CISCO, AWS1, and Google3, and the Open-
Fog Consortium.4 For example, AWS has enriched its 
CDC offerings with near-edge computing and storage 
capabilities (i.e., Snowball Edge, Greengrass). 

Nevertheless, the usage of an Osmotic Com-
puting infrastructure (CDC+EDC) poses new chal-
lenges for IoT workflow application developers and 
operations managers as they need the awareness of 
resource/device (CDC server vs. IoT gateway) het-
erogeneity, virtualisation software heterogeneity 
(e.g., hypervisor vs. container), data analytic pro-
gramming model heterogeneity (stream processing 
vs. batch processing), geographic distribution, and 
network performance uncertainties. 

Existing streaming data analysis platforms includ-
ing (e.g., Spark6, Heron7, Google Dataflow8, AWS, 
Kinesis1, StreamCloud, Apache Storm), are CDC-
centric, hence they do not meet the resource manage-
ment and scheduling requirements for IoT workflows 
that require coordinated mapping for data analysis 
activities to both CDC and EDC. Many workflow ap-
plication management platforms such as Pegasus, Tri-
ana, Taverna, Galaxy, e-Science Central, and Kepler 
support the development, deployment and execution 
of scientific workflow applications on CDC without 
considering newly evolved EDC capabilities. Apache 
Oozie and Linkedin Azkaban support a Hadoop work-
flow, but in a rather rigid manner that works well for 
only batch processing activities. Data analytics plat-
forms such as YARN, Mesos  Amazon IoT and Google 
Cloud Dataflow can support manual provisioning of 
multiple data transformation tasks on CDC resources, 
but only in a performance-agnostic way.

The Osmotic Flow Model
We propose Osmotic Flow, a new model for holisti-
cally programming, mapping and executing IoT data 
transformation workflow applications on a distrib-
uted infrastructure combining both EDC and CDC 
resources. In the Osmotic Flow model, an IoT work-
flow application is modelled as a directed (potential-
ly cyclic) graph with data transformation tasks as its 
nodes, and dataflow dependencies (or control flow 
dependencies for computational synchronization, 
if/as needed) between data transformation tasks as 
its vertices. Osmotic Flow model permits data trans-
formation tasks to be distributed, managed, and ex-
ecuted across any available CDC and EDC provider. 

A data transformation task encapsulates a microser-
vice (e.g., Docker, Unikernel), a computational mod-
el (e.g. statistics, clustering, classification, anomaly 
detection, accumulation), and a data analysis pro-
gramming model (e.g., stream processing, batch pro-
cessing, SQL, NoSQL, data ingestion).

Motivation
Let us consider a contemporary Smart City, where 
a plethora of IoT sensing devices with Internet con-
nectivity are disseminated all over the urban en-
vironment. Buses, trains, and taxis continuously 
communicate their position; vehicles notify congested 
routes; citizens often geo-locate their position in mes-
sages, photos, videos, or accessing specific services. 

All these IoT data sources continuously produce 
ever-increasing streams of data that can be collect-
ed and processed to get the so-called “pulse of the 
city”, thus fostering awareness and capacity of tak-
ing informed decisions. Intelligent services aimed 
at improving the citizens’ quality of life can be built 
by merging, filtering, correlating, and transforming 
these diverse data streams.

For example, a smart traffic light IoT application 
(see Figure 1) can identify traffic congestions and 
proactively change traffic light priorities and speed 
limits, so to reduce ripple effects and relieve the en-
vironmental impact. Let us focus on a single road di-
vided in multiple segments and managed by traffic 
light. The traffic light is instrumented with appropri-
ate IoT sensor (e.g., light state sensor, CCTV) and ac-
tuator. The traffic light sensor produce data streams 
about their current state (i.e., color of light turned 
on and light change timings) while the CCTV (traf-
fic congestion indicator) produces visual evidence of 
congestion. The smart traffic light IoT application as-
sumes that traffic congestion is directly proportional 
to the number of cars queued at each intersection 
and inversely proportional to the average speed per 
road segment, each road segment is equipped with 
above IoT sensor and actuator. The First analytic 
task merges the data streams from the light sensors 
and CCTV sensors to develop awareness on traffic 
congestion across the dependent road segments. The 
second analytic task combines output from first ana-
lytic tasks with appropriate traffic flow computation-
al model to develop aggregated knowledge of traffic 
flow and congestion across the segments. The traffic 
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flow computational model dynamically emits the 
traffic light control commands to the actuators about 
the switching off/on of the traffic lights across the 
segments such as that it leads to optimal traffic flow.  

The classic approach for realising this kind of 
IoT workflow application (see Figure 1) relies ex-
clusively on CDC resources, which could be distant 
from data sources, hence leading to excessive event 
detection (e.g., traffic congestion) delay. For exam-
ple, the first analytic step of the traffic light sensor 
data aggregation should be mapped to nearby EDC 
resource, while resource-intensive second analytic 
task should be mapped to CDC resource, as it needs 
to execute complex traffic flow computational model.  

Design Goals of the Osmotic Flow model
We identify the key requirements that drive the de-
sign of Osmotic Flow programming model.

Scalability and Elasticity. Due to the huge amount 
of data that will be processed in a real-time fash-
ion, scalability represent a key design requirement 
for IoT workflow applications. For example, a recent 
analysis of a (single) healthcare-related IoT workflow 
application (with 30 million of users) showed data 
flows up to 25,000 tuples per second.10 The Osmotic 
Flow model should consider scalability and elastic-
ity by design, so that applications can automatically 
grow and shrink based on data volume and velocity. 

Focus on data transformation. The IoT application 
providers, who wants to realise a data transformation 
workflow, desires to focus only on data transforma-
tion, without spending too much time on manage-
ment or configuration operations. Hence, the Osmotic 
Flow model should enable an easy deployment in-
terface where data transformations should be easily 
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FIGURE 1. A high-level description of the smart traffic light IoT workflow application



M A R CH/A P R I L  2 0 1 7   I EEE  CLO U D CO M P U T I N G 7 1

defined and, at the same time, each transformation 
should be seamlessly mapped to either EDC or CDC 
based on performance needs. As a consequence, the 
deployment process is transparently performed by the 
underlying run-time engine. However, the application 
providers can customize the framework behavior so 
to better address his/her specific performance needs.

Efficient composition of data transformations. The 
Osmotic Flow model should support the composi-
tion of cross-workflow data transformations and 
linking, so to easily realise complex workflows. To 
this end, Osmotic Flow should consider by design 
the possibility of composing data streams coming 
from multiple, public IoT devices and applications, 
thus promoting the principle of sharing and reus-
ability. Our Osmotic Flow model should allow the 
application provider to easily define new streams, 
which extract high value information from raw data, 
without worrying about low level concerns related to 
their runtime execution, such as resource allocation, 
streams deployment, elasticity, and governance. 

Network Awareness. The emerging IoT environment 
calls for strong network awareness. The Osmotic 
Flow model should not neglect the presence of com-
munication delays while performing the deployment 
of data transformation tasks to CDC and/or EDC. 

Main Entities in the Osmotic Flow model
In Osmotic Flow, as depicted in Figure 2, includes 
one or more input endpoint that receives data from 
an external data sources and one or more output 
endpoints, which emit processed or transformed 
data towards sinks or other streams. A workflow is 
characterised by the following elements: 

• one or more data sources: a data source is an entity, 
potentially external to the system, that continu-
ously generates events or data. For example, a data 
source can be an IoT device emitting temperature 
measurements or traffic congestion conditions.

• one or more sinks: a sink is a final endpoint in 
the data transformation flow (or pipelne). In-
terested parties can subscribe to the sink for 
receiving notification information (e.g., traffic 
congestion information requested by drivers in 
Figure 1).   

• a transformation function or task: it encapsulates 
the user-defined analytics logic which transforms 
(e.g., combines, filters, splits) incoming data 
streams and passes the results to next transforma-
tion functions or final sinks of the workflow. 

• a contract: it is a high-level configuration and 
performance requirement descriptor of the 
transformation functions or tasks. 

Types of IoT Data Streams 
An IoT data stream can be ephemeral or public. An 
ephemeral stream is a special kind of stream that 
exists only if a sink is (directly or indirectly) inter-
ested to incoming flow. An indirect interest is mani-
fest when one or more streams lie in between the 
stream and the final destination is the workflow 
endpoint (i.e., sink). Being ephemeral, the existence 
of the stream depends on the presence of (direct or 
indirect) interested sinks and its scope is restricted 
within the same application, i.e., it can be used only 
by user-defined transformations running within the 
same application that contains the stream. A public 
stream is a globally available stream and, as such, 
can be part of more than one IoT workflow applica-
tion (for example traffic pattern stream data can be 
used for smart traffic management applications as 
well as air pollution monitoring applications). 

Types of Transformation Tasks
Transformation functions are the only piece of code 
that has to be defined by the application providers. A 
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transformation function encapsulates the data analytics 
logic. For an efficient execution, the stream model re-
quires transformation functions to be as scalable as pos-
sible, therefore the latter are either stateless or provide 
an explicit definition of their state. We distinguish be-
tween two kind of transformations: simple and batch. 

A simple transformation is applied to every in-
coming data in parallel and produces zero, one, or 
more outgoing data. For example, a simple transfor-
mation can be realised using only one type of data 
analysis programming model. An example of simple 
transformation (in context of Figure 1) could include 
tracking vehicles that exceed speed limit. 

A complex transformation fuses one or more 
data streams before applying a transformation us-
ing one or more data analysis programming models 
(e.g., stream processing, batch processing, NoSQL). 
Complex transformation  can produce zero, one, or 
more outgoing data streams. The group of incom-
ing data streams fully determine the function state, 
which can then be manipulated by the transfor-
mation. A flow of data can be determined accord-
ing to two modes: window and window-and-key. A 
window-based transformation creates a time-based 
or count-based window of events that have to be 
combined before running the transformation. For 
example, a window-based transformation can com-
putes statistics on traffic patterns (see Figure 1) on 
a road segment in the last 30 seconds. On the other 
hand, a window-and-key transformation is a special 
case of windowed transformation that has a finer 
granularity in selecting the data streams for fusion. 
A classic example for a window-and-key transforma-
tion is the implementation of the vehicle counter 
task, which computes statistics on how many times 
a particular vehicle has travelled across a road-seg-
ment in last hour/week/month.  Hence, the trans-
formation across both historical and real-time data 
is dependent on the same key (i.e., vehicle registra-
tion number).

Simple transformations are stateless function, 
whereas complex transformations provide an explicit 
definition of their current state (real-time data) as 
well as it depends on the past state (historical data).  

Contract 
The contract provides a high-level description of the 
IoT workflow application’s configuration including: 

• Placement constraints: these constraints guide 
the placement of transformation tasks over the 
distributed CDC+EDC infrastructure. If no re-
strictions are provided, the run-time execution 
engine can deploy a transformation task either 
on CDCs or on EDCs. Placement constraints 
be included to, e.g., maximize the utilization 
of nearby EDC resources or exploit centralized 
Cloud resources. 

• Governance constraints: together with the previ-
ous one, the governance rules enable to specify 
further restrictions regarding the transforma-
tion task deployment and adaptation. These re-
strictions are often  related to security, privacy, 
or law concerns. For example, a governance rule 
can exclude every edge resource belonging to a 
specific geographical region or can require to 
encrypt the exchanged data, so to meet strin-
gent law restrictions. 

• QoS or performance constraints: these ones ex-
press non-functional properties that should be 
met during the stream execution, so to obtain 
a desired quality level. For example, constrains 
can bound the maximum stream latency or min-
imum stream throughput or the event detection 
accuracy. 

Osmotic Flow Scheduling Architecture and 
Research Issues
Figure 3 provides a system-level description of the 
Osmotic Flow model.  Whenever an IoT application 
provider wants to execute a workflow of data trans-
formations, he/she submits the application code to 
the nearest Osmotic Resource Manager using a sub-
mission client. Then, the Osmotic Resource Man-
ager allocates a new Node Manager, which, in turn, 
first determines the application placement, gover-
nance, and QoS constraints, and then distributes 
the data transformation tasks to appropriate EDC 
and/or CDC resources. The main software compo-
nents include

Osmotic Resource Manager (ORM). An Osmotic 
Resource Manager coordinates Edge and Cloud 
resources and supports the Node Manager in de-
termining the placement of Osmotic Flow transfor-
mation functions. In the proposed model, multiple 
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ORM can coexist and cooperate, where each one 
coordinates a pool of nearby CDC/EDC resources. 
The federation of multiple ORM enables the deploy-
ment of applications on the combined (EDC+CDC) 
infrastructure. 

To ensure scalable communication and coordi-
nation between ORMs, future research should focus 
on developing self-healing load coordination proto-
cols that can cope with changes in the infrastruc-
tures and IoT device state, and that can dynamically 
adapt to failures, connections, and detachments of 
ORMs and EDC/CDC resources. Another research 
thread could be to develop cooperative and oppor-
tunistic workload coordination protocol such that 
ORMs are able to balance their workload with each 
other in order to make sure that no CDC/EDC re-
source are wasted due to redundant data streams.  
Several workload coordination solutions already 
exist for CDC environments (e.g., Quincy, Omega, 
Sparrow, Mercury),11 nevertheless the features of 
this new environment (CDC+EDC), as well as the 
characteristics of the Osmotic Flow model, foster 
the development of new load coordination policies 
and protocols, tailored for the specific setting where 
a significant heterogeneity of resources as well 
as multiple of data transformation tasks has to be 
management. 

Universal Stream Repository (USR). To enable the 
sharing and reuse of high-value streams, Osmotic 
Flow includes a Universal Stream Repository (USR), 
which collects and provides the descriptor of every 
public stream available in the Osmotic Flow eco-
system. An IoT application provider relies on the 
descriptor to discovery existing streams and reuse 
them within his/her application. 

Therefore the future research should focus on 
developing holistic data model for expressing EDC/
CDC resources and data stream characteristics us-
ing an ontology-based representation, which enables 
encoding both dynamic (e.g., performance, status of 
stream) and static (e.g., functionality provided, types 
of events) QoS parameters. The ontology will thus 
guide decisions made on the types of data transfor-
mation tasks that are deemed most suitable for the 
deployment in the CDC or at the network Edge. An 
open access USR should be built. Existing ontologies 
such as Semanrtic Sensor Network (SSN) can de-

scribe concepts as IoT sensor characteristics, or data 
formats; nevertheless, they are not suitable to cap-
ture characteristics relevant to CDC/EDC resources. 

Node Manager. The Node Manager is a per-ma-
chine agent that supports the ORM in control-
ling the available resources of the EDC/CDC 
infrastructure. Besides launching and terminat-
ing the execution of workers, the Node Manager 
monitors and reports statistical information about 
resource utilization (i.e., CPU, memory, network) 
to the ORM. Moreover, the Node Manager pro-
vides information to the ORM for determining the 
communication delays of the node with the other 
components of the infrastructure. Observe that 
communication delays can be obtained by means 
of either active/passive measurements (e.g., with 
a network coordinate system12), or with some net-
work support (e.g., SDN).

Though Simple Network Management Protocol 
(SNMP), using the Management Information Base 
(MIB), has been highly adopted for monitoring re-
sources in CDC, it lacks the ability to monitor EDC 
resources (as identified by the Internet Engineering 
Task Force13) due to huge computational overhead 
and the constrained nature of Edge resources. Hence, 
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future research will need to investigate modeling of a 
novel Edge resource monitoring agent that harness-
es lightweight IoT protocols such as Constrained Ap-
plication Protocol and a new Edge resource-specific 
MIB interface provided by the Internet Engineering 
Task Force.13

Worker. The Worker is in charge of executing one 
or more transformation functions. To this end, a 
worker collects data from the stream data source 
(i.e., another worker or an external data source), 
runs the user-defined transformation function, and 
emits outgoing streams. In other words, the worker 
takes care of the distributed execution of the user 
code, that defines only how to manipulate input data 
to obtain output data. Since streams are executed by 
workers, they directly communicate to transfer data 
up to the final consumers. Being stateless or with a 
window-based state, multiple transformation func-
tions can run concurrently in a worker, and multiple 
workers can run concurrently on the infrastructure. 
Moreover, since a transformation function is defined 
with a fine granularity (i.e., per event or per win-
dow), it can be transparently scaled as the number 
of incoming events increases or decreases, up to—
theoretically—creating an instance per each event.

As Osmotic Flow model thrives to support mul-
tiple type and mix of data transformation tasks on 
shared EDC+CDC infrastructures, the Worker 
need to be equipped with scheduling intelligence 
to automatically discover and resolve contention be-
tween co-deployed data transformation tasks. Dur-
ing deployment of data transformation tasks, the 
Worker must consider which data transformation 
tasks  should be combined on an EDC and/or CDC 
resource, to minimize resource contention due to 
workload interference. Workload resource consump-
tion and QoS are not additive, so understanding 
the nature of their composition is critical to decid-
ing which transformation tasks can be deployed 
together. Existing content detection approaches 
such as Paragon14 that applies collaborative filter-
ing techniques for resolving contention between co-
deployed, hypervisor-based application workloads on 
CDC are agnostic to the new hardware (e.g. Rasp-
berry, Pi 3, UDOO board, Cisco IOx) and virtualisa-
tion features (e.g., Containers, Unikernels) of EDC 
resources. 

ill data, several data analytic programming 
models and frameworks have been proposed. 

Nevertheless, most of them are designed to run in 
CDC, thus neglecting the presence of EDC resourc-
es. Osmotic Flow builds on the strengths of existing 
solutions and creates a novel approach for execut-
ing data analytics in a Cloud-supported Edge envi-
ronment. Similar to Google Cloud Dataflow8 and 
Apache Spark, Osmotic Flow defines a very simple 
and scalable programming model that enables to 
automatically deploy transformations with a high 
degree of parallelism. However, differently from ex-
isting approaches, Osmotic Flow focuses mainly on 
processing continuous and unbounded streams of 
data on decentralized CDC+EDC resources. More-
over, since the Osmotic Flow includes resource 
management capabilities, it can optimize how Edge 
and Cloud nodes are allocated among multiple and 
concurrent data transformation functions.  
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