
Data and Control Points: A Programming Model for
Resource-constrained IoT Cloud Edge Devices

Stefan Nastic∗, Hong-Linh Truong∗, and Schahram Dustdar∗

Abstract— Recent emergence of IoT Cloud systems has fos-
tered proliferation of various applications mainly driven by
urgent need to respond to volume, velocity and variety of data
generated by IoT Cloud, but also to enable timely propagation
of actuation decisions, crucial for business operation, to the
Edge of the infrastructure. In such systems, utilizing currently
untapped Edge resources such as sensory gateways, and en-
abling the IoT devices as first-class execution environments
plays a crucial role. However, enabling virtually exclusive access
to the underlying devices, e.g., field bus sensors and supporting
flexible, application-specific customizations for such devices still
remain a challenge. In this paper, we introduce Data- and
Control Points - a novel programming model and framework
for developing applications specifically tailored for resource-
constrained Edge devices. Our framework offers programming
constructs that enable applications to define custom configu-
rations for and their own view of the underlying devices. By
providing an illusion of an exclusive access to the underlying
sensors and actuators, our framework supports execution of
multiple applications within a single Edge device.

I. INTRODUCTION & RELATED WORK

Recent advances in IoT and Edge computing have resulted
in numerous approaches in terms of programming frame-
works and middleware for developing application business
logic suitable for resource-constrained IoT devices such
as sensory gateways. However, such approaches mainly
focus on hiding the heterogeneity of data sources (e.g.,
sensors) [1]–[6], defining data processing schemes [1], [6],
and dealing with mobility [1], [3], [4], privacy [5] and
scalability [4], [6]. In spite these and other approaches that
address similar issues, e.g., on communication protocols
level [7] or by utilizing SOA principles [8], [9], enabling
virtually exclusive access to the underlying devices, e.g.,
field bus sensors and supporting flexible application-specific
customizations for such devices are still not fully addressed
in the literature. This inherently prevents utilizing the Edge
devices as generic execution environments that can be po-
tentially shared by multiple IoT Cloud applications. Still in
large-scale IoT Cloud systems, leveraging the computational
resources of the Edge devices is especially important, as
their currently untapped processing capabilities can be used
to optimize IoT Cloud applications by making edge devices
first-class execution environments, i.e., by moving parts of
application logic away from cloud platforms towards the
edge of IoT Cloud infrastructure.

Continuing our previous line of research [10], [11], in
this paper we introduce Data- and Control Points - a novel
programming model and framework that provides a set of
programming abstractions for developing common monitor
and control tasks. The Data- and Control Points represent
low-level channels to the sensors/actuators in an abstract
manner and mediate the communication with the connected

*This author is with Distributed Systems Group, TU Wien, Austria.
Contact him via: {lastname}@dsg.tuwien.ac.at

devices, e.g., digital, serial or IP-based. The supporting
framework provides mechanisms which act as multiplexers
of the data and control channels, thus enabling the device
services to have their own view of and define custom
configurations for such channels, e.g., sensor poll rates, data
units or data stream filters. By providing an illusion of an
exclusive access to the underlying devices, our framework
supports execution of multiple applications within a single
Edge device.

The remainder of the paper is structured as follows: In
Section II we outline the framework architecture; Section III
introduces the Data and Control Points and presents the
main concepts of the programming model; In Section IV, we
describe the main runtime mechanisms of the edge-devices
framework. Finally, Section VI concludes this paper.

II. OVERVIEW OF DRACO FRAMEWORK

The main aim of DRACO (Data And Control pOints)
framework is to facilitate the development of common mon-
itor and control tasks in IoT Cloud systems. As discussed in
our previous work, these task are the main building blocks of
edge-device applications/services and the main constituents
of reusable domain libraries [10]. Generally, such libraries
form the cornerstone for building higher-level cloud-centric
IoT Cloud applications.

Figure 1 shows a high-level overview of the DRACO
framework. In general, our framework follows a layered
architecture and runs inside resource constrained Edge de-
vice, enabling local execution of device-level applications.
In a broader sense it acts as an interlayer between low-
level devices such as sensors and actuators and the high-
level services which are executed on cloud platforms. Start-
ing from bottom up, the Edge device middleware layer is
generally responsible to mediate communication with the
underlying physical devices, maintain configuration models
and provide and execution runtime for the monitor and
control tasks. To enable communication with the physical
devices this layer provides Drivers and Com. Protocols com-
ponent. Its main responsibility is to provide the supporting
driver implementations, which enable direct communication
with the devices, e.g., via general purpose IO (GPIO) pins,
field bus communications over protocols such as I2C or
ModBus, or communication over IP-based networks. Th
Edge device middleware layer also provides Configuration
Models repositories such as light-weight NoSQL database.
The configuration models are stored locally in the device
and among other things they specify how the underlying
devices are connected. For example, in case of direct pin
connection such models contain meta-data such as pin class
(e.g., analog in), name and hardware-related data, e.g.,
multiplexer addresses or value correction constants. Finally,
the Runtime Services constitute the tasks execution runtime

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1645-1/17/$31.00 ©2017 IEEE 3535

Edge device

Physical devices and field bus layer

Cloud platform

Communication Protocols Library

Applications Runtime Container

Runtime Services

Data and Control Points

Drivers and Com. Protocols

Cl
ou

d
co
nn

ec
tiv
ity

la
ye
r

Ap
pl
ic
at
io
n
la
ye
r

Ed
ge

 d
ev
ic
e

m
id
dl
ew

ar
e
la
ye
r Configuration

Models

File system

NoSQL database

Co
nn

ec
tiv

ity
 M

an
ag
er

Di
re
ct
 p
in

N
et
w
or
k

Fi
el
d
bu

s

Co
m
m
un

ic
at
io
n

Bu
s

W
id
e
Ar
ea

ne

tw
or
k

Ce
llu
la
r

ne
tw

or
k

Fig. 1. DRACO high-level architecture overview.

and provide the sporting runtime mechanisms for Data and
Control Points. This component is discussed in more detail
in Section IV.

The next layer is the Application layer and its main
purpose is to provide application development and execution
support. The crucial part of this layer is the Data and Control
Points component. It provides concrete implementation our
programming model’s abstractions and APIs, which are used
by domain expert developers, as we describe in more detail
subsequently. Further, the Applications Runtime Container,
provides an execution runtime for the Edge-device applica-
tions. It is important to mention that the DRACO framework
does not impose many limitations regarding the application
model. For example, such applications can be based on
OSGi container or even stand alone applications. In the
current prototype, we rely on a striped-down JVM (based
on Oracle Compact Profiles) to run the programming model,
thus the framework only requires the application runtime to
be JVM compatible. The Connectivity Manager is a cross
cutting component (between the Application layer and Cloud
connectivity layer), which provides a flexible mechanisms for
the Edge-device applications and services to communicate
with the cloud. The Connectivity Manager relies on the
Communication Protocols Library to offer a set of higher-
level communication protocols such as CoAP or MQTT to
the applications. It supports the applications to dynamically
configure and utilize the available protocols, without having
to deal with the low-level implementation details. In this
paper we do not discuss the Cloud connectivity layer to more
detail, since it is out of scope of DRACO framework.

III. DATA AND CONTROL POINTS: A PROGRAMMING
MODEL FOR EDGE DEVICES

In our framework we envision two distinct usage patterns
for the Data and Control Points and the aforementioned
tasks. First, they can be used to develop “stand alone” edge-
device applications, which do not necessarily depend on the
cloud. An example of such application would be a logging

application that reads sensory data and stores it locally at
device side, e.g., in a light-weight database. Second, they
can be used to develop domain libraries. In this context
a domain library contains a set of reusable tasks that are
responsible to encapsulate domain-specific knowledge, most
notably domain model and common behaviors, in a reusable
manner. For example, a building automation expert developer
could develop a domain library to facilitate development of
higher-level functionality for building management systems.
Generally, a control task is any permissible sequence of
actuating steps which can be used to control physical devices,
via the actuators they expose. Further, a monitor task includes
processing, correlation and analysis of sensory data streams
to provide meaningful information about the state changes
of the underlying devices or the surrounding environment.

A. Main programming abstractions and application model

Data and Control Points represent and enable management
of data and control channels (e.g., device drivers) to the
low-level sensors/actuators in an abstract manner. Generally,
they mediate the communication with the connected devices
(e.g., digital, serial or IP-based), enable application-specific
customizations of the channels and also implement commu-
nication protocols for the connected devices, e.g., Modbus,
CAN or I2C.

Figure 2 shows a simplified UML diagram of the main
components of our programming model. From the figure
we notice that the EdgeApplication contains multiple Tasks.
Further such tasks can have multiple DCPoints associated
with them. The DCPoint is an abstract class which pro-
vides main operators and lifecycle management hooks for
the Data and Control Points. Both DataPoints and Con-
trolPoints inherit from this component and encapsulate the
specialized behavior for reading sensory data (DataPoints)
and preforming the actuations (ControlPoints). In general,
DCPoints allow the developers to perform concurrent reads
and writs, regardless of whether the low-level drivers support
sequential or concurrent reads and writes. In this way the
applications have an impression of exclusive usage of the
available devices. Another important feature of DCPoints is
that they enable developers to configure custom behavior of
underlying devices. For this purpose each DCPoint can have
a ConfigurationModel associated with it. For example, an ap-
plication can configure sensor poll rates, activate a low-pass
filter for an analog sensory input or configure unit and type
of data instances in the stream. However, there are physical
limitation, which need to be considered, such as a sensor
might sample data at a different rate then specified in the
ConfigurationModel for the DataPoint abstracting the sensor.
The most important case is when the poll interval specified
by an application is shorter than sensor’s minimum interval.
In this case the corresponding DataPoint issues a warning
to the application (e.g., not supported configuration), but it
resends the last available reading, given the configuration,
until a new fresh reading is available. This enables developers
to handle such situation dynamically, while allowing the
applications to run without runtime interrupts.

The most important concept supporting the DCPoints are
the VirtualBuffers, which are provided and managed by
our framework. In general, such buffers enable virtualized
access to and custom configurations of underlying sensors
and actuators. They act as multiplexers of the data and

3536

Main programming model constructsFramework managed components (partial view)

VirtualBuffers
Manager

Gatherer

VirtualBuffer

I2CDriverImpl

wraps

AdapterChainAdapter

<<Interface>>

DeviceDriver

isSuitable()
implements

Application

initialize()
shutDown()

isBestChoice()
getAllPortDescriptors()
getPort()
setPort(portDescriptor, value)

Port

sets

PortConfig

has

has

<<Abstract>>

Task

MonitorTask

ControlTask

Filter

Configuration
Model

Mapping

DataPoint ControlPoint

write(dataInstance)

has

<<Abstract>>

DCPoint

contains

<<Interface>>

Component

initialize()
shutDown()
release()

configure

onNewInstance(dataInstance)

read()

release()

manages

createBuffer

readBatch(timeWindow)

createBuffer(configurationModel)
initialize()

Fig. 2. Simplified UML diagram of Data and Control Points.

control channels, thus enabling the device applications to
have their own view of and define custom configurations
for such channels. To this end, the VitualBuffers wrap the
DeviceDrivers and share a common behavior with them, in-
herited through the Component Interface. For example, they
can be initialized, shutdown and released. Both buffers and
drivers lifecycle are managed by the VirtualBuffersManager.
Moreover, a virtual buffer references a set of Gatherers and
can contain an optional AdapterChain. Generally, a gatherer
is a higher level representation of a port. For example, in case
of a sensing device (DataPoint) the gatherer represents the
most resent value of the hardware interface. The principle
for ControlPoints is similar to the one for the sensing
devices. The only difference is that in case of actuation
request the gatherers act as serializes instead of observers.
To support application-specific configurations such as sensor
poll rate, filters or scalers, each virtual buffer can have an
AdapterChain. Adapter chains reference different Adapters,
which are specified and parametrized via DCPoint’s Config-
urationModel. Any raw sensing value is passed through such
adapter chain before being delivered to a DataPoint.

The DeviceDrivers Package contains a set of driver imple-
mentations. For readability purposes, in the figure we only
show the component for I2C protocol, but each implemen-
tation follows similar principle. It contains a set of Ports,
which is a framework internal representation of devices
attached to the bus. Such Ports are dynamically instantiated
by the VirtualBuffersManager at device bootup during driver
initialization phase, based on the provided PortConfig. At
the moment, PortConfig is specified as a JSON file that
contains the meta-data such as port class (e.g., analog in),
name and hardware-related data, e.g., multiplexer address or
value correction constants.

B. Application data model

Besides supporting development of monitor and control
tasks the Data and Control Point enable the domain expert
developers to define a custom application data model. Fig-
ure 3 depicts a simplified UML data model of the DCPoints.
It can be seen as a meta model that enables applications

to define a custom data (domain) model. This is especially
important for defining groups of DCPoints that represent
some logical entity in the physical environment. For example,
this model can be used to describe a complex device, which
contains multiple sensors or an application-specific domain
model entity, e.g., room. To this end, the DataInstance acts
as a wrapper of a sensory reading (value) and enriches it
with additional information such as timestamp. Moreover,
the DataType enables defining custom data instances types. It
extends the built-in Java types and provides additional infor-
mation about the data instance such as its unit (e.g., Kelvin).
In this context, the most important feature provided by our
framework is the support for complex data types and complex
data instances. A complex type is represented as a record,
hence it consists of named fields that have again have a type
associated with them. Similarly, a complex data instance is
a combination of simple data instances and it additionally
provides a processing hook, which allows the developers to
specify additional filters or aggregations of the data instances.
For example, it could contain a functionality to compute
an average of the requested sensory readings. However, in
such cases, it is developer’s responsibility to deal with the
instances compatibility, e.g., their units. More importantly
our framework provides support for synchronizing the indi-
vidual readings within a complex data instance. Therefore,
developers only need to declare a complex instance and the
framework takes care of collecting the relevant readings from

Main programming model constructsFramework managed components (partial view)

VirtualBuffers
Manager

Gatherer

VirtualBuffer

I2CDriverImpl

wraps

AdapterChainAdapter

<<Interface>>

DeviceDriver

isSuitable()
implements

EdgeApplication

initialize()
shutDown()

isBestChoice()
getAllPortDescriptors()
getPort()
setPort(portDescriptor, value)

Port

sets

PortConfig

has

has

<<Abstract>>

Task

MonitorTask

ControlTask

Filter

Configuration
Model

Mapping

DataPoint ControlPoint

write(dataInstance)

has

<<Abstract>>

DCPoint

contains

<<Interface>>

Component

initialize()
shutDown()
release()

configure

onNewInstance(dataInstance)

read()

release()

manages

createBuffer

readBatch(timeWindow)

createBuffer(configurationModel)
initialize()

<<Abstract>>

DCPoint

‐type:DataType

‐metaData:Map[String, String]

<<Abstract>>

DataType

SipleDataType

‐config:ConfigurationModel

‐dataInstance:DataInstance

<<Abstract>>

DataInstance

‐sate:Enum

SipleDataInstance ComplexDataInstance

‐value:Array[SimpleDataInstance)]‐value:java.lang.Object

‐timestamp:Long

ComplexDataType

‐type:Array[(Id, SimpleDataType)]‐type:java.lang.Class
‐Unit:Enum

processingOperator()

Fig. 3. Simplified UML data model.
3537

multiple streams and delivering the complex instance to the
application when it is fully initialized or updated.

C. Application-level programming constructs

Listing 1, gives a general example of how developers
define a DataPoint. It shows a data point with one stream of
simple data instances that represent, e.g., vehicle’s tire speed,
based on the required sensor properties. By default the data
points are configured to asynchronously push the data to the
applications at a specific rate, which can be configured as
shown in the example. The application defines a call-back
handler, which contains some data processing logic, e.g.,
based of complex event processing techniques. Additionally,
the data and control points offer a read operator that can
be used to sequentially (or in batch) read a set of instances
from a stream, e.g., in order to perform more complex stream
processing operations.

1 DataPoint dataPoint = new DataPoint();
2 // Query available buffers
3 Collection<BufferDescription> availableBuffers
4 = dataPoint.queryBuffers(new SensorProps(...))
5 // Assign the buffers to the data point
6 dataPoint.assign(availableBuffers.get(0));
7 dataPoint.setPollRate(300);
8 dataPoint.addCallback(this);
9 // Event handler

10 void onNewInstance(DataInstance di){ ... }

Listing 1. A DataPoint with callback handler.

1 //Configure a custom data channel
2 BufferConfig bc = new BufferConfig("voltage_in");
3 bc.setClass(BufferClass.SENSOR);
4 bc.getAdapterChain().add(
5 new ScalingAdapter(0.0,100.0,10.0));
6 bc.getAdapterChain().add(new LowpassFilter(0.30));
7 BufferManager.create("lowpass-scaled", bc);
8 //Define diagnostics model
9 DataPoint diagnostics =

10 DataPoint.newComplexInst("lowpass-scaled","voltage_in");
11 DataInstance di = diagnostics.read();
12 //Log the diagnostics data locally

Listing 2. Custom configuration of DataPoints.

Listing 2 shows a more complex example of a custom data
point, together with a simple diagnostics data model. The
diagnostic data contains raw engine voltage readings and
scaled voltage readings with low-pass filter, e.g., possibly
indicating that something is taking the power away from the
motor. The listing shows how to define a custom (partial)
configuration for the data point. In this case, we define a
scaling adapter and a filter, which are added to data point’s
adapter chain, as shown in lines 2-6. After creating a custom
data point (virtual sensor) (line 8) application can treat this
sensor as any other sensor. Finally, the example shows how
to synchronously read a data instance from the newly created
virtual sensor. Storing the data is omitted for readability
purposes.

IV. MAIN RUNTIME MECHANISMS OF THE DRACO
FRAMEWORK

A. Lifecycle of Data and Control Points

In the DRACO framework both the DCPoints and the
VirtualBuffers have clearly defined lifecycles, which are en-
tangled and mainly share a common behavior. For example,
when a DCPoint is created it is associated with one or more
VirtualBuffers, as shown in Figure 2 and if this DCPoint
is released the corresponding buffers are also automatically

released by the framework (given that no other DCPoint is
referencing them). The main difference in lifecycle manage-
ment of these components is that the DCPoints are mainly
managed by applications (cf. Figure 2 right-hand side), while
the DRACO framework manages the VirtualsBuffers and
their dependencies (cf. Figure 2 left-hand side).

Figure 4 illustrates the main phases of the VirtualBuffers
lifecycle. Depending on the configuration a VirtualBufer is
initialized either when a device is connected or when explic-
itly requested by a DCPoint. The initialization phase includes
allocating a buffer instance, creating a corresponding Gath-
erer and performing configuration directives, specified in the
DCPoint configuration model. The latter usually includes
creating an adapter chain with corresponding scalers, filters
and adapters. This part is automatically handled by the Run-
timeServices and it happens transparently to the applications.
When in the Ready state VirtualBuffers are discoverable and
can be queried by the applications via the DCPoint APIs.
Also at this point the corresponding Gatherer is automatically
started by the framework and it starts gathering the data
from the underlying device or in case of a ControlPoint it
is ready to receive serialization requests. After a DCPoint
obtains a reference to the buffer it can decide to start it (e.g.,
to open a data stream) or the buffer is automatically started
by the framework if the callback object is provided. After a
successful start both the VirtualBuffer and the DCPoint are in
the Running state. In this state the DCPoint receives periodic
updates from the underlying buffer or it explicitly reads the
buffer state via the read operator, i.e., sets a new state via
the write operator. Finally, there are two ways to release
a DCPoint/VirtualBuffer. An application can manually stop
and release them after it has finished using the DCPoint
or in case an error occurs, e.g, device disconnected, the
VirtualBuffer is moved to a Fault state. When it the Fault
state the buffer notifies the DCPoint about the error after
which it is automatically released by the framework.

B. Main Information flow

Figure 5 shows the main steps of the information flow
within the DRACO framework. For readability purposes,
the figure only illustrates the information flow of a sensory
reading (DataPoint), but the framework behaves in a similar
fashion for the ControlPoins, with a main difference that the
direction of the information flow is reversed.

When an application requests a sensory reading, initially
the raw physical value, e.g. temperature is measured by
a sensor that is connected to the Edge device, e.g., via a
field-bus. The raw value enters the framework through a
driver. The driver handles the protocol on the field-bus and

Ready

Running Fault

initialize

startstop

update

error

release

release

Fig. 4. VirtualBuffers lifecycle overview.
3538

Pyhisical
device

Driver

Runtime
services

Programming
model

Application
business logic

Sensor

Raw/physical value

Driver

Measured value

Gatherer

Sensor value

Adapter Chain

Buffer value

DataPoint

DP value

DataInstance

Fig. 5. Information flow of a sensory reading.

acquires the measured value from the sensor. In most cases
the measured value is a linear function that is applied on
the raw value, i.e., on a stream of bits and it scales the
raw value between 0% and 100% of the measurement range
(provided in the PortConfiguration, cf. Figure 2). Next, the
measured value has to be formatted to a common framework
internal format, which is independent of the used driver. This
is performed by the Gatherer and by default it formats the
sensor value as a double. At this stage the sensor reading is
formatted as a sensor value, which is universal understood
by the framework. In the next steps the sensor value is
propagated and processed through the AdapterChain, i.e., the
framework applies application-specific adapters and filters on
it. This transforms the sensor value resulting in a buffer value
that is delivered to a DCPoint. Finally, the DCPoints creates
a DataInstance with the required format, unit and type (cf.
Figure 3) and delivers it to the calling application.

V. EVALUATION & PROTOTYPE IMPLEMENTATION

A. Prototype Implementation

The current prototype is implemented in Java program-
ming language (based on Java SE Embedded). The frame-
work is designed to run on a stripped-down JVM and we have
created a lightweight compact profile JVM runtime specifi-
cally tailored for constrained devices. The complete source
code and supplement materials providing more details about
current framework implementation are publicly available1.

B. Experiments

1) Test bed Gateway and Experiments Setup: In order to
evaluate our DRACO framework, we built a test physical
gateway (cf. Figure 6). The getaway is based on Raspberry Pi
2, with ARMv7 CUP and 1Gb of RAM. They run Raspbian
Linux 8 (based on Debian Jessi) on Linux Kernel 4.1. Further

1http://github.com/tuwiendsg/SoftwareDefinedGateways

Fig. 6. Testbed gateway for Data and Control Points.

it contains a serial I2C bus system, which is used to attach the
test sensors (5 digital inputs and 6 analog inputs, which are
used to simulate changes in sensor readings) and actuators
(8 light-emitting diodes (LED)).

C. Experiments Results

For the evaluation purposes we have developed two ex-
ample applications available in the aforementioned Git Hub
repository. First application (LogApp) runs inside the test
bed gateway, collecting all the sensory inputs (both analog
and digital), logging them locally and displaying the changes
in sensors readings on stdout. It defines several tenths of
the Data Points, which have different configurations such as
scaling adapters and filters for the connected sensors. It also
logs the raw sensory readings. Second application (ActApp)
is also running in the gateway and its main purpose is to
demonstrate different actuations, based on the changes in
sensory readings. For this purpose it creates several Data
Points (actuation triggers) and also several Control Points,
which are responsible to perform actuations, i.e., in this case
turning on/off the LEDs.

Figure 7 and Figure 8 show memory and CPU usage of
the LogApp. Initially (Figure 7) we notice that the DRACO
framework consumes below 5% of the CPU when no ap-
plications are running. The first spike in CPU consumption
happens when the LogApp application is started. The reason
for this is that at this point the application instantiates its
Data Points and requests the framework to allocate the
corresponding VirtualBuffers, AdapterChains, etc. This is
also reflected in Figure 8, where we observe an increase in
RAM of around 1Mb. After this point in time the application
is running (processing and logging the changes in the sensory
readings). These changes are simulated by manually adjust-
ing the analog inputs, i.e., by alternating the digital switches.
In general, the application is mostly consuming less then
10% of CPU and its memory usage is fairly stable (with only
minimal increase mainly due to created data instances). The
smaller spikes in CPU usage represent noticeable changes in
sensory readings (e.g., several knobs are rotated). However,
even when all the knobs are affected, effectively forcing
all the buffers to perform their individual data processing
actions, the CPU usage remains below 20%. Moreover, the
increased CPU usage is temporary and both the application
and the framework quickly return to normal resource usage.
Similar things can be observed in Figure 8, as the memory
usage during the observation time remains below 13Mb.

Similar results can be observed in Figure 9 and Figure 10,
3539

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 C

o
n

su
m

p
ti

o
n

 [%
]

Time [s]

LogApp - CUP Consumption

Fig. 7. CUP consumption of the example logging application (LogApp).

11,750

11,950

12,150

12,350

12,550

12,750

12,950

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
K

b
]

Time [s]

LogApp - Memory Consumption

Fig. 8. Memory usage of the example logging application (LogApp).

where we show the performance of the ActApp, which
besides the Data Points also utilizes the Control Points. The
main differences are reflected in the overall smaller memory
consumption (below 12Mb) and slightly higher CPU spikes.
The main reason for the former is that ActApp instantiate
smaller amount of Data Points. The latter is mainly due
to the fact that the changes in sensory readings trigger
actuations, which also require some processing to be done
by the framework, such as serializing the Control Points
instances. Also here the changes in sensor inputs were
manually simulated by the test sensor knobs and switches.
Finally, it is worth noticing that for the both experiments the
memory and CPU usage was measured on the process level
(i.e., entire JVM). Also, albeit small, in both cases we notice
a constant increase in memory usage. This is generally not a
desired behavior (e.g., since it can indicate a memory leak).
In this case, however, the reason for such behavior is that
the figures do not show the garbage collection of old data
instances. Additionally, when an application exits it releases
all its resources.

VI. CONCLUSION

In this paper, we introduced Data and Control Points, a
programming model for resource-constrained Edge devices.
The main aim of the presented framework is to facilitate de-
velopment of light-weight, edge-centric applications as well
as domain-specific libraries that contain reusable, generic
monitor and control tasks and domain models. We presented
the main features of the supporting DRACO framework: pro-
viding a virtually exclusive access to the connected sensors
and actuator; enabling application-specific view on such de-
vices; and supporting flexible customizations of the low-level
sensing and actuating channels. We demonstrated feasibility
of prototype and its suitability for resource-constrained Edge
devices, in terms of optimized resource consumption. In the
future, we plan to integrate the DRACO framework with
our existing provisioning [12] and governance [13], [14]
approaches, in order to provide foundations for the novel
Deviceless paradigm [15].

0

5

10

15

20

25

C
P

U
 C

o
n

su
m

p
ti

o
n

 [%
]

Time[s]

ActApp - CPU Consumption

Fig. 9. CUP consumption of the example actuation application (ActApp).

11,700

11,720

11,740

11,760

11,780

11,800

11,820

11,840

11,860

11,880

11,900

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
K

b
]

Time[s]

ActApp - Memory Consumption

Fig. 10. Memory usage of the example actuation application (ActApp).

ACKNOWLEDGMENT

This work is sponsored by Joint Programming Initiative
Urban Europe, ERA-NET, under project No. 5631209. The
authors would like to thank Dr. Manfred Siegl, Dr. Alessio
Gambi, Sanjin Sehic and Michael Voegler for their help
designing and developing the framework.

REFERENCES

[1] H. Chen, T. Finin, and A. Joshi, “Semantic web in the context broker
architecture,” tech. rep., DTIC Document, 2005.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing, pp. 304–307,
Springer, 1999.

[3] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,” Human-computer interaction, vol. 16, 2001.

[4] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
“Middleware for distributed context-aware systems,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
pp. 846–863, Springer, 2005.

[5] J. I. Hong and J. A. Landay, “An architecture for privacy-sensitive
ubiquitous computing,” in Proceedings of the 2nd international con-
ference on Mobile systems, applications, and services, 2004.

[6] S. Sehic, F. Li, S. Nastic, and S. Dustdar, “A programming model for
context-aware applications in large-scale pervasive systems,”

[7] B. Frank, Z. Shelby, K. Hartke, and C. Bormann, “Constrained
application protocol (coap),” IETF draft, Jul, 2011.

[8] L. M. S. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos,
and D. Savio, “Socrades: A web service based shop floor integration
infrastructure,” in The internet of things, pp. 50–67, 2008.

[9] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interact-
ing with the soa-based internet of things: Discovery, query, selection,
and on-demand provisioning of web services,” Services Computing,
IEEE Transactions on, vol. 3, no. 3, pp. 223–235, 2010.

[10] S. Nastic, S. Sehic, M. Voegler, H.-L. Truong, and S. Dustdar,
“PatRICIA - A novel programing model for IoT applications on cloud
platforms,” in SOCA, 2013.

[11] S. Nastic, H.-L. Truong, and S. Dustdar, “A middleware infrastructure
for utility-based provisioning of iot cloud systems,” in SEC, pp. 28–40,
IEEE, 2016.

[12] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provi-
sioning Software-defined IoT Cloud Systems,” in FiCloud’14.

[13] S. Nastic, C. Inziger, H.-L. Truong, and S. Dustdar, “GovOps: The
Missing Link for Governance in Software-defined IoT Cloud Systems,”
in WESOA14, 2014.

[14] S. Nastic, M. Voegler, C. Inziger, H.-L. Truong, and S. Dustdar,
“rtGovOps: A Runtime Framework for Governance in Large-scale
Software-defined IoT Cloud Systems,” in Mobile Cloud 2015, 2015.

[15] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing:
extending serverless computing to the edge of the network,” in Systor,
p. 28, ACM, 2017.

3540

