
Author copy of paper published at 2021 IEEE International Conference on Web Services (ICWS)
©2021 IEEE. Official publication: https://doi.org/10.1109/ICWS53863.2021.00017

SLO Script: A Novel Language for Implementing
Complex Cloud-Native Elasticity-Driven SLOs

Thomas Pusztai
Andrea Morichetta

Vı́ctor Casamayor Pujol
Schahram Dustdar

Distributed Systems Group, TU Wien
Vienna, Austria

lastname@dsg.tuwien.ac.at

Stefan Nastic
Reinvent Labs GmbH

Vienna, Austria
snastic@reinvent-group.at

Xiaoning Ding
Deepak Vij

Ying Xiong
Futurewei Technologies, Inc.

Santa Clara, CA, USA
firstname.lastname@futurewei.com

Abstract—Service Level Objectives (SLOs) allow defining ex-
pected performance of cloud services, such that cloud service
providers know what they guarantee and service consumers know
what to expect. Most approaches focus on low-level SLOs, closely
related to resources, e.g., average CPU or memory usage, and are
usually bound to specific elasticity controllers. We present SLO
Script, a language and accompanying framework, motivated by
real-world, industrial needs to allow service providers to define
complex, high-level SLOs in an orchestrator-independent manner.
The main features of SLO Script include: i) novel abstractions
(StronglyTypedSLO) with type safety features, ensuring compat-
ibility between SLOs and elasticity strategies, ii) abstractions
that enable decoupling of SLOs from elasticity strategies, iii) a
strongly typed metrics API, and iv) an orchestrator-independent
object model that enables language extensibility. We present a
case study about a real-world, cloud-native application and eval-
uate our language while implementing a realistic Cost Efficiency
SLO.

Index Terms—cloud computing, SLO, elasticity, metrics, or-
chestrator independence

I. INTRODUCTION

In cloud computing, it is common for providers and con-
sumers to agree on Service Level Agreements (SLAs) to define
bounds within which a certain cloud service has to operate [1].
An SLA consists of one or more Service Level Objectives
(SLOs), where an SLO is a “commitment to maintain a
particular state of the service in a given period” [2]. Often,
SLOs provide directly measurable capacity guarantees, such
as available memory. However, service consumers usually
prefer to get performance guarantees, which can be related
to business-relevant Key Performance Indicators (KPIs). The
vast majority of today’s cloud providers offer only rudimentary
support for SLOs, which means that customers, who want to
have a high-level SLO, need to manually map it to directly
measurable low-level metrics, such as CPU or memory [3].

Elasticity is a flagship property of cloud computing. Herbst
et al. [4] define it as: “the degree to which a system is able to
adapt to workload changes by provisioning and deprovisioning
resources in an autonomic manner, such that at each point

This work is supported by Futurewei’s Cloud Lab. as part of the overall
open source initiative.

in time the available resources match the current demand as
closely as possible.” This definition already suggests that to-
day’s cloud offerings usually deal with resource elasticity, i.e.,
adding resources, such as CPU, memory, or additional service
instances, when the demand is high and removing resources
when the demand is low. However, elasticity is not limited
to the resource dimension, instead it has three dimensions –
the other two being cost elasticity, i.e., the amount of money a
consumer is willing to pay for a service, and quality elasticity,
e.g., the desired precision of the output data of a machine
learning system [5]. We define an elasticity strategy as a
sequence of altering actions that adjust the amount of resources
provisioned for a workload, their type, or both. Additionally,
it can change the workload configuration, i.e., alter quality
parameters, as well. Thus, an elasticity strategy is capable of
affecting all three elasticity dimensions.

From a business perspective, it is important to be able
to map business goals to measurable KPIs, which, again,
must be translated into SLOs. With a low-level average CPU
usage SLO this is not easily possible. A high-level SLO that
combines multiple elasticity dimensions, e.g., by combining
resource usage with the total cost of the system, is better suited
for this purpose.

In this paper we continue our work envisioned in [3], which
we refer to as Polaris SLO Cloud (Polaris) project, and present
SLO Script1, a language and accompanying framework, which
permits service providers to define complex SLOs on their
services and service consumers to configure and apply them
to their workloads. Our main contributions with SLO Script
include:

1) Novel abstractions (StronglyTypedSLO) with type safety
features that ensure compatibility between workloads,
SLOs, and elasticity strategies.

2) Language constructs: ServiceLevelObjectives, ElastcityS-
trategies, and SloMappings enable decoupling of SLOs
from elasticity strategies, to promote reuse and increase
the number of possible SLO/elasticity strategy combina-
tions. Details are provided in Sections III-A and III-B.

1SLO Script is referred to as “SLO Elasticity Policy Language” in [3].

1

https://doi.org/10.1109/ICWS53863.2021.00017

3) Strongly typed metrics API that boosts productivity when
writing queries, presented in Section III-C.

4) Orchestrator-independent object model that promotes ex-
tensibility, as detailed in Section III-D.

The remainder of this paper is structured as follows:
Section II introduces a motivating use case to explain why
SLO Script is needed and lists the research challenges and
requirements for our language, Section III portrays the design
and main abstractions of SLO Script, Section IV describes
the runtime mechanisms, Section V evaluates our SLO Script
on the motivating use case on a Kubernetes implementation,
Section VI discusses related work, and Section VII outlines
future work and concludes the paper.

II. MOTIVATION

In the open source2 Polaris project [3], we aim to make
SLOs as the first class entities and bring multi-dimensional
elasticity capabilities to the cloud computing environment.
Polaris itself is part of Linux Foundation’s Centaurus project3,
a novel open-source platform targeted towards building unified
and highly scalable public or private distributed cloud infras-
tructure and edge systems.

A. Motivating Use Case

To motivate our approach, we present a real-world cloud use
case, featuring a cloud service provider that wants to offer a
Content Management System (CMS) in the form of Software-
as-a-Service to its customers. Gentics Mesh4 is an open source
headless CMS, i.e., a CMS that is primarily used through its
REST API, incorporated into a web application as a content
source. The service provider offers customers the CMS-as-
a-service for deployment on the cloud infrastructure. Service
consumers are customers, who integrate the CMS-as-a-service
into their applications. Fig. 1 shows an overview of the use
case. The deployment consists of two major components: the
CMS itself and an ElasticSearch5 database. Both need to be
managed transparently for the service consumers. Each service
exposes one or more metrics, e.g., CPU usage, response time,
or complex metrics like cost efficiency. The service provider
defines a set of SLOs that are supported by the service.

The more requests a service should be able to handle per
second, the more resources it needs, and thus, the more ex-
pensive it becomes. Different service consumers have different
needs with regards to requests per second and are willing to
pay different prices for these guarantees. However, for most
of them it is difficult, if not impossible, to specify a low-level,
resource-bound SLO that delivers the best performance within
their budget. This is mainly due to a lack of detailed technical
understanding of the services and because a resource-bound
SLO only captures a single elasticity dimension. Instead, the
service consumers would prefer simply specifying a high-
level cost efficiency of the microservices. The cost efficiency

2https://polaris-slo-cloud.github.io
3https://www.centauruscloud.io
4https://getmesh.io
5https://www.elastic.co/elasticsearch/

Cloud Infrastructure
Service Provider

Elas�c
Search

Gen�cs Mesh
CMS

Provides

SLOMetrics

Service Consumer

Deploys Workload

Cost Efficiency
SLO Mapping

Creates

Applies & Configures

Services

Fig. 1: Gentics Mesh CMS cloud scenario overview.

is usually defined as the number of requests per second
served faster than N milliseconds divided by the total cost of
the microservice [6]. To achieve this with our approach, the
service consumer only needs to perform a set of simple tasks.
The service consumer deploys Gentics Mesh-as-a-service –
we refer to this deployment as a workload. To apply the cost
efficiency SLO to the workload, the service consumer creates
an SLO mapping, which associates an SLO offered by the
service provider with a workload of the service consumer.
After creating the SLO mapping, the service consumer is
finished, since the cloud will be responsible for automatically
performing elasticity actions to ensure that the SLO is fulfilled.

Therefore, by allowing service consumers to specify a high-
level SLO such as cost efficiency [7], our approach enables
service consumers to specify a value that can be easily com-
municated to the non-technical, management layers of their
companies, which is important for approving the budget and
checking conformance with the business goals. The complex
task of mapping this cost efficiency to low-level resources and
performing complicated elasticity actions to achieve the SLO
is left to the service provider, who knows the infrastructure and
the requirements of the offered services. Using SLO Script, the
service provider is able to efficiently use the know-how about
the services to implement these complex SLOs.

B. Research Challenges

SLO Script addresses the following research challenges:
RC-1 Enable complex elasticity strategies: The majority of

systems provide only simple elasticity strategies, with hor-
izontal scaling being the most common [8]. For example,
Kubernetes6, which has the most production-level ser-
vices among commonly used container orchestration sys-
tems [9], usually ships with the Horizontal Pod Autoscaler
(HPA) [10]. However, some cloud providers have shown
little or no further increase in application performance
beyond certain instance counts [11]. Thus, a complex
elasticity strategy, which, e.g., combines horizontal and
vertical scaling, may achieve better results.

RC-2 Enable high-level SLOs, based on complex metrics: The
majority of metrics used nowadays is directly measurable
at the system or application level, such as CPU and
memory utilization, or response time [8], [12], [13]. For
example, HPA uses the average CPU utilization of all pods
of a workload. We define a composed metric as a metric
that can be obtained by aggregating and composing other

6https://kubernetes.io

2

https://polaris-slo-cloud.github.io
https://www.centauruscloud.io
https://getmesh.io
https://www.elastic.co/elasticsearch/
https://kubernetes.io

metrics. In HPA they can be supplied through a custom
metrics API or an external metrics API7. Both entail the
registration of a custom API server, called an adapter API
server, to which the Kubernetes API can proxy requests,
thus, leading to additional development and maintenance
effort. The custom metrics API [14] and the external
metrics API [15] allow exposing arbitrary metrics (e.g.,
from the monitoring solution Prometheus8) as Kubernetes
resources. However, apart from summing all values if
an external metric matches multiple time series [16],
the computation or aggregation of these metrics must
be implemented by the adapter API server. HPA allows
specifying multiple metrics for scaling, but it calculates a
desired replica count for each of them separately and then
scales to the highest value [17]. Yet, a high-level SLO is
valuable, as shown in our motivating use case.

RC-3 Decoupling of SLOs from elasticity strategies: If sys-
tems provide only a single elasticity strategy, e.g., horizon-
tal scaling in HPA, it usually means that the SLO is tied
to that strategy, making the system rigid and inflexible. A
tight coupling between SLO evaluation and elasticity strat-
egy in the same controller, would require re-implementing
every needed SLO in every elasticity controller, leading
to duplicate code and difficult maintenance. Furthermore,
a specific SLO may not yet have been implemented on
a certain elasticity controller, albeit being needed by a
consumer.

RC-4 Unified API for multiple metrics sources: Each major
time series database has its own query language, e.g.,
Prometheus has PromQL, InfluxDB9 has Flux, and Google
Cloud has MQL10. Thus, an implementation in a particular
language ties the SLO to a certain DB, because there is
no common query language for time series databases, like
SQL is for relational databases.

RC-5 Cloud vendor independence: Common autoscaling so-
lutions are tied to a specific orchestrator or cloud provider.
All major cloud vendors have their own specific config-
uration of autoscaling, e.g, AWS [18], Azure [19], and
Google Cloud [20] all have their own, non-portable way of
configuring an autoscaler – fostering vendor lock-in. HPA,
although not being tied to a particular cloud provider, is
still specific to Kubernetes.

C. Language Requirements Overview

SLO Script is at the heart of the Polaris project and
will ultimately support the definition and implementation of
metrics, SLOs, and elasticity strategies, each of which may be
generic or specifically tailored to a particular service.

An SLO evaluates metrics to determine whether the system
conforms to the expectations defined by the service consumer.
When the SLO is violated (reactive triggering) or when it

7https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/#support-for-metrics-apis

8https://prometheus.io
9https://www.influxdata.com
10https://cloud.google.com/monitoring/mql/reference

is likely to be violated in the near future (proactive trigger-
ing), it may trigger an elasticity strategy. These can range
from a simple horizontal scaling strategy, over more complex
strategies that combine horizontal and vertical scaling, to
application-specific elasticity strategies that combine scaling
with adaptations of the service’s configuration.

The goal is a language that presents a significant usability
improvement over raw configurations that rely on YAML or
JSON. To this end, the language must support higher-level
abstractions than raw configuration files and provide type
safety, which reduces errors and boosts productivity.

The requirements derived from our motivating use case and
the core objectives of SLO Script are as follows:

1) Allow service consumers to configure and map an SLO
to a workload.

2) Allow service consumers to choose any compatible elas-
ticity strategy when configuring an SLO (loose coupling).

3) Allow SLOs to instantiate, configure, and trigger the
elasticity strategy chosen by the service consumer.

4) Support the definition of composed metrics.
5) Support the definition of elasticity strategies.
6) Ensure compatibility between SLOs and elasticity strate-

gies at the time of writing (i.e., type safety).
7) The SLO Script core has to be orchestrator-independent.
8) Plug into specific orchestrators using adapter libraries.
9) Service providers should be able to focus on the business

logic of their metrics, SLOs, and elasticity strategies.
10) Present a DB-independent API for querying metrics.
11) Support packaging metrics, SLOs, and elasticity strategies

into plugins.
SLO Script supports the use of any metrics source using

adapters and elasticity strategies developed in any language,
as long as their input data types match the output data types
of the SLOs. This allows reusing an elasticity strategy written
in a different language, e.g., because an orchestrator-specific
API client may only be available in that language.

The next section will explain the design of the SLO Script
language and how it achieves orchestrator-independence.

III. SLO SCRIPT LANGUAGE DESIGN & MAIN
ABSTRACTIONS

In this section we describe how SLO Script provides the
main contributions announced in the introduction section:
1) high-level StronglyTypedSLO abstractions with type safety
features, 2) constructs to enable decoupling of SLOs from
elasticity strategies, 3) a strongly typed metrics API, and 4) an
orchestrator-independent object model that promotes extensi-
bility. The first two contributions are treated incrementally
by the subsections III-A and III-B, the third contribution is
presented in subsection III-C, and the fourth contribution is
discussed in subsection III-D.

A. SLO Script Overview & Language Meta-Model

SLO Script consists of high-level, domain-specific abstrac-
tions and restrictions, which constitute a language abstraction.
It does not provide its own textual syntax, but uses TypeScript

3

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://prometheus.io
https://www.influxdata.com
https://cloud.google.com/monitoring/mql/reference

ServiceLevelObjective

SloMapping

SloMetric

ElasticityStrategy

ComposedSloMetric

MetricCompositionOperator

UnaryOperator NAryOperator

PolarisPlugin

SloConfiguration ElasticityStrategyConfigurationSloOutput

SloTarget

lowerLevelMetrics

0..*

1..*

involvedMetrics

0..*

1..*

1

0..*

0..*

input
1

1

0..*

target1

0..*1

1

1

0..*

10..*

operator

0..*

1

config 11

<<use>>
input

output

Fig. 2: SLO Script meta-model (partial view).

as its base. Using a publicly available and well-supported
language, increases the chances for SLO Script to be accepted
by developers and reduces maintenance effort, because lan-
guage and compiler maintenance is handled by the TypeScript
authors. The requirements in the previous section result in the
meta-model for SLO Script, depicted as a UML class diagram,
in Fig. 2.

1) ServiceLevelObjective is one of the central con-
structs of the SLO Script language. An example instance
is the CostEfficiencySlo, which implements the cost
efficiency scenario described in Section II-A. An instance
of the ServiceLevelObjective construct defines and im-
plements the business logic of an SLO and is configured
by the service consumer using an SloConfiguration. The
ServiceLevelObjective uses instances of SloMetric to
determine the current state of the system and compare it
to the parameters specified by the service consumer in the
SloConfiguration. The metrics are obtained using our
strongly typed metrics API, which abstracts a monitoring
system, such as Prometheus. The metrics may be low-level
metrics, directly observable on the system or higher-level
metrics (instances of ComposedSloMetric) or a combination
of both. Every evaluation of the ServiceLevelObjective

produces an SloOutput, which describes how much the SLO
is currently fulfilled and is used as a part of the input to
an ElasticityStrategy. Both, ServiceLevelObjective
and ElasticityStrategy, define the type of SloOutput

they produce or require respectively, which is one of the types
needed for determining compatibility among them.

2) The ElasticityStrategy construct represents the
implementation of an elasticity strategy. It executes a sequence
of elasticity actions to ensure that a workload fulfills an
SLO. Elasticity actions may include, e.g., provisioning or
deprovisioning of resources, changing the types of resources
used, or adapting the configuration of a service. The input to
an ElasticityStrategy is a corresponding Elasticity-

StrategyConfiguration, consisting of the SloOutput

produced by the ServiceLevelObjective and static con-
figuration provided by the consumer.

SloOutput

SloTarget

ServiceLevel
Objec�ve

config output
Elas�cityStrategy

Configura�on

sloOutput

Slo
Configura�on

target

Types determined by ServiceLevelObjec�ve Types determined by Elas�cityStrategy

Elas�city
Strategy

input

Fig. 3: Type safety provided by StronglyTypedSLO.

There is no direct connection between a ServiceLevel-

Objective and an ElasticityStrategy, which clearly
shows that these two constructs are decoupled from each other.
A connection between them can only be established through
additional constructs, i.e., SloOutput or SloMapping.

3) The SloMapping construct is used by the service con-
sumer to establish the relationship between a ServiceLevel-
Objective, an ElasticityStrategy, and an SloTarget,
i.e., the workload to which the SLO applies. The SloMapping
contains the SloConfiguration, which are the SLO-specific
bounds that the consumer can define, the SloTarget, i.e.,
the workload to which the SLO is applied, and any static
configuration for the chosen ElasticityStrategy.

B. StronglyTypedSLO
When defining a ServiceLevelObjective using SLO

Script’s StronglyTypedSLO mechanism, the service provider
must first create an SloConfiguration data type that will
be used by the service consumer to configure the Service-

LevelObjective and an SloOutput data type to describe
its output. While each ServiceLevelObjective will likely
have its own SloConfiguration type, it is recommended to
reuse an SloOutput data type for multiple ServiceLevel-

Objectives to allow for loose coupling between Service-

LevelObjectives and ElasticityStrategies.
To create the actual SLO, a service provider must instantiate

the ServiceLevelObjective meta-model construct, repre-
sented by the ServiceLevelObjective TypeScript inter-
face. It takes three generic parameters to enable type safety:
C denotes the type of SloConfiguration object that will
carry the parameters from an SloMapping, O is the type of
SloOutput, which will be fed to the elasticity strategy, and
T is used to define the type of target workload the SLO sup-
ports. An ElasticityStrategy uses the same mechanism
to define the type of SloOutput that it expects as input.

Fig. 3 illustrates how the type safety feature of SLO
Script works. There are two sets of types: those determined
by the ServiceLevelObjective and those determined by
the ElasticityStrategy. The ServiceLevelObjective

defines that it needs a certain type of SloConfiguration

(indicated by the yellow color) as configuration input. The
SloConfiguration defines the type of SloTarget (orange),
which may be used to scope the SLO to specific types of
workloads. The ElasticityStrategy defines its type of
ElasticityStrategyConfiguration (purple), which, in
turn, specifies the type of SloOutput (blue) that is required
by the ElasticityStrategy.

Thus, the bridge between these two sets is the SloOutput

type. Once the service consumer has chosen a particular

4

ServiceLevelObjective type, the possible SloTarget

types are fixed because of the SloConfiguration. Since
the ServiceLevelObjective defines an SloOutput type,
the set of compatible elasticity strategies is composed of
exactly those ElasticityStrategies that have defined an
ElasticityStrategyConfiguration with the same Slo-

Output type as input.
Type checking is especially useful in enterprise scenarios,

where hundreds of SLOs need to be managed. Using YAML or
JSON files for this purpose provides no way of verifying that
the used SLOs, workloads, and elasticity strategies are com-
patible, while SLO Script provides this feature. Furthermore,
using a type safe language yields significant time savings when
a set of SLOs and their mappings need to be refactored.

The SLO Script runtime invokes the SLO instance at config-
urable intervals to check if the SLO is currently fulfilled or if
the elasticity strategy needs to take corrective actions. It may
simply check if the metrics currently match the requirements
of the SLO or it can use predictions and machine learning
to determine if the SLO is likely to be violated in the near
future and thus take proactive actions through the elasticity
strategy. The result of this operation is an instance of the
defined SloOutput type, which is returned asynchronously.

C. Strongly Typed Metrics API

The strongly typed metrics API provides two types of
abstractions: i) raw metrics queries for querying time series
databases independent of the query language they use natively
and ii) composed metrics for creating higher-level metrics
from aggregated and composed lower-level metrics obtained
through raw metrics queries. Since our API is based on
objects, rather than on a textual language, it also comes with
type safety features. When using PromQL or Flux directly,
developers often need to write queries as plain strings in
their application code, thereby breaking the type safety of that
code. Fig. 4 shows a class diagram with a simplified view
of our strongly typed metrics API, whose raw metrics query
abstractions were inspired by PromQL, with some influences
from Flux, and MQL.

For raw metrics queries, the central model type is Time-

Series, which describes a sequence of sampled values for
a metric. In addition to the metricName, a TimeSeries

has a map of labels that can be used to further describe
its samples, e.g., a metric named http_requests_per_sec

could have a label service, which identifies the particular
service from which this metric was observed.

The base interface for querying time series is TimeSeries-
Query. Like a relational DB query results in a set of one or
more rows, a time series DB query results in a set of one
or more time series, each with a distinct metric name and
labels combination. A query for http_requests_per_sec

could result in two distinct TimeSeries, one with the la-
bel service = ’gentics_mesh’ and one with the label
service = ’elasticsearch’. This is why the execution
of a TimeSeriesQuery results in a QueryResult, which
can contain multiple TimeSeries instances.

+metricName : string

+labels : Map<string, string>

+samples : Sample<V>[]

<<Interface>>

TimeSeries

+samples : Sample<V>[1]

<<Interface>>

TimeSeriesInstant

+filterOnValue(predicate : ValueFilter) : TimeSeriesQuery

+execute() : Promise<QueryResult<T>>

+toObservable() : Observable<QueryResult<T>>

<<Interface>>

TimeSeriesQuery

+filterOnLabel(predicate : LabelFilter) : LabelFilterableQuery<T>

<<Interface>>

LabelFilterableQuery

+avg() : TimeInstantQuery<V>

+sum() : TimeInstantQuery<V>

<<Interface>>

TimeRangeQuery

+abs() : TimeInstantQuery<V>

+sort() : TimeInstantQuery<V>

<<Interface>>

TimeInstantQuery

<<Interface>>

LabelFilterableTimeRangeQuery
<<Interface>>

LabelFilterableTimeInstantQuery

+metricTypeName : string

ComposedMetricType +getCurrentValue() : Sample<V>

+getValueStream() : Observable<Sample<V>>

<<Interface>>

ComposedMetricSource

V : ValueType V : ValueType

T : TimeSeriesType

T : TimeSeriesType

V : ValueType

T = TimeSeries<V>
V : ValueType

T = TimeSeriesInstant<V>

V : ValueType

T = TimeSeries<V>
V : ValueType

T = TimeSeriesInstant<V>

T : ValueType

P : ComposedMetricParams

V : ValueType

Fig. 4: Strongly Typed Metrics API (simplified view).

A time series DB not only allows retrieving a time series
with particular properties, but also allows applying functions
to the data, such as various types of aggregations or sort-
ing. Certain functions, such as aggregations, require time
series with multiple samples as input, while other functions,
e.g., sorting, only work on time series with a single sam-
ple. For example, one may first query all time series for
http_requests_per_sec, then compute the sum for each
single time series, and finally sort the results to see which
service gets the most requests. Prometheus will return an error
when trying to sort time series with multiple samples, but it
requires a developer to try to execute the query first.

The TimeSeriesInstant model type represents time se-
ries that are limited to a single sample. To support both
time series types, the TimeSeriesQuery interface is extended
by multiple subinterfaces: TimeRangeQuery for queries that
result in a set of TimeSeries and TimeInstantQuery for
queries that result in a set of TimeSeriesInstants. Each of
these interfaces exposes only methods for DB functions that
are applicable to the respective time series type. A function
may also change the time series type, e.g., sum() is applied
to a TimeSeries, but it returns a TimeSeriesInstant.
LabelFilterableQuery is another subinterface of Time-

SeriesQuery that allows applying filters on the labels. Since
our metrics query API needs to produce valid DB-specific
queries, label filtering is a capability of a query that is lost
after applying the first DB function, e.g., sum(), due to the
structure of PromQL queries.

A composed metric is designated by a ComposedMetric-

Type. It defines the name of the composed metric, the data

5

type used for its values, and which parameters are needed to
obtain it (e.g., the name of the target workload). The metric
values are supplied by a ComposedMetricSource, which
may use raw metrics queries internally to obtain and aggregate
multiple lower-level metrics, which are composed to form the
higher-level composed metric.

For each ComposedMetricType there may be multiple
ComposedMetricSources. This allows decoupling the type
of a composed metric from the implementation that computes
it and enables multiple implementations, which can be tai-
lored to various types of workloads, such as REST APIs or
databases, while delivering the same type of composed metric.

D. SLO Script Object Model

The SLO Script object model, a subset of which is shown in
Fig. 5, is an instantiation of the language’s meta-model in the
framework. This abstract object model allows SLO Script to
achieve orchestrator independence and promotes extensibility.

Every object that is submitted to the orchestrator must
be of type ApiObject or a subclass of it. It con-
tains an objectKind attribute that describes its type. The
ObjectKind.group attribute denotes the API group of the
type, which can be seen as a package in UML. The version

attribute identifies the version of the API group and kind con-
veys the name of the type. ApiObject also has a metadata

attribute, which contains additional information about the
object, including the name of the instance. The spec attribute
contains the actual “payload” content of the object. Object-
Reference extends ObjectKind with a name attribute to be
able to reference existing object instances in the orchestrator
This is needed to refer to the target workload of an SLO in
an SloTarget, which derives from ObjectReference.
ApiObject is the root extension point for objects that need

to be stored in the orchestrator. For example, to instantiate
the SloMapping construct from the meta-model, a TypeScript
class needs to be created that inherits from SloMappingBase,
which derives from ApiObject. It contains the type informa-
tion for the spec and sets up the correct ObjectKind for
this SloMapping. The SloConfiguration construct can be
represented by an arbitrary TypeScript interface or class, but
needs to be wrapped in a class implementing SloMapping-

Spec, which will store the configuration. A concrete example
will be shown in Section V. The SloMapping represents a
custom resource type that needs to be registered with the
orchestrator. As part of future work, we will create a build
system capable of automatically generating definitions for
these resources.

To identify an ElasticityStrategy when configuring
an SloMapping, the ObjectKind subclass Elasticity-

StrategyKind is used. For each ElasticityStrategy, an
ElasticityStrategyKind subclass has to be created and
parameterized with the SloOutput and SloTarget types
expected by the ElasticityStrategy. This in conjunction
with the SloOutput type configured on a ServiceLevel-

Objective and its corresponding SloMapping, enables the
type checking discussed in the previous sections.

+group : string

+version : string

+kind : string

ObjectKind

+name : string

ObjectReference

ElasticityStrategyKind

+sloOutputParams : O

+staticConfig : any

ElasticityStrategySpec

SloTarget

+spec : T

+metadata : ApiObjectMetadata

ApiObject

+sloConfig : C

+staticElasticityStrategyConfig : Map<string, any>

<<Interface>>

SloMappingSpec

SloMappingBase

O : SloOutputType

T : SloTargetType O : SloOutputType

T : SloTargetType

T : SpecType

C : SloConfigType

O : OutputType

T : SloTargetType

targetRef 1

targetRef

1

elasticityStrategy

spec1

1

objectKind

1

Fig. 5: Core SLO Script Object Model Types (partial view).

The SloOutput meta-model construct is instantiated by
creating an arbitrary TypeScript class. To allow compatibility
between as many SLOs and elasticity strategies as possi-
ble, generic SloOutput data types, which are supported
by multiple ServiceLevelObjectives and Elasticity-

Strategies are recommended. The SloCompliance class
provided by the core object model conforms to this require-
ment. It expresses the current state of the SLO as a percentage
of conformance. A value of 100% indicates that the SLO is
precisely met. A higher value indicates that the SLO is violated
and that additional resources, e.g., scaling out, are needed,
whereas a value below 100% indicates that the SLO is being
outperformed, i.e., a reduction of resources, e.g., scaling in,
should be considered.

Every orchestrator has its own set of abstractions – thus,
an independent framework must provide a mechanism for
transforming objects between its own structure and the native
structure of each supported orchestrator. To this end, SLO
Script provides a transformation service that allows each
orchestrator-specific connector library to register transform-
ers for those object types that require transformation, while
directly copying those objects that do not require any trans-
formation. The transformation is not limited to the type of the
root object, instead the appropriate transformer is applied to
every nested object recursively.

The transformation service does not serialize to the data
format required by the orchestrator (e.g., JSON or YAML). It
transforms the instances of the orchestrator-independent SLO
Script classes into plain JavaScript objects, which can be
serialized by the orchestrator-specific connector library. The
deserialization of objects received from the orchestrator is also
left to the connector library. It needs to supply plain JavaScript
objects to the transformation service, which transforms the
objects and creates instances of SLO Script classes.

The SLO Script object model is heavily influenced by that
of Kubernetes, but the two are not equal. For example, in
Kubernetes there is no objectKind property on an object
returned from the API. Instead, a Kubernetes API object
contains an apiVersion and a kind property, with the
former being a combination of the SLO Script group and
version attributes of ObjectKind and the latter being equal
to ObjectKind.kind.

6

objectKind: {
 group: ’slo.polaris.github.io’,
 version: ’v1’,
 kind: ’CostEfficiencySloMapping’,
},
metadata: { name: ’my-slo’ },
spec: { ... }

:CostEfficiencySloMapping

apiVersion: ‘slo.polaris.github.io/v1’,
kind: ‘CostEfficiencySloMapping’,
metadata: { name: ’my-slo’ },
spec: { ... }

:KubernetesObject

Fig. 6: Cost efficiency SloMapping before and after transformation.

To transform an SLO Script ObjectKind into its corre-
sponding Kubernetes version, the SLO Script Kubernetes con-
nector library registers a transformer for ObjectKind, which
returns a plain JavaScript object with the group and version

attributes combined into a single apiVersion attribute and a
copy of the kind attribute. This alone is not enough because
Kubernetes objects do not contain an ObjectKind property.
Thus, the Polaris Kubernetes connector library also registers a
transformer for the ApiObject class, which uses the transfor-
mation service to first transform the ObjectKind object and
then embeds the contents of the result into a new object, which
is going to become the final transformed ApiObject. The
objects stored in the metadata and spec attributes are also
first transformed and then stored in the result object. Fig. 6
shows an example of how a CostEfficiencySloMapping

looks before and after being transformed to a Kubernetes
object. The transformation techniques used for the SLO Script
framework classes also apply to custom classes written by
service providers for their SLOs.

The next Section will explore the runtime facilities, which
are responsible for executing the defined SLOs.

IV. RUNTIME MECHANISMS

Technically, the cluster component used for handling an
SLO is a controller for the custom resource type defined by the
SloMapping of that SLO. The controller watches the custom
resource type instances in its deployment scope, creates and
destroys SLO class instances accordingly, and evaluates them
at a defined interval. Fig. 7 shows a UML activity diagram
with the workflows within the controller.

To handle SLOs, the SLO Script runtime provides a control
loop interface and a default implementation that maintains
the set of active SLOs and evaluates them at a configurable
interval. To add an SLO to the control loop, an SloMapping,
which is received from the orchestrator, is needed, along
with a key to uniquely identify that SLO. The key can be
generated from the metadata of the SloMapping object. The
SloMapping is used by the control loop to identify which
SLO class to instantiate and to subsequently configure that
instance, before adding it to its internal set.

The runtime aims to handle as many managerial tasks as
possible to allow service providers to focus on their business
logic. In the control loop in Fig. 7 only the actions highlighted
in blue need to be implemented by the service provider.

The control loop is designed to work on all orchestrators. It
needs to be configured with an SloEvaluator, which handles
the execution of the SLO and the subsequent submission of
its output to the orchestrator. Its evaluateSlo(key, slo)

method, gets the SLO object’s key and the object itself as pa-
rameters and has to asynchronously notify its caller when the

SloMapping Controller

Watch supported SloMappings

Receive raw SloMapping

Transform to Polaris

object

Remove SLO from

control loop
Instantiate and configure SLO

Add to control loop or replace

<<structured>>

for each SLO

Evaluate SLO

Orchestrator SloMapping

Polaris SloMapping Instance

SLO instance

SLO Output

Wrap in ElasticityStrategy

Submit to orchestrator

Orchestrator-specific

ElasticityStrategy

Transform to orchestrator object

Control Loop Interval

[SloMapping added] [SloMapping removed]

Fig. 7: SloMappingController workflow and SLOs lifecycle.

SLO evaluation is finished and the results have been submitted
to the orchestrator. The runtime provides an abstract class to
handle the evaluation of the SLO, as well as the wrapping of
its result into the configured ElasticityStrategy object.
It provides hooks for the orchestrator specific connector to
execute code before and after the evaluation to apply the SLO’s
results to the orchestrator. The default implementation of the
control loop gracefully handles errors during SLO evaluation,
to ensure that a faulty implementation of one SLO does
not prevent other SLOs in the same controller from being
evaluated. Apart from an SloEvaluator, the SLO control
loop must be configured with an Observable to define the
evaluation interval – it must emit whenever the control loop
should execute an iteration. This may be used to not only
trigger a loop iteration at regular intervals, but can include
other triggers as well, e.g., a “force evaluation now” event.

To be able to operate, the SLO control loop has to be
integrated into a controller for the respective SloMapping(s).
This controller part depends heavily on the target orchestra-
tor and should be implemented in the corresponding SLO
Script orchestrator connector library. We currently provide a
connector library for Kubernetes, which relies on kubernetes-
client11, the officially supported JavaScript client library for
Kubernetes. Our controller implementation uses the watch12

functionality of the Kubernetes API to be efficiently notified
whenever a resource of an observed type is added, removed,
or changed, such that the SLO control loop can be adjusted.

11https://github.com/kubernetes-client/javascript
12https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-

detection-of-changes

7

https://github.com/kubernetes-client/javascript
https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes
https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

For the strongly typed metrics API we currently provide a
connector for PromQL.

The controller uses the transformation service to convert
between orchestrator-independent and orchestrator specific
objects. To this end, the transformation service wraps the
open-source library class-transformer13, which provides most
of the facilities needed for transformation. The registration
of transformers for specific classes uses custom SLO Script
mechanisms. Unlike class-transformer, it allows registering a
transformer not just for a single property, but globally for all
instances of a class and optionally its subclasses, and use that
transformer on all transformable properties of that type.

Similar to class-transformer, SLO Script utilizes a Type-
Script decorator to designate the type of a class property
for transformation. This is necessary because the information
about the types of class properties is not available at runtime,
so it needs to be attached to the constructor function object as
custom ECMAScript metadata. The need for metadata that is
available at runtime is also the reason why most SLO Script
framework types are classes instead of TypeScript interfaces
– interfaces do not exist at runtime and thus, cannot be used
for carrying metadata. SLO Script’s @PolarisType decorator
sets this type metadata for a property of a class and registers
a helper with class-transformer, responsible for looking up the
registered SLO Script transformer for that type or using the
default transformer.

Registering a transformer is also possible for specific
ObjectKind configurations. This is used, e.g., to au-
tomatically instantiate the correct class when an object
of kind slo.polaris-slo-cloud.github.io/v1/Cost-

EfficiencySloMapping needs to be transformed.
To facilitate adoption of SLO Script, our project includes a

Command-Line Interface (CLI) tool that can be used to gen-
erate skeletons for SloMapping classes and SLO controllers,
as well as build and deploy them. More information about the
CLI can be found in a demo video online14.

Further details on the runtime are available in [21]. The next
Section will examine the realization of our motivating use case
to evaluate SLO Script.

V. EVALUATION & IMPLEMENTATION

We have implemented the core library of SLO Script, its
CLI, as well as the controllers and connectors for Kubernetes
and Prometheus using TypeScript and Go. The motivating use
case is realized using the CLI and these libraries. More details
and the source code can be found in our code repositories15.

To evaluate SLO Script we use an approach based on
the guidelines defined in [22]. We use the real-world cost
efficiency use case from Section II-A to illustrate that SLO
Script fulfills its requirements by improving code reusability,
flexibility, ease of use, and expressiveness and reducing sus-
ceptibility to errors and thus, increases productivity.

13https://github.com/typestack/class-transformer
14https://www.youtube.com/watch?v=3 z2koGTExw
15https://polaris-slo-cloud.github.io

The goal of the cost efficiency SLO is to trigger an elasticity
strategy whenever the current cost efficiency deviates too
far from the defined target value. Since SLO Script allows
the use of an arbitrary elasticity strategy, as long its input
parameter type matches the SLO’s output, we will use the term
increase resources to refer to any sequence of elasticity actions
that enlarge the resources allocated to a service, e.g., scaling
up or scaling out, and decrease resources to any sequence
of elasticity actions that reduce the resources allocated to a
service, such as scaling down or scaling in.

Contrary to a simple CPU utilization SLO, it is not possible
to derive whether an increase or a decrease in resources is
needed by examining only the current and target values of
the cost efficiency. For example, a low cost efficiency is
ambiguous – it may indicate that either

• the system cannot handle the current high demand in time
and that an increase in resources is needed or

• all requests are handled in time, but too many resources
are provisioned compared to the few incoming requests,
such that a decrease in resources is needed.

An expressive language is needed to distinguish these two
cases. In SLO Script, we define the type CostEfficiency-

SloConfig as shown in Listing 1. To handle the ambiguity
problem we just described, we add an additional parameter
to this configuration type: the minimum percentile of requests
that should be handled within the time threshold. If the number
of requests per second faster than the threshold is below
that percentile, the service does not have enough resources
to handle the load, whereas if it is above that percentile, the
service has too many resources.

export interface CostEfficiencySloConfig {
responseTimeThresholdMs: number;
targetCostEfficiency: number;
minRequestsPercentile?: number; }

Listing 1: Cost efficiency SLO configuration.

Listing 2 shows the SloMappingSpec and SloMapping

classes. The spec class defines in the generic parameters
for its superclass that the configuration type for this SLO
will be CostEfficiencySloConfig, the output type will
be SloCompliance, and the target workload must be of type
RestServiceTarget. This short definition ensures that i) the
SLO can only be applied to workloads of the correct type, i.e.,
workloads that expose the required metrics, and that ii) only
an elasticity strategy that supports the SLO’s output data can
be used, because each ElasticityStrategyKind needs to
specify the compatible input types in an analogous way. This
greatly reduces the possibility for deploy-time or runtime
errors, because SLO Script enforces that only compatible
workloads and elasticity strategies are used.

The constructor of the CostEfficiencySloMapping class
initializes the objectKind property to ensure that the correct
API group and kind are configured and uses the @Polaris-

Type decorator to set the appropriate class for the transfor-
mation of the spec property. At the moment, the Kubernetes
Custom Resource Definition (CRD) for registering the SLO

8

https://github.com/typestack/class-transformer
https://www.youtube.com/watch?v=3_z2koGTExw
https://polaris-slo-cloud.github.io

mapping type with the orchestrator must either be written
manually or be generated from an equivalent data structure
written in Go – this will be addressed in a future version of
the CLI, which will support automatic generation of CRDs.

export class CostEfficiencySloMappingSpec extends
SloMappingSpecBase<CostEfficiencySloConfig,
SloCompliance, RestServiceTarget> { }

export class CostEfficiencySloMapping extends
SloMappingBase<CostEfficiencySloMappingSpec> {

constructor(initData?:
SloMappingInitData<CostEfficiencySloMapping>){

super(initData);
this.objectKind = new ObjectKind({

group: ’slo.polaris-slo-cloud.github.io’,
version: ’v1’,
kind: ’CostEfficiencySloMapping’ });

initSelf(this, initData);
}
@PolarisType(() => CostEfficiencySloMappingSpec)
spec: CostEfficiencySloMappingSpec; }

Listing 2: Cost efficiency SLO mapping.

The CostEfficiencySlo class implements the actual
SLO. It uses the MetricsSource to retrieve the metrics for
the target workload and uses them in conjunction with the
configuration to compute an SloCompliance that indicates
if the resources need to be increased or reduced.

To apply the SLO to a workload, service consumers need
to instantiate the SloMapping as shown in Listing 3. Any
TypeScript compatible IDE can provide code completion for
the required properties, which greatly benefits the ease of use,
and give immediate feedback if the chosen target workload
or elasticity strategy are not compatible with the SLO, thus,
revealing errors at the time of writing, which would have been
discovered only at deploy-time or even at runtime, if plain
JSON or YAML had been used for configuration.

export default new CostEfficiencySloMapping({
metadata: new ApiObjectMetadata({ name:

’data-service-cost-efficiency’ }),
spec: new CostEfficiencySloMappingSpec({

targetRef: new RestServiceTarget({
group: ’apps’,
version: ’v1’,
kind: ’Deployment’,
name: ’data-service’ }),

elasticityStrategy:
new HorizontalElasticityStrategyKind(),

sloConfig: {
responseTimeThresholdMs: 400,
targetCostEfficiency: 1000,
minRequestsPercentile: 90 } }) });

Listing 3: Applying the cost efficiency SLO to a workload.

Since TypeScript is a superset of JavaScript, a developer
can circumvent the type checking of SLO Script by writing
plain JavaScript. The type safety can also be evaded by ap-
plying plain JSON or YAML configuration to the orchestrator.
However, this is not an issue, because our aim is not to lock
someone into a type safety system that cannot be circumvented
in any way. The goal is to provide a language, consisting of
domain-specific abstractions and restrictions, which, if used,
increase productivity and provide type safety.

TABLE I: Lines of Code (excl. comments and blanks).

Component Lines of Code Generated % of Total
SLO Mapping Type 53 50 2%
SLO Controller 224 99 8%
Runtime 2616 − 90%
Total 2893 149 100%

From the architectural perspective, the biggest benefit of
SLO Script is the decoupling of SLOs from elasticity strate-
gies, which increases code reusability and flexibility. The
clear separation of SLO implementations from elasticity strat-
egy implementations allows them to be reused in multiple
combinations as long as their output/input types match. The
input/output types can be seen like interfaces in object-oriented
programming. If an elasticity strategy implements the interface
required by the SLO, the two may be used in conjunction.
This brings the flexibility of object-oriented programming to
the management of SLOs in the cloud.

The SLO Script runtime eases the development of SLOs,
because it lets service providers focus on their data types and
business logic. The runtime’s SLO control loop handles the
integration with the orchestrator, as well as the management
of the active SLOs. Out of the steps in the control loop,
depicted in Fig. 7, only the “Evaluate SLO” step needed
to be implemented for our cost efficiency use case. This is
evident from Table I, which shows the line counts of the
various components of our cost efficiency implementation. The
SLO Script runtime makes up 90% of the total code. The
CostEfficiencySloMapping class and its supporting types
add up to 53 lines, however, 50 of these were generated by
the CLI. The SLO controller and all its metrics queries take
up 224 lines, 99 of which were generated.

The orchestrator independent object model of SLO Script
eases the porting of SLOs and their mappings to other orches-
tration platforms, promoting flexibility, limiting the possibility
for vendor lock-in for consumers, and fostering open source
collaboration on SLOs for multiple platforms. Many SLOs
may be implemented in a completely orchestrator-independent
manner as well, allowing the creation of “standard SLO
libraries” for instant reuse on other platforms.

VI. RELATED WORK

With elasticity being a flagship property of cloud comput-
ing, there has been a lot research in this area. We now explore
some related work in the field of elasticity and SLOs.

All big commercial cloud providers support automated
elasticity of some sort. However, the vast majority only
provides simple SLOs that use a lower and upper bound or
an average threshold for a metric that is directly measurable
on the system. Some requirements can also be expressed
in more high-level terms, e.g., AWS allows specifying the
targeted availability of a service [23] or the durability of a DB
in “nines” (e.g., “four nines” meaning 99.99% availability).
Nevertheless, availability and durability are only simple SLOs
that address a single elasticity dimension and “nines” cannot
be considered a business metric. Custom metrics can be
provided at some cloud providers through a query language.

9

However, specifying the metrics query in the SLO config-
uration reduces maintainability, e.g., our PromQL query to
calculate cost efficiency was complex and specific to the
components we used and would, thus, be cumbersome to
maintain. Furthermore, each provider, such as AWS [18],
Azure [19], and Google Cloud [20], uses its own mechanism
for configuring the autoscaler, i.e., it is often not possible to
write one configuration that works for all providers, fostering
vendor lock-in The supported elasticity strategies are mostly
horizontal and vertical scaling, with some exceptions, such as
an elasticity strategy for the AWS DynamoDB [24] that allows
increasing read and write capacities independently.

For Kubernetes, there are multiple autoscalers available
– the most prominent being Horizontal Pod Autoscaler
(HPA) [10], Vertical Pod Autoscaler (VPA), and Cluster Au-
toscaler (CA) [25]. As already discussed in the motivation
section, HPA allows a workload to scale out/in, but only
supports simple SLOs, with complex custom metrics requiring
an adapter API server to provide the custom metrics. Vertical
Pod Autoscaler (VPA) can be used to scale up/down, albeit
currently not in conjunction with HPA16. It allows configu-
ration of the vertical elasticity strategy, but not of the SLO
– the decision when to scale is taken automatically based
on the current resource usage. The limits defined for the
pod are respected though. Cluster Autoscaler (CA) does not
scale single workloads, but the entire cluster by adding and
removing nodes as needed. Its SLO is the time that is allowed
to pass after a pod can no longer be scheduled on the cluster
due to a lack of resources until CA resizes the cluster17.
HPA, VPA, and CA all tie their SLOs tightly to the elasticity
strategies. There is research that improves on VPA [26] and
CA [27]. However, they focus on improving the performance
of the elasticity strategy and the final result, but not on the
possibilities for defining SLOs or decoupling the elasticity
strategy from the SLO.

SLO-ML [28] is a language that allows service consumers
to define SLOs in order for the language runtime to choose
appropriate cloud services and SLAs for the deployment.
While facilitating the initial deployment of a workload, it does
not provide support for runtime elasticity.

OpenSLO18 is a specification, in an early stage, that should
allow the definition of and interaction with SLOs. However, it
currently foresees the specification of metrics queries directly
inside the definition/configuration of an SLO, which is hard to
maintain for SLOs that depend on complex metrics and which
should be reused many times.

Wang et al. [29] combine horizontal and vertical scaling
to achieve an availability SLO and reduce costs. The SLO
is however, limited to availability. It is achieved through
horizontal scaling, while vertical scaling is utilized to reduce
costs if the SLO is fulfilled. This approach provides a complex

16https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-
autoscaler#known-limitations

17https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/
FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler

18https://github.com/OpenSLO/OpenSLO

elasticity strategy, but it falls short of supporting complex
SLOs and multiple decoupled elasticity strategies.

There are some languages that allow defining SLOs using
custom metrics and triggering elasticity strategies. For exam-
ple, SYBL [30] is a language and runtime that allow defining
complex constraints, i.e., SLOs, on cloud applications and
their components. It supports the definition of custom metrics
and can be extended e.g., with additional elasticity strategies.
However, its implementation is tightly coupled to OpenStack
and it lacks a plugin system, which would allow extensions
without recompiling the entire runtime. rSLA [31] is an SLA
definition language with runtime facilities that allows the
definition of SLOs using raw and custom metrics and supports
triggering arbitrary actions, e.g., scaling, upon SLO violations.
Both, SYBL and rSLA support SLOs, custom metrics, and
decouple them from elasticity strategies. However, they do
not pass parameters that result from the SLO evaluation to
the elasticity strategies, thus discarding possibly important
information and allowing only generic actions, instead of
parametrized elasticity strategies.

VII. CONCLUSION & FUTURE WORK

This paper has presented SLO Script, a language and ac-
companying framework for defining and implementing Service
Level Objectives, based on TypeScript and being part of the
open source Polaris project. We have motivated why SLO
Script is needed using a real-world use case and enumerated
the requirements for its design. We showed the language’s
meta-model and then described SLO Script’s design and how
it fulfills our main contributions of 1) high-level StronglyType-
dSLO abstractions with type safety features, 2) decoupling of
SLOs from elasticity strategies, 3) a strongly typed metrics
API, and 4) an orchestrator-independent object model that
promotes extensibility. Next, we explained how SLO Script’s
runtime mechanisms and the SLO control loop work. For
evaluating our language and framework, we illustrated how
to implement and configure the cost efficiency SLO for the
motivating use case and highlighted the benefits of using SLO
Script and its CLI for this purpose.

We identify several steps of future work with the goal of
realizing the Polaris framework described in [3]. SLO Script
will receive the ability to create elasticity strategies. The CLI
will be extended with automatic generation of Kubernetes
CRDs for SLO mapping types, as well as serialization and
deployment of SLO mapping instances. A web user interface
will allow service consumers to visualize the relationships
between metrics, SLOs, SLO mappings, and elasticity strate-
gies. Furthermore, the Polaris project will expand to bring
SLOs to edge computing environments as well. The directions
include: scheduling on edge resources, as well as executing
elastic controls and governing SLO eligible resources under
uncertainty [32].

REFERENCES

[1] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
metrics to high level slas - lom2his framework: Bridging the gap
between monitored metrics and sla parameters in cloud environments,”

10

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler
https://github.com/OpenSLO/OpenSLO

in 2010 International Conference on High Performance Computing &
Simulation. IEEE, 28.06.2010 - 02.07.2010, pp. 48–54.

[2] A. Keller and H. Ludwig, “The wsla framework: Specifying and
monitoring service level agreements for web,” Journal of Network and
Systems Management, vol. 11, no. 1, pp. 57–81, 2003.

[3] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[4] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud comput-
ing: What it is, and what it is not,” in 10th International Conference on
Autonomic Computing (ICAC 13). San Jose, CA: USENIX Association,
2013, pp. 23–27.

[5] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic
processes,” Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[6] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue of metrics
for evaluating commercial cloud services,” in 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE, 20.09.2012 -
23.09.2012, pp. 164–173.

[7] T. A. Hjeltnes and B. Hansson, “Cost effectiveness and cost efficiency in
e-learning,” QUIS-Quality, Interoperability and Standards in e-learning,
Norway, 2005.

[8] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–33, 2018.

[9] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli,
R. Montanari, and A. Palopoli, “Container orchestration engines: A
thorough functional and performance comparison,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC). IEEE,
52019, pp. 1–6.

[10] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, “Horizon-
tal pod autoscaling in kubernetes for elastic container orchestration,”
Sensors (Basel, Switzerland), vol. 20, no. 16, 2020.

[11] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “The limit of horizontal scaling
in public clouds,” ACM Trans. Model. Perform. Eval. Comput. Syst.,
vol. 5, no. 1, 2020.

[12] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,
and J. N. de Souza, “Elasticity in cloud computing: a survey,” annals of
telecommunications - annales des télécommunications, vol. 70, no. 7-8,
pp. 289–309, 2015.

[13] A. Ullah, J. Li, Y. Shen, and A. Hussain, “A control theoretical view of
cloud elasticity: taxonomy, survey and challenges,” Cluster Computing,
vol. 21, no. 4, pp. 1735–1764, 2018.

[14] The Kubernetes Authors, “Custom metrics api -
design proposal,” 2018-01-22. [Online]. Available:
https://github.com/kubernetes/community/blob/master/contributors/
design-proposals/instrumentation/custom-metrics-api.md

[15] ——, “External metrics api - design proposal,” 2018-12-14. [On-
line]. Available: https://github.com/kubernetes/community/blob/master/
contributors/design-proposals/instrumentation/external-metrics-api.md

[16] ——, “Hpa v2 api extension proposal,” 2018-02-14. [On-
line]. Available: https://github.com/kubernetes/community/blob/master/
contributors/design-proposals/autoscaling/hpa-external-metrics.md

[17] ——, “Horizontal pod autoscaler with arbi-
trary metrics - design proposal,” 2018-11-19. [On-
line]. Available: https://github.com/kubernetes/community/blob/master/
contributors/design-proposals/autoscaling/hpa-v2.md

[18] Amazon Web Services, Inc., “Aws auto scaling features,” 2020.
[Online]. Available: https://aws.amazon.com/autoscaling/features/

[19] Microsoft, “Autoscaling,” 2017. [Online]. Available: https://docs.
microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

[20] Google, LLC, “Autoscaling groups of instances,” 2020. [Online].
Available: https://cloud.google.com/compute/docs/autoscaler

[21] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
X. Ding, D. Vij, and Y. Xiong, “A novel middleware for efficiently im-
plementing complex cloud-native slos,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[22] P. Mohagheghi and Ø. Haugen, “Evaluating domain-specific modelling
solutions,” in Advances in Conceptual Modeling – Applications and
Challenges, ser. Lecture Notes in Computer Science, J. Trujillo, G. Dob-
bie, H. Kangassalo, S. Hartmann, M. Kirchberg, M. Rossi, I. Reinhartz-
Berger, E. Zimányi, and F. Frasincar, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, vol. 6413, pp. 212–221.

[23] Amazon Web Services, Inc., “5 9s (99.999%) or higher scenario
with a recovery time under 1 minute,” 2020. [Online]. Available:

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-
99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html

[24] ——, “Managing throughput capacity automatically with dynamodb
auto scaling,” 2020. [Online]. Available: https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/AutoScaling.html

[25] The Kubernetes Authors, “Autoscaling components for kubernetes,”
2020. [Online]. Available: https://github.com/kubernetes/autoscaler

[26] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
kubernetes,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 08.07.2019 - 13.07.2019, pp. 33–40.

[27] M. Wang, D. Zhang, and B. Wu, “A cluster autoscaler based on multiple
node types in kubernetes,” in 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC).
IEEE, 12.06.2020 - 14.06.2020, pp. 575–579.

[28] A. Elhabbash, A. Jumagaliyev, G. S. Blair, and Y. Elkhatib, “Slo-ml: A
language for service level objective modelling in multi-cloud applica-
tions,” in Proceedings of the 12th IEEE/ACM International Conference
on Utility and Cloud Computing, K. Johnson, J. Spillner, D. Klusáček,
and A. Anjum, Eds. New York, NY, USA: ACM, 12022019, pp. 241–
250.

[29] W. Wang, H. Chen, and X. Chen, “An availability-aware virtual machine
placement approach for dynamic scaling of cloud applications,” in 2012
9th International Conference on Ubiquitous Intelligence and Computing
and 9th International Conference on Autonomic and Trusted Computing,
2012, pp. 509–516.

[30] G. Copil, D. Moldovan, H. Truong, and S. Dustdar, “Sybl: An exten-
sible language for controlling elasticity in cloud applications,” in 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, 2013, pp. 112–119.

[31] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and H. Lud-
wig, “rsla: A service level agreement language for cloud services,”
in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, 27.06.2016 - 02.07.2016, pp. 415–422.

[32] S. Nastic, G. Copil, H.-L. Truong, and S. Dustdar, “Governing elastic
iot cloud systems under uncertainty,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2015, pp. 131–138.

11

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-external-metrics.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-external-metrics.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://aws.amazon.com/autoscaling/features/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://cloud.google.com/compute/docs/autoscaler
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://github.com/kubernetes/autoscaler

	Introduction
	Motivation
	Motivating Use Case
	Research Challenges
	Language Requirements Overview

	SLO Script Language Design & Main Abstractions
	SLO Script Overview & Language Meta-Model
	StronglyTypedSLO
	strongly typed metrics API
	SLO Script Object Model

	Runtime Mechanisms
	Evaluation & Implementation
	Related Work
	Conclusion & Future Work
	References

