
A Serverless Computing Fabric for Edge & Cloud

Stefan Nastic, Philipp Raith, Alireza Furutanpey, Thomas Pusztai, Schahram Dustdar
Distributed Systems Group,

TU Wien, Vienna, Austria

Abstract—Serverless computing has been establishing itself as a
compelling paradigm for the development and of modern cloud-
native applications. Serverless represents the next step in the
evolution of cloud programming models, services and platforms,
which is especially appealing due to its low management
overhead, easy deployment, scale-to-zero and the promise of
optimized costs. Recently, due to the advantages it offers, the
serverless paradigm has been growing beyond traditional clouds,
making its way to the Edge. The natural evolutionary step for
serverless computing is to unify the Edge and the Cloud into
what we refer to as Edge-Cloud Continuum. In this paper, we
outline our vision of the Serverless Computing Fabric (SCF)
for the Edge-Cloud continuum. We introduce the reference
architecture for the SCF and show how it unlocks the full
potential of the Edge-Cloud continuum. We also discuss main
opportunities and challenges, which need to be overcome in order
to achieve the vision of the Serverless Computing Fabric. Finally,
we introduce key design principles together with core enabling
runtime mechanisms, which are intended to serve as a research
road map towards the Serverless Computing Fabric for Edge-
Cloud continuum.

Index Terms—Serverless Computing, Cloud Computing, Edge
Computing, Reliability Engineering, Service Level Objectives

I. INTRODUCTION

With the increasing growth of edge computing, fog

computing and the Internet of Things (IoT), abundant

computing infrastructure and edge resources are becoming

available and increasingly utilized by various applications.

Currently there are many definitions of edge computing. Some

researchers view the Edge as an extension of cloud’s content

delivery networks [36], while others propose more edge-

enteric view [15]. We believe that most of such exclusionary

views on edge computing fail to capture its full potential. To

fully tap into the potential of edge computing, we believe

that a more holistic view, which considers both Edge and

Cloud is better suited. In particular, we view Edge as a main

constituent of a large-scale, geographically distributed and

hierarchically organized compute continuum. We refer to it

as Edge-Cloud continuum. The Edge-Cloud continuum spans

from the centralized cloud to the far edge of the infrastructure

to offer computing, networking and data resources. At the

same time, the Edge-Cloud continuum poses new challenges

(e.g., [41]) and calls for new approaches to enable delivering

such resources in a uniform manner.

Serverless computing is an emerging paradigm, which

typically refers to a software architecture where an application

is decomposed into “trigger” and “actions” or functions.

Typically there is a platform, which enables seamless hosting

and execution of such developer-defined functions, making it

easy to develop, manage, scale, and operate those functions.

The complexity mitigation is achieved by incorporating

sophisticated runtime mechanisms into the serverless platform

and relieving the users from those responsibilities. Function

as a Service or FaaS is the underlying programming and

execution model for Serverless computing. FaaS model is the

core of the serverless computing and sometimes it is even

equated with serverless computing. However, without suitable

supporting services, e.g., for persistent storage, and native

interfaces, e.g., to access network or file system, FaaS on its

own has limited practical benefits. Because of this, Serverless

has been evolving into an ecosystem, typically comprising

a FaaS platform and a large number of supporting cloud

services [21]. Moreover, increasing number of traditional

services such as DBaaS have been appearing in a serverless or

more precisely a FaaS flavor. Therefore, serverless computing

can be considered as the next step in the evolution of cloud

computing or more generally of utility computing.

Although Serverless was born in the cloud, its true potential

is unlocked at the Edge, where the lightweight and dynamic

FaaS functions can take full advantage of the vast and

geo-distributed infrastructure. Conversely, Serverless has the

potential to enable and foster proliferation of Edge computing,

by reducing the complexity that is currently associated with

developing and operating Edge applications. Additionally,

main serverless properties such as no idle execution and out-

of-the-box scalability are particularly useful to bring much

desired improvements to the reliability and performance of the

Edge-Cloud applications. Finally, specific areas such as Edge

Intelligence (EI) and AI can particularly benefit from enabling

the serverless principles and models at the Edge, since EI and

AI applications are notoriously hard to operate, but at the same

time they significantly benefit from specialized infrastructure

(e.g., AI inference accelerators). Unfortunately, still to date the

serverless paradigm typically remains limited to the cloud.

In this paper, we propose a novel Serverless Computing
Fabric (SCF) for the Edge-Cloud continuum. The SCF

is a continuation of our previous work in Serverless and

Deviceless Edge Computing [16], [26] and presents our view

on the serverless paradigm in the Edge-Cloud continuum. We

introduce a reference architecture for the SCF and show how

it unlocks the full potential of the Edge-Cloud continuum.

This is mainly achieved by abstracting away infrastructure

complexities, offering reliable application execution, and

offering adequate programming support. We particularly focus

1

2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI)

978-1-6654-7406-1/22/$31.00 ©2022 IEEE
DOI 10.1109/CogMI56440.2022.00011

20
22

 IE
EE

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

og
ni

tiv
e

M
ac

hi
ne

 In
te

lli
ge

nc
e

(C
og

M
I)

 |
97

8-
1-

66
54

-7
40

6-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
og

M
I5

64
40

.2
02

2.
00

01
1

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overview of Main Research Challenges in Serverless Computing in Edge-Cloud Continuum

on how the SCF fosters novel EI and AI applications. Finally,

we introduce key design principles and core enabling runtime

mechanisms, which are intended to serve as a research road

map towards the Serverless Computing Fabric for Edge-Cloud

continuum.

The remainder of the paper is structured as follows. In

Section II, we discuss the main research challenges in the

Serverless Computing Fabric. We also look at the most

important opportunities unlocked by SCF in the Edge-Cloud

continuum. Section III introduces our vision for the SCF and

Section IV provides detailed descriptions of the main design

principles and the core enabling mechanisms of the SCF. In

Section V, we discuss the related work. Finally, Section VI

concludes the paper.

II. OPPORTUNITIES & RESEARCH CHALLENGES IN

SERVERLESS COMPUTING FOR EDGE-CLOUD CONTINUUM

The Edge-Cloud continuum resources such as compute and

storage are poised to become utility, in the sense that Edge-

Cloud continuum can deliver computing resources the way

a power utility doles out electricity. Serverless is a perfectly

suitable paradigm and execution model to enable this vision

due to its promise of minimal operation overhead, transparent

scaling, no idle execution (due to scale-to-zero feature) and

turn-key high availability.

More specifically, benefits of combining Serverless and

Edge paradigms, include:

• Edge-native backend services - Serverless Computing

enables minimal operational management of fine-grained

functions, but it also requires a multitude Backend-

as-a-Service (BaaS) to be able to develop serverless

applications that go beyond toy examples. Examples

of such BaaS services include storage, messaging

middleware, caching solutions, and so forth. BaaS not

only facilitates FaaS in general, but it can also provide

essential backend services for specialized applications

and service paradigms. For example, streaming IoT

platforms require reliable and robust messaging services

to process data. Low latency applications benefit from

caching and storage solutions close to the application

instance. Moreover, in contrast to short-running functions,

backend services are long-running and require special

attention in resource-constrained environments to not put

too much strain on devices. Storage solutions have to

adapt and migrate due to the geo-distributed nature of

the Edge-Cloud continuum and accommodate toward user

mobility (i.e., cars). Further, messaging middleware must

be placed toward the user to guarantee low latency and

additionally reliable transmission. Reliability is a key

concern in systems with unstable network connections.

Caching solutions enable low latency applications but

have to intelligently manage the cached content to not

overload nodes. A dedicated set of runtime mechanisms

to manage and provide reliable backend services enables

this opportunity.

• Sustainable service delivery at the Edge - Traditional

deployment models typically demand long-term running

servers in order to enable sustainable service delivery.

However, this exclusive allocation needs to retain

resources regardless of whether the user application

is running or not. A minimal resource footprint is

crucial for Edge-Cloud systems as the infrastructure is

heterogeneous, and devices toward the edge tend to

be resource-constrained. Serverless Edge Computing can

facilitate minimizing resource usage due to the elasticity

of functions. FaaS platforms also allow complete control

over deployments making it possible to apply resource

2

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

management strategies that optimize toward resource

efficiency and can reduce carbon emissions. Additionally,

they can scale down the number of function instances

to zero if they are not needed. The combination of

an extended serverless programming model, an elastic

system to monitor and enforce SLOs, and an intelligent

and autonomous orchestration will enable sustainable

service delivery across the Edge-Cloud Continuum.

• Enabling Edge Intelligence - EI is characterised by

an emphasis on AI-based applications that flourish in

the Edge-Cloud continuum [12]. These applications

range from short-running inference tasks (e.g., Mobile

Augmented Reality) to long-running and resource-

demanding model training jobs. Besides resource

and performance requirements, EI applications are

heterogeneous. They have a unique position across

applications as the code itself might be simple, but

the used models differ vastly in execution. Emerging

approaches to split models and perform inference across

multiple devices [24], as well as distributed training

of models [20], further increase the complexity of

managing these deployments. Specifically, Serverless

Edge Computing enables platform providers to deploy

strategies that can take the various characteristics into

account that make EI applications complex to manage.

This includes an intelligent control plane and an elastic

data plane. The control plane includes pro-active scaling

approaches, intelligent and distributed high-throughput

schedulers, and location- and network-aware request

routing approaches. The elastic data plane must adapt

to the dynamic nature of Edge-Cloud infrastructures.

This dynamic part includes nodes that leave and re-

join, unstable network connections and heterogeneous

devices with different capabilities. Current approaches

[33], [44] explore already the potential of Serverless Edge

Computing platforms. Still, we show in this paper our

vision of how to go further to enable Edge Intelligence

using Serverless Edge Computing.

A. Main Research Challenges

1) Performance and SLO Challenges: Despite flexible

scaling and high availability offered by the serverless

paradigm, there are still a number of performance and SLO

challenges, which need to be dealt with when operating

serverless platforms and managing serverless applications. We

identify the most important challenges, which can affect the

serverless workloads in terms of performance degradation and

SLO violations.

• Startup and scheduling latency (a.k.a “cold start”).

• Lack of performance isolation (a.k.a “noisy neighbor” or

performance interference [46]).

• Inconsistent performance due to hardware heterogeneity

(also present in Cloud only solutions!).

• Limited support for application SLOs. Typically, one can

only specify memory requirements, function timeouts and

concurrency.

2) Data Management Challenges: Serverless FaaS

platforms typically provide programming and execution

support to the serverless functions, hence they are almost

exclusively focused on managing the compute resources.

Managing data and function states largely remains user’s

concern. The most important challenges related to data

management in serverless applications include:

• State management for stateful computations.

• Function execution latency due to lack of data locality.

• Efficient and cost-effective caching solutions.

• Trade-off between data and function execution movement

(i.e., move execution where data sits or move data to

"fast" hardware)

3) Reliability Engineering Challenges: Reliability

engineering encompasses the ability of a workload to

perform its intended function correctly and consistently

at any given time, i.e., when it is expected to. Except

for the reliability guarantees for side-effect-free stateless

computations, there are numerous reliability engineering

challenges including:

• Dealing with function failures beyond simple retries [19].

• Mitigating network partitioning, which can render

functions useless (e.g., due to detached storage).

• Operating fault-tolerant mission-critical Edge workloads.

• Suboptimal function composition implementation can

lead to high cost and slow performance [5].

4) Application Development Challenges: As previously

discussed, serverless FaaS platforms mainly focus on

mitigating runtime complexities related to operating and

managing FaaS functions. They typically offer insufficient

programming support, which is often limited to rudimentary

programming models, such as triggering a FaaS function with

an universal event. Unfortunately, this leaves a significant gap,

putting a lot of burden on developers:

• Misconfigurations of support services and infrastructure

resources due to suboptimal defaults.

• Insufficient error handling mechanisms.

• Limited type safety support for function composition.

• Testing the functions beyond the unit tests, e.g.,

integration testing.

• Concurrency management and transactions [19]

5) AI & EI Challenges: We distinguish between

intelligence for the Edge and intelligence at the Edge.
The former concerns how we can apply AI methods to solve

problems for which handcrafted solutions would be infeasible

or of poor quality, such as constrained optimization problems.

The latter, that is intelligence at the Edge addresses how

we can deploy AI & EI models for intelligent tasks running

in the Edge-Cloud continuum, such as voice recognition.

Challenges concerning both problems are related to the

heterogeneity of the necessary AI accelerators to execute

models, i.e., to provide the right resources for the various

tasks and environments.

• SLO-aware model selection in the ample solution space.

3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

• Dealing with model execution overhead, such as latency

and bandwidth consumption.

• Optimal splitting of the inference tasks across Edge-

Cloud continuum.

• Native access to specialized hardware (e.g., AI inference

accelerators) and core AI libraries.

III. SERVERLESS COMPUTING FABRIC

A novel software-defined, intelligence-driven, and Internet-

centric solution is required to address the challenges of the

serverless Edge-Cloud systems. We refer to such solution as

Serverless Computing Fabric (SCF). Next, we present our

vision for the novel Serverless Computing Fabric and outline

its high-level reference architecture.

The SCF represents a paradigm shift from traditional

services and platforms computing to a fabric-centric

computing where digital resources, infrastructures, and

systems become commodities, which permeate the entire

computational and data continuum. The SCF advocates a

seamless integration of existing and emerging computational

resources.

The SCF deals with geographically dispersed and

heterogeneous resources. However, rather than connecting

nodes for a common goal, as many of the contemporary

approaches do, in SCF the Edge-Cloud resources are

democratized and exposed in a uniform manner to

accommodate execution of arbitrary user-defined functions

and applications across the entire Edge-Cloud continuum.

Specifically, the SCF offers general-purpose resources and

subsumes any cluster of nodes, regardless of its compute

capacities or underlying system architecture. Additionally,

SCF considers the gradient of a compute hierarchy in

geographically distributed nodes.

We organize the SCF’s main principles and runtime

mechanisms into four key areas (Figure 3): 1) Reliability

and performance engineering 2) Serverless infrastructure

orchestration 3) FaaS Programming support 4) Serverless AI

and EI These areas represent general focal points of SCF.

More concretely, SCF aims to provide comprehensive support

to foster reliability and performance engineering by delivering

suitable runtime mechanisms, which enable elastic computing

and optimal scheduling of functions in the Edge-Cloud

continuum, while explicitly considering user-defined SLOs.

Further, SCF provides support for serverless infrastructure
orchestration by introducing novel design principles for

intelligent and autonomous infrastructure management, as well

as developing next-generation function isolation techniques,

which are specifically tailored to serverless paradigm. The

SCF also offers FaaS programming support for developing and

executing serverless functions in the Edge-Cloud continuum.

Most notably, we define concrete FaaS programming models

and data/request routing runtime mechanisms. Finally, SCF

puts specific focus on serverless AI and EI applications. Here,

we aim to support execution of large deep neural networks at

the edge, but also facilitate model selection and suitable data

flow topologies.

Before we discuss these runtime mechanisms and principles

in more detail in Section IV, we give an overview of SCF’s

high-level architecture.

A. Overview & Architecture

Figure 2, gives an overview of the high-level reference

architecture for Serverless Computing Fabric. For the sake of

simplicity, the architecture illustrates only the most important

components of the SCF and does not attempt to capture all the

components that are necessary to implement the SCF. The SCF

comprise three main layers: i) FaaS Runtime, ii) FaaS Platform
Layer and iii) Infrastructure Management and Orchestration
Layer. In the continuation we discuss the main role of each

of these layers.

The FaaS Runtime provides the support necessary to

execute and manage the SCF Functions. The Functions
Controller is responsible for managing the entire lifecycle

of each SCF function. This includes starting the functions,

scaling them to zero when there are no active requests,

but also managing persistent function invocation queues for

the dormant functions. Further, the Functions Controller is

responsible to elastically scale the SCF Functions as we

discuss in Section IV. The Request and data routers are

responsible to deliver function invocation requests to the SCF

Functions, but also to mediate the communication among the

functions. Among other things, it is the responsibility of the

request and data routers to determine whether a message

should be delivered to a local or a remote SCF Function and

to deliver such message by utilizing the lower-level layers.

Finally, the FaaS Runtime needs to facilitate communication

between the SCF Functions and the external services and

capabilities. To this end, it defines two special interfaces:

Support services access layer and Host capabilities access
layer. The Host capabilities access layer exposes the necessary

low-level capabilities to the SCF Functions. For example,

such capabilities include file system or networking access.

This layer is necessary since the SCF Functions need to be

executed in strict isolation from each other, but also from the

underlying host, for obvious security and performance reasons.

Moreover, the Host capabilities access layer represents a

single point of integration for the specialized hardware such

as AI inference accelerators and low-level libraries such as

TensorflowLite, which need to execute natively. The Support

service access layer provides access to a variety of high-level

services provided by the FaaS Platform Layer.

The FaaS Platform Layer provides core services, which

underpin the FaaS Runtime. These services are generally

grouped into two main components: the Support Serverless
Functions & Services and Core FaaS Platform Runtime
Mechanisms . We mentioned that the Support service access

layer provides access to a variety of high-level services. These

services are provided by the Support Serverless Functions

& Services component. Examples of such services include

serverless and edge-native Object store, Caching services,

Key/Value stores and so forth. It is worth mentioning that all

such services create one logical component within the SCF,

4

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Serverless Computing Fabric Reference Architecture

but in reality they are typically stand-alone services, which

are part of the larger serverless Edge-Cloud ecosystem. The

SCF requires that all such services are built as edge-native

and based on serverless (FaaS) paradigm. This is one of the

key precondition to enable true serverless application and

systems (see Section II). The Core FaaS Platform Runtime
Mechanisms implement main concepts and techniques of

the SCF. In Figure 2, we only show the most important

components, which comprise the SCF’s core FaaS platform

and include: Communication & Data Plane, Elasticity Control
Plane, Software-defined Resource Plane and Universal EI &
AI Plane. These mechanisms are described in more detail in

Section IV.

The Infrastructure Management and Orchestration Layer
is responsible for managing the Edge-Cloud infrastructure

resources. Specifically, the Workload Isolation Manager is

responsible for isolating and orchestrating workloads which

wrap the SCF Functions. The Workload Isolation Manager

guarantees that different instances of the function runtime

are sandboxed and isolated from each other, but also that

the functions are isolated from the underlying hosts. To this

end, the Workload Isolation Manager offers a novel Edge-

native function isolation approach (see Section IV). It utilizes

well-established solutions such as container runtimes and

WebAssembly (WASM) for partitioning host’s resources and

limiting their usage. Finally, it offers support for fine-grained

usage billing, based on used CPU cycles for each function

execution. The Cluster & Host Management component is

in charge of the deep infrastructure, i.e., it manages host

nodes, which comprise the resource clusters. In the reference

architecture of the SCF, we do not make any particular

assumptions regarding this component. Instead, the SCF relies

on the existing cluster management support and off-the-shelf

solutions such as K3S or KubeEdge.

5

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

IV. DESIGN PRINCIPLES & MAIN ENABLERS OF

SERVERLESS COMPUTING FABRIC

In the following, we introduce key design principles

and core enabling runtime mechanisms of SCF (Figure 3).

The presented mechanisms and principles are not meant to

represent and exhaustive list, but rather aim to serve as

an outline of our research road map towards the uniform

Serverless Computing Fabric for Edge-Cloud continuum.

A. Elastic Computing for FaaS at Edge

Cloud-native serverless platforms rely on commodity

infrastructure, small footprint, and short execution duration,

combined with statistical multiplexing of a large number of

heterogeneous functions over time. Elasticity at the Edge

implies many challenges which are not present in the

Cloud. These are caused mostly by different nature of the

underlying infrastructure (scale, geographical dispersion, etc.),

the topology of network connectivity and locality-awareness.

To enable the elasticity of the serverless computing fabric,

we envision several disruptive changes in the contemporary

perspective on elasticity. This includes both the edge-native

approaches where the focus mainly lies on task-specific

offloading to the cloud, as well as cloud-native approaches,

which to date remain fairly limited. The latter are primarily

based on a notion of autoscaling groups/sets of resources

where a user specifies desired cardinality. Main requirements

of elastic SCF include:

• Support for synchronizing elastic scaling actions

across multiple decentralized serverless functions, e.g.,

serverless workflows and defining consistent and

congruent scaling strategies.

• Facilitating multidimensional elasticity paradigm, which

makes it possible to go beyond basic resource elasticity

and address other elasticity dimensions, which include

cost and quality, but also energy efficiency and carbon

emission.

• Enabling rapid and uniform scaling of serverless

functions across the entire Edge-Cloud continuum, by

pushing the support for autonomous decision making

down to a node level and facilitating distributed

consensus.

To shift from current task-specific computational offloading

to decentralized, consensus-based and multidimensional

elasticity, SCF needs to provide novel coordination, control,

and orchestration approaches that enable Edge-Cloud systems

to adapt dynamically to varying load patterns and disruptive

behavior in a dependable manner. Finally, a level of

intelligence needs to be embedded into the SCF, which would

mitigate the complexities of the mundane and error-prone

tasks, which are typically required in current orchestration and

coordination approaches for elasticity.

B. Intelligent & Autonomous Infrastructure Management

The Serverless Computing Fabric aims to build on top of the

existing infrastructure virtualization management approaches

(container runtimes, VMMs etc.) and cluster management

(K3S, KubeEdge, OpenYurt, etc.) solutions. We intend to

develop novel mechanisms for intelligent and autonomous

management of the Edge-Cloud infrastructure at scale.

Moreover, SCF also ties into the existing orchestration

solutions, extending them with the necessary mechanisms. Due

to dynamicity, heterogeneity, geographical distribution and

the sheer scale of the Edge infrastructure, traditional human-

and policy-driven infrastructure management and provisioning

approaches (e.g., SSH-ing into Edge nodes) are hardly feasible

for successful operation of the serverless fabric in Edge-Cloud

continuum. Main requirements for a successful operation of

SCF include:

• Automated provisioning lifecycle, together with no-code

provisioning support based on off-the-shelf infrastructure

components. This is a key precondition for meeting the

zero operations, which is one of the main promises of

serverless computing.

• Providing a high degree of autonomy to both Edge and

Cloud nodes, be it physical devices or VMs, to be able to

scale the provisioning processes, but also to reach optimal

local decisions, e.g., with auction-based scheduling [6].

• Facilitating complete operations lifecycle with suitable

AI models, which can guarantee making rapid and

universally optimal resource provisioning decisions.

To make the necessary shift from traditional policy-

driven operations to a fully automated, autonomous and

intelligence driven operation of SCF, we need to rethink

the management of the high-level infrastructure components

such as containers, which underpin execution of serverless

functions, but also provide mechanisms for managing deep

infrastructure nodes (physical or virtual). Such mechanisms

must be specifically tailored for the Edge-Cloud continuum.

The SCF aims to develop suitable resource abstraction

mechanisms, which represent both infrastructure nodes and

higher-level infrastructure components in a uniform manner

and expose them as software-defined resource units via well-

defined APIs. Moreover, we advocate development of true

AIOps based orchestration and coordination solutions for

intelligent infrastructure provisioning across the entire Edge-

Cloud resource pool. This will ultimately result in refactoring

the Edge-Cloud infrastructure into autonomous and highly

customizable resource components capable to cater to the

diverse needs of serverless functions.

C. Edge-native Function Isolation Techniques
The ability to run FaaS functions in computational isolation

is the key assumption of serverless computing. Computational

isolation has multiple facets which typically include:

• Resource isolation, meaning any resource available to a

function, such as memory or CPU can be controlled and

it can be limited what such functions can access during

their runtime.

• Performance isolation between functions, meaning that

each function can assume having consistent and

predictable performance delivered by the underlying

infrastructure, regardless of its placement.

6

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of Serverless Computing Fabric Design Principles and Runtime Mechanisms

• Software fault isolation [43], [28] sometimes referred to

as “sandboxing”, means that a function is isolated form

other functions in terms of exploitable bugs, malicious

code, and any other software faults, which can lead to a

compromised security of that function.

At the same time, computational isolation can take

many forms. Well known forms include virtualization (VMs

and recently Micro VMs) [1], containerization (processes,

containers, pods and recently distroless and from scratch

containers), microkernels and isolates [3]. Most of these

approaches successfully deliver only the resource isolation.

While the VM-based virtualization does address multiple

facets of the computational isolation, due to its significant

resource overhead it is practically prohibitively expensive for

isolating functions at resource-constrained Edge.

To provide adequate support for the multi-faceted

computational isolation, SCF aims to develop a novel function

isolation model, which is specifically-tailored to account

for the properties of Edge-Cloud continuum. Among other

things the SCF FaaS isolation model has to guarantee

strong resource isolation between functions, going beyond

the traditional resources such as memory and CPU to also

account for the attached resources such as AI accelerators,

sensors and actuators. Further, it has to provide a sandboxed

environment for the functions, so that they cannot interfere

with the underlying host and its resources such as file system

and network access. Finally, the SCF FaaS isolation model

has to facilitate native execution of specific AI libraries,

which require native-execution due to their performance

requirements.

One of the promising approaches for edge-native function

isolation is WebAssembly. It offers several features, which

are particularly well suited for addressing serverless function

isolation in Edge-Cloud continuum. For example, linear

memory combined with control flow integrity guarantees

much safer code execution compared to traditional container-

based isolation. Despite receiving a lot of attention

recently, WebAssembly alone cannot satisfy all the isolation

requirements as described above. Therefore, SCF intends

to build on top of WebAssembly and extend it in several

directions, which include: 1) The SCF aims to provide a

FaaS runtime that includes capabilities, which are specifically-

designed to enable serverless execution of AI workloads in

Edge-Cloud continuum. For example, supporting access to

GPUs or specialized AI inference accelerators. 2) Integrating

the SCF FaaS runtime with deep infrastructure mechanisms.

3) Making the serverless functions first-class citizens at the

runtime level, in such a manner that the FaaS runtime has

an explicit awareness of the running serverless functions and

their (non-)functional requirements. 4) Making the SCF FaaS

runtime context- and infrastructure-aware, so that is can adapt

to the dynamic nature and frequent changes in the underlying

7

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

infrastructure, providing more consistent experience to the

serverless functions.

D. Scheduling & Placement in FaaS Platforms

The short lifetime of serverless functions compared to

traditional tasks leads to a significant increase in instances

that need to scheduled. Such a large number of FaaS tasks

paired with the massive number of nodes in the Edge-Cloud

continuum results in a scheduling load that commonly used

monolithic or shared state schedulers are not designed to

handle [38]. Even multi-level schedulers, such as Mesos [17]

and YARN [42], often have a centralized component that

might become a bottleneck in the Edge-Cloud continuum.

Additionally, among other things, a high number of scheduling

requests implies that each such request must be processed with

a low end-to-end latency to ensure that the scheduling queue

does not overflow. Other common issues in the placement of

FaaS tasks, which can heavily influence the performance of

functions and which are exacerbated by an Edge environment,

are accounting for the distance between a function’s compute

node and its data, as well as, dependencies among functions

that are executed in succession.

To enable efficient scheduling of FaaS tasks in the

Edge-Cloud continuum and guarantee the desired execution

performance of the scheduled tasks, the requirements for the

SCF scheduler include:

• Leverage a distributed scheduling approach to distribute

the high scheduling workload among a variable number

of scheduler instances. This entails finding suitable

mechanisms for scheduler state synchronization and

avoidance of scheduling decision collisions (i.e., when

two schedulers try to claim the same resource).

• Treat proximity to the data as a first-class citizen

scheduling requirement, similar to CPU and memory

resource requirements. This will allow fast data flows to

and from the FaaS functions.

• Consider dependencies among functions that are part of a

single workflow and schedule their instances in proximity

to each other.

• Leverage network QoS requirements defined for a

function’s data and/or workflow dependencies to further

optimize the placement. Such network QoS requirements

may be explicitly defined or derived from data proximity

requirements and workflow dependencies.

• Support context-aware constraints to take advantage of

the heterogeneity of the Edge environment, such as geo-

location, battery level, and device movement.

While the proximity to data and to other function instances

from the same workflow may be treated as hard or soft

constraints during scheduling, they present important aspects,

which also call for appropriate abstractions, such as service

graphs that extend currently available function composition

graphs, to allow users to model these dependencies, such

that they can be leveraged by the scheduler. To realize the

scheduler for SCF we will build upon our existing SLO-aware

scheduler [31] and redesign it to leverage a distributed, highly

scalable architecture, whose aim will be to combine a node

sampling approach, like the one found, e.g., in Sparrow [27],

with an auctioning-based approach, inspired by approaches

like AuctionWhisk [6]. Furthermore, we aim to introduce

additional context-aware and FaaS-specific constraints, like the

ones discussed above.

E. Management of SLOs

While SLOs are heavily used to guide the elasticity of

traditional Cloud applications, it is challenging to enforce

SLOs on FaaS tasks, due to their short lifetime. Serverless

databases, which have a longer lifespan, may benefit from

SLOs commonly found in Cloud computing, such as those

realized by the Polaris project [30], [29]. However, for short-

lived serverless functions it is hard or even impossible to adjust

the resources or configuration parameters during the runtime

of an existing function instance.

Thus, SLO management for FaaS needs to take an

alternative approach that relies on insights gained from

previous function executions and apply them when creating

new function instances. Based on this observation we derive

the following major requirements for SLOs in the SCF:

• Monitor the execution of function instances to determine

their SLO-compliance, categorized by the function’s

input parameters. Based on these observations, the SCF

can infer configurations that will yield the desired

performance for a given set of input parameters.

• Enforce the SLOs by applying the previously gained

knowledge on the instantiation of new functions.

• Leverage network QoS SLOs defined for a function

(either explicitly or implicitly through workflow

dependencies and input data requirements) to optimize

its placement in the Edge-Cloud continuum to ensure

that performance SLOs are met.

While the enforcement of network QoS SLOs needs to

be tackled by the scheduler [31], the enforcement of almost

all other SLOs will occur at the creation of new function

instances. This entails a deep integration of SLOs into the

orchestration layer of SCF and will benefit heavily from the

use of AI models to predict the performance of a function,

based on its input parameters. The monitoring data gained

from previous executions can be used for profiling the function

and create an accurate model for its performance. When a

new instance of a function is created, the SCF orchestration

layer will look up the most performant configuration, based

on the current input parameters and use this configuration to

instantiate the function.

F. FaaS Programming Models

The prevalent programming model for serverless functions

is event-driven. Functions receive an input and return an

output based on triggers, while the underlying infrastructure

is abstracted away from the developers [23]. Current FaaS

offerings support a variety of triggers, including HTTP

requests, queues, file & database changes [37]. This limited

expressiveness significantly restricts function developers [4].

8

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

The SCF is characterized not only by a heterogeneous

infrastructure, but also by heterogeneous applications that

require more sophisticated programming models than the

simple event-driven model that is currently employed. The

SCF decides to trade some transparency regarding function

management and execution, in favor of optimally managing

deployments to satisfy user requirements and SLOs.

We propose balancing the responsibilities and concerns

between developers and the underlying runtime. Specifically,

an extended programming model can expose specific tools

to the developers to enable them to add additional context

to the functions. The SCF can use this context to efficiently

manage deployments optimally while exposing infrastructure

concerns in a minimally invasive way to developers. In our

vision, context can act as requirements and fundamentally

support runtime mechanisms to manage function deployments.

Specifically the following requirements are crucial for

an optimal deployment: cost efficiency, energy efficiency,

latency sensitivity, privacy concerns and location requirements.

Developers can specify which requirements are important for

their functions and the SCF can optimize toward them. The

SCF requires intelligent and capable runtime mechanisms to

monitor and enforce these requirements. Monitoring the SCF is

challenging due to the dynamic nature of the infrastructure and

connections. Reliable middleware components (i.e., message

brokers) are not only important for request routing but also

to ensure that runtime mechanisms do not act on faulty

or missing data. The SCF also requires intelligent runtime

mechanisms to enforce these requirements. For example, an

optimization approach can use monitoring data to schedule

applications on nodes with the lowest energy consumption and

close to the users. Additionally, pro-active scaling approaches

can predict locations in which instances are needed in the

near future to avoid cold startups and minimize latency.

This approach violates the spirit of Serverless Computing to

hide all infrastructure details. Therefore programming model

extensions must be careful and balance between exposing and

hiding details from developers.

Moreover, stateful applications play an essential role in

Edge-Cloud continuum and need to be explicitly supported.

Stateful serverless approaches [7] have shown that the actor

pattern is a suitable abstraction [8]. The SCF should offer

methods to make the distinction and offer essential features

(i.e., checkpoints and failure recovery).

Further, exploiting ideas of the Functional Programming

(FP) paradigm can benefit developers and platform providers

alike [19]. The following features of FP can benefit serverless

development and tackle many challenges around reliability and

development. First, FP languages offer different composing

functions that can be used to generate complex workflows

and abstract infrastructural concerns from the developer (i.e.,

the actual function composition implementation). Second, FP

heavily relies on types and functions and treats them as first-

class citizens. In our vision, we want to push forward a strong

type system that makes FP programs safe and reliable. Types

describe functions and can test the compatibility of function

compositions. Third, concurrency, transaction management,

failure recovery, and preemptive termination pose challenges

in terms of reliability and development and FP inspired

approaches can significantly push toward a development

experience that makes aware of these issues and offers

integrated solutions [19]. FP constructs can help wrap these

cross-cutting concerns around functions without taking away

the freedom of developers to solve these issues. Still, they also

can be done without developer intervention.

G. Data & Request Routing Mechanisms

Interaction patterns of serverless Edge-Cloud applications

are manifold. For example, human clients may sporadically

access serverless applications (e.g., ordering a taxi) or

continuously send requests (e.g., mobile augmented reality) to

the platform over ingress controllers. IoT sensors periodically

send heterogeneous data over topic-based message brokers.

The requirements for implementing these routing mechanisms

are manifold: 1) application developers need mechanisms

to specify complex workflows (i.e., function compositions),

2) the platforms need mechanisms for autonomously managing

routing components, and 3) reliable service meshes are crucial

for providing suitable routing mechanisms.

Current FaaS platforms (e.g., Amazon, Google, IBM

OpenWhisk) offer tools to compose workflows and related

programming models (i.e., dataflows [13]) are based on the

composition of multiple applications and form a directed

acyclic graph (DAG). DAGs enable the SCF to reason about

the data flow and routing. DAGs can give insight into

the location and network requirements of applications can

be analysed for dependencies. Specifically, the structure of

DAGs can be analysed towards benefits of co-locating certain

applications or avoiding multi-tenant situations at all cost due

to competing resource requirements. These requirements can

aid the routing of data and requests and give the SCF’s runtime

mechanism the necessary context to meet expectations.

To guarantee the aforementioned requirements, the SCF

has to autonomously adapt routing components, such as load

balancers and message brokers. As edge-cloud applications

will likely generate an unprecedented amount of data, these

components not only serve to satisfy customers but also

prevent the congestion of metropolitan networks [36].

Serverless functions are most often short-running tasks and

are scaled out and in based on demand. Therefore, the platform

has to offer mechanisms to automatically adapt routing

components based on the availability of function instances.

Reliable routing becomes even more critical when platforms

usually scale to zero, meaning that no function instances are

running, making a reliable intermediate persistence necessary

to route requests successfully. While these approaches are

already established in cloud-centric systems, the Edge-

Cloud continuum poses new challenges that have yet to

be solved [39]. Based on the requirements above, the SFC

requires a sophisticated network mesh that consists of routing

components (i.e., message brokers, load balancers, and API

gateways), is capable of dynamically managing them (i.e.,

9

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

spawning more brokers in a region with a high number of

clients), offers methods to understand developer requirements,

and is built on reliable and robust engines that can handle the

dynamic environment of Edge-Cloud systems.

H. Model Selection and Data Flow Topology

In addition to packaging and deploying the core business

logic as functions, intelligent applications which rely on tasks

such as voice recognition or object detection must select

appropriate machine learning models. A selection process is

non-trivial since models can perform the same tasks while

varying in size, inference latency, capacity, and hardware

optimization. Rather than forcing machine learning engineers

to search for the appropriate model from an exponential search

space, model selection automates this process.

Model selection has seen considerable research in cloud

computing, where state-of-the-art systems abstract the entire

selection process, allowing clients to specify AI tasks coupled

to desired SLOs [34]. However, model selection for the

edge is distinct from the cloud and substantially more

challenging for two reasons. First, the economies of scale

incline cloud providers to specialize in a specific subset of

chip architectures. In contrast, our vision of an SCF needs

to integrate the entire spectrum of available AI accelerators.

Moreover, even when considering devices with the same

chip architecture, profiling models for latency and energy

consumption is less straightforward as it depends on a device’s

available resources. Second, a model’s input modality impacts

a scheduler’s strategy to uphold SLOs where the correct data

flow topology and model placement is essential for modalities

that require a significant amount of bandwidth. For example, to

comply with latency-related SLOs, sending a visual feed over

the network requires more bandwidth than textual input, giving

visual models more priority to the scarce resources close to

the source.

I. Integration of Large Deep Neural Networks

Deep Neural Network (DNN) models which can reliably

execute inference tasks incur high resource consumption

on most available hardware. Accordingly, academia and

industry dedicate much attention to conceiving solutions

to accommodate local inference tasks in constrained

environments. They range from devising novel compact

architectures [35] to altering existing architectures via

quantization, pruning, or Knowledge Distillation [11]. An

inherent shared trait of all such approaches is their

performance and model capacity trade-offs. Alternatively,

mobile applications can offload the inference tasks to a

cloud server where we assume unlimited resources capable

of fast inference regardless of load. Here, the bottleneck is

transferring the input data to a remote server. Especially for

visual tasks, there remains one obvious caveat. Continuous

high-dimensional data streams must compete for limited

bandwidth, which can incur unacceptable end-to-end latency

caused by network congestion. More recently, Split Computing

has emerged as a paradigm and middle ground between

Fig. 4: Split Computing Concept

offloading the task to a powerful remote model and onloading

it to a weaker embedded device [25]. As illustrated in Figure 4,

the idea is to split a model into a small local head and a

large remote tail. The head performs light feature extraction

before sending the intermediate results to the remote tail

model. Note that the head is deployed on a constrained end

device, i.e., it can only contain a limited number of layers,

which must downsample the original input such that the

intermediate results are significantly smaller than the initial

input. Hence, finding the right balance is challenging because

the combined time for executing the head model, transferring

the intermediate results, and executing the tail model must

be shorter than offloading and executing the input task at the

unmodified monolithic model.

To successfully accommodate demanding AI applications

in our SCF and to fully exploit the available but distributed

resources, we plan on a serverless abstraction as future

work [14]. However, existing approaches do not meet

the requirements to enable split computing for serverless

applications. Specifically, we require a runtime that can

dynamically decide the offload point for each input and

coarse-grained layer. Additionally, the scheduler needs to be

lightweight enough such that the dynamic split decision does

not outweigh the benefit of a joint on- and offload execution.

To this end, we build a runtime system for dynamic split points

and conceive a programming model that allows clients to

organise DNNs into coarse-grained blocks so that a scheduler

can deploy the functions with all or only a subset of the blocks.

Then, the input is processed by a series of recursive function

calls, i.e. each call executes one block taking the result of the

previous block as its input.

The advantage of such an abstraction is twofold. First,

we can decouple the decision-making process for onloading,

offloading, and model splitting from the client with a

background runtime system. Second, such an abstraction

allows us to define model execution at a layer level, i.e., each

layer is a possible split point enabling a scheduler to decide

when to offload dynamically without the constraints of a single

static split point.

V. RELATED WORK

The related work is split into two categories. First, we

compare our vision with current serverless edge platforms

and highlight missing features and differences to our vision.

10

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

Afterward, we discuss works that give an overview of future

Serverless Edge platforms and general issues.

Kjorveziroski et al. [22] present a survey of Serverless Edge

platforms with a focus on IoT. The systematic comparison of

existing approaches focuses on implementations, efficiency,

scheduling, benchmarks, security aspects, and source code

availability. Most of the approaches focus only on one or few

aspects but no surveyed work fulfills all categories. Further,

the survey has shown that Serverless Edge platforms are

not limited to a specific compute environment (i.e., Edge

Computing) but try to offer versatile products suiting the Edge-

Cloud continuum. Nevertheless, first commercial attempts are

limited to a specific environment. Ioini et al. [18] also perform

a structured survey on Serverless Edge platforms. They focus

on comparing existing commercial and open source platforms

while looking into categories such as high availability,

portability, programming language support, investment cost,

and AI support. The survey leads them to identify issues

surrounding vendor lock-in, lack of a decision framework

when to use serverless and lack of best practices, patterns and

anti patterns. Our work tackles some of those issues and gives

guidelines for programming models and SLO identification

while highlighting open issues for best practices (i.e., AI

deployment). Fortier et al. [13] present Dyninka, a platform

that combines FaaS and distributed dataflow applications.

Their approach explores the possibility of combining dataflow

programming and Serverless Computing to create a novel

platform with an emphasis on developing applications. The

system uses container-based virtualization and is integrated

into Kubernetes and uses multitier programming to let

developers specify interactions between individual components

(i.e., functions). Other works have investigated and proposed

solutions with preliminary results [9], without dedicated AI

support or an extended programming model [40], [10].

Xie et al. [45] discuss challenges and present design

principles on how Serverless Computing can enable Edge

Computing. The authors present a systematic overview

of Serverless Edge Computing networks and propose an

architecture. The architecture is split into multiple layers and

the authors describe in detail the components and interactions.

In contrast to them, we propose mechanisms for SLOs, an

extended programming model, and key challenges for Edge

Intelligence. Aslanpour et al. [2] present a high-level view on

Serverless Edge Computing and highlight opportunities (i.e.,

pay-per-use) and open issues (i.e., cold starts) surrounding

Serverless Edge Computing. Rausch et al. [32] present a

serverless platform with a focus on Edge Intelligence. They

discuss details of a possible programming model for Edge

Intelligence and outline how current cloud-centric platforms

have to adapt to the Edge-Cloud continuum based on use case

examples. Our work is complementary to these papers and

we extend the discussion and present new mechanisms and

challenges for the SCF.

VI. CONCLUSION

We introduced Serverless Computing Fabric (SCF), as

a novel software-defined, intelligence-driven, and Internet-

centric solution that can successfully address the challenges

of serverless applications in the Edge-Cloud continuum. We

showed how the SCF represents a paradigm shift from

traditional services and platforms computing to a fabric-

centric computing where digital resources, infrastructures,

and systems become commodities, which permeate the entire

computational and data Edge-Cloud continuum. We presented

a high-level reference architecture of the SCF and discussed its

main components and core services. Finally, we introduce key

design principles and core enabling runtime mechanisms of

SCF. These principles and mechanisms are intended to serve

as an outline of our research road map towards the uniform

Serverless Computing Fabric for Edge-Cloud continuum.

ACKNOWLEDGMENTS

This work is supported by Futurewei’s Cloud Lab. as part

of the overall open source initiative.

REFERENCES

[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa. Firecracker: Lightweight virtualization
for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20), pages 419–434, 2020.

[2] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar. Serverless
edge computing: vision and challenges. In 2021 Australasian Computer
Science Week Multiconference, pages 1–10, 2021.

[3] V. Authors. V8, 2008.
[4] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,

N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, et al. Serverless
computing: Current trends and open problems. In Research advances in
cloud computing, pages 1–20. Springer, 2017.

[5] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu. The serverless trilemma: Function composition
for serverless computing. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, pages 89–103, 2017.

[6] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Thamsen.
Auctionwhisk: Using an auction-inspired approach for function
placement in serverless fog platforms. Software: Practice and
Experience, 52(5), 2022.

[7] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S.
Meiklejohn. Durable functions: semantics for stateful serverless. Proc.
ACM Program. Lang., 5(OOPSLA):1–27, 2021.

[8] D. Charousset, R. Hiesgen, and T. C. Schmidt. Revisiting actor
programming in c++. Computer Languages, Systems & Structures,
45:105–131, 2016.

[9] M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo. Dfaas: Decentralized
function-as-a-service for federated edge computing. In 2021 IEEE 10th
International Conference on Cloud Networking (CloudNet), pages 1–4.
IEEE, 2021.

[10] C. Cicconetti, M. Conti, and A. Passarella. A decentralized framework
for serverless edge computing in the internet of things. IEEE
Transactions on Network and Service Management, 18(2):2166–2180,
2020.

[11] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and
hardware acceleration for neural networks: A comprehensive survey.
Proceedings of the IEEE, 108(4):485–532, 2020.

[12] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya.
Edge intelligence: The confluence of edge computing and artificial
intelligence. IEEE Internet of Things Journal, 7(8):7457–7469, 2020.

11

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

[13] P. Fortier, F. Le Mouël, and J. Ponge. Dyninka: a faas framework
for distributed dataflow applications. In Proceedings of the 8th
ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems, pages 2–13, 2021.

[14] A. Furutanpey and S. Dustdar. Adaptive and collaborative inference:
Towards a no-compromise framework for distributed intelligent systems.
Proceedings of the 18th International Conference on Web Information
Systems and Technologies, 2022.

[15] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: Vision and challenges, 2015.

[16] A. Glikson, S. Nastic, and S. Dustdar. Deviceless edge computing:
extending serverless computing to the edge of the network. In
Proceedings of the 10th ACM International Systems and Storage
Conference, pages 1–1, 2017.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11), Boston, MA,
2011. USENIX Association.

[18] N. E. Ioini, D. Hästbacka, C. Pahl, and D. Taibi. Platforms for serverless
at the edge: a review. In European Conference on Service-Oriented and
Cloud Computing, pages 29–40. Springer, 2020.

[19] A. Jangda, D. Pinckney, Y. Brun, and A. Guha. Formal foundations
of serverless computing. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–26, 2019.

[20] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang. Towards demystifying serverless machine
learning training. In Proceedings of the 2021 International Conference
on Management of Data, pages 857–871, 2021.

[21] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al. Cloud
programming simplified: A berkeley view on serverless computing.
arXiv preprint arXiv:1902.03383, 2019.

[22] V. Kjorveziroski, S. Filiposka, and V. Trajkovik. Iot serverless computing
at the edge: A systematic mapping review. Computers, 10(10):130, 2021.

[23] H. Lee, K. Satyam, and G. Fox. Evaluation of production serverless
computing environments. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 442–450. IEEE, 2018.

[24] Y. Matsubara, M. Levorato, and F. Restuccia. Split computing and early
exiting for deep learning applications: Survey and research challenges.
ACM Computing Surveys (CSUR), 2021.

[25] Y. Matsubara, M. Levorato, and F. Restuccia. Split computing and early
exiting for deep learning applications: Survey and research challenges.
ACM Computing Surveys (CSUR), 2021.

[26] S. Nastic and S. Dustdar. Towards deviceless edge computing:
Challenges, design aspects, and models for serverless paradigm at the
edge. In The Essence of Software Engineering, pages 121–136. Springer,
Cham, 2018.

[27] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
New York, NY, USA, 2013. Association for Computing Machinery.

[28] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova.
ewasm: Practical software fault isolation for reliable embedded devices.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 39(11):3492–3505, 2020.

[29] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,
D. Vij, and Y. Xiong. A novel middleware for efficiently implementing
complex cloud-native slos. In 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), 2021.

[30] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,
D. Vij, and Y. Xiong. Slo script: A novel language for implementing
complex cloud-native elasticity-driven slos. In 2021 IEEE International
Conference on Web Services (ICWS), 2021.

[31] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith,
S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang. Polaris scheduler:
Slo- and topology-aware microservices scheduling at the edge. In
2022 IEEE/ACM 15th International Conference on Utility and Cloud
Computing (UCC). 2022.

[32] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar.
Towards a serverless platform for edge {AI}. In 2nd USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 19), 2019.

[33] T. Rausch, A. Rashed, and S. Dustdar. Optimized container scheduling
for data-intensive serverless edge computing. Future Generation
Computer Systems, 114:259–271, 2021.

[34] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis. {INFaaS}:
Automated model-less inference serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 397–411, 2021.

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[36] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[37] J. Scheuner, M. Bertilsson, O. Gronqvist, H. Tao, H. Lagergren, J.-P.
Steghöfer, and P. Leitner. Triggerbench: A performance benchmark for
serverless function triggers (short paper). In 2022 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2022.

[38] M. Schwarzkopf. The evolution of cluster scheduler architectures, 2016.
[39] M. R. S. Sedghpour and P. Townend. Service mesh and ebpf-

powered microservices: A survey and future directions. In 2022
IEEE International Conference on Service-Oriented System Engineering
(SOSE), pages 176–184. IEEE, 2022.

[40] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict. Fado:
Faas functions and data orchestrator for multiple serverless edge-cloud
clusters. In 2022 IEEE 6th International Conference on Fog and Edge
Computing (ICFEC), pages 17–25. IEEE, 2022.

[41] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration. IEEE Communications Surveys &
Tutorials, 19(3):1657–1681, 2017.

[42] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[43] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 203–216, 1993.

[44] B. Wang, A. Ali-Eldin, and P. Shenoy. Lass: running latency sensitive
serverless computations at the edge. In Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 239–251, 2021.

[45] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang. When
serverless computing meets edge computing: architecture, challenges,
and open issues. IEEE Wireless Communications, 28(5):126–133, 2021.

[46] L. Zhao, Y. Yang, Y. Li, X. Zhou, and K. Li. Understanding, predicting
and scheduling serverless workloads under partial interference. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–15, 2021.

12

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2024 at 10:35:54 UTC from IEEE Xplore. Restrictions apply.

