
Runtime Behavior Monitoring and Self-Adaptation
in Service-Oriented Systems

Harald Psaier, Lukasz Juszczyk, Florian Skopik, Daniel Schall, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8, 1040 Wien, Austria

{lastname}@infosys.tuwien.ac.at

Abstract—Mixed service-oriented systems composed of hu-
man actors and software services build up complex interaction
networks. Without any coordination, such system may exhibit
undesirable properties due to unexpected behavior. Also, commu-
nications and interactions in such networks are not preplanned by
top-down composition models. Consequently, the management of
service-oriented applications is difficult due to changing interac-
tion and behavior patterns that possibly contradict and result in
faults from varying conditions and misbehavior in the network. In
this paper we present a self-adaptation approach that regulates
local interactions to maintain desired system functionality. To
prevent degraded or stalled systems, adaptations operate by link
modification or substitution of actors based on similarity and
trust metrics. Unlike a security perspective on trust, we focus on
the notion of socially inspired trust. We design an architecture
based on two separate independent frameworks. One providing
a real Web service testbed extensible for dynamic adaptation
actions. The other is our self-adaptation framework including
all modules required by systems with self-* properties. In our
experiments we study a trust and similarity based adaptation
approach by simulating dynamic interactions in the real Web
services testbed.

Index Terms—Service-oriented collaboration, monitoring, self-
adaptation, web service testbed, dynamic trust

I. I NTRODUCTION

Service-oriented architectures (SOA) implementations are
typically designed as large-scale systems. Applications are
composed from the capabilities of distributed services that
are discovered at runtime. Dynamic loosely bound systems
make the management of large-scale distributed applications
increasingly complex. Adaptations are necessary to keep the
system within well-defined boundaries such as expected load
or desired behavior. Changing requirements and flexible uti-
lization demand for comprehensive analysis of the resulting
effects prior to integration. Changes interfere with established
services, connections, or policies and on top of all affect
dependencies. However, service compositions must be main-
tained and adapted depending on predefined runtime properties
such as quality of service (QoS) [1] and behavior [2].

In this work we propose a monitoring and self-adaptation
approach ofservice-oriented collaboration networks. We con-
sider systems that are based on the capabilities of human
actors, defined as Human-Provided Services (HPSs) [3] and
traditional Software-Based Services (SBSs). The integration
of humans and software-based services is motivated by the

difficulties to adopt human expertise into software implemen-
tations. Instead of dispensing with human capabilities, people
handle tasks behind traditional service interfaces. In contrast
to process-centric flows (top-down compositions), we advocate
flexible compositions wherein services can be added at any
time exhibiting new behavior properties. However, especially
the involvement of and dependencies on humans as a part of
flexible compositions makes the functioning of applications
difficult to determine. Heterogeneity has a major impact on
all aspects of the system since system dynamics and evolution
are driven by software services and human behavior [2]. A
main challenge is to monitor, analyze, and evaluate specific
behaviors which may affect system performance or reliability.

We present a solution to this problem based on an ar-
chitecture including a Web services testbed [4] at its core.
The testbed allows to simulate and track the effects on a
composition resulting from different environmental conditions.
The success of self-adaptation strategies commonly depends
on the recognition of the system’s current state and potential
actions to achieve desired improvements.

This paper presents the following novel key contributions:

• Modeling and simulating human behavior in service-
oriented collaboration networks.

• A flexible interaction model for service-oriented systems.
The interaction model is based on delegation actions per-
formed by actors. Associated tasks are routed through the
system following standard WS-Addressing techniques.

• Models for misbehavior and related repair actions to
prevent inefficient or degraded system performance. We
identify delegation factoryanddelegation sinkand their
behavior.

• Discovery of delegation receivers to prevent or mitigate
misbehavior. We present a novel trust metric based on
profile similarity measurements.

The paper’s structure is as follows. Section II provides a
motivating scenario for service-oriented collaboration systems.
Section III explains the concepts of similarity and trust used
for adaptation strategies. Section IV outlines the twofold
system architecture. Section V details the aspects of behavior
monitoring. Experiments and results are discussed in Section
VI followed by related work in Section VII. Section VIII
concludes the paper.

II. ON SELF-ADAPTATION IN COLLABORATIVE SOA

The goal of self-adaptation in service-oriented systems isto
prevent the running system from the trend to an unexpected
low performance. As in autonomic computing the aim is
to create robust dependable self-managing systems [5]. The
established methodology [6], and the one of self-adaptive sys-
tems [7] is to design and implement acontrol-feedback loop.
This feedback loop is know as theMAPE cycle consisting
of four essential steps:monitor, analyze, plan, and execute.
Systems that adapt themselves autonomously are enhanced
with sensors and effectorsthat allow network modelcreation
and adaptation strategies. This provides the necessary self-
awareness to manage the system autonomously.

Monitoring Adaptation

Network Model

events

inter-

actions

adaptation

strategy

v

u
w

x

logs network

Service-oriented Collaboration Network

Fig. 1. Self-adaptation and behavior monitoring approach.

Figure 1 illustrates the proposed approach to manage and
adapt service-oriented collaboration networks. Such systems
comprise different kinds of actors, services, and compositions
thereof. Interactions are captured from the system throughin-
terceptor and logging capabilities. Themonitoringcomponent
feeds interaction logs into a network representation of actors
and their relations. Behavior patterns are analyzed based on
a network model. A self-adaptationengine evaluates policies
to trigger potential adaptation strategies. Adaptations include
structural change (link modification) and actor substitution.

Our approach with two frameworks allows testing of adapta-
tion strategies in versatile service-based application scenarios.
Examples arecrowdsourcingapplications [8] in enterprise
environments or open Internet based platforms. These online
platforms distribute problem-solving tasks among a group of
humans. Crowdsourcing follows the ‘open world’ assumption
allowing humans to provide their capabilities to the platform
by registering themselves as services. Some of the major
challenges [9] are monitoring of crowd capabilities, detection
of missing capabilities, strategies to gather those capabilities,
and tasks’ status tracking. In the following we discuss collab-
orations in service-oriented networks.

Processes in collaborative environments are not restricted to
single companies only, but may span multiple organizations,
sites, and partners. External consultants and third-partyexperts
may be involved in certain steps of such processes. These
actors perform assigned tasks with respect to prior negoti-
ated agreements. Single task owners may consume services
from external expert communities. A typical use case is
the evaluation of experiment results and preparation of test
reports in biology, physics, or computer science by third-party

consultants (i.e., the network of experts). While the results of
certain simple but often repeated experiments can be efficiently
processed by software services, analyzing more complex data
usually needs human assistance. We model a mixed expert
network consisting of Human-Provided and Software-Based
Services belonging to different communities. The members
of these communities are discovered based on their main
expertise areas, and connected through certain relations (de-
tailed in the following sections). Community members receive
requests from external service consumers, process them, and
respond to the requests. Our environment uses standardized
SOA infrastructures, relying on widely adopted standards,such
as SOAP and the Web Service Description Language (WSDL),
to combine the capabilities of humans and software services.

Various circumstances may cause inefficient task assign-
ments in expert communities. Performance degradations can
be expected when a minority of distinguished experts become
flooded with tasks while the majority remains idle. Load
distribution problems can be compensated withdelegations
[10], [11]. Each expert in a community is connected to other
experts that may potentially receive delegations. We assume
that experts delegate work they are not able to perform because
of missing mandatory skills or due to overload conditions.
Delegation receivers can accept or reject task delegations.
Community members usually have explicit incentives to accept
tasks, such as collecting rewards for successfully performed
work to increase their community standing (reputation). Del-
egations work well as long as there is some agreement on
members’delegation behavior: How many tasks should be
delegated to the same partner in a certain time frame? How
many task can a community member accept without neglecting
other work? However, if misbehavior cannot be avoided in the
network, its effects need to be compensated. We identify two
types of misbehavior:delegation factoryanddelegation sink.

A delegation factory produces unusual (i.e., unhealthy)
amounts of task delegations, leading to a performance degra-
dation of the entire network. For example (see Figure 1), if a
nodev accepts large amounts of tasks without actually per-
forming them, but simply delegates to one of its neighboring
nodes (e.g.,w). Hence,v’s misbehavior produces high load at
the neighboring nodew. Work overloads lead to delays and,
since tasks are blocked for a longer while, to a performance
degradation from a global network point of view. Adelegation
sink can be characterized by the following behavior. Nodew

accepts more task delegations fromu, v, andx as it is actually
able to handle. In our collaborative network, this may happen
due to the fact thatw either underestimates the workload or
wants to increase its reputation as a valuable collaboration
partner in a doubtful manner. Sincew is actually neither able
to perform all tasks nor to delegate to colleagues (because of
missing outgoing delegation links), accepted tasks remainin
its task pool. Again, we observe misbehavior as the delegation
receiver causes blocked tasks and performance degradation
from a network perspective.

Our approach provides a testing environment for such
applications to address related challenges.

III. PROFILE SIMILARITY AND DYNAMIC TRUST

Collaborative networks, as outlined in the previous sections,
are subject to our trust studies. Unlike a security view, we
focus on the notion of dynamic trust from a social perspective
[12]. We argue that trust between community members is
essential for successful collaborations. The notion of dynamic
trust refers to the interpretation of previous collaboration
behavior [10], [13] and considers the similarity of dynamically
adapting skills and interests [14], [15].

Especially in collaborative environments, where users are
exposed to higher risks than in common social network
scenarios, and where business is at stake, considering trust is
essential to effectively guide human interactions. In thispaper,
we particularly focus on the establishment of trust through
measuring interest similarities [10]:

• Trust Mirroring implies that actors with similar profiles
(interests, skills, community membership) tend to trust
each other more than completely unknown actors.

• Trust Teleportationrests on the similarity of human or
service capabilities, and describes that trust in a mem-
ber of a certain community can be teleported to other
members. For instance, if an actor, belonging to a certain
expert group, is trusted because of his distinguished
knowledge, other members of the same group may benefit
from this trust relation as well.

A. Interest Profile Creation

In contrast to common top-down approaches that apply
taxonomies and ontologies to define certain skills and expertise
areas, we follow a mining approach that addresses inherent
dynamics of flexible collaboration environments. In particular,
skills and expertise as well as interests change over time, but
are rarely updated if they are managed manually in a registry.
Hence, we determine and update them automatically through
mining.

The creation of interest profiles without explicit user input
has been studied in [10]. As discussed before, interactions, i.e.,
delegation requests, are tagged with keywords. As delegation
receivers process tasks, our system is able to learn how well
people cope with certain tagged tasks; and therefore, able to
determine their centers of interests. We use task keywords to
create dynamically adapting interest profiles based on tagsand
manage them in a vector space model.

The utilized concepts are well-known from the area of
information retrieval (see for instance [16]). However, while
they are used to determine the similarities of given documents,
we create these documents (that reflect user profiles) from used
tags dynamically on the fly.

The profile vectorpu of actor u in Eq. (1) describes
the frequenciesf the tagsT = {t1, t2, t3 . . . } are used in
delegated tasks accepted by actoru.

pu = 〈f(t1), f(t2), f(t3) . . . 〉 (1)

The tag frequency matrixT (2) in Eq. 2, built from
profile vectors, describes the frequencies of used tags

T = {t1, t2, t3 . . . } by all actorsA = {u, v, w . . . }.

T = 〈pu,pv,pw . . . 〉|T |×|A| (2)

The populartf∗idf model [16] introduces tag weighting
based on the relative distinctiveness of tags; see Eq. (3). Each
entry inT is weighted by the log of the total number of actors
|A|, divided by the amountnt = |{u ∈ A | tf(t, u) > 0}| of
actors who used tagt.

tf∗idf(t, u) = tf(t, u) · log
|A|

nt

(3)

Finally, the cosine similarity, a popular measure to deter-
mine the similarity of two vectors in a vector space model,
is applied to determine the similarity of two actor profilespu

andpv; see Eq. (4).

simprofile(pu,pv) = cos(pu,pv) =
pu · pv

||pu|| ||pv||
(4)

B. The Interplay of Interest Similarity and Trust

In our model, a trust relationτ(u, v) mainly relies on the
interest and expertise similarities of actors. We apply various
concepts to facilitate the emergence of trust among network
members.

Trust Mirroring. Trust τmir (Figure 2(a)) is typically
applied in environments where actors have the same roles
(e.g., online social platforms). Depending on the environment,
interest and competency similarities of people can be inter-
preted directly as an indicator for future trust (Eq. 5). There is
strong evidence that actors ‘similar minded’ tend to trust each
other more than any random actors [12], [15]; e.g., movie
recommendations of people with same interests are usually
more trustworthy than the opinions of unknown persons.
Mirrored trust relations are directed, iffsimprofile(pu,pv) 6=
simprofile(pu,pv). For instance an experienced actorv might
have at least the same competencies as a noviceu. Therefore,
v covers mostly all competencies ofu andτmir(u, v) is high,
while this is not true forτmir(v, u).

τmir(u, v) = simprofile(pu,pv) (5)

?
vu

similarity

(a) Trust Mirroring.

?

w

vu

similarity

(b) Trust Teleportation

Fig. 2. Concepts for the establishment of trust through interest similarities.

Trust Teleportation. Trust τtele is applied as depicted by
Figure 2(b). We assume thatu has established a trust relation-
ship tow in the past, for example, based onw’s capabilities to
assistu in work activities. Therefore, others having interests
and capabilities similar tow may become similarly trusted
by u in the future. In contrast to mirroring, trust teleportation
may also be applied in environments comprising actors with

G2 Runtime

G
2
 F
ro
n
te
n
d

G2 Plugins

API Plugin Repository Shared Runtime

WS

Generator
Registry WS Invoker

Logging

Interceptor

Logging

Service

events

logs

Logging DB

Event

Subscriber

Adaptation Framework

Monitoring DB

state change

Behavior Reg.

Behavior

Monitor

updated behavior

Monitoring Features

Admin Tools

Adaptation

Module
Diagnosis

and Analysis

Similarity

Service

Tag DBPolicy Store

deployed action

PAction

(Genesis)

Rule

Config.

Mon.

Manager

Action

Manager

Sim

Search

Network

Vis.

G2 Backend

Registry

c1 d1

Ws1

Ws3
Ws2

adaptation

strategy

Logger

Control Interface

inter-

actions

Fig. 3. Architecture for self-adaptation in service-oriented systems.

different roles. For example, a manager might trust a software
developer belonging to a certain group. Other members in the
same group may benefit from the existing trust relationship
by being recommended as trustworthy as well. We attempt to
predict the amount of future trust fromu to v by comparing
w’s andv’s profilesP .

τtele(u, v) =

∑
w∈M ′ τ(u,w) · (simprofile(pw,pv))2

∑
w∈M ′ simprofile(pw,pv)

(6)

Equation 6 deals with a generalized case where several trust
relations fromu to members of a groupM ′ are teleported
to a still untrusted actorv. Teleported relations are weighted
and attenuated by the similarity measurement results of actor
profiles.

IV. D ESIGN AND ARCHITECTURE

This section provides an overview of the components and
services that allow simulatons and tests of adaptation scenarios
in collaborative service-oriented systems. Our architecture (see
Figure 3) consists of two main building blocks: thetestbed
runtime environmentbased on the Genesis2 framework [4]
and the VieCureadaptationandself-healing framework, partly
adopted from our previous work [2]. The integration of both
systems enables the realization of thecontrol-feedback loop
as illustrated in Figure 1.

A. Genesis2 Testbed Generator Framework

The purpose of the Genesis2 framework (in short, G2) is to
support software engineers in setting up testbeds for runtime
evaluation of SOA-based concepts and implementations; in
particular also collaboration networks. It allows to establish
environments consisting of services, clients, registries, and
other SOA components, to program the structure and behavior
of the whole testbed, and to steer the execution of test cases
on-the-fly. G2’s most distinct feature is its ability to generate
real testbed instances (instead of just performing simulations)
which allows engineers to integrate these testbeds into existing

SOA environments and, based on these infrastructures, to
perform realistic tests at runtime.

As depicted in Figure 3, the G2 framework comprises a
centralized front-end, from where testbeds are modeled and
controlled, and a distributed back-end at which the models
are transformed into real testbed instances. The front-end
maintains a virtual view on the testbed, allows engineers to
manipulate it via Groovy [17] scripts, and propagates changes
to the back-end in order to adapt the running testbed. To
ensure extensibility, G2 follows a modular approach where a
base runtime framework provides a functional grounding for
composable plugins. These augment the testbed’s functional-
ity, making it possible to emulate diverse topologies, functional
and non-functional properties, and behavior. Furthermore, each
plugin registers itself at the shared runtime in order offerits
functionality via the framework’s script API.

The sample script in Listing 1 demonstrates a specification
of a Web service which queries a registry plugin, applies a del-
egation strategy, and forwards the request message to a worker
service. First, a call interceptor is created and customized with
a Groovy closure which passes the SOAP message to the
logger plugin. Then, a data type definition is imported from
an XML Schema file for being later applied as a message
type for the subsequently defined web serviceProxy. The
proxy service first attaches the created call interceptor to
itself and defines an operation which delegates the request.
This procedure is split into querying the registry for tagged
Web services, applying the delegation strategy (dStrat)
for determining the destination, and invoking theProcess
operation on it. For later adaptations, the delegation behavior
itself is not hardcoded into the operation but outsourced asa
service variable containing the delegation code. This makes it
possible to update the deployed service’s behavior at runtime
by replacing the variable. Finally, in Lines 24 and 25 a back-
end host is referenced and the proxy service is deployed on
it. Due to space constraints, this demo script does only cover
a heavily restricted specification of the testbed and also lacks
the definition of other participants, such as worker services

1 li=callinterceptor.create()// logging interceptor
2 li.hooks=[in:"RECEIVE", out :"PRE_STREAM"] // bind to phases
3 li.code={ctx −> logger.logToDB(ctx.soapMsg)} // process msg

5 msgType=datatype.create("file.xsd","typeName") // xsd import

7 sList=webservice.build{
8 // create web service
9 Proxy(binding:"doc,lit", namespace="http://...") {

10 // attach logging interceptor
11 interceptors+=li
12 // create web service operation
13 Delegate(input:msgType, resonse:msgType){

14 refs = registry.get{s−> "Worker" in s.tags} // by tag
15 r = dStrat(refs)
16 return r.Process(input).response
17 }

18 // delegation strategy as closure variable
19 dStrat={ refs−> return refs[0] } // default: take first
20 }

21 }

23 srv=sList[0]// only one service declared, take it
24 h=host.create("somehost:8181") // import back−end host
25 srv.deployAt(h)// deploy service at remote back−end host

27 srv.dStrat={ refs−> /∗...∗/ } // adapt strategy at runtime

Listing 1. Groovy script specifying delegator service.

and clients for bootstrapping the testbed’s activity. In our
evaluation, we have applied G2 in order to have a customizable
Web service testbed for verifying the quality of our concepts in
realistic scenarios, e.g., for a detailed analysis of performance
and scalability. For a more detailed description of the G2
framework and its capabilities we refer readers to [4].

B. Adaptation Framework

The adaptation framework is located on the right side in
Figure 3. The framework has monitoring features includ-
ing logging, eventing, and a component for capturing actor
behavior. Based on observations obtained from the testbed,
adaptation actions are taken.

• The Logging Serviceis used by the logger plugin (see
PLogger in Figure 3). Logged messages are persistently
saved in a database for analysis. The logging service
also implements a publish/subscribe mechanism to offer
distributed event notification capabilities. Subscriberscan
specify filters using XPath statements which are evaluated
against received logged messages.
A short example is shown in Listing 2. Header extensions
(Line 7 - 22) include the context of interactions (i.e.,
the activity that is performed), delegation restrictions,
identify the sender and receivers using WS-Addressing
[18] mechanisms, and hold some meta-information about
the activity type itself.MessageIDs enable message
correlation to correctly match requests and responses.
Timestamps capture the actual creation of the message
and are used for message ordering. For HPSs, SOAP
messages are mapped to user interfaces by the HPS
framework [3].Task Context related information is
also transported via header mechanisms. While activities
depict what kind of information is exchanged between ac-
tors (type system) and how collaborations are structured,

1<soap:Envelope
2xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
3xmlns:xsi="www.w3.org/2001/XMLSchema-instance"
4xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
5xmlns:hpsht="http://myhps.org/HumanTask"
6xmlns:vietypes="http://viete.infosys.tuwien.ac.at/Type"
7<soap:Header>
8<wsa:MessageID>052c5e11−5abd−4763−8725−86eaa48fb0fc</wsa:MessageID>
9<wsa:ReplyTo>http://www.expertnetwork.org/Actor#Harald</wsa:ReplyTo>
10<wsa:From>http://www.expertnetwork.org/Actor#Harald</wsa:From>
11<wsa:To>http://www.expertnetwork.org/Actor#Florian</wsa:To>
12<wsa:Action>http://myhps.org/Action/Delegation</wsa:Action>
13<vietypes:activity url="http://www.expertnetwork.org/Activity#42"/>
14<vietypes:timestamp value="2010-05-06T15:13:21"/>
15<hpsht:taskContext>
16<hpsht:deadline="2010-05-07T12:00:00"/>
17<hpsht:priority>
18<!−− task priority−−>
19</hpsht:priority>
20<hpsht:keywords>WS, Adaptation, Trust</hpsht:keywords>
21</hpsht:taskContext>
22</soap:Header>
23<soap:Body>
24<hps:prepareReport>
25<!−− details omitted−−>
26</hps:prepareReport>
27</soap:Body>
28</soap:Envelope>

Listing 2. Simplified SOAP interaction example.

tasks control the status of interactions and constraints in
processing certain activities.
Multiple instances of the logging service can be deployed
to achieve scalability in large scale environments.

• Event Subscribersreceive events based on filters that
can be specified for different types of (inter-)actions, for
example, to capture only delegation flows. Subscribers
are used to capture the runtime state of nodes within the
testbed environment such as current load of a node.

• TheBehavior Monitorupdates and stores periodically the
actual interaction behavior of nodes as profiles in the
behavior registry. This mechanism assists the following
diagnosis to correlate environment events and behavior
changes.

• Diagnosis and Analysisalgorithms are initiated to eval-
uate the root cause of undesirable system states. Pre-
configured triggers for such events, e.g., events reporting
violations, inform the diagnosis module about deviations
from desired behavior. Captured and filtered interaction
logs as well as actual node behaviors assist in recognizing
the system’s health state.

• TheSimilarity Serviceuses the tag database to search for
actors based on profile keywords (i.e., to replace an actor
or to establish a new link to actors). Tags are obtained
from logged interactions.

• The Adaptation Moduledeployed appropriate adaptation
actions. An example for an adaptation action is to update
a node’sdelegation strategyas indicated in Figure 3. For
that purpose, thePActionplugin communicates with G2’s
control interface.

A set of Web-basedAdmin Toolshave been implemented to
offer graphical user interfaces for configuring and visualizing
the properties of testbeds. User tools include, for example,
policy design for adaptations or visualizations of monitored
interactions.

V. BEHAVIOR MONITORING AND SELF-ADAPTATION

The design of the architecture presented in the previous
section provides a variety of possibilities for self-adaptation
strategies. Figure 3 shows that the adaptation framework is
loosely coupled to the testbed. Furthermore, logging interac-
tions is a very generic approach to monitor the environment.
The focus of this paper is adaptation of service misbehavior.
Misbehavior appears on any unexpected change of behavior
of a testbed component with noticeable function degradation
impacts to the whole or major parts of the testbed. Our
monitoring and adaptation strategies follow the principleof
smooth integration with least interference. However, a loosely
coupled design often results in delayed and unclear state
information. This can cause a possibly delayed deployment
and application of adaptations. On the other hand, the testbed
remains more authentic and true to current real environments
which lack direct monitoring and adaptation functionality.

Monitoring in this architecture relies on the accuracy and
timeliness of theLogging Service. Diagnosis and Analysis
get all required status updates with the help of theEvent
Subscribermechanism. Filtered status information populates
the network model held byDiagnosis and Analysismodule.
During start-up the first interaction information is used to
build the initial structure of the model. During runtime this
information synchronizes the model with actual status changes
observed on the network. Especially the interaction data fil-
tered by theBehavior Monitormodule allowsDiagnosis and
Analysisto draw conclusions from interactions about possible
misbehavior at the services.

Detectable misbehavior patterns are described in thePolicy
Store together with related recovery strategies. The compo-
nents of the store include trigger, diagnosis and recovery
action modules (cf., [2]). Whilst the trigger defines potential
misbehavior in a rule, the fired diagnosis analyzes the detected
incident using its network model. The model information
in combination with current interaction facts from the log
history is used to estimate the necessary recovery actions.
Finally, recovery strategies are estimated and deployed to
adapt the real network. Referring, e.g., to the misbehavior
patterns presented in Section II a sink behavior trigger could
be expressed according to the previously given descriptionby
a threshold value defining an admissible amount of tasks at a
monitored node. A fired diagnosis would further inspect the
delegation history of a suspected node by consulting its task
delegation log data an integral part of its network model. Ifa
sink behavior is identified the diagnosis plans recovery actions.
Actions are situation dependent and there are possibly multiple
options for recovery.

In this paper the recovery approach is to reconfigure the
network by adapting the interaction channels between the
service nodes. Channels are opened to provide new interac-
tions to alternative nodes and closed to hinder misbehaving
nodes to further affect the surrounding nodes and degrade the
environment’s function. The challenge is not only to detect
misbehaving nodes but also to find alternative interaction

channels for those problem nodes. A feasible adaptation must
temporarily decouple misbehaving nodes from the network and
instantly find possible candidates for substitution. Potential
candidates must expose similar properties as the misbehaving
node, e.g., have similar capabilities, and additionally, have the
least tendency to misbehavior, e.g., those with least current
task load. In a real mixed system environment nodes’ capabil-
ities will change and the initial registered profiles will diverge
with time from the current. Therefore our framework includes
a Similarity Servicethat keeps track of the profile changes
and provides alternatives to nodes according to their current
snapshot profile.

In the following we show how the misbehavior patterns
introduced in the scenario of Section II can be detected
and adapted with the tools of our adaptation framework. A
sink behavior is observed when a node persists in accepting
tasks from other nodes however prefers to work on tasks of
certain neighbors, or under-performs in task processing. This
behavior is recognizable by a dense delegation of tasks to
the sink possibly requiring different capabilities and a low
task completion notification in the observed time span. In the
notion of Groovy scripts introduced in Section IV, Listing 3
shows the procedure used to detect and adapt nodes with sink
behavior in the testbed framework.

1// in the monitoring loop
2def sinkNode = env.triggerSink(4)// sink trigger with threshold 4 tasks
3if (sinkNode){ // sink suspected
4if (env.analyzeTaskQueueBehavior(sinkNode)){ // analyze task history
5def simNodes = sim.getSimilar(sinkNode)// call similarity service
6altNodes = []
7simNodes.each{ s −>

8if (env.loadTolerable(s))
9altNodes += s// find nodes with tolerable load
10}

11def neighborNodes = env.getNeighbors(sinkNode)// affected neighbors
12neighborNodes.each{ n −>

13n.dStrat ={ refs−> // overwrite dStrat from Listing 1.
14refs += altNodes// add alternatives channels
15refs−= sinkNode// remove channel to sink
16... // selection strategy
17}

18}

19}

20}

Listing 3. Code example for sink adaptation.

The script extract defines the task queue trigger’s
triggerSink threshold first. If the limit of four tasks is vi-
olated by a node analysisanalyzeTaskQueueBehavior
scans the affiliated task history and compares the latest dele-
gation and task status reporting patterns of the node. If a sink
is detected, theSimilarity Servicesim is called and returns a
setsimNodes of possible candidates for replacement. In the
next loop the candidates’ current task queue size is examined
(loadTolerable). Only those with few tasks are added to
the final alternative nodesaltNode list. In the last step the
delegation strategies of the neighbors of the sink node are
updated. The alternatives are added to the possible delegation
candidates and thesinkNode is avoided.

A moderate use of queue capacity in contrast to high and

exceeding delegation rates despite available alternatives causes
overload at single nodes. This identifies thefactory behavior.
Again interaction data uncovers the misbehavior expressedby
a high fluctuation of tasks from the factory and a low task
completion rate in the monitored interval. The Groovy script
in Listing 4 presents our factory adaptation algorithm for the
testbed framework.

1 // in the monitoring loop
2 def factoryNode = env.triggerFactory(2)// factory trigger with threshold 2 tasks
3 if (factoryNode){ //factory suspected
4 if (env.analyzeDelegationBehavior(factoryNode)){// analyze task history
5 def simNodes = sim.getSimilar(factoryNode)// call similarity service
6 altNodes = []
7 simNodes.each{ s −>

8 if (env.loadTolerable(s))
9 altNodes += s// find nodes with tolerable load

10 }

11 def neighborNodes = env.getDelegator(factoryNode)// affected delegators
12 neighborNodes.each{ n −>

13 n.dStrat ={ refs−> // overwrite dStrat from Listing 1.
14 refs += altNodes//add alternatives channels
15 refs−= factoryNode// remove channel to factory
16 ... // selection strategy
17 }

18 }

19 factoryNode.dStrat={} // no delegations allowed
20 }

21 }

Listing 4. Code example for factory adaptation.

The factory trigger’s thresholdtriggerFactory fires
diagnosis on task queue sizes below two tasks. If
analyzeDelegationBehavior confirms a pattern with
high delegation frequency a factory node is detected. The same
as with a sink, a selection of alternative nodes for a factory
node replacement is collected. From this list only those with
minor load are further considered. Then the affected neighbors
who are delegating nodes (getDelegators) are freed from
the factory and provided with the alternative nodes. Finally,
the delegation strategy of the delegating neighbors is adapted.
In contrast to the sink in the last step all factory’s delegation
channels are closed temporarily.

VI. EXPERIMENTS

In our experiments we evaluate the efficiency of similarity
based adaptation in a virtual team of a crowd of task-based
services. This team comprises a few hundreds of collaborators.
The assumption is that some of the HPSs expose a misbe-
havior with the progress of time. Misbehavior is caused by
team members that for various reasons including, e.g., task
assignment overload, change of interest, or preference for
particular tasks, start to process assigned tasks irregularly. Our
strategy is to detect misbehavior by analyzing the task pro-
cessing performance of the team. A degrading task processing
rate indicates misbehavior. The main idea is to detect these
degradations, identify the misbehaving team members with a
task history analysis, and, in time, provide a fitting replacement
for the misbehaving member. This member match is provided
by ourSimilarity Servicethat mines the capabilities and noted
changes at the members The main information source of our

misbehavior analysis and detections is the data contained in
the delegated tasks.

A. Scenario Overview

Following the concept of crowdsourcing we modeled a
scenario showcasing the interaction dynamics of a specific
sector comprised by a bunch of teams. Interested parties
wish to outsource multiple tasks to a crowd. In order to get
their tasks completed they refer to an entry point service
that forwards tasks to multiple teams of the crowd. A team
comprises two types of members. The first, the delegators,
receive new tasks directly from the entry point. Instead of
working on the tasks their concern is to redistribute the tasks
to their neighbors. These neighbors are also called workers.
A delegator picks its most capable and trusted workers that
can process the assigned task. Each team is specialized on a
particular type of task. Tasks carry keyword information in
order to distinguish which team receives a particular task.

A task’s life-cycle starts at the entry point that provides the
team constantly with new tasks. It acts as a proxy between
team and actual task owner and its main assignment is to
decide which of the team members is suitable for processing.
The question is how to find the appropriate worker for a
task. All services are registered at startup by the registry
including their capabilities. Though, the information of the
registry remains static and becomes outdated over the course
of time. Members’ processing behaviors can change over time
when tasks start to be delegated and processing loads vary.
Thus, the entry point can refer to the environment’s registry for
candidates at the beginning and shortly after bootstrapping but
once profiles start to change the lookup information becomes
inaccurate. The solution is theSimilarity Servicewhich is
aware of these changes. It tracks the interest shift by mon-
itoring the delegation behavior between interacting neighbors.
Therefore, the service provides the most accurate candidates
for a delegation during runtime. However, at the contrary the
Similarity Servicecannot provide satisfying results from the
beginning because of the lack of interaction data.

Once the appropriate candidate is selected by the entry point
it delegates the task. Teams, as in our scenario are composed
of a sub-community of HPSs that know and trust each other
and, hence, keep references to each other in a neighbor-list.
Delegations in the team are only issued between these trusted
neighbors. Tasks are associated with a deadline to define
the task’s latest demanded completion time and a processing
effort. Each worker has its individual task processing speed de-
pending on the knowledge compared to the tasks requirements
and the current work load. At the end of a task’s life-cycle,
a worker reports the task as complete, or if the deadline is
missed, expired. The main focus of the misbehavior regulation
is to avoid tasks to expire. Our algorithm identifies failing
services by observing the task throughput. It filters tasks that
missed their deadline in a certain periode. Such a misbehavior
is then adapted with the help of the knowledge of theSimilarity
Serviceand the task history. First the most similar members to
the misbehaving are selected and than with a task queue size

(a) No adaptation applied. (b) Adaptation through mirroring. (c) Adaptation through teleportation.

Fig. 4. Evolving interaction networks based on adaptation actions.

analysis the least loaded chosen for an adaptation. Depending
on the current trust-based adaptation strategy channels between
working nodes are added or delegations shifted to competent
but less busy workers.

B. Experiment Setup

In order to simulate described medium size teams of the
aforementioned crowdsourcing model, we set up following
environment. The teams comprise a total of 200 collaborators
represented by Web services created by G2 scripts deployed
to one backend instance. 20% of these members expose a
delegation behavior the rest works on assigned tasks. All
services are equipped with a task queue. As in the real world
the services are not synchronized and have their individual
working slots. Usually a worker processes one entire task per
slot. A worker starts to misbehave once its task queue is filled
past the threshold of 6 tasks. It then reduces its working speed
to one third. A total of 600 task are assigned to the environ-
ment. We do not adapt from start. At start there is a period of
200 task with no adaptation. Then in an adaptation cycle the
workers task queue size is monitored by tracing the delegation
flow among the nodes. The difference between acknowledged
assignments and complete or expired reported tasks results
in the current task queue size at a particular worker. Once
this number exceeds the preset task queue threshold which we
vary for the different results of our experiments, the similarity
service is invoked for a list of workers with similar capabilities.
In a loop over this list sorted by best match the candidate
is picked with the currently smallest task queue size. The
applied adaptation action depends on the experiment’s current
adaptation strategy. In trust mirroring a channel between two
similar workers is opened which allows the overloaded node
additionally to delegate one task per slot over the new channel.
In trust teleportation the overloaded worker is relieved from
the most delegating neighbor and a new channel is opened
from the delegator to a substitute worker.

Figure 4 shows the temporal evolution of dynamic interac-
tions under different adaptation actions. It demonstratesthe
changes in interactions for a threshold of 6 tasks in the
three sub-figures. A node’s size represents the total number
of incoming delegations. Larger edges indicate a high number
of delegations across this channel with the arrow pointing in
the delegation direction. Therefore, the node in the middle
is easily identified as the entry point. It sheer provides tasks

to all the connected delegators. Figure 4(a) shows that these
delegators prefer selected workers to complete their tasks. In
this figure six extremely overloaded workers are present after
the first 200 tasks have left the entry point. Only a few others
are sporadically called. Figure 4(b) represents the effects at
the end of the experiment for the mirroring strategy. The
effects of this strategy are clearly visible. The load between the
workers is better distributed. A few, however more equilibrate
worker nodes remain compared to no action because the
delegators still prefer to assign tasks to their most trusted
workers. However, a lager number of new workers is added
at the outer leaves of the tree which release these nodes from
their task load. Figure 4(c) highlights the situation with the
trust teleportation strategy. The side-effects here show that the
number of loaded nodes remains almost the same. However,
the load peek at the preferred workers is kept below the
predefined threshold. Once exceeded the worker is relieved
from its delegator and a replacement found. With this strategy
workers get loaded to their boundary and are then replaced
with new workers.

In our experiments we tested the effectiveness of adaptations
with different task queue threshold triggers. The effectiveness
is measured by the total task processing performance at the end
of the experiment. Only completely processed and reported
tasks went into the final result.

C. Result Description

Figure 5 presents the results of our simulation evaluations.
Both diagrams provide the time-line in minutes on the x-
axis and the number of completed tasks at the end of this
period on the y-axis. In both cases there is a well noticeable
incrementation of completed tasks until minute 4. This is
when the first 200 tasks have been distributed to the workers.
The task distribution is not linear over the measured period.
This is due to the fact that at the beginning not so many
tasks can be distributed because of bootstrapping delays in
the G2 backend. This is also when the first adaptations are
deployed. Whilst the task completion ratio decreases rapidly
at this point if no adaptation actions are taken (demonstrated
by the dashed line) the other lines represent the progress of
the task completion when different thresholds triggers together
with reconfigurations are applied. The diagrams in Figure 6
show again the time-line on the x-axis and the number of
applied actions at the end of the period on the y-axis.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Time [min]

N
u

m
b

er
 o

f
C

o
m

p
le

te
d

 T
as

ks

no adaptation
threshold 4
threshold 6
threshold 8
threshold 10

(a) Mirroring.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Time [min]

N
u

m
b

er
 o

f
C

o
m

p
le

te
d

 T
as

ks

no adaptation
threshold 4
threshold 6
threshold 8
threshold 10

(b) Teleportation.

Fig. 5. Adaptations using different thresholds for mirroring and teleportation.

Figure 5(a) details the results of an adaptation strategy using
trust mirroring. Generally all strategies perform better than
when no action is taken. With a trigger threshold of 4 tasks
and approximately 3 actions every minute the curve exposes
an increment followed by a decrement between 70 and 50
completed task every minute. The pattern is similar to the
curve representing a threshold of 8. Figure 6(a) shows that
the adaptations are less and the altering of direction in Figure
5(a) is slower. The smoothest adaptations result from a trigger
matching the real worker’s threshold of 6 tasks. Comparing
the figures, a smaller growth of success in task completion is
noticed after the deployment of the 3 followed by 4 adaptations
between minute 4 and 6. A threshold of 10 tasks decreases
slower than an adaptation free environment but with only about
20 more successfully processed tasks. With the same adapta-
tion effort as at threshold 8 this strategy exposes an overall
inconvenient timing of the adaptations and can be considered
impractical. The situation is different in Figure 5(b). As Figure
6(b) shows, there are more adaptations deployed with this
strategy. But not without leaving following side-effects.The
curve of adaptations triggered at threshold 4 increases rapidly
after minute 5 when a total of 11 new channels are provided
to new workers in a time slot of 1 minute. Even if again with
the smoothest progress among the successful strategies the
curve representing actions at threshold 6 cannot reach the top
performances of their neighbors (threshold 4 and 8). Instead
the 20 new channels set between minute 4 and 6 let the system
performance progress even. Finally the curve of threshold 10
has a noticeable regress between minute 3 and 4 caused by the
dynamics of the system. In the following this type of strategy
with only 9 adaptations in total is not able to recover and is
even outperformed by the no adaptation run. The final results
show that the precise timing of multiple adaptations in a short
term is most convenient for environment adaptation actions.
However this has a trend to highly altering task processing
results (e.g., approximately 40 task for a threshold 8 in Figure
5(b)). Comparing both, a strategy where the trigger matches
the environments actor’s threshold of 6 is most practical ina
balanced environment. Strategies with a threshold above 8 are
infeasible for this setup. Generally the teleportation strategy
performs better than mirroring, however requires the double
and more adaptation actions.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Time [min]

A
d

ap
ta

ti
o

n
 A

ct
io

n
s

threshold 4
threshold 6
threshold 8
threshold 10

(a) Actions applied in mirroring.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Time [min]

A
d

ap
ta

ti
o

n
 A

ct
io

n
s

threshold 4
threshold 6
threshold 8
threshold 10

(b) Actions applied in teleportation.

Fig. 6. Number of adaptation actions applied using differentstrategies.

VII. R ELATED WORK

Two main research directions onself-adaptive properties
emerged in the past years. One initiated by IBM and presented
by the research of autonomic computing [19], [20] and the
other manifested by the research on self-adaptive systems
[7]. Whilst autonomic computing includes research on all
possible system layers and an alignment of self-* properties
to all available system parts, self-adaptive system research
pursuits a more global and general approach. The efforts in
this area focus primarily on research above the middleware
layer and consider self-* methodologies that adapt the system
as a whole. These include higher layers such as models and
systems’ architecture [21], application layer, and in particular
interesting for our research are large-scale agent-based systems
[22] , Web services , and their orchestration [23]. Self-adaptive
ideas can be found for middleware [24] and also at a lower
layer include, e.g., operating systems [25]

With current systems growing in size and ever changing
requirements plenty of challenges remain to be faced such
as autonomic adaptations [26] and service behavior modeling
[27]. The self-adaptive research demonstrated in this paper
strongly relates to the challenges in Web services and work-
flow systems. Apart from the cited, substantial research on
self-adaptive techniques in Web Service environments has
been conducted in the course of the European Web service
technology research project WS-Diamond (Web-Service DI-
Agnosinbility, MONitoring and Diagnosis). The recent contri-
butions focus in particular on QoS related self-adaptive strate-
gies and adaptation of BPEL processes [28], [29]. Others are
theoretical discussions on self-adaptive methodologies [30].

Regarding runtime evaluation, several approaches have
been developed which could be applied for testing adaptation
mechanisms. SOABench [31] and PUPPET [32], for instance,
support the creation of mock-up services in order to test work-
flows. However, these prototypes are restricted to emulating
non-functional properties (QoS) and cannot be enhanced with
programmable behavior. By using Genesis2 [4] which allows
to extend testbeds with plugins we were able to implement a
testbed which was flexible enough to test diverse adaptation
mechanisms.

Human-Provided Services [3] close the gap between
Software-Based Services and humans desiring to provide their
skills and expertise as a service in a collaborative process.
Instead of a strict predefined process flow [33], these systems

are denoted by ad-hoc contribution request and loosely struc-
tured processes collaborations. The required flexibility induces
even more unpredictable a system property responsible for
various faults. In our approach we monitor failures caused by
misbehavior of service nodes. The contributed self-adaptive
method recovers by soundly restricting delegation paths or
establishing new connections between the nodes.

Over the last years,trust has been defined from several
points of views [13], however, until now, no agreed definition
exists. Unlike the area of network and computer security we
focus on the notion of dynamic trust from a social perspective
[12]. Our notion of trust [10] is based on the interpretation
of collaboration behavior [10], [13] and dynamically adapting
skills and interest similarities [14], [15]. In the introduced
environment we make explicit use of the latter one.

VIII. C ONCLUSION AND OUTLOOK

The main objective of this work was to demonstrate the
successful integration of two frameworks. On one side the
G2 [4] SOA testbed and on the other the extensible VieCure [2]
adaptation framework. The two remain separate and indepen-
dent frameworks and are only loosely coupled. As a first
extension in this paper we added to the adaptation loop a
module providing similarity ratings for the testbed services.
The results of our evaluation confirm that the deployed task
processing team scenario and the two adaptation strategies
trust mirroring and teleportation interplay satisfactorily. A
precise timing and a careful aligned threshold for the actions
is essential to reach high amounts of task completion rates.
This observation emphasizes our attempt in implementing non-
intrusive self-healing recovery strategies that can not always
relate on accurate status information for a decision.

In our future work we plan to deploy a whole crowdsourcing
environment with miscellaneous teams to a distributed testbed.
It will then also become essential to distribute and duplicate
some of the components of the adaptation framework, e.g.,
logging, diagnosis and analysis modules. We plan a layered
adaptation strategy that provides an interface to deploy local
adaptations and allows global adaptations on a higher layer
involving utility based changes for the whole crowd. New
models of Mixed System’s misbehavior and extended rules for
detection and diagnosis of behavior will become necessary.

ACKNOWLEDGMENT

This work received funding from the EU FP7 programme
under the agreements 215483 (SCube) and 216256 (COIN).

REFERENCES

[1] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Trans. on Softw. Eng., vol. 30, pp. 311–327, 2004.

[2] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behavior Monitoring
in Self-healing Service-oriented Systems,” inCOMPSAC. IEEE, 2010.

[3] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human and software
services in web-scale collaborations,”Internet Computing, vol. 12, no. 3,
pp. 62–68, May-June 2008.

[4] L. Juszczyk and S. Dustdar, “Script-based generation ofdynamic
testbeds for soa,” inICWS. IEEE Computer Society, 2010.

[5] R. Sterritt, “Autonomic computing,”Innovations in Systems and Soft-
ware Engineering, vol. 1, no. 1, pp. 79–88, 2005.

[6] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing
era,” IBM Syst. J., vol. 42, no. 1, pp. 5–18, 2003.

[7] M. Salehie and L. Tahvildari, “Self-adaptive software:Landscape and
research challenges,”ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
1–42, 2009.

[8] M. Vukovic, “Crowdsourcing for Enterprises,” inProceedings of the
2009 Congress on Services. IEEE Computer Society, 2009, pp. 686–
692.

[9] D. Brabham, “Crowdsourcing as a model for problem solving:An
introduction and cases,”Convergence, vol. 14, no. 1, p. 75, 2008.

[10] F. Skopik, D. Schall, and S. Dustdar, “Modeling and mining of dynamic
trust in complex service-oriented systems,”Information Systems, vol. 35,
no. 7, pp. 735–757, 11 2010.

[11] S. Dustdar, “Caramba—a process-aware collaboration system supporting
ad hoc and collaborative processes in virtual teams,”Distrib. Parallel
Databases, vol. 15, no. 1, pp. 45–66, 2004.

[12] C.-N. Ziegler and J. Golbeck, “Investigating interactions of trust and
interest similarity,”Dec. Sup. Syst., vol. 43, no. 2, pp. 460–475, 2007.

[13] T. Grandison and M. Sloman, “A survey of trust in internetapplications,”
IEEE Communications Surveys and Tutorials, 2000,, vol. 3, no. 4, 2000.

[14] J. Golbeck, “Trust and nuanced profile similarity in online social
networks,”ACM Trans. on the Web, vol. 3, no. 4, pp. 1–33, 2009.

[15] Y. Matsuo and H. Yamamoto, “Community gravity: Measuring bidirec-
tional effects by trust and rating on online social networks,” in WWW,
2009, pp. 751–760.

[16] G. Salton and C. Buckley, “Term-weighting approaches inautomatic
text retrieval,”Inf. Proc. and Mgmt., vol. 24, no. 5, pp. 513–523, 1988.

[17] Groovy Programming Language, http://groovy.codehaus.org/.
[18] WS-Addressing, http://www.w3.org/Submission/ws-addressing/.
[19] IBM, An architectural blueprint for autonomic computing. IBM White

Paper, 2005.
[20] R. Sterritt, “Autonomic computing,”ISSE, vol. 1, no. 1, pp. 79–88, 2005.
[21] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-

adaptation in the presence of multiple objectives,” inSEAMS, 2006,
pp. 2–8.

[22] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, I. W. N. Mills, and Y. Diao,
“Able: A toolkit for building multiagent autonomic systems,”IBM Syst.
J., vol. 41, no. 3, pp. 350–371, 2002.

[23] L. Baresi and S. Guinea, “Dynamo and self-healing bpel compositions,”
in ICSE, 2007, pp. 69–70.

[24] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira,
and N. Parlavantzas, “Reflection, self-awareness and self-healing in
openorb,” inWOSS, 2002, pp. 9–14.

[25] M. W. Shapiro, “Self-healing in modern operating systems,” ACM
Queue, vol. 2, no. 9, pp. 66–75, 2005.

[26] J. O. Kephart, “Research challenges of autonomic computing,” in ICSE,
2005, pp. 15–22.

[27] K. Kaschner and K. Wolf, “Set algebra for service behavior: Applica-
tions and constructions,” inBPM. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 193–210.

[28] R. Halima, K. Guennoun, K. Drira, and M. Jmaiel, “Non-intrusive QoS
Monitoring and Analysis for Self-Healing Web Services,” inICADIWT,
2008, pp. 549–554.

[29] R. Halima, K. Drira, and M. Jmaiel, “A QoS-Oriented Reconfigurable
Middleware for Self-Healing Web Services,” inICWS, 2008, pp. 104–
111.

[30] M. Cordier, Y. Pencoĺe, L. Trav́e-Massuỳes, and T. Vidal, “Characteriz-
ing and checking self-healability,” inECAI, 2008, pp. 789–790.

[31] D. Bianculli, W. Binder, and M. L. Drago, “Automated performance
assessment for service-oriented middleware,” Faculty of Informatics -
University of Lugano, Tech. Rep. 2009/07, November 2009. [Online].
Available: http://www.inf.usi.ch/researchpublication.htm?id=55

[32] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini,“Model-based
generation of testbeds for web services,” inTestCom/FATES, ser. Lecture
Notes in Computer Science, vol. 5047. Springer, 2008, pp. 266–282.

[33] F. Leymann, “Workflow-based coordination and cooperation in a service
world,” in CoopIS, DOA, GADA, and ODBASE, 2006, pp. 2–16.

