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ABSTRACT

Open Web-based and social platforms dramatically influ-
enced models for work. The emergence of service-oriented
systems has paved the way for a new computing paradigm
that not only applies to software services but also human ac-
tors. This work introduces a novel programming model for
Open Enterprise Systems whose interactions are governed
by dynamics. Compositions of humans and services often
expose unexpected behavior because of sudden changes in
load conditions or unresolved dependencies. We present a
middleware for programming and adapting complex service-
oriented systems. Our approach is based on monitoring and
real-time intervention to regulate interactions based on be-
havior policies. A further challenge addressed by our ap-
proach is how to simulate and adapt behavior rules prior
to deploy polices in the real system. We outline a testing
approach to analyze and evaluate the behavior of services.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications;
H.3.5 [Online Information Services]: Web-based Ser-
vices; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms

Design, Human Factors, Management, Performance

Keywords

Open Enterprise, Programming Model, Human Dynamics

1. INTRODUCTION
Service-oriented architecture (SOA) is an emerging para-

digm to realize extensible large-scale systems. As interac-
tions and compositions spanning multiple enterprises be-
come increasingly commonplace, organizational boundaries
appear to be diminishing in future service-oriented systems.
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In such open and flexible enterprise environments, people
contribute their capabilities in a service-oriented manner.
We consider service-oriented systems based on two elemen-
tary building blocks: (i) software-based services (SBS), which
are fully automated services and (ii) human-provided ser-
vices (HPS) [13] for interfacing with people in a flexible
service-oriented manner. Related efforts in service-oriented
systems such as WS-HumanTask [10] attempt to model hu-
man interactions in top-down business processes assuming
closed enterprise systems.

Here we discuss service-oriented environments wherein ser-
vices can be added at any point in time. Following the open
world assumption, humans actively shape the availability of
HPSs. Without any coordination, such systems may exhibit
undesirable properties due to unexpected behavior. Thus,
social implications caused by human participation pose ad-
ditional challenges to designing large-scale mixed SBS-HPS
systems. However, with size also the effort for managing dy-
namically growing and loosely coupled systems is sharply in-
creasing. Periodic adaptations are essential to keep a system
within well-defined states, including stable load conditions
or desired behavior. Due to the scale and inherent dynamics
of open large-scale systems, new approaches for designing,
developing and testing are required.

1.1 Motivating Scenario
Let us start with a service-oriented collaboration scenario

that motivates our work. Today, processes in collaborative
environments are not restricted to single companies only,
but may span multiple organizations, sites, and partners.
External consultants and third-party experts may be dy-
namically involved in certain steps of such processes. These
actors perform assigned tasks with respect to prior negoti-
ated agreements. Single task owners may consume services
from external expert communities. For a single service con-
sumer this scenario is shown in Figure 1.
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Figure 1: Mixed Open Enterprise System.



We model a mixed Open Enterprise System (OES) con-
sisting of HPSs [13] and SBSs that belong to different com-
munities. The members of these communities are discov-
ered based on their capabilities (see profiles) and main ex-
pertise areas (depicted as shaded areas), and are connected
through certain relations (e.g., FOAF1). Community mem-
bers receive requests from external service consumers, pro-
cess them and respond with appropriate answers. A typical
use case is the evaluation of experiment results and prepara-
tion of test reports in biology, physics, or computer science
by third-party consultants (i.e., the OES). While the results
of certain simple but often repeated experiments can be ef-
ficiently processed by SBSs, analyzing more complex data
usually needs human assistance. For that purpose, HPS
offers the advantage of loose coupling and flexible involve-
ments of human experts in a service-oriented manner. Our
environment uses standardized SOA infrastructures, relying
on widely adopted standards, such as SOAP and the Web
Service Description Language (WSDL), to unify humans and
software services in one harmonized environment.

Failures and performance degradations may arise due to
various reasons when operating an OES. For instance, per-
formance degradations can be expected when a minority of
distinguished experts become flooded with tasks while the
majority remains idle. Such load distribution problems can
be compensated by adapting the delegation behavior of ac-
tors as discussed in [14]. Furthermore, consider shifting in-
terests and evolving skills of people. In that cases capabil-
ities of HPSs as well as people’s interaction behavior may
change over time, thus, requiring again adaptations of the
underlying infrastructure.

1.2 Approach and Contributions
Our approach to ensure the smooth operation of mixed

OESs makes use of several modules. The main contribution
of this paper is the description of these modules, their modes
of operation and discussions on major design decisions. We
highlight the contributions of this work in Figure 2:

• Open Enterprise System hosts both SBSs and HPSs
interacting to perform joint activities.

• VieCure Middleware provides a programming model
including monitoring and adaptation mechanisms that
control the OES and the simulation environment. Ser-
vice policies to regulate behavior (interaction dynam-
ics) are based on observations and control.

Adaptation strategies can be deployed in the Genesis
Simulation Environment for testing purposes. Further-
more, logs, from either the simulation or the life OES
can be analyzed to customize configurations and adap-
tation strategies.

• Genesis Simulation Environment allows to investigate
the effects of policies and adaptation strategies.
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Figure 2: Approach outline and contributions.

1http://xmlns.com/foaf/spec/

Paper Outline. The remainder of this paper is struc-
tured as follows. Section 2 details our flexible adaptation
approach and the prototype implementation of a novel mid-
dleware. Furthermore, we highlight the configuration man-
agement and the Genesis2 testbed generator framework. A
discussion on collected experience and findings are provided
in Section 3. We outline related work in Section 4 and con-
clude the paper in Section 5.

2. DESIGN AND ARCHITECTURE
In this section we introduce our programming model for

adaptations in OES. After outlining the VieCure middle-
ware’s components, we provide a sample environment spec-
ification for a OES in Genesis2’s programming language.
This helps to highlight how our newly introduced program-
ming model maps high-level policies to actions deployable
to the environment. We conclude by outlining how different
environments can be modeled, simulated, hosted, controlled
and, of course, adapted with the programming model.

2.1 Middleware for Adaptation
At its core the middleware for adaptation provides a pro-

gramming model for policy rules and actions which trans-
parently adapt the OES underneath. The interface to the
Configuration Manager offers monitoring and visualization
features for the current OES structure. Additionally, it al-
lows to adjust the middleware’s policies with rules and ac-
tions from a more high-level and goal-driven perspective.
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Figure 3: Middleware for adaptive OESs.

The three-layer infrastructure of the VieCure Middleware
is outlined in Figure 3. The top layer comprises the Config-
uration Manager. This is a tool-set to monitor, track, and
analyze the OES structure. Additionally, by hiding the par-
ticularities of the programming model it allows to extend
and change the entries of the middleware’s Policy Store eas-
ily and, thus, to influence the following adaptations.

The layer in the middle hosts the VieCure Middleware.
It is organized according to a MAPE-K loop [6], the com-
mon design pattern used for self-adaptive systems. There-
fore, it connects and forwards event information through the
modules monitoring, analyzing, planing, and adaptation in
loop-style. Different databases assist the analyses including



evaluation with event history. The loop connects the Log-
ging Module to the Monitoring Interfaces. The data is con-
verted to processable events in the Analysis Module. Events
activate an examination of the rules in the Diagnosis and
Planning module. The actions related to the triggered rules
are then deployed to the OES by the Adaptation Module.
All policies are defined by our Programming Model which
provides a language specification to define the policy’s rules
together with the actions. The following sections explain
the concepts of the middleware and the surrounding layers
in more detail.

2.2 Genesis WS Framework
The purpose of the Genesis2 framework (in short, G2) is

to provide all means to host a SOA based environment in-
cluding OESs. Originally designed to model Web services
testbeds, we discuss G2 in the context of modeling, pro-
gramming, and adapting OES.
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Figure 4: Layered G2 topology.

Figure 4 shows G2’s layered topology consisting of various
elements. This layered topology enables software engineers
to generate and control SOA environments. The top layer
displays the runtime with the Generated WS Instances in-
cluding services, clients for service, registries, etc. The next
layer enables control over the generated instances. The WS
Control layer comprises a comprehensive model of the de-
ployed environment. It allows to steer the execution of the
instances and propagates any model changes back to the en-
vironment. The following G2 Plugins layer allows to dynam-
ically contribute external extensions. These could be envi-
ronment specific and include, e.g., studied behavior models
that are tested by the currently deployed environment.

G2 provides its own programming model and language.
This is an extension of the Groovy2 script language with
additional keywords and structures integrating the model to
the language. Listing 1 gives a few examples. The model
datatype allows to import an external complex data type
with the method create(). The statement in line 3 shows the
use of the webservice model to define an array of WS bod-
ies with different properties and operations. Lines 25 and
26 demonstrate how a host is set-up with the host model
and then deployed with the webservice model’s deployAt()
method. We will also refer to these models in our policy
programming model presented next when we address the

2http://groovy.codehaus.org/

1 def repType=datatype.create("file.xsd","typeName") // xsd import

2

3 def srv=webservice.build {

4 // create web service

5 Service(binding:"doc,lit", namespace:"http://...") {

6 def reportQueue = [] //queue of reports

7 sendResult(input:repType, resonse:int) { //

8 def repId = genReportId()

9 if (dStrat(input))

10 reportQueue+=input

11 return repId

12 }

13 // result acceptance strategy as closure variable

14 dStrat={ input −> ...}

15 getStatus(repId:int, response:String) {

16 return getStatusOn(repId)

17 }

18 getReport(repId:int, response:String) {

19 if (completed(repId))

20 return getLocation(repId)

21 }

22 }

23 }[0]

24

25 def h=host.create("somehost:8181") // import back−end host

26 srv.deployAt(h) // deploy service at remote back−end host

27

28 dStrat={ input −> ...} // change strategy at runtime

Listing 1: Sample WS environment specification.

formulation of adaptive actions. For a more detailed de-
scription of G2 and its model we refer readers to [7, 16].

2.3 Programming Model for Policies
The VieCure middleware provides its own programming

model for polices. Policies comprise rules and connected ac-
tions. In line with the event, condition, action paradigm,
once an event triggers a rule because it matches the condi-
tion, e.g., threshold of a metric, an action is executed and an
adaptation deployed to the environment. An event passed
from the Analysis Module or manual intervention from the
Configuration Manager activates rule evaluation.

In order to design a policy rule, we use JBoss Drools3.
The structure of such a list of rules is presented in Listing 2.
It illustrates three example rules matching the scenario of
behavior adaptation outlined in Section 1.1. All rules are de-
fined by a starting rule tag. The following when states the
condition on which the rule fires. The then part defines the
action that is deployed. By providing an array list multiple
actions can be add and deployed simultaneously depending
on the event type. In the example the first rule Overload

deploys a suspend operation action if the workload or traffic
to a specific service becomes intolerable. The next rule Dep-
recated removes an operation if several previous invocation
trials fail. Finally, the third rule Add extents the functional-
ity of a service by adding a new operation. The last rule can
be considered one that was added through the Configuration
Management. In the present case the system designer, e.g.,
decided to extend a service with a new adaptation rule be-
cause new capabilities can be offered. The rule fires in any
case and, thus, has an empty condition.

It is important to note, that all of the recovery actions
in Listing 2 take a parameter c as input. This parameter
represents a placeholder for a policy action definition. The

3http://jboss.org/drools



1 rule "Overload"

2 when //too many messages to process

3 service:Service(receiveRate > 50 || workload > 0.75)

4 adaptationActionList:ArrayList()

5 then

6 AdaptationAction ra = new SuspendOpAction(c)

7 adaptationActionList.add(ra);

8 end

9 rule "Deprecated"

10 when //operation is not available any more

11 service:Service(invokeRetry > 10)

12 adaptationActionList:ArrayList()

13 then

14 AdaptationAction ra = new RemoveOpAction(c)

15 adaptationActionList.add(ra);

16 end

17 rule "Add"

18 when //add new operation

19 adaptationActionList:ArrayList()

20 then

21 AdaptationAction ra = new AddOpAction(c)

22 adaptationActionList.add(ra);

23 end

Listing 2: Policy rules with recovery actions.

definition depends on the adaptation interface requirements
of the hosting environment. To give an insight on how adap-
tive actions can be created we provide in the following some
samples that are executable on G2 hosts. G2 requires the
parameter c to represent actions defined in G2’s Groovy-
based programming language [7]. As pointed out, G2 pro-
vides model modification via the control layer. Changes on
the model are automatically propagated to the running en-
vironment.

Listing 3 shows three example closures (code blocks4) match-
ing the input parameters of the previously stated adaptation
rules in Listing 2. All closures presented access the webser-
vice model introduced briefly earlier. Apart from defining
Web services this model is also used to change the deployed
instances of services at runtime. In the following cases the
webservice model takes a input variable of any known type
that can be used to filter particular service instances. Thus,
the first closure definition of the model works as a filter for
the affected instances. In the example cases the service def-
initions are selected by the variable name, e.g., provided by
the triggering event. After changes are applied to the model,
changes on the service models are deployed to the running
environment at the end (method redeploy()).

In detail, the meaning of the adaptation actions stated in
Listing 3 is the following. Rule Overload requires a tem-
porary suspension of an operation. In the corresponding
action we assume that diagnosis recognized that operation
sendResult() (c.f., Listing 1) causes overloads to the service
because it fills the result document queue. The action def-
inition from line 4-9 in Listing 3 states that the affected
services’ operation is overwritten by a simple code that re-
turns a suspension message. For the next rule Deprecated

the same operation is taken offline. The related action code
shows in line 14 another webservice model method to get
a distinct operation of the service model and in line 15 a
method to remove the deprecated method.

Finally, for the Add rule in line 20 we require another
model of the G2 programming model. The same as with

4http://groovy.codehaus.org/Closures

1 //−−− change a operation

2 webservice(name:srvname) {s −> name in s.name} { s−>

3 if ("sendResult" in s.operations.name) {

4 def op = s.operations.grep{o −> o.name == "sendResult"}[0]

5 op.behavior = {

6 return "Operation temporarily suspended"

7 }

8 op.returnType=String

9 s.redeploy()

10 }

11 }

12 //−−− ws operation removal

13 webservice(name:srvname) { s−> name in s.name} { s−>

14 def o = s.getOperation("sendResult") //get operation

15 s.operations−=o //delete operation

16 s.redeploy() //redeploy service and wsdl

17 }

18 //−−− add a new operation

19 webservice(name:srvname) { s−> name in s.name}{ s−>

20 s.operations += wsoperation.build {

21 delegateResults(input:repType) {

22 delegate(input)

23 }

24 }[0]

25 s.redeploy()

26 }

Listing 3: Remove an expired service operation.

webservice, wsoperation allows to create an operation by
defining it in the closures content. After the change, the
resulting service additionally to process result documents is
capable to forward the documents by delegation.

The reader is reminded that any considerations on the
impacts of the adaptations on the implemented clients are
out of scope. Nevertheless, the redeploy() calls assure that
also the new service definition is deployed and clients would
be able to adjust to the new interface definitions.

2.4 Simulation of Human Behavior
One of the key questions in social dynamics concerns the

behavior of single individuals, namely how an individual
chooses a convention, takes a decision, schedules his tasks
and more generally decides to perform a given action. Most
of these questions are obviously very difficult to address, due
to the psychological and social factors involved [5]. This
problems are also of particular interest in collaborative ser-
vice environments, as their interaction patterns and usage
dependent on human behavior. Instead of focusing on the
individual’s behavior in cooperative systems only (e.g., as
discussed in [1]), we focus on the network effects of human
dynamics.

A unique feature of the presented G2 service hosting en-
vironment is its capability to not only be used as a hosting
environment but also to run simulations of service environ-
ments as hinted in Figure 2 in the introduction. Simulations
can be used to evaluate the effectiveness of, e.g., the previ-
ously presented and defined policies, on varying environment
conditions. As the motivation explains, we are in particu-
lar interested in service environments including human ac-
tors. In such simulations human behavior including making
choices, taking decisions, working on tasks, or performing
actions, need to be simulated with the help of previously
observed and examined log data.

The G2 programming model introduced in Section 2.2 ap-



(a) Network visualization view. (b) Example of (FOAF-based) network profile.

Figure 5: Web-based configuration management tool.

plies the concept of closures to equip services with individual
behavior. Referring to lines 9, 14 and 28 in the sample script
of Listing 1 it can be recognized that dStrat is defined as a
global closure in the service model. While in the example the
running service expects an executable algorithm resulting in
an accept or reject of a received document the strategy can
be changed at any time during runtime by setting a new
closure content to the global placeholder (line 28). Also,
with this method the strategy can be set individually for
the otherwise identical service definition. This makes the
simulation more authentic. Furthermore, once VieCure’s
adaptation loop is activated, adaptation strategies are de-
ployed to the simulated environment and conclusions on the
effectiveness of adaptation strategies can be made.

2.5 Configuration Management
Figure 5 shows screenshots of theWeb-based configuration

management tool and an example FOAF profile that can be
retrieved from the Web application.

The purpose of the network visualization view as shown by
Figure 5(a) is to analyze complex behavior in OES environ-
ments. The view is based on a graph structure modeled as
G = (V,E) where V represents the set of services (HPS and
SBS) and E the set of edges based on interactions. The net-
work view is obtained by mapping raw SOAP-interactions
into a graph representation composed of nodes (services)
and edges (interaction links). The users access information
captured from the OES (Figure 5). In our implementation,
this is performed by selecting a particular set of logs which
are associated with an Experiment ID. By default, the col-

laboration network is visualized as a graph view as depicted
in Figure 5(a). The user is able to select a particular met-
ric (in this case trust) threshold by moving a slider bar. A
reduced metric threshold results in more target nodes and
edges being added to the visualization. Interactions can be
retrieved as FOAF profiles (see Figure 5(b)) that include
<foaf:interest> tags. FOAF-based network profiles are
especially useful for analyzing relations using semantic rea-
soning engines. Also RDF-based query languages such as
SPARQL5 can be used to query network data. This mecha-
nism can be used to retrieve and aggregate captured profiles
from distributed environments (e.g., from multiple instances
of the logging service).

3. DISCUSSION AND FINDINGS
OESs pose a number of new challenges with their flexi-

bility and their tendency to unexpected behavior. Todays
SOA infrastructures can provide the necessary flexibility,
with easily operable interfaces and interaction channels en-
abling communication and collaboration. However, those
do not provide means to handle unpredictable changes or
system degradations. With humans collaborating in such
networks, there are usually no preplanned top-down com-
position models. This results in changing interaction and
behavior patterns that possibly contradict and at times re-
sult in faults from varying conditions and misbehavior in
the network. A conflict resolution management for such an
infrastructure must not only monitor events but also react

5http://www.w3.org/TR/rdf-sparql-query/



situation-dependent according to rules. For this purpose,
the VieCure middleware provides two interfaces for high
flexibility. One towards the system, with the capabilities
to gather log data and send adaptive actions. The other
offers monitoring information and configuration handles for
environment management above the middleware. In order
to be consistent with self-adaptive methodologies, VieCure
implements a loop-style log data transformation from event
to adaptive action through the filter of the analysis modules
and the policies of diagnosis. One of the major contributions
of this work is the policy programming model for VieCure’s
Policy Store. The presented model allows the Configuration
Manager to state rules that are triggered on events. Rules
contain placeholder for the actions. The implementation
of the actions depends on the action interface of the envi-
ronment. In the presented study, actions are stated in the
programming model language of the test environment. The
reason is to test the created rules previous to deployment to
a real environment.

4. RELATED WORK
Two main research directions on self-adaptive proper-

ties emerged in the past years. One initiated by IBM and
presented by the research of autonomic computing [15] and
the other manifested by the research on self-adaptive sys-
tems [12]. Whilst autonomic computing includes research
on all possible system layers and an alignment of self-* prop-
erties to all available system parts, self-adaptive system re-
search pursuits a more global and general approach. The
efforts in this area focus primarily on research above the mid-
dleware layer and consider self-* methodologies that adapt
the system as a whole. Regarding runtime evaluation,
several approaches have been developed which could be ap-
plied for testing adaptation mechanisms. SOABench [3] and
PUPPET [2], for instance, support the creation of mock-up
services in order to test workflows. However, these proto-
types are restricted to emulating non-functional properties
(QoS) and cannot be enhanced with programmable behav-
ior. By using Genesis2 [7], which allows to extend testbeds
with plugins, we are able to implement scenarios which be-
have flexible enough to test diverse adaptation mechanisms
[11]. Human-Provided Services [13] close the gap be-
tween SBS and humans desiring to provide their skills and
expertise as a service in a collaborative process. Instead of a
strict predefined process flow [9], these systems are denoted
by ad-hoc contribution requests and loosely structured col-
laborations. The required flexibility induces even more un-
predictable system properties responsible for various faults.
The contributed middleware for self-adaptation and testing
approach enables the recovery by restricting, for example,
delegation paths or establishing new connections between
services. The availability of rich and plentiful data on hu-
man interactions in social networks has closed an impor-
tant loop [8], allowing one to model social phenomena and
to use these models in the design of new computing appli-
cations such as crowdsourcing techniques [4].

5. CONCLUSION AND OUTLOOK
The main objective of this work was to introduce a mid-

dleware with adaptation features based on a novel program-
ming model. We illustrated the adaptation of complex in-
teractions in OESs using the programming model.

In future work we plan to evaluate the adaptation frame-
work with various kinds of collaboration networks including
recent crowdsourcing and other distributed problem-solving
platforms. It will then also become essential to distribute
and duplicate some of the components of the adaptation
framework, e.g., logging, diagnosis and analysis modules.
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