
Script-based Generation of Dynamic Testbeds
for SOA

Lukasz Juszczyk, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria
Email: {juszczyk,dustdar}@infosys.tuwien.ac.at

Abstract—This paper addresses one of the major problems
of SOA software development: the lack of support for testing
complex service-oriented systems. The research community has
developed various means for checking individual Web services
but has not come up with satisfactory solutions for testing systems
that operate in service-based environments and, therefore, need
realistic testbeds for evaluating their quality. We regard this
as an unnecessary burden for SOA engineers. As a proposed
solution for this issue, we present the Genesis2 testbed generator
framework. Genesis2 supports engineers in modeling testbeds
and programming their behavior. Out of these models it generates
running instances of Web services, clients, registries, and other
entities in order to emulate realistic SOA environments. By gener-
ating real testbeds, our approach assists engineers in performing
runtime tests of their systems and particular focus has been
put on the framework’s extensibility to allow the emulation of
arbitrarily complex environments. Furthermore, by exploiting
the advantages of the Groovy language, Genesis2 provides an
intuitive yet powerful scripting interface for testbed control.

I. I NTRODUCTION

In the last years, the principles of Service-oriented Ar-
chitecture (SOA) have gained high momentum in distributed
systems research and wide acceptance in software industry.
The reasons for this trend are SOA’s advantages in terms
of communication interoperability, loose coupling between
clients and services, reusability and composability of services,
and many more. Moreover, novel features which are associated
with SOA [1] are adaptivity [2], self-optimization and self-
healing (self-* in general) [3], and autonomic behavior [4].
The result of this evolution is that, on the one hand, SOA is
being increasingly used for building distributed systems,but,
on the other hand, is becoming more and more complex itself.
As complexity implies error-proneness as well as the need to
understand how and where such complexity emerges, SOA-
based systems must be tested intensively during the whole
development process and, therefore, require realistic testbeds.
These testbeds must comprise emulated Web services, clients,
registries, bus systems, mediators, and other SOA components,
to simulate real world scenarios. However, due to missing tool
support, the set up of such testbeds has been a major burden
for SOA engineers. In general, the lack of proper testing
support has been regarded as one of the main problems of
SOA [5]. Looking at currently available solutions, it becomes
evident that the majority aims only at testing of single Web
services [6], [7], [8] and composite ones [9], [10] which,
however, only covers the service provider part of SOA. For

testing systems which operate in service-based environments
themselves, the engineer is facing the problem of setting
up realistic test scenarios which cover the system’s whole
functionality. There do exist solutions for testbed generation
but these are restricted to specific domains, e.g., for checking
Service Level Agreements by emulating Quality of Service
[11]. However, if engineers need generic support for creating
customized testbeds covering various aspects of SOA, no
solutions exist to our knowledge which would relieve them
from this time-consuming task. We believe, this issue is a
severe drawback for the development of complex SOAs.

In this paper we present the current state of our work on a
solution for this issue. We introduce the Genesis2 framework
(Generating SOA TestbedInfrastructures, in short, G2) which
allows to set up SOA testbeds and to manipulate their structure
and behavior on-the-fly. It comprises a front-end from where
testbeds are specified and a distributed back-end on which the
generated testbed is hosted. At the front-end, engineers write
Groovy scripts to model the entities of the testbed and to pro-
gram their behavior, while the back-end interprets the model
and generates real instances out of it. To ensure extensibility,
G2 uses composable plugins which augment the testbed’s
functionality, making it possible to emulate diverse topologies,
functional and non-functional properties, and behavior.

The rest of the paper presents our work as follows. In
Section II we give an overview of related research. Section III
is the main part of the paper and describes the concepts of
the G2 framework. Section IV demonstrates the application of
G2 via a sample scenario. Finally, sections V and VI discuss
open issues, present our plans for future work, and conclude.

II. SOA TESTBEDS

Comparing the state of the art of research on SOA in
general and the research on testing in/for SOA, an interesting
divergence becomes evident. SOA itself has had an impressive
evolution in the last years. At its beginning, Web service-
based SOA had been mistaken as yet another implementation
for distributed objects and RPC and, therefore, had been
abused for direct and tightly-coupled communication [12].
After clearing up these misconceptions and pointing out its
benefits derived from decoupling, SOA has been accepted as
an architectural style for realizing flexible document-oriented
distributed computing. Today’s SOAs comprise much more
than just services, clients and brokers (as depicted in the

outdated Web service triangle [13]) but also message medi-
ators, service buses, monitors, management and governance
systems, workflow engines, and many more [1]. As a con-
sequence, SOA is becoming increasingly powerful but also
increasingly complex, which implies higher error-proneness
[14] and, logically, requires thorough testing. But looking
at available solutions for SOA testing (research prototypes
as well as commercial products), one might get the feeling
that SOA is still reduced to its find-bind-invoke interactions
because most approaches deal only with testing of individual
Web services, and only few solutions deal to some extent with
complex SOAs. All in all, it is possible to test whether a single
Web service behaves correctly regarding its functional and
non-functional properties, but testing systems operatingon a
whole environment of services is currently not supported. Let
us take the case of an autonomic workflow engine [15] for
example. The engine must monitor available services, analyze
their status, and decide whether to adapt running workflows.
To verify the engines’ correct execution it is necessary to
perform runtime tests in a real(-istic) service environment, in
short, a service testbed. The testbed must comprise running
instances of all participants (in this simple case only Web
services), emulate realistic behavior (e.g., Quality of service,
dependencies among services), and serve as an infrastructure
on which the developed system can be tested. Of course, for
more complex systems, more complex testbeds are required to
emulate all characteristics of the destination environment. But
how do engineers create such testbeds? Unfortunately, up to
now, they had to create them manually, as no proper support
had been available. To be precise, some solutions do exist
but are too restricted in their functionality and cannot create
testbeds of arbitrarily complex structure and behavior. This
has been our motivation for doing research on supporting the
generation of customizable testbeds for SOA. In the following,
we give an overview on the current state of the art of research
and discuss the evolution of Genesis since its first version.

A. Related Research on SOA Testing

Available solutions have been mostly limited to testing Web
service implementations regarding their functional and non-
functional properties. This includes, for instance, testsfor
performance and Quality of Service (QoS) [16], [7], robustness
[17], reliability [8], [18], message schema conformance [19],
but also techniques for testing composed services [9], [10]as
well as generic and customizable testing tools [6]. In spite
of their importance, these solutions only support engineers
in checking the service providers of a SOA. Which means
that they can be only used for testing the very basic building
blocks but not the whole integrated system. This makes these
works out of scope of our current research and, therefore, we
do not review them in detail. Unfortunately, the challenging
task of testing complex SOAs and their components, such as
governance systems which operate and also depend on other
services, has not gained enough attention in the research com-
munity. Some groups have done research on testbed generation
but their investigations have been focused only on specific

domains such as QoS or workflows.
For instance, SOABench [20] provides sophisticated sup-

port for benchmarking of BPEL engines [21] via modeling
experiments and generating service-based testbeds. It provides
runtime control on test executions as well as mechanisms for
test result evaluation. Regarding its features, SOABench is
focused on performance evaluation and generates Web service
stubs that emulate QoS properties, such as response time and
throughput. Similar to SOABench, the authors of PUPPET
[11] examine the generation of QoS-enriched testbeds for
service compositions. PUPPET does not investigate the perfor-
mance but verifies the fulfillment of Service Level Agreements
(SLA) of composite services. This is done by analyzing
WSDL [22] and WS-Agreement (WSA) documents [23] and
emulating the QoS of generated Web services in order to
check the SLAs. Both tools, SOABench and Puppet, support
the generation of Web service-based testbeds, but both are
restricted to a specific problem domain (workflows/composi-
tions & QoS/SLA). In contrast, G2 provides generic support
for generating and controlling customized testbeds. Though,
if desired, G2 can be also used for emulating QoS.

Further related work has been done on tools for controlling
tests of distributed systems. Weevil [24], for example, supports
experiments of “distributed systems on distributed testbeds” by
generating workload. It automates deployment and execution
of experiments and allows to model the experiment’s behavior
via programs written in common programming languages
linked to its workload generation library. We do not see Weevil
as a direct competitor to G2, but rather as a complementary
tool. While Weevil covers client-side tests of systems, G2 aims
at generating testbeds. We believe that a combination of both
systems would empower engineers in setting up and running
sophisticated tests of complex SOAs and we will investigate
this in future work.

Another possible synergy we see in combining G2 with
DDSOS [25]. This framework deals with testing SOAs and
provides model-and-run support for distributed simulation,
multi-agent simulation, and an automated scenario code gen-
erator creating executable tests. Again, this framework could
be used to control tests on G2-based testbeds.

B. Evolution of Genesis

Our work on SOA testbeds had first led to the development
of Genesis [26] (in short, G1), the predecessor of G2. To our
knowledge, G1 was the first available “multi purpose” testbed
generator for SOA and we have published the prototype as
open-source [27]. Similar to G2, it is a Java-based framework
for specifying properties of SOAP-based Web services [28]
and for generating real instances of these on a distributed back-
end. Via a plug-in facility the service testbed can be enhanced
with complex behavior (e.g., QoS, topology changes) and,
furthermore, can be controlled remotely by changing plugin
parameters. At the front-end, the framework offers an API
which can be integrated, for instance, into the Bean Scripting
Framework (BSF) [29] for a convenient usage. However, G1
suffers from various restrictions which limit the framework’s

functionality and usability. First of all, the behavior of Web
services is specified by aligning plugin invocations in simple
structures (sequential, parallel, try/catch) without having fine-
grained control. This makes it hard to implement, for instance,
fault injection on a message level [19]. Also, deployed testbeds
can only be updated by altering one Web service at a time,
which hampers the control of large-scale testbeds. Moreover,
G1 is focused on Web services and does not offer the gener-
ation of other SOA components, such as clients or registries.

In spite of G1’s novel features, we regarded the listed
shortcomings as an obstacle for further research and preferred
to work on a new prototype. By learning from our experiences,
we determined new requirements for SOA testbed generators:

• customizable control on structure, composition, and be-
havior of testbeds,

• ability to generate not only Web services, but also other
SOA components,

• ability to create and control large-scale testbeds in an
efficient manner, supporting multicast-like updates,

• and, furthermore, a more convenient and intuitive way for
modeling and programming the testbed.

The appearance of the listed requirements made it necessary
to redesign Genesis and to rethink its concepts. These efforts
resulted in our new framework, Genesis2.

III. T HE GENESIS2 TESTBEDGENERATOR

Due to the breadth of G2, it is not feasible to introduce the
whole spectrum of concepts and features in a single paper.
Hence, we concentrate on the most relevant novelties and
present an overall picture of our framework and its application.
We give an overview on G2’s capabilities, explain shortly how
testbeds are generated and how G2 benefits from the Groovy
language, and introduce the feature of multicast-based updates
for managing large-scale testbeds.

To avoid ambiguities, we are using the following terminol-
ogy: model schema for the syntax and semantics of a testbed
specification,model types for the single elements of a schema,
model for the actual testbed specification,testbed (instance)
for the whole generated testbed environment consisting of
individual testbed elements, such as services, registries, etc.

A. Basic Concepts and Architecture

G2 comprises a centralized front-end, from where testbeds
are modeled and controlled, and a distributed back-end at
which the models are transformed into real testbed instances.
In a nutshell, the front-end maintains a virtual view on the
testbed, allows engineers to manipulate it via scripts, and
propagates changes to the back-end in order to adapt the
running testbed.

The G2 framework follows a modular approach and pro-
vides the functional grounding for composable plugins that
implement generator functionality. The framework itself offers
a) generic features for modeling and manipulating testbeds, b)
extension points for plugins, c) inter-plugin communication
among remote instances, and d) a runtime environment shared
across the testbed. All in all, it provides the basic management

and communication infrastructure which abstracts over thedis-
tributed nature of a testbed. The plugins, however, enhancethe
model schema by integrating custom model types and interpret
these to generate deployable testbed elements at the back-
end. Taking the providedWebServiceGenerator plugin
for example, it enhances the model schema with the types
WebService, WsOperation, and DataType, integrates
them into the model structure on top of the default root element
Host (see Figure 1), and, eventually, supports the generation
of Web services at the back-end. Furthermore, the provided
model types define customization points (e.g., for service bind-
ing and operation behavior) which provide the grounding for
plugin composition. For instance, theCallInterceptor
plugin attaches itself to theWebService type and allows
to program the intercepting behavior, which will be then
automatically deployed with the services.

Host

1 *

WebService WsOperation DataType

1 * 1 2..*

CallInterceptor

1

*

QOSWsInvoker1*

Client

1

*

1

*

«uses»

«uses»

Fig. 1. Sample model schema

In G2’s usage methodology, the engineer creates models
according to the provided schema at the front-end, specifying
what shall be generatedwhere, with which customizations, and
the framework takes care of synchronizing the model with the
corresponding back-end hosts on which the testbed elements
are generated and deployed. The front-end, moreover, main-
tains a permanent view on the testbed, allowing to manipulate
it on-the-fly by updating its model.

For a better understanding of the internal procedures inside
G2, we take a closer look at its architecture. Figure 2 depicts
the layered components, comprising the base framework, in-
stalled plugins, and, on top of it, the generated testbed:

• At the very bottom, the basic runtime consists of Java,
Groovy, and 3rd-party libraries.

• At the framework layer, G2 provides itself via an API
and a shared runtime environment is established at which
plugins and generated testbed elements can discover
each other and interact. Moreover, an active repository
distributes detected plugins among all hosts.

• Based on that grounding, installed plugins register them-
selves at the shared runtime and integrate their function-
ality into the framework.

• The top layer depicts the results of the engineer’s ac-
tivities. At the front-end he/she is operating the cre-
ated testbed model. The model comprises virtual objects
which act as a view on the real testbed and as proxies
for manipulation commands. While, at the back-end the
actual testbed is generated according to the specified
model.

S
c
ri
p

ti
n
g
 I
n
te

rf
a

c
e

Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS

Generator

WS

References

Call

Interceptor

Client

Generator

Registry

Ref@

WS2

Ref@

WS1

WS2

Logger Cl1

Cl2

WS1
Reg

...
Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS

Generator

WS

References

Call

Interceptor

Client

Generator

Registry

Ref@

WS2

Ref@

WS1

Logger Cl1

Cl2

WS1
Reg

...

Ref@

WS2

Ref@

WS1

Groovy Java

Plugin Repo G2 API

CXF

G2 Front-End G2 Back-End

WS

Generator

WS

References

Call

Interceptor

Client

Generator

Registry

WS

Generator

WS

References

Call

Interceptor

Client

Generator

Registry

Groovy Java CXF

Logger Cl1

Cl2

...

Cl1

Cl2

WS1
Model

specifies

Testbed

Runtime

G2 Framework

G2 Plugins

Generated

SOA Testbed

Reg

...

Testbed

Model

Generated

Testbed

DtOp1

WS1

DtOp2

Op3

WS2

Op1Log

WS2

Log Op2

Op3

Plugin Repo G2 API Shared Runtime Environment

Fig. 2. Genesis2 architecture: infrastructure, plugins, and generated elements

However, Figure 2 provides a rather static image of G2, which
does not represent the system’s inherent dynamics. Each layer
establishes its own communication structures (see Figure 3)
which serve different purposes:

• On the bottom layer, the G2 framework connects the
front-end to the back-end hosts and automatically dis-
tributes plugins for having a homogeneous infrastructure.

• For the plugins, G2 allows to implement custom com-
munication behavior. For example, plugins can ex-
change data via undirected gossiping or, as done in the
SimpleRegistry plugin, by directing requests (e.g.,
service lookups) to a dedicated instance.

• The testbed control is strictly centralized around the front-
end. Each model object has its pendants in the back-end
and acts as a proxy for accessing them.

• Finally, in the running testbed, G2 does not restrict
the type and topology of interactions but outsources
this to the plugins and their application. For instance,
Web services can interact via nested invocations and, in
addition, can integrate registries, workflow engines, or
even already existing legacy systems into the testbed.

The framework’s shared runtime environment deserves further
explanation due to its importance. In G2, the SOA engineer
writes Groovy scripts for modeling and programming of
testbeds. The capabilities of the system, however, are defined
by the applied plugins which provide custom extensions. The
runtime environment constitutes a binding between these by
acting as a distributed registry. Every object inside the testbed
(e.g., plugin, model type, generated testbed instance, function/-
macro, class, variable) is registered at the environment via
aliases, in order to make it discoverable and G2 provides a
homogeneous runtime infrastructure on each host. This offers
high flexibility, as it ensures that locally declared scripts,
which reference aliases, are also executable on remote hosts.

In the following sections we give a more detailed insight
into selected features of G2 in order to convey its potential.

G2 Framework

G2 Plugins

Testbed

Control

Testbed

Instances

Tested

SOA / Workflow

Fig. 3. Interactions within G2 layers

B. Extensible Generation of Testbed Instances

Because of its generic nature, which provides a high level
of extensibility, the G2 framework outsources the generation
of testbed elements to the plugins. It does also not predefine
a strict methodology for how they must be generated, but
rather provides supporting features. This might raise the false
impression that we are just providing the base framework and
leave the tricky part to the plugin developers. The truth is that
we kept the framework generic on purpose, in order to have
a basic grounding for future research on testbed generation,
which might also include non-SOA domains. For our current
needs, we have developed some plugins covering basic SOA:

• WebServiceGenerator creating SOAP Web services
• WebServiceInvoker calling remote SOAP services,

both generated and preexisting ones (e.g., 3rd-party .NET-
based)

• CallInterceptor processing SOAP calls on a mes-
sage level (e.g., for fault injection [19])

• DataPropagator providing automated replication of
data/functions among back-end hosts

• QOSEmulator emulating Quality of Service properties
• SimpleRegistry for global service lookups
• ClientGenerator seeding testbeds with standalone

clients (e.g., for bootstrapping testbed activities)
Of these, theWebServiceGenerator plays a major role
and, therefore, serves as a good example for demonstrating the
testbed generation process. We have reused selected parts of
the generation code from G1 [26], however, we were able to
simplify it significantly by using Groovy features. Basically,
the process comprises the following steps:

1) Recursive analysis of theWebService model to de-
termine used customization plugins and message types.

2) Translation of message types (DataType models) to
Java classes that represent the XSD-based data structures
(usingxjc, the Java XML Binding Compiler).

3) Automatic generation of Java/Groovy source code im-
plementing the modeled Web service.

4) Compilation of sources using Groovy’s built-in compiler.
5) Generation of customizations by corresponding plugins.
6) Deployment of completed Web service instance at local

Apache CXF [30] endpoint.
7) Subscription to model changes for automatic adaptation

of deployed Web service instance.
The whole generation procedure depends completely on
the plugins functional purpose. For instance, theCall-
Interceptor translates intercepting code into Apache CXF
Features and binds them to service and client instances,
theClientGenerator simply implements a programmable
thread, and theQOSEmulator does not generate any deploy-
able elements but works in the background.

Evidently, in G2, plugins are more than just simple ex-
tensions but provide essential features for testbed generation.
They define the model schema, implement testbed capabil-
ities, and handle the actual generation of testbed instances.
Consequently, they can become quite complex. To support the
implementation of new plugins, G2 provides a base class that
carries out fundamental tasks for installation, deployment, and
communication among remote instances, so that developers
can focus on the plugin’s primary features.

C. Exploitation of Groovy Features

G2 derives a great deal of its flexibility and extensibility
from Groovy [31]. In short, Groovy is a dynamic programming
language for the Java Virtual Machine, providing modern
features such as dynamic typing, closures, and support for
meta programming. Also, it has a compact syntax and can be
used as an easy-to-read scripting language.

G2 uses Groovy’s dynamicExpando type as a base class
for model types. This allows to expand the model (ergo
the generated testbed) on-the-fly and to observe changes,
which facilitates automatic front-end/back-end synchroniza-
tion. Moreover, by intercepting model manipulation requests,

plugin developers can customize the handling of these (e.g.,
to log everything) and can restrict the model’s expandability.

Internally, model objects are realized as flexible hash maps
and entire testbed models are constructed by aggregating
these, e.g., by attaching aWsOperation instance to the
corresponding list inside aWebService’s map. However,
aggregating model objects by hand is rather cumbersome and
inefficient, especially for complex testbeds. As a solution, we
use Groovy’sBuilder support which helps to create nested
data structures in an intuitive manner. The following sample
demonstrates the convenience of builders:

/ / hash map−based c r e a t i o n o f web s e r v i c e model
de f s1 = webse rv i ce . c r e a t e ("TestService")
s1 . b i n d i n g = "doc,lit"
s1 . t a g s +="test"
de f op = w s o p e r a t i o n . c r e a t e ("SayHello")
op . paramTypes += [name : S t r i n g]
op . r e s u l t T y p e = S t r i n g
op . b e h a v i o r ={ re turn "hello $name" } / / <− c l o s u r e
s1 . o p e r a t i o n s += op

/ / usage of model b u i l d e r
de f s2 = webse rv i ce . b u i l d{

T e s t S e r v i c e (b i n d i n g :"doc,lit" , t a g s : ["test"]) {
SayHel lo (name : S t r i n g , r e s u l t : S t r i n g){

re turn "hello $name"
}

}
} [0]

By default, model types allow to encapsulate executable code
(e.g., operation behavior in previous sample) in order to
program the testbed and to implement fine-grained customiza-
tions. For this purpose, G2 is using Groovyclosures which are
executed on top of the shared runtime environment (introduced
in previous section). The environment provides access to
all registered entities inside the testbed (plugins, deployed
instances, shared data, etc.) and offers introspection viamodel
reflection. For example, the next snippet defines a simple
operation behavior that determines the number of available
Web service models and invokes theLogger plugin. During
execution, Groovy would resolve the aliaseswebservice
andlog, and provide access to the referenced instances.

op . b e h a v i o r ={
de f num = webse rv i ce . g e t A l l () . s i z e ()
l og . w r i t e ("Currently $num service models exist.")

}

As the structures of testbed models can get quite complex, we
useGPath expressions to offer simplified access via compact
queries. In the following example, the query checks whether
there exist local services which are tagged with‘‘test’’
and which contain an operation named‘‘SayHello’’.
Such queries are applied to select and manipulate specific parts
of the model with one single command.

l o c a l h o s t . webse rv i ce . g rep{s−> "test" i n s . t a g s} .
o p e r a t i o n . any{o−> o . name =="SayHello"}

In all, G2 benefits from its Groovy binding in a twofold man-
ner. The dynamic features provide the functional grounding
for generating extensible testbeds, while the language’s brevity
helps to model them by using a clear and compact syntax.

D. Multicast Testbed Control

A drawback of G1 was that testbed manipulations had
to be done in a point-to-point manner, updating one Web
service at a time. This was an issue for controlling large-
scale testbeds, such as the one used in the VReSCo project
[32] consisting of up to 10000 services. To overcome this
issue, G2 supports multicast-based manipulations. This feature
is inspired by multicast network communication, where a
single transmitted packet can reach an arbitrary large number
of destination hosts with the help of replicating routers. To
provide similar efficiency, G2 uses filter closures which specify
the destination of a change request and reduces the number of
request messages. In detail, G2 applies the filter at the local
testbed model to get the resulting set of designated elements
and checks at which back-end hosts these are deployed. Then
it wraps the change request, including the filter, and sends it
to the involved hosts. Eventually, the hosts unwrap it, run the
filter locally, and perform the changes on each matched testbed
element. This way, G2 reduces the number of request messages
to the number of involved back-end hosts, which significantly
improves efficiency. The following snippet shows a sample
multicast manipulation. It addresses Web services matching a
namespace and performs a set of modifications on them, e.g.,
appending a new operation and setting model properties.

de f newOp= o p e r a t i o n . c r e a t e ("newOperation")

webse rv i ce (op : newOp){ s−> / / f i l t e r c l o s u r e
s . namespace =˜ / i n f o s y s . tuw ien . ac . a t /

} { s−> / / command c l o s u r e
s . o p e r a t i o n s +=op
s . someProper ty ="someValue"

}

IV. QOS TESTBEDSCENARIO

In this paper we do not evaluate the performance of G2.
Instead, we chose to demonstrate G2 in practice in order
to give a better understanding of the previously presented
concepts and also to give an impression about the intuitiveness
of G2’s script-based control.

Our scenario covers the creation of a rather simple testbed
for testing the QoS monitor [16] used in the VReSCo project
[32]. The monitor performs periodical checks for determining
a Web service’s execution time, latency, throughput, avail-
abiltiy, robustness, and other QoS properties. Most of the
monitoring is done in a non-intrusive manner, while for some
checks local sensors need to be deployed at the service. For
verifying the monitor’s correct functionality, runtime tests
must be performed on a testbed of generated Web services
simulating QoS properties. Furthermore, the QoS properties
must be controllable during test execution and the Web ser-
vices must support the application of local sensors. Even
though, the creation of such a testbed is perfectly feasible
with G2, we had to restrict its functionality due to space
constraints. We omitted testbed features, such as registration
of generated services at a broker, and replaced the usage
of the QoSEmulator. Instead, we just simulate process-
ing time and failure rate via simple delaying and throwing

1/ / r e f e r e n c e 10 back−end h o s t s
21 . up to (1 0) { n−> h o s t . c r e a t e ("192.168.1.$n" , 8080) }

4/ / l oad message type d e f i n i t i o n s from XSD f i l e
5de f inType= d a t a t y p e . c r e a t e ("types.xsd" ,"inputType")
6de f outType= d a t a t y p e . c r e a t e ("types.xsd" ,"outputType")

8prop . randomL is t I t em ={ l i s t −> / / g e t random i tem
9l i s t [new Random () . n e x t I n t (l i s t . s i z e ())]
10}

12de f s e r v i c e L i s t = webse rv i ce . b u i l d{
131 . up to (1 0 0) { i−> / / c r e a t e S e r v i c e 1 . . Se rv i ce100
14"Service$i" (d e l ay : 0 , f a i l u r e R a t e : 0 . 0){
15t a g s =["worker"]
16/ / Web s e r v i c e o p e r a t i o n ” P r o c e s s ”
17P r o c e s s (i n p u t : inType , r e s p o n s e : outType){
18Thread . s l e e p (d e lay)
19i f (new Random () . nex tDoub le ()< f a i l u r e R a t e) {
20throw new Excep t i on ("sorry!")
21}
22re turn outType . createDummy ()
23}
24}}

261 . up to (2 0) { i−> / / c r e a t e 20 d e l e g a t o r s e r v i c e s
27"CompositeService$i" () {
28t a g s =["delegator" ,"composite"]
29p r o c e s s E r r o r ={} / / i n i t i a l l y empty f u n c t i o n
30/ / Web s e r v i c e o p e r a t i o n ” De leg a te ”
31De leg a te (i n p u t : inType , n e e d e d R e s u l t s : hdr (i n t) ,
32r e s p o n s e : a r rayO f (outType)){
33de f g o t R e s u l t s =0
34de f r e s u l t = []
35whi le (g o t R e s u l t s<n e e d e d R e s u l t s){
36de f r e f s = r e g i s t r y . g e t{"worker" i n i t . t a g s}
37de f r e f = randomL is t I t em (r e f s)
38t r y {
39r e s u l t += r e f . P r o c e s s (i n p u t) . r e s p o n s e
40g o t R e s u l t s ++
41} ca tch (e) { p r o c e s s E r r o r (e)}
42}
43re turn r e s u l t
44}
45}}
46}

48s e r v i c e L i s t . each{ s−> / / dep loy a t random h o s t s
49s . dep loyAt (randomL is t I t em (h o s t . g e t A l l ()))
50}

Listing 1. ’Generation of Web services for task delegation example’

exceptions at the Web operations. However, for demonstra-
tion purposes, we have included some additional features,
such as nested invocations, dynamic replacement of func-
tionality, and generation of active clients. For setting upthe
testbed, we are using the pluginsWebServiceGenerator,
WebServiceInvoker, CallInterceptor, Client-
Generator, SimpleRegistry, andDataPropagator,
which establish the model schema depicted in Figure 1. We
divided the scenario into three parts: in the first step we
generate the service-based testbed, then we generate clients
invoking the testbed’s services, and, finally, show how the
running testbed can be altered at runtime.

Listing 1 covers the specification of the services. First, a
set of back-end hosts is referenced and the service’s mes-

1 de f i n i t C l i e n t = c l i e n t . c r e a t e ()
2 i n i t C l i e n t . run=t rue / / boo lean f l a g ’ run ’
3 i n i t C l i e n t . code={ / / c l i e n t code as c l o s u r e
4 whi le (run) {
5 Thread . s l e e p (5000)/ / eve ry 5 seconds
6 de f r e f s = r e g i s t r y . g e t{"delegator" i n i t . t a g s}
7 de f r = randomL is t I t em (r e f s) / / p i ck random
8 de f a rg = inType . newIns tance ()
9 r . De leg a te (arg , 3) / / i n i t i a t e d e l e g a t i o n

10 }
11 }

13 i n i t C l i e n t . dep loyAt (h o s t . g e t A l l ()) / / run c l i e n t s

Listing 2. ’Generation of clients invoking delegator Web services’

sage types are imported from an XSD file. In Line 8, the
DataPropagator plugin is invoked, via its aliasprop, to
bind a global function/closure to the shared runtime environ-
ment. The testbed itself comprises 100 simple worker services
and, in addition, 20 delegators that dispatch invocations to
the workers. In Lines 13 to 24, the worker services are built,
for each we declare variables for controlling the simulation
of QoS, and add a tag for distinction. For the worker’s Web
service operationProcess we specify its I/O message types
and customize its behavior with simple code for simulating
delay and failure rate, controlled via the service’s variables.
The composite delegator services are created in a similar man-
ner, but contain nested service invocations and a user-defined
customization (processError()). Furthermore, a header
argument is specified (neededResults), which means that
it is declared as part of the SOAP header instead of the body.
In Line 36 theSimpleRegistry is queried to get a list of
references to worker services. Of these random ones are picked
and invoked (Line 39) in sequence, until the required number
of correct responses has been reached. On faults, the cus-
tomizable error handling routine namedprocessError()
is called. Eventually, the delegator service returns a listof
responses. At the end of the script, the testbed is generatedby
deploying the modeled Web services on random hosts.

Though, in this state the testbed contains only passive
services awaiting invocations. In order to make it “alive”,
by generating activity, Listing 2 specifies and deploys clients
which invoke random delegator services in 5 second intervals.

Finally, Listing 3 demonstrates how running testbeds can
be altered at runtime. At first, a call interceptor is created,
which can be, for instance, used to place the QoS sensors.
We make use of G2’s multicast updates and enhance all
delegator services by appending the interceptor to the ser-
vice model. In the same request we replace the (formerly
empty)processError() routine and instruct the services
to report errors to a 3rd-party Web service. At the back-end,
theWebServiceGenerator plugins will detect the change
request and automatically adapt the addressed services. Fur-
thermore, by making use of G2’s immediate synchronization of
models with running testbed instances, the simulation of QoS
is altered on the fly by changing the corresponding parameter
variables of worker services in a random manner. In the end,

1de f p i = c a l l i n t e r c e p t o r . c r e a t e ()
2p i . hooks =[i n :"RECEIVE" , ou t :"SEND"] / / where t o b ind
3p i . code={ msg−> qosmon . a n a l y z e (msg)} / / s e n s o r p l u g i n

5webse rv i ce (i : p i) { s−> "delegator" i n s . t a g s} { s−>

6s . i n t e r c e p t o r s += i / / a t t a c h t o a u t h o r s e r v i c e s
7s . p r o c e s s E r r o r ={ e−>

8de f u r l ="http://somehost.com/reportError?WSDL"
9de f repor tWs= w s r e f e r e n c e . c r e a t e (u r l)
10repor tWs . Repor t (my . webse rv i ce . name , e . message)
11}
12}

14i n t c y c l e s =1000
15whi le (−−cyc les>0) {
16Thread . s l e e p (2000)/ / eve ry 2 seconds
17de f workers = webse rv i ce . g e t{"worker" i n i t . t a g s}
18de f w= randomL is t I t em (workers)
19w. d e lay =new Random () . n e x t I n t (20∗1000) / / 0 − 20 sec
20w. f a i l u r e R a t e =new Random () . n e x t F l o a t () / / 0 . 0 − 1 .0
21}

23i n i t C l i e n t . run=f a l s e / / s h u t down a l l c l i e n t s

Listing 3. ’On-the-fly manipulation/extension of running testbed’

the clients are shut down by changing theirrun flag.
In this scenario we have tried to cover as many key features

of G2 as possible, to demonstrate the simplicity of our script-
ing interface. We have used builders to create nested model
structures (service→operation→datatype), designed Web ser-
vices and clients with parameterizable behavior, customized
behavior with closures, applied plugins (e.g., call interceptors
and service invokers), performed a multicast manipulation
request, and steered the running testbed via parameters. The
generated testbed consists of interconnected Web servicesand
active clients calling them. To facilitate proper testing of the
QoS monitor [16], it would require to simulate not only pro-
cessing time and fault rate, but also scalability, throughput, and
other properties which we have skipped for the sake of brevity.
In any case, we believe that the presented scenario helps to
understand how G2 is used and gives a good impression about
its capabilities.

V. D ISCUSSION ANDFUTURE WORK

Certain concepts of G2 might be considered with skepticism
by readers and, therefore, require to be discussed in this paper.
First of all, the usage of closures, which encapsulate user-
defined code, for customizations of behavior is definitely risky.
As we do not check the closures for malicious code, it is, for
instance, possible to assign{System.exit(0)} to some
testbed instance at the back-end, to invoke it, and hereby to
shut down the remote G2 instance. This security hole restricts
G2 to be used only by trusted engineers. For the current
prototype we accepted this restriction on purpose and kept
closure-based customizations for the vast flexibility their offer.

Some readers may also consider the G2 framework as too
generic, since it does not generate the testbed instances but
delegates this to the plugins, and may wonder whether it
deserves to be called a “testbed generator framework” at all.
In our opinion this is mainly a question of where to define

the boundary between a framework and its extensions. We
implemented a number of plugins which generate basic SOA
artifacts, such as services, clients, and registries. If wedecide
to direct our future research towards non-SOA testbeds, we
will be able to base this work on the G2 framework.

Moreover, in the introduction of this paper we said that
SOA comprises more than just Web services, but also clients,
service buses, mediators, workflow engines, etc. But looking
at the list of plugins which we developed (see Section III-B),
it becomes evident that we do not cover all these components.
This is partially true, as this paper presents the current state of
our work in progress. However, we are continuously extending
our plugin repertoire and will make up for the missing ones
soon, e.g., by porting G1’s BPEL workflow plugin to G2.

Also, G2 is currently missing sophisticated support for
WS-* standards which are an essential asset for SOAP-based
communication. In the strict sence, it is possible to use call
interceptors for WS-* processing but the engineer must handle
the complex processing. We regard it as necessary, to unburden
him/her by providing plugins for the common standards (e.g.,
WS-Addressing for asynchronous communication, WS-Policy,
WS-Security) and to support the creation of additional ones.

Last but not least, the question might be raised why we
prefer a script-based approach. The reason is that we derive
a lot of flexibility from the Groovy language and see high
potential in the ability to program the testbed’s behavior
compared to, for instance, composing everything in GUIs,
which provides user convenience at the cost of flexibility.

VI. CONCLUSION

In this paper we have introduced Genesis2, a framework
supporting engineers in generating testbed infrastructures for
SOA. We have given an overview of the framework’s concepts
and outlined its novel features which offer a high level of
extensibility and customizability. Furthermore, we have used
a scenario example to demonstrate how engineers can specify
and program testbeds via an intuitive scripting language. We
regard Genesis2 as an important contribution for the SOA test-
ing community, as it is the first generic testbed generator that
is not restricted to a specific domain but can be customized to
set up testbeds of diverse components, structure, and behavior.
We plan to release the software via our Web site [27] and
expect that it will have significant impact on future research
on automated testbed generation.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community Seventh 7th Programme
FP7/2007-2013 under grant agreement 215483 (S-Cube).

The authors would also like to thank their collegues Harald
Psaier, Daniel Schall, Florian Skopik, and Martin Treiber for
their valuable feedback and discussions.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,“Service-
oriented computing: a research roadmap,”Int. J. Cooperative Inf. Syst.,
vol. 17, no. 2, pp. 223–255, 2008.

[2] G. Denaro, M. Pezz̀e, D. Tosi, and D. Schilling, “Towards self-adaptive
service-oriented architectures,” inTAV-WEB. ACM, 2006, pp. 10–16.

[3] R. B. Halima, K. Drira, and M. Jmaiel, “A qos-oriented reconfigurable
middleware for self-healing web services,” inICWS. IEEE Computer
Society, 2008, pp. 104–111.

[4] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart,
“An architectural approach to autonomic computing,” inICAC. IEEE
Computer Society, 2004, pp. 2–9.

[5] G. Canfora and M. D. Penta, “Testing services and service-centric
systems: challenges and opportunities,”IT Professional, vol. 8, no. 2,
pp. 10–17, 2006.

[6] W.-T. Tsai, R. A. Paul, W. Song, and Z. Cao, “Coyote: An xml-based
framework for web services testing,” inHASE. IEEE Computer Society,
2002, pp. 173–176.

[7] M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J. Forsmann,
“Web services wind tunnel: On performance testing large-scale stateful
web services,” inDSN. IEEE Computer Society, 2007, pp. 612–617.

[8] J. Zhang, “A mobile agents-based approach to test the reliability of web
services,”IJWGS, vol. 2, no. 1, pp. 92–117, 2006.

[9] H. J. A. Holanda, G. C. Barroso, and A. de Barros Serra, “Spews: A
framework for the performance analysis of web services orchestrated
with bpel4ws,” inICIW. IEEE Computer Society, 2009, pp. 363–369.

[10] H. Huang, W.-T. Tsai, R. A. Paul, and Y. Chen, “Automated model
checking and testing for composite web services,” inISORC. IEEE
Computer Society, 2005, pp. 300–307.

[11] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini,“Model-based
generation of testbeds for web services,” inTestCom/FATES, ser. Lecture
Notes in Computer Science, vol. 5047. Springer, 2008, pp. 266–282.

[12] W. Vogels, “Web services are not distributed objects,”IEEE Internet
Computing, vol. 7, no. 6, pp. 59–66, 2003.

[13] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards recovering the broken soa triangle: a software engineering
perspective,” inIW-SOSWE. ACM, 2007, pp. 22–28.

[14] V. R. Basili and B. T. Perricone, “Software errors and complexity: An
empirical investigation,”Commun. ACM, vol. 27, no. 1, pp. 42–52, 1984.

[15] K. Verma and A. P. Sheth, “Autonomic web processes,” inICSOC, ser.
Lecture Notes in Computer Science, vol. 3826. Springer, 2005, pp.
1–11.

[16] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping performance
and dependability attributes of web services,” inICWS. IEEE Computer
Society, 2006, pp. 205–212.

[17] E. Martin, S. Basu, and T. Xie, “Websob: A tool for robustness testing
of web services,” inICSE Companion. IEEE Computer Society, 2007,
pp. 65–66.

[18] J. Zhang and L.-J. Zhang, “Criteria analysis and validation of the
reliability of web services-oriented systems,” inICWS. IEEE Computer
Society, 2005, pp. 621–628.

[19] W. Xu, J. Offutt, and J. Luo, “Testing web services by xml perturbation,”
in ISSRE. IEEE Computer Society, 2005, pp. 257–266.

[20] D. Bianculli, W. Binder, and M. L. Drago, “Automated performance
assessment for service-oriented middleware,” Faculty of Informatics -
University of Lugano, Tech. Rep. 2009/07, November 2009. [Online].
Available: http://www.inf.usi.ch/researchpublication.htm?id=55

[21] “OASIS - Business Process Execution Language for Web Services,”
http://www.oasis-open.org/committees/wsbpel/.

[22] “Web Services Description Language,” http://www.w3.org/TR/wsdl.
[23] “WS-Agreement,” http://www.ogf.org/documents/GFD.107.pdf.
[24] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf, “Automating

experimentation on distributed testbeds,” inASE. ACM, 2005, pp.
164–173.

[25] W.-T. Tsai, Z. Cao, X. Wei, R. A. Paul, Q. Huang, and X. Sun,
“Modeling and simulation in service-oriented software development,”
Simulation, vol. 83, no. 1, pp. 7–32, 2007.

[26] L. Juszczyk, H. L. Truong, and S. Dustdar, “Genesis - a framework for
automatic generation and steering of testbeds of complexweb services,”
in ICECCS. IEEE Computer Society, 2008, pp. 131–140.

[27] “Genesis Web site,” http://www.infosys.tuwien.ac.at/prototype/Genesis/.
[28] “SOAP,” http://www.w3.org/TR/soap/.
[29] “Jakarta Bean Scripting Framework,” http://jakarta.apache.org/bsf/.
[30] “Apache CXF,” http://cxf.apache.org/.
[31] “Groovy Programming Language,” http://groovy.codehaus.org/.
[32] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-

end support for qos-aware service selection, binding and mediation in
vresco,”IEEE T. Services Computing, 2010 (forthcoming).

