
A Middleware for Service-oriented Communication in
Mobile Disaster Response Environments ∗

Lukasz Juszczyk
VitaLab, Distributed Systems Group

Institute of Information Systems
Vienna University of Technology, Austria

juszczyk@infosys.tuwien.ac.at

Schahram Dustdar
VitaLab, Distributed Systems Group

Institute of Information Systems
Vienna University of Technology, Austria

dustdar@infosys.tuwien.ac.at

ABSTRACT
Today, the work of disaster response teams is being increas-
ingly supported and coordinated by using portable comput-
ing devices. Connected to mobile ad-hoc networks, these
devices establish a communication infrastructure immune to
damages caused by natural disasters. However, ad-hoc net-
works are dynamic and volatile environments, which ham-
pers hosting of critical applications relying on fast respon-
siveness. These difficulties can be mitigated to some extent
at the middleware level. In this paper we present RESCUE,
an open-source middleware for service-oriented communica-
tion in mobile disaster response environments. RESCUE has
been designed to address challenges of dynamic ad-hoc net-
works for service discovery and invocation and provides an
infrastructure for flexible mobile systems based on loosely
coupled services.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distributed
Systems—Distributed applications

Keywords
Service-oriented computing, mobile networks, peer-to-peer,
middleware, service discovery, disaster response

1. INTRODUCTION
The portability and steadily increasing performance of

mobile computing devices has opened various new areas of
application, apart from the traditional usage as mobile cal-
endars and messaging clients. One such area, which has es-
pecially gained attention, is the support of emergency teams
in the management of natural disasters [14, 19]. During dis-
asters, earthbound infrastructure is, typically, being dam-
aged and, therefore, becomes unavailable. As this problem

∗This work is partially supported by the European Union
through the FP6-2005-IST-5-034749 project WORKPAD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC’08, December 1-5, 2008 Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-364-8/08/12... $5.00.

also affects transmission facilities, such as masts, effective
emergency management requires communication technolo-
gies which are less vulnerable for they do not rely on pre-
existing and static infrastructures. Logically, mobile devices
supporting ad-hoc communication based on Wi-Fi or mo-
bile WiMAX are predestined for these purposes. Moreover,
today’s mobile devices have reached a system performance
which makes it possible to host more sophisticated soft-
ware, compared to the restricted usage of the early days.
Though, mobile ad-hoc networks are challenging environ-
ments in terms of stable communication and reliability in
general. The severity of this becomes especially noticeable
if these networks must host systems in which availability
and responsiveness of participants is crucial, as it is the case
for disaster response systems. Although the problems in-
herent in ad-hoc networks cannot be fully overcome it is yet
possible to mitigate their negative impacts by using an opti-
mized communication middleware. In this paper we present
RESCUE1, a light-weight middleware for decoupled service-
oriented communication in mobile networks.

RESCUE has been developed inside the WORKPAD pro-
ject [11, 14] which deals with building an adaptive soft-
ware infrastructure for supporting collaborative work of hu-
man operators in emergency/disaster scenarios. WORK-
PAD combines a back-end peer-to-peer (P2P) community of
inter-organizational hosts, providing advanced services for
data and knowledge integration, with a mobile front-end
P2P community of human workers operating in the fields
of disasters. The front-end community establishes an ad-
hoc network in which the response process is executed as an
adaptive workflow and where workers provide services which
are being dynamically detected and incorporated. RES-
CUE provides the communication infrastructure for this as
it handles deployment and advertisement of local services
and discovery and invocation of remote ones. It applies a
novel algorithm for active service advertisement, supports
real-time notifications about the availability of services, and
uses asynchronous messages for decoupled service invoca-
tion. RESCUE’s functionality has been focused on systems
operating in dynamic environments, which, nevertheless, re-
quire the highest possible degree of dependability.

The structure of this paper is as follows. In Section 2 we
discuss the use of Web services on mobile devices in gen-
eral and point out our contribution. In Section 3 we re-
view related work. In Section 4 we provide an insight into
the concepts and techniques of RESCUE. Section 5 contains

1Responsive Service-oriented Communication in Unreliable
Environments

implementation details and a performance evaluation. Fi-
nally, in Section 6 we discuss possible future extensions of
our middleware and conclude this paper.

2. WEB SERVICES ON MOBILE DEVICES
Various operating systems have been developed for mo-

bile devices, e.g., Symbian OS, Windows Mobile, iPhone
OS, Palm OS, and Linux (e.g., in Android and OpenZau-
rus). There exist also multiple platforms for the develop-
ment of software for these operating systems, such as Mi-
crosoft .NET Compact Framework, Java Micro Edition, and
the Symbian SDK. In addition, each of these listed plat-
forms is based on a different programming language. If the
vision of seamless interaction amongst users carrying mobile
devices has to become reality, it is necessary to create sys-
tems on interoperable and open standards in order to handle
the (steadily growing) heterogeneity. This general need for
interoperable communications can be split into three main
issues: (a) how resources can be found in the environment,
(b) how resources can being described, and (c) how they can
be used/invoked.

As for the invocation of resources, it is evident that SOAP-
based Web services are becoming the preferred transport
standard [13, 15, 20]. Web services allow to establish flexible
systems consisting of loosely coupled services which can be
bound and invoked dynamically. In mobile networks this
decoupling is of high importance as service providers may
appear and disappear at any time and therefore maximum
flexibility, in terms of minimum dependence, is necessary.
However, because SOAP is based on XML, which requires
costly de-/serialization of data, there were doubts whether
it was reasonable to use SOAP on mobile devices at all, but,
as shown in [20], light-weight SOAP implementations have
solved this performance problem.

For discovery of service instances and for description of
service functionality, however, no commonly accepted stan-
dards have been established yet. UDDI registries are too
complex, have never gained any noteworthy importance, and
are already regarded as obsolete. Various discovery proto-
cols, such as the Service Location Protocol [16] and Web
Service Dynamic Discovery [12], do exist and do work well,
but they are not compatible. Yet, a more severe problem
is the lack of an accepted standard for describing the func-
tionality of Web services. Even the Web Service Description
Language (WSDL) does only specify the syntax of a service.
This raises the question how services can be discovered if
there is no de-facto standard, and therefore, how interop-
erable ad-hoc communication can be realized at all. A fre-
quently applied method to describe services is to use simple
keywords, such as {service.type=printer, printer.type=laser,

printer.color=true} for a printing service, but this still re-
quires some shared knowledge of the service provider and
the service clients in order to interpret the semantics of the
keywords. Sophisticated semantics based on ontologies, as
proposed in [18], are supposed to solve this issue - at least to
some extent - but they are still too heavy-weight for mobile
computing. As a result, most service registries and discovery
protocols follow a pragmatic approach and do not restrict
the format of descriptions, leaving the choice, and therefore
the problem, up to the users/developers.

2.1 The Contribution of RESCUE
Regarding the challenges and open issues of Web services

on mobile devices, it is safe to say that some of them are
relevant for the development of mobile disaster response
systems, while some are not. For instance, issues such as
incompatible representations of service descriptions can be
regarded as out of scope of our work as we can safely as-
sume that a rescue team is able to agree on a description
format and on a shared keyword terminology. Furthermore,
scalability to thousands of nodes, as it is possible in JXTA
[3], is not important too, because rescue teams do usually
not reach such dimensions. Instead, problems related to
the lack of dependability in mobile networks and its effects
on the execution of the rescue processes are of high rele-
vance for mobile disaster response systems. This is crucial
as human workers do enact critical tasks and the overall per-
formance of rescue processes directly affects the number of
saved lifes. Hence, the development of RESCUE has been
focused on techniques for tackling dependability problems
and for mitigation of their negative effects. And here lies its
main contribution which consists of the following features:

• A novel protocol for service advertisement and discov-

ery. The protocol works in an incremental manner,
reducing network traffic significantly, and propagates
changes quickly.

• A subscription mechanism for real-time notifications
about the availability of services in the environment.

• A continuously updated local database containing a
global view of all available services and their metadata.

• Pure peer-to-peer communication through asynchronous

service invocations.

• The open-source license of the Java prototype [7].

In the design phase of RESCUE, we analyzed the require-
ments of disaster response systems and applied them to the
difficult environment of mobile networks. The result has
been that we assessed high priority to the listed features,
making a trade-off this way at the cost of other features
which were not realizable. Section 4 provides a detailed
insight into the concepts and elaborates more on the priori-
tization inside our middleware.

3. RELATED WORK
In the domain of mobile computing, various concepts and

implementations have been developed. These include P2P
communication frameworks, discovery protocols, middleware
for service provision, etc. However, as requirements of mo-
bile systems differ significantly, there is also no all-round so-
lution which solves all relevant problems adequately but each
contribution has its individual strengths and weaknesses.

Middleware for service-oriented communication/collabo-
ration has been developed in projects, such as POPEYE [6]
or SPAWN [9]. Similar to RESCUE, these projects are fo-
cused on mobile networks and provide a wide spectrum of
features, including a flexible handling of underlying networks
or a storage of service advertisements and discovery requests
in distributed tuple spaces. Yet, they are heavy-weight or do
not deal with dependability issues. RESCUE, however, aims
at reliable communication with maximum responsiveness.

Sliver [17] is a light-weight BPEL workflow engine for mo-
bile devices and supports the provision of kSOAP2-based [4]
Web services. In fact, RESCUE is partially based on Sliver.

We removed the BPEL engine code and extended the SOAP
handling for our purposes. However, Sliver does only pro-
vide means for service provision and had to be extended with
discovery and dynamic binding functionality.

JXTA [3] provides a scalable P2P infrastructure for provi-
sion, discovery, description, and invocation of services. The
area of application of JXTA ranges from small devices to
high performance servers and from static networks to mo-
bile and dynamic ones. Yet, its scalability comes at the cost
of a less dynamic discovery. This makes it not applicable for
systems which must react to a changing situation quickly.

For service discovery in small-scale networks the following
are the most popular protocols which are, though, not suited
to our needs: WS-Discovery [12] uses sized SOAP messages
and relies on clients polling for services; the Service Location
Protocol (SLP) [16] is also based on client-side polling plus
it has a too primitive matching mechanism which makes it
hard to discover services by their descriptions; DNS Service
Discovery (DNS-SD) [1] publishes service details via domain
name system records which need to be queried by the clients
as well; and the Simple Service Discovery Protocol (SSDP)
[8] of Universal Plug and Play (UPnP) [10] advertises ser-
vices via multicasted HTTP messages. Except for SSDP,
these protocols expect clients to poll periodically for ser-
vices, which hampers a quick notification about changes in
the network. Furthermore, by using sized message formats,
they cause significant network traffic which limits scalability.
In contrast, services in RESCUE are actively advertised by
their hosting middleware. This allows to detect new services
much faster. Furthermore, our discovery protocol works in
an incremental manner which reduces traffic.

This was just a short list of the most relevant works on
the field of mobile service-oriented computing. To our best
knowledge there is no (published) solution which aims at
responsiveness and reliability, and, therefore, none can be
used to establish the communication infrastructure of the
WORKPAD front-end.

4. CONCEPT AND REALIZATION
Although RESCUE is open to be used in various environ-

ments, the designated area of application are mobile net-
works of rescue teams operating in the field of disasters.
As explained previously, the connectivity inside mobile net-
works is usually unstable. The effects of this range from
minor problems (e.g., packet loss) to severe problems, such
as lost connections between hosts due to moving away too far
from the wireless range, which can even result in a fragmen-
tation of the whole network. This is a fact about wireless
networks which must be accepted, though, can be mitigated
to some extent. For instance in WORKPAD, the problem of
moving away too far from the wireless range is handled by
monitoring the movements of the operators and rearranging
their positions, if necessary [14]. However, this is being done
at a higher level and is out of the scope of our middleware.
Instead, the priorities of RESCUE have been concentrated
on providing service-oriented communication which is as sta-
ble and responsive as the network underneath allows.

The concept of RESCUE is based on every node having
a global view on all services in the network. Although this
approach is not suited to large-scale environments due to
poor scalability, it is well applicable for small- to medium-
scale disaster response systems. In RESCUE, nodes adver-
tise their deployed services and listen to the advertisements

of others. Information about discovered services, including
local and remote ones, is kept in a local database which con-
tains published metadata (descriptions) about all services.
The metadata consists of mandatory records which are nec-
essary to identify and invoke the services, but consists also
of user-defined properties which describe the functionality.
Client applications can search for services by either querying
the database or by placing subscriptions to be notified when
matching services become available or unavailable. Due to
the active advertisement protocol, it is possible for clients
to be notified almost immediately after the appearing of a
service in the network. Eventually, communication with re-
mote services can be done either by one-way messages or
by synchronous as well as asynchronous invocations. RES-
CUE has 3 mandatory services: (a) a deployment service
which is only available locally, (b) an information service de-
livering metadata about deployed services, and (c) a callback
service receiving responses to asynchronous invocations.

The combination of these features creates a flexible infras-
tructure for service-oriented communication, able to react
quickly to changes in the environment. This is mainly real-
ized by combining an optimized discovery protocol with an
asynchronous service invocation mechanism.

4.1 Service Advertisement & Discovery
The service discovery protocol of RESCUE has been sub-

ject to several trade-offs. On the one hand, wireless com-
munications must be as light-weight as possible because a
higher amount of traffic increases the probability that some
data packets get lost and the communication is delayed be-
cause of timeouts and resending of packets. Of course, a
reduced bandwidth consumption does also have positive ef-
fects on the CPU load and the battery consumption. On the
other hand, in order to make fast responsiveness possible, it
is necessary to exchange service advertisements frequently
to detect new services and also disappeared ones based on
missing refresh advertisements from them. As none of the
existing protocols was able to handle these contradicting re-
quirements adequately, we have developed a new advertise-
ment and discovery protocol for RESCUE.

4.1.1 Techniques for Service Advertisement
In RESCUE, we use active advertisements sent out by

service providers instead of a client-side discovery through
continuous polling. This is the most effective way to keep
(potential) clients up-to-date about the availability of ser-
vices, as only providers know best when to propagate up-
date notifications. Furthermore, we regard it as inefficient
to send out individual advertisements for every single ser-
vice, especially when they also contain all metadata, as it
is the case for instance in SLP. In contrast, we rely on in-
cremental updates where advertisements are sent out per
middleware instance, not per service instance. Figure 1 lists
simplified versions of the algorithms for advertisement (done
by provider) and discovery (done by clients on receipt of ad-
vertisement message) of services. An important feature of
RESCUE is its flexible adjusting of advertisement intervals.
Advertisements are usually sent out in predefined intervals,
however, can be sent with a higher frequency if (a) a new
service is being un-/deployed at the local middleware in-
stance or (b) if the last received advertisement of a remote
node was too long ago. Obviously, the sense of (a) is to
propagate changes of the local state quickly, while the pur-

Un-/DeployService(service)
1 registerAtMiddlewareModules(service)
2 stateCounterID ← stateCounterID + 1
3 sendAdv ← true

Advertisement()
1 while Middleware.isRunning()
2 do waitForNextInterval()
3 if curT imestamp() − lastAdvRcvd > threshold
4 then // last received adv is too long ago

5 // reduce threshold to accelerate interval

6 threshold ← reduce(threshold)
7 sendAdv ← true
8 if curT imestamp() − lastAdvSent > threshold
9 then // last sent adv is too long ago

10 sendAdv ← true
11 if sendAdv = true
12 then status ← buildAdvMessage(stateCounterID)
13 sendV iaMulticast(status)
14 threshold ← defaultThreshold
15 sendAdv ← false // mark as sent

16 lastAdvSent ← curT imestamp()

Discovery(sender, status)
1 lastAdvRcvd ← curT imestamp()
2 // full update necessary?

3 if status.hasNewRuntimeID(sender.lastStatus)
4 then retrieveAllServices(sender)
5 // or just incremental?

6 if status.hasNewSerialCounterID(sender.lastStatus)
7 then retrieveIncrementally(sender, status, lastStatus)
8 sender.lastStatus ← status
9 // update db and notify clients about matching services

10 updateLocalDB()
11 checkSubscriptions()

Figure 1: Advertisment & Discovery Algorithms

pose of (b) is to detect situations where the mobile device
is disconnected from the rest of the network and to increase
the frequency in order to advertise its reappearance faster
once reconnected.

At the transport level, we use multicast over OLSR [5]
for sending out the advertisements as UDP packets. Clients
which receive them initiate a unicast communication with
the provider via UDP or TCP, depending on the message
sizes. Listing 1 shows a sample conversation. Line 1 contains
the advertisement message propagated via multicast. The
UUID is used as a static identifier of middleware instances,
because IP addresses of nodes can change and, therefore, are
not sufficient for precise identification. The URI is followed
by a runtime ID which is generated anew at each start of
the middleware and is used to tell whether the instance has
been restarted since the last advertisement and, therefore,
also might host different services now. The last token of
the message is the serial state ID, which is incremented ev-
ery time when a service is deployed or undeployed at the
middleware. As a result every client which receives such
an advertisement knows whether it should (a) retrieve the
whole service state of the middleware instance, if it has never
received an advertisement from it or if the runtime ID has
changed, (b) whether it should retrieve an incremental up-
date on the state, if only the serial state ID has changed,
or (c) whether it should regard the state as unchanged, if
the same advertisement has been received before. In case
of an unchanged state, the references to services hosted by
the sending middleware instance are refreshed. In case of a

1 > advertise 275170e0 -3ebe -11dd-baa0 -0015 c5568d5b
http ://10.20.30.40:8080/ services 82325 38

2 < ifUUID 275170e0 -3ebe -...0015 c5568d5b getStatus 35 38

3 > OK + http ://www.vitalab.tuwien.ac.at/testSer/ ..

4 < ifUUID 275170e0 -3ebe -11dd-baa0 -0015 c5568d5b
getAttrib http ://www.vitalab.tuwien.ac.at/testSer

5 > OK id=testSer namespace=http ://www... abc#YSBi ...

Listing 1: Sample Advertisement Communication

changed state ID, the client can retrieve the update in an
incremental way by specifying the last seen state ID and the
current one from the advertisement. As shown in Line 2, the
client also prepends a ifUUID command which is necessary
for recognizing and discarding requests to wrong nodes. This
can occur if a node appears and gets the IP of a previously
disconnected node assigned, which was the designated desti-
nation of the request. On receipt of a getStatus request, the
providing middleware sends back a response (Line 3) con-
taining the identifiers of services which have been deployed
meanwhile (prepended by a plus) and also of all undeployed
ones (prepended by a minus).

This is the minimum amount of interaction done by the
middleware in order to keep track of the changes in the net-
work and to update the local database continuously. How-
ever, by just performing these steps the database will con-
tain only basic information, such as namespace and URI of
the service and the UUID of its middleware instance. Al-
though this is sufficient to locate and identify services in
the network, it does not contain any real description and
therefore makes service discovery difficult. Nevertheless,
RESCUE does not retrieve all metadata from all services
automatically. Instead, in order to save bandwidth, we im-
plemented a more flexible approach where service metadata
consists of 3 levels of information and is being retrieved on
demand:

1. The 1st level contains information which is being re-
trieved automatically, such as the location and the
namespace of the service and the UUID of its node.

2. The 2nd level contains attributes which describe the
service in general. As explained in Section 2.1, we
do not enforce any description format but expect the
attributes to be specified as name-value tuples. Lines 4
and 5 in Listing 1 depict the exchanged messages for
retrieval of 2nd level attributes.

3. On the 3rd level, the individual operations are being
described by name-value attributes and their signa-
tures (message types). This metadata is being re-
trieved from the mandatory information service of the
remote middleware instance.

The point of splitting the metadata into 3 levels is that
a client may identify a desired service solely based on some
known identifiers (1st level) or by general descriptions (2nd

level, e.g., as in the printer example in Section 2). This
mainly happens in closed environments, such as the rescue
teams of WORKPAD, where participants share a keyword

terminology for descriptions and do not need to analyze all
metadata to know how to invoke services and, therefore, the
middleware does not need to transfer all information. Yet,
this is not the case for ad-hoc collaborations where indepen-
dent participants provide services of which the details are
not known in before. In these, it is necessary to retrieve and
analyze all metadata in order to invoke the services correctly.

4.1.2 Query and Subscription
In RESCUE, service discovery can be done in 2 ways. Ei-

ther by querying, which delivers immediately all currently
available services matching the query predicates, or by plac-
ing subscriptions and waiting for notifications if matching
services appear or disappear. Although, querying seems to
be the preferred method in many protocols, such as SLP and
WS-Discovery, this is probably just due to its simplicity. We
believe that this approach has too many disadvantages. For
instance, it is not possible to detect a changing availability
of a service quickly after its happening, but only at the mo-
ment of the query itself. Surely, this can be reduced by ap-
plying a higher frequency to the queries, but this makes net-
work traffic grow significantly. As a solution to this problem,
RESCUE provides support for subscription and notification.
For this, clients define the predicates for matching the ser-
vices in a specific Java object. This object is passed to the
middleware which checks all currently available services im-
mediately and, of course, also checks all services which will
be detected in the future whether they match the predicates.
In case of a positive match, the middleware notifies the client
about the service and its availability. This approach has 2
main advantages. First of all, by combining the subscription
mechanism with active advertisements, which are sent out
immediately after something changes, it is possible to notify
clients quickly. The second advantage lies in the efficient
handling of metadata retrieval. For predicates, which are
well designed and which reference metadata from more than
one level, the middleware checks the predicates of the lower
levels first and skips the rest of the procedure in case of a
negative match. The effect of this is that services can be
”disqualified” early, without the necessity of retrieving and
checking all levels of their metadata.

4.2 Service Invocation
In service-oriented systems, there are two communication

paradigms for service invocation. There is the pure message-
centric model, in which components communicate by pass-
ing asynchronous messages through a middleware, and there
is the paradigm of Remote Procedure Calls (RPC), which
makes services act as distributed objects. As both models
have their advantages, and furthermore the choice of which
is the proper one depends on the area of application, RES-
CUE supports both of them, yet, with a special focus on
handling of unstable connectivity in mobile networks. Al-
though an unstable connectivity affects the whole spectrum
of communication inside the network, it is especially harm-
ful for RPC communication, which is usually performed in a
synchronous manner. In this, the client opens a connection
to the remote service endpoint, sends the request and keeps
the connection alive until it receives the response. This is
acceptable for static environments which are (usually) sta-
ble, but definitely not for mobile ones, in particular if the
data packets are forwarded between multiple hops. In case of
an interrupted connection, the whole request has to be sent

and processed anew. In RESCUE, we mitigate this problem
- as a 100% solution is not possible - by supporting purely
asynchronous service invocations keeping the duration of the
connections as short as possible. Clients, which initiate an
asynchronous invocation, are registered at the local callback
service of the middleware and the request is annotated with
additional SOAP headers and sent as a one way message,
closing the connection afterwards. At the service side, the
request is being processed and once the response message
is ready to be sent back, the middleware queries the local
database to check whether the client is still available and
then tries to send back the response. However, if the client
is not available, a subscription is placed which matches the
callback service of the client and in case of a positive noti-
fication, which means that the callback service reappeared
again, the response is transferred and the callback service
passes the response to the client. This technique benefits the
reliability of service-oriented communication by (a) keeping
the duration of connections, which are vulnerable to the dy-
namics of mobile networks, short and (b) by using the sub-
scription mechanism to transfer the responses immediately
when the client’s callback service becomes available again.
The effect is a higher probability (a) that the invocation
gets processed without being interrupted and (b) that the
response will reach the client quickly.

5. PROTOTYPE IMPLEMENTATION
The prototype of RESCUE has been implemented in Java2

ME (CDC 1.1 profile). We have reused (and partially ex-
tended) several external libraries, such as the Jetty HTTP
server [2] and Sliver [17] / kSOAP2 [4] for handling SOAP
communication. As Sliver supports HTTP as well as a more
light-weight socket-based TCP protocol for message trans-
port, we kept kept both in RESCUE. However, even though
the socket-based protocol consumes less bandwidth and al-
lows a 1.5 times higher throughput of messages, we recom-
mend HTTP due to its wide acceptance as a de-facto stan-
dard for SOAP transport. For interoperability we have also
developed a tool which acts as a bridge to other environ-
ments, by monitoring the availability of services and gener-
ating automatically WSDL definitions.

We believe that RESCUE can be useful not only for dis-
aster responses, but also for other domains which deal with
mobile service-oriented communication. As a consequence,
we decided to make it open-source under the LGPL license
and to provide the software at our prototype Web site [7].

5.1 System Performance
For evaluating the performance of RESCUE, we deployed

a small testbed consisting of a Linux-based laptop with a
Sun Java 1.4 virtual machine (VM) and 3 HP iPAQ PDAs
with Windows CE 5 and IBM J9 Java ME (CDC 1.1 pro-
file) VM. The PDAs were equipped with an Intel PXA 270
416MHz CPU and 64 MB RAM, and were used for measur-
ing the resource consumption of RESCUE, while the laptop
was mainly used for putting load on them, as a kind of a
stress test. Our evaluation aimed at determining the load
caused only by the middleware - without any applications
running on top of the middleware and causing additional
load - and included measurements of resource consumption
and the time needed to discover new services.

As usual in Java, the implementation of the VM has a
strong effect on the memory consumption. With IBM J9

we noticed that the plain VM consumes 5 MB, while RES-
CUE (including the Jetty HTTP server) causes approxi-
mately 2 MB more of memory usage. For the CPU load,
we saw that Windows CE itself already consumes 15% of
the cycles, even if no user applications are running. RES-
CUE causes a short significant load on the CPU during the
boot process, yet, consumes only a marginal load (<3%) at
runtime, even during high network activity with frequently
incoming advertisements. This is a consequence of the light-
weight design of the core components. As for the network
traffic, we determined how much bandwidth is being con-
sumed for keeping the service database up-to-date and omit-
ted client subscriptions which reference 2nd or 3rd level meta-
data, as the traffic caused by them fully depends on the size
of the metadata and the predicates of the subscriptions. As
shown in Listing 1, advertisement messages have an average
size of 90-100 byte and are sent out in adaptive intervals
(by default between 1 and 5 seconds) via multicast too all
other nodes. In case of a changed status, these nodes re-
quest via unicast an incremental update, which consumes
approximately 120-200 byte. In general, the caused traffic
by each node can be calculated with this simplified formula:

traffic =
size of adv

adv interval
+

size of update

update interval
∗num of nodes

However, another factor influencing the amount of traffic,
which has not been included in this formula, is the topol-
ogy of the network, thus, whether peers communicate di-
rectly or via routing nodes which forward traffic. In a test,
with 3 directly communicating nodes which changed their
status every 15 seconds (which is quite frequent) we deter-
mined an average traffic of 58 byte per second per node.
Then, we investigated on the time necessary for detect-
ing new or disappeared services in the network. As the
interval adapts to the deployment activity of the middle-
ware and the minimal interval is 1 second, the expectation
value for detecting a change is 0.5 second plus the delay
for transferring and processing the messages. In our tests
the average delay was less than 0.1 second. However, if
packet loss comes into play, the advertisement gets lost and
the change is detected in the next round, unless this ad-
vertisement does not get lost again. This is quite prob-
lematic and causes the average detection time to grow de-
pending on the loss rate according to the following formula:

time =

∞
X

n=0

(
min interval

2
+delay)∗(1−lossrate)∗lossrate

n

In our experiments in an unstable network with 20% of loss
rate, we experienced that the average time was 1.8 seconds.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented, RESCUE, our ongoing

work on a middleware which aims at providing an peer-to-
peer infrastructure for responsive service-oriented commu-
nication in mobile networks. As the detection of changes
in the network is a key feature for responsiveness, we have
developed a novel and light-weight discovery protocol which
notifies peers quickly about the availability of services. By
placing subscriptions, clients can tap the full potential of
real-time notifications in order to be up-to-date about the
availability of services in the network. Furthermore, we have
optimized the invocation of services with regard to handling
the stability issues of mobile networks.

Yet, there is still place for improvements, which will be

subject to future research. This includes new functional-
ity, such as replication of asynchronous invocation messages
to handle dependability problems, as well as optimizations
of the currently available features. For example, we identi-
fied possible improvements for the discovery protocol which
would reduce the necessity of unicast communication by
propagating certain updates with the advertisement mes-
sages. At last, and this is the most challenging problem,
there is more research necessary to develop techniques to
handle unnoticed packet losses which hamper the propaga-
tion of advertisements.

7. REFERENCES
[1] DNS Service Discovery. http://www.dns-sd.org.

[2] Jetty Server. http://www.mortbay.org.

[3] JXTA. http://jxta.dev.java.net.

[4] kSOAP2. http://ksoap2.sourceforge.net.

[5] OLSR Multicast Forwarding Plugin.
http://sourceforge.net/projects/olsr-bmf.

[6] POPEYE Project. http://www.ist-popeye.eu.

[7] RESCUE Prototype.
http://vitalab.tuwien.ac.at/prototypes/rescue.

[8] Simple Service Discovery Protocol - IETF draft
revision 3. http://quimby.gnus.org/
internet-drafts/draft-cai-ssdp-v1-03.txt.

[9] SPAWN Project.
http://www.cs.wustl.edu/mobilab/Projects/SPAWN.

[10] Universal Plug and Play. http://www.upnp.org.

[11] WORKPAD Project.
http://www.workpad-project.eu.

[12] WS-Discovery Specification. http://specs.xmlsoap.
org/ws/2005/04/discovery/ws-discovery.pdf.

[13] S. Berger, S. McFaddin, C. Narayanaswami, and
M. T. Raghunath. Web services on mobile devices -
implementation and experience. In IEEE WMCSA,
pages 100–109, 2003.

[14] T. Catarci, M. de Leoni, A. Marrella, M. Mecella,
G. Vetere, B. Salvatore, Dustdar, L. Juszczyk,
A. Manzoor, and H.-L. Truong. Pervasive software
environments for supporting disaster responses. IEEE

Internet Computing, 12(1):26–37, 2008.

[15] G. Gehlen and L. Pham. Mobile web services for
peer-to-peer applications. IEEE CCNC, pages
427–433, Jan. 2005.

[16] E. Guttmann, C. Perkins, J. Veizades, and M. Day.
Service location protocol, 1999. Version 2. IETF
Internet Draft, RFC 2608.

[17] G. Hackmann, M. Haitjema, C. D. Gill, and G.-C.
Roman. Sliver: A bpel workflow process execution
engine for mobile devices. In ICSOC, volume 4294 of
LNCS, pages 503–508. Springer, 2006.

[18] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[19] M. Portmann and A. A. Pirzada. Wireless mesh
networks for public safety and crisis management
applications. IEEE Internet Computing, 12(1):18–25,
2008.

[20] D. Schall, M. Aiello, and S. Dustdar. Web services on
embedded devices. IJWIS, 2(1):45–50, 2006.

