
Towards Automated IoT Application Deployment

by a Cloud-based Approach

Fei Li, Michael Vögler, Markus Claeßens, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstrae 8/184-1, 1040 Vienna, Austria

Email: {lastname}@infosys.tuwien.ac.at

Abstract—Internet of Things solutions are typically domain-
specific, relying on heterogeneous hardware, communication
protocols and data models. In such system environments, the
deployment of IoT applications is very intricate. The application
environments differ from one system to another and service man-
agement procedures are non-standardized, making it hard for
solution providers to efficiently deploy and configure applications
for a large number of users. This paper proposes to employ
TOSCA—a new standard for cloud service management—to
systematically specify the components and configurations of
IoT applications. We will demonstrate that, by using TOSCA,
application models can be reused, and deployment processes can
be automated in heterogeneous IoT system environments.

I. INTRODUCTION

Internet of Things [1] solutions are typically domain-

specific, relying on heterogeneous hardware (e.g. sensors,

actuators and gateways), communication protocols and data

models. To deal with such complexity, a lot of industrial and

academic efforts are put into developing gateway frameworks

that facilitate device integration and application development.

However, such efforts have also led to many proprietary appli-

cation runtime environments [2][3][4] with non-standardized

service management processes.

In our previous work, we have developed the IoT PaaS [5]

architecture to improve the efficiency and scalability of IoT

service delivery. It allows IoT solutions to be delivered on a

PaaS cloud as virtual verticals, which are composite, con-

figurable, and able to share the underlying cloud platform

services and computing resources with other IoT solutions. Al-

though the architecture allows service providers to efficiently

deliver and scale up IoT services, the service management

tasks, such as application deployment, driver installation and

gateway configuration are still handled manually in a case-

by-case manner, due to the underlying heterogeneity of IoT

infrastructures. The problem is that the state-of-the-art IoT

service frameworks, either gateway-based or cloud-based, lack

a systematic methodology to specify and maintain the intricate

software and hardware dependencies in IoT applications.

This paper is motivated by the challenges we have ex-

perienced in deploying IoT solutions at various scales and

in multiple application domains1 (mostly building automation

and vehicle tracking). In order to improve the reusability of

1http://www.pacificcontrols.net/projects/ict-project.html

service management processes and automate IoT application

deployment in heterogeneous environments, we propose to

employ Topology and Orchestration Specification for Cloud

Applications (TOSCA) [6][7] for IoT service management.

TOSCA is a new standard aiming at describing the topology of

cloud applications by using a common set of vocabulary and

syntax. In this paper, we will demonstrate the feasibility of

using TOSCA to specify a typical IoT application in building

automation—Air Handling Unit (AHU). The common IoT

components such as gateways and drivers will be modelled,

and the gateway-specific artifacts that are necessary for appli-

cation deployment will also be specified. Based on the case-

driven modeling, we will discuss our early experience gained

from applying TOSCA for IoT applications. This work is in

line with our ongoing effort of enabling the convergence of

IoT and cloud [8]. To the best of our knowledge, this is also

the first attempt of explicitly addressing the IoT application

deployment problem using a cloud-based approach.

The rest of the paper is organized as follows: Section II

will give an introduction to the background about TOSCA

and other concepts in IoT frameworks. Section III will start to

model the TOSCA nodes and relationships for AHU applica-

tion. The gateway specific application artifacts are specified

in Section IV. Then the experiences of using TOSCA are

discussed in Section V. Section VI will present the related

work and discuss how our work fits into the state of the art

research on both IoT and TOSCA. The paper will be concluded

in Section VII with future work.

II. BACKGROUND

A. IoT PaaS

IoT services are often delivered in physically isolated

verticals (often referred to as ”silos”), in which hardware,

middleware and application logics are tightly coupled to fulfill

domain or even project-specific requirements. IoT PaaS [5]

is a novel IoT service delivery platform that leverages the

service delivery model of PaaS cloud. On this architecture, we

offer the possibility of providing end-to-end IoT solutions as

virtual verticals on cloud, opposed to the traditional delivery

model of physically-isolated and tightly-coupled vertical solu-

tions. IoT PaaS is a generic, domain-independent architecture

that relies on domain mediators to integrate domain-specific

control protocols and data models. We have demonstrated the



domain mediation mechanism with an oBIX (Open Building

Information Exchange) [9] mediator for building automation

applications. This paper further leverages this cloud platform

with TOSCA to address the challenges in IoT service delivery.

B. Gateways

To handle the multitude of field devices in IoT solutions,

gateways [3][4][10] are designed to connect heterogeneous,

resource-constraint devices. Gateways support various device

drivers and protocol stacks to communicate with devices,

for example 6LoWPAN (IPv6 over Lower power Wireless

Personal Area Networks). Depending on their applications,

they may also support domain-specific, device-oriented data

exchange protocols such as BACNet (Building Automation

and Control Networks). Gateways can also provide service

interfaces, such as the RESTful interfaces of oBIX and

CoAP [11](Constrained Application Protocol) to ease the

integration of lower-level IoT infrastructures with enterprise

applications. In brief, the basic function of gateways is to

provide an abstraction of IoT infrastructure by effectively

translating device/network interfaces into software interfaces.

The process is generally known as device virtualization [12].

On top of this core function, most modern gateways are also

built with application runtime environments, which are usually

proprietary or non-standardized.

C. TOSCA

The Topology and Orchestration Specification for Cloud

Applications (TOSCA) is a new OASIS standard for improving

portability of cloud applications in face of growingly hetero-

geneous cloud application environments. In the following we

briefly describe the core concepts of TOSCA.

TOSCA specifies a meta-model for describing both the

structure and management of IT services. The structure of a

service is defined by the Topology Template, which consists

of Node Templates and Relationship Templates. Together they

represent a service by a directed graph. In this graph, every

component is represented by a Node Template that instantiates

a Node Type, which defines the properties and operations

of a component. To support reusability, Node Types are

defined separately and just referenced in Node Templates.

Furthermore, in addition to the reference, usage constraints

of components, e.g. number of occurrences, can be specified.

In the topology of a service, nodes are connected by relations.

Relationship Templates specify the relationship among nodes

in the Topology Template, where each Relationship Template

refers to a separately defined Relationship Type, which in turn

defines the semantics and any properties that can be used to

represent a relationship, such as ”dependOn” or ”connectTo”.

The actual scripts, configuration files and application archives

required by an application are called Artifacts, which are

explicitly specified in Artifact Types and Artifact Templates.

Artifacts are specific to each runtime environment and config-

uration of an application.

The management process of creating, deploying and termi-

nating a service can be defined by Plans. Plans are process

AHU
JCAirFlow 

Controller

JCTemperature 

Controller

Niagara 

Gateway

Sedona 

Gateway

oBIX Driver

deployedOninstalledOn

connectTo

dependOn

Fig. 1: Air Handling Unit usecase

models that can be implemented as complex workflows. The

specification of these process models relies on existing stan-

dards, such as BPMN or BPEL, to automate management pro-

cesses in different application environments. TOSCA provides

two ways of using plans—a container to use a reference of a

process model (via Plan Model Reference) and to include an

actual model in the plan (via Plan Model). The process model

contains tasks that refer to operations of Interfaces of either

Node Templates, Relationship Templates or any other available

interface. This guarantees that a plan can directly manipulate

nodes of the service topology or interact with external systems.

The topology templates, plans and artifacts of an application

are packaged in a Cloud Service Archive (.csar file) and

deployed in a TOSCA environment, which is able to interpret

the models and perform specified management operations.

It is worth noting that plans are not always required in using

TOSCA. The TOSCA environment is able to infer the correct

topology and management procedure just by interpreting the

topology template. This is known as a ”declarative” approach.

Plans realize an ”imperative” approach that explicitly specifies

how each management process should be done. As the first

attempt of employing TOSCA for IoT applications, this work

uses the declarative approach, i.e. only applying the concepts

in Topology Template.

III. MODELING IOT APPLICATIONS IN TOSCA

This paper uses a typical IoT application in building

automation systems to demonstrate the complexity of IoT

applications as well as the feasibility of TOSCA in facilitating

IoT application deployment.

A. Application description

Air Handling Unit (AHU) is a common facility in modern

buildings. Its basic function is to condition and circulate air.

In building automation solutions, sensors and actuators are

applied to AHUs in order to remotely monitor and control

them. Figure 1 illustrates a simplified deployment view of

an AHU that is commonly found in commercial solutions2.

Two core components produced by Johnson Controls (JC)—

Air Temperature Controller and Flow Rate Controller—are

connected to output fresh air at a temperature point set by an

2http://www.pacificcontrols.net/projects/ict-project.html



Gateway ControllerDriver Sensor
Base Node 

Types

Domain-specific 

Node Types
oBIX Driver

AirFlow 

Controller

AirTemperature 

Controller

Concrete Node 

Types

JCAirFlow 

Controller

JCAirTemperature 

Controller

Niagara 

Gateway

Sedona 

Gateway

Fig. 2: Node types

operator. Other than the control interface defined by Johnson

Controls, the AHU relies on the oBIX protocol for applications

to access it. Such AHU applications will be deployed in

various gateway models due to the technical requirements of

other facilities (e.g., lighting) and legacy building automation

systems. In this paper we demonstrate the deployment with

two gateway frameworks—Niagara3 and Sedona4.

B. Modeling the nodes

Modeling nodes is the first step in using TOSCA to model

IoT applications. Figure 2 illustrates the hierarchical node

model we developed for the AHU application.

1) Base Node Types: The Base Node Types are directly

derived from a generic TOSCA root node type. This puts them

at the same level as other common cloud application nodes,

including server, database and so on. The nodes at this level

present the most fundamental concepts in IoT applications.

Listing 1 presents the type definition of three basic node types,

namely Controller, Gateway and Driver, in psydo-XML5.

Sensor is not used in our application, thus not listed.

The most important element of the node types is the Inter-

face. Interfaces define the operations that application providers

can apply to the class of components. The operations presented

in our example belong to a Lifecycle interface, which is able to

instruct the TOSCA environment to change the status of these

nodes. The concrete implementations of these node types need

to provide corresponding interface implementations and define

required parameters. The properties of these three node types

are listed in Listing 2.

2) Domain-specific Node Types: The Domain-specific Node

Types are related to IoT applications in a certain industrial

domain, which is building automation in our case. For exam-

ple, oBIX is a protocol widely used in building automation

projects. It is based on web standards including XML, HTTP

and URI to access building information and control facilities.

3http://www.niagaraax.com/cs/products/niagara framework
4http://www.sedonadev.org
5For emphasizing the core concepts and saving space, we do not use name

spaces. When the embedded structure of XML elements are too redundant,
we also remove the end tags.

Listing 1: Examples of basic node types

<NodeType name="Controller">

<DerivedFrom typeRef="RootNodeType" />

<NodeTypeProperties element=

"ControllerProperties" />

<Interfaces>

<Interface name="lifecycle">

<Operation name="deploy" />

<Operation name="configure" />

<Operation name="start" />

<Operation name="stop" />

<Operation name="undeploy" />

...

</NodeType>

<NodeType name="Gateway">

<DerivedFrom typeRef="RootNodeType" />

<NodeTypeProperties element=

"GatewayProperties" />

<Interfaces>

<Interface name="lifecycle">

<Operation name="poweron" />

<Operation name="poweroff" />

<Operation name="reboot" />

...

</NodeType>

<NodeType name="Driver">

<DerivedFrom typeRef="RootNodeType" />

<NodeTypeProperties element=

"DriverProperties" />

<Interfaces>

<Interface name="lifecycle">

<Operation name="install" />

<Operation name="uninstall" />

...

</NodeType>

AirFlowController and AirTemperatureController are common

node types in AHU applications. Listing 3 demonstrates their

description based on TOSCA.

Derived from the base controller properties, these two

specific controllers add the controller-specific operations–

ChangeSetPoint and ChangeAirFlowRate, respectively with

SetPoint and FlowRate parameters. In our case, the controller

properties are the same as the input parameters, thus not listed.



Listing 2: Properties of basic node types

<element name="ControllerProperties">

<complexType>

<sequence>

<element name="Driver" type="string" />

...

</element>

<element name="GatewayProperties">

<complexType>

<sequence>

<element name="User" type="string" />

<element name="Password" type="string" />

...

</element>

<element name="DriverProperties">

<complexType>

<sequence>

<element name="Version" type="string" />

...

</element>

Listing 3: Examples of domain-specific node types

<NodeType name="AirTempController">

<DerivedFrom typeRef="Controller"/>

<NodeTypeProperties element="AirTempProperties"/>

<Interfaces>

<Interface name="AirTempInterface">

<Operation name="ChangeSetPoint">

<InputParameters>

<InputParameter name="SetPoint"

type="xs:double"/>

...

</NodeType>

<NodeType name="AirFlowController">

<DerivedFrom typeRef="Controller"/>

<NodeTypeProperties element="AirFlowProperties"/>

<Interfaces>

<Interface name="AirFlowInterface">

<Operation name="ChangeAirFlowRate">

<InputParameters>

<InputParameter name="FlowRate"

type="xs:double"/>

...

</NodeType>

3) Concrete Node Types: The Concrete Node Types define

the node types to be used in a specific application, with

information about specific hardware and software vendors,

models and versions. We only present the type definition of

a Niagara Gateway in Listing 4 as an example, because other

concrete node types follow the similar inherited relationship

with their parent node as illustrated in Figure 2. The properties

include information about the hardware model and software

version.

Listing 4: Example of Concrete Node Types

<NodeType name="NiagaraGateway">

<DerivedFrom typeRef="Gateway" />

<NodeTypeProperties element=

"NiagaraGatewayProperties"/>

</NodeType>

4) Node Templates: According to the TOSCA specification,

Node Templates describe the specific instances of node types.

The properties of a certain node type should be set in node

templates. Essentially, Node Types describe the model of

nodes, whereas Node Templates describe the actual nodes to

be used in a certain application deployment. Listing 5 presents

a template of Air Temperature Controller by Johnson Controls.

Since there is an interface to set the output temperature, the

SetPoint property can be changed at runtime.

Listing 5: Example of Node Templates

<NodeTemplate id="JCAirTempControllerTemp"

name="Johnson Controls Air Temperature Controller"

type="JCAirTempController">

<Properties>

<ControllerProperties>

<Driver>oBIX</Driver>

</ControllerProperties>

<AirTempProperties>

<SetPoint>21</SetPoint>

</AirTempProperties>

</Properties>

</NodeTemplate>

C. Modeling the relationships

The relationships required in our AHU application are

common to many IoT applications. Listing 6 presents the

four basic relationships illustrated in Figure 1. The names

of the relationship types are self-explanatory. Each of the

relationships are characterized by a source type and a target

type. The relationship definitions can be used to specify

the semantics of links between nodes and the methods of

connections. Similar to node types, relationship types can also

be inherited with more concrete properties, and instantiated

into Relationship Templates. We will skip the definitions of

templates and concrete properties due to limitation of space.

Listing 6: Relationship Types

<RelationshipType name="dependOn">

<DerivedFrom typeRef="RootRelationshipType" />

<ValidSource typeRef="Controller" />

<ValidTarget typeRef="Driver" />

</RelationshipType>

<RelationshipType name="connectedTo">

<DerivedFrom typeRef="RootRelationshipType" />

<ValidSource typeRef="Controller" />

<ValidTarget typeRef="Controller" />

</RelationshipType>

<RelationshipType name="installedOn">

<DerivedFrom typeRef="RootRelationshipType" />

<ValidSource typeRef="Driver" />

<ValidTarget typeRef="Gateway" />

</RelationshipType>

<RelationshipType name="deployedOn">

<DerivedFrom typeRef="RootRelationshipType" />

<ValidSource typeRef="Controller" />

<ValidTarget typeRef="Gateway" />

</RelationshipType>



IV. ARTIFACTS IN IOT APPLICATION DEPLOYMENT

Artifacts are the actual scripts, files, packages, executables

and all other necessary software pieces to be deployed in order

to run an application. Common artifacts in cloud applications

may include installation scripts, configuration files, archives

and so on. For IoT applications, even though the basic artifact

types are similar to cloud applications, the actual artifacts

required by each application are highly dependent on the

deployment environments. Based on the basic modelling in

the previous section, we will demonstrate how TOSCA can

help to manage IoT application deployment on heterogeneous

environments.

A. Artifact Types

The two gateways used in our implementation—Niagara

and Sedona—feature different runtime environments, pro-

gramming languages and deployment procedures. However,

the basic artifact types can be modeled in the same way as

cloud applications6.

1) File Artifact. Generic artifact type that contains certain

information required during an application’s lifecycle.

2) Script Artifact. Executable or interpretable artifact that

encapsulates instructions in a script language for a

certain operation.

3) Archive Artifact. A collection of files that are packaged

for deployment.

For the deployment on gateway environments, we ex-

tend these basic artifact types to two other common types:

SourceArtifact and BinaryArtifact. They are listed in Listing 7,

and their properties in Listing 8. Sources are to be compiled

by a compiler decided by the language of the source, whereas

binaries are executed in a specific runtime environment.

Listing 7: Artifact types

<ArtifactType name="SourceArtifact">

<DerivedFrom typeRef="FileArtifact" />

<PropertiesDefinition element=

"SourceArtifactProperties" />

</ArtifactType>

<ArtifactType name="BinaryArtifact">

<DerivedFrom typeRef="FileArtifact" />

<PropertiesDefinition element=

"BinaryArtifactProperties" />

</ArtifactType>

B. Artifact Templates

Application deployment usually constitutes a series of oper-

ations specified by the vendor of a gateway. These operations

transform artifacts, put them into specified locations, and set

their status. We will model the Niagara and Sedona artifacts

respectively in the following.

6http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

Listing 8: Properties of artifact types

<element name="SourceArtifactProperties">

<complexType>

<sequence>

<element name="Language" type="string" />

<element name="Compiler" type="string" />

...

</element>

<element name="BinaryArtifactProperties">

<complexType>

<sequence>

<element name="Environment" type="string" />

...

</element>

1) Niagara artifacts: Similar to nodes and relationships,

the actual artifacts used in an application are specified in

templates. There are four files required in deploying a Niagara

application, explained as follows.

1) Slots. In Niagara, a component is defined as a collection

of slots, which specify the properties, actions and topics

of events that the component is listening to. Although

Niagara is essentially a Java runtime environment, the

vendor, Tridium, made a customized process based on

slot definitions. Slots are included in a comment section

at the beginning of a class in java source. Thus the Java

source file has to be preprocessed by a tool called Slot-

o-matic, which translates the slot definition into actual

java code that invokes BAJA (Building Automation Java

Architecture) API. This has to be reflected in the artifact

definition.

2) module-include.xml. This file indicates Niagara environ-

ment to register the components to an internal registry.

3) module.palette. This file specifies where to display

the components in Niagara Development Environment,

which puts the components in a tree-like structure.

The actual contents of these artifacts are out of the scope

of this paper. Due to the similarity of simple file artifact

specifications, we only exemplify the first two artifacts in

Listing 9. Note that the language and compiler property of

the slot artifact are respectively slot and Slot-o-matic. At

deployment stage, this will indicate TOSCA environment to

invoke the Slot-o-matic tool for the source code.

2) Sedona artifacts: Sedona framework is an open source

IoT application environment. Compared to Niagara frame-

work, Sedona is designed to keep the framework and ap-

plication footprints small so that they can be deployed on

resource-constraint devices. Applications are portable among

devices with Sedona framework thanks to the Sedona Virtual

Machine (SVM), which is similar to the concept of JVM. In

fact, Sedona language is also similar to Java.

The artifacts required by the Sedona framework to deploy

an application are more complicated. Figure 3 illustrates the

artifact structure using a screenshot from the development en-

vironment. The function and type of each artifact is explained

as follows.

1) Sedona source files. These files are indicated by the



Listing 9: Examples of Niagara artifact templates

<ArtifactTemplate id="uid:iot-niagara-file-1"

type="SourceArtifact">

<Properties>

<FileArtifactProperties>

<FileType>java</FileType>

</FileArtifactProperties>

<SourceArtifactProperties>

<Language>slot</Language>

<Compiler>Slot-o-matic</Compiler>

</SourceArtifactProperties>

</Properties>

<ArtifactReferences>

<ArtifactReference reference="src">

<Include pattern="*.java" />

...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-niagara-file-2"

type="FileArtifact">

<Properties>

<FileArtifactProperties>

<FileType>xml</FileType>

</FileArtifactProperties>

</Properties>

<ArtifactReferences>

<ArtifactReference reference="/">

<Include pattern="module-include.xml" />

...

</ArtifactTemplate>

Fig. 3: Sedona artifacts

”.sedona” extension and compiled by the sedonac tool.

2) kit.xml. Each Sedona component is called a kit. The

kit.xml file defines the metadata for compiling sources

into a kit.

3) kits.xml specifies the kits that are needed to build a

deployable image, or the archive that can be deployed

to SVM for running an application. The oBIX driver

required to run the AHU application is compiled into

the image.

4) *.scode. The image file built according to the specifica-

tions in kits.xml.

5) *.sax. Sax file constitutes the actual application config-

uration including for example the communication port

and access credential.

6) *.sab. It is the executable binary file that is compiled

according to the specification in the corresponding .sax

file. The control logic of the AHU application is realized

in this file.

All the required artifacts described above have to be cor-

rectly presented in the directory structure defined by the

Sedona framework. Listing 10 presents examples of using

TOSCA to specify the source, binary and deployable image

to ensure that the files are correctly deployed.

Listing 10: Examples of Sedona artifact templates

<ArtifactTemplate id="uid:iot-sedona-file-1"

type="SourceArtifact">

<Properties>

<FileArtifactProperties>

<FileType>sedona</FileType>

</FileArtifactProperties>

<SourceArtifactProperties>

<Language>sedona</Language>

<Compiler>sedonac</Compiler>

</SourceArtifactProperties>

</Properties>

<ArtifactReferences>

<ArtifactReference reference="src">

<Include pattern="*.sedona" />

...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-sedona-file-6"

type="BinaryArtifact">

<Properties>

<FileArtifactProperties>

<FileType>sab</FileType>

</FileArtifactProperties>

<BinaryArtifactProperties>

<Environment>SVM</Environment>

</SourceArtifactProperties>

</Properties>

<ArtifactReferences>

<ArtifactReference reference="platform">

<Include pattern="*.sab" />

...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-sedona-file-7"

type="ArchiveArtifact">

<Properties>

<FileArtifactProperties>

<FileType>scode</FileType>

</FileArtifactProperties>

</Properties>

<ArtifactReferences>

<ArtifactReference reference="platform">

<Include pattern="*.scode" />

...

</ArtifactTemplate>

V. DISCUSSION

TOSCA, as a newly established standard to counter growing

complexity and isolation in cloud application environments, is

gaining momentum in industrial adoption as well as academic

interests. Following the first edition of TOSCA standard,

we have showed that it is capable of specifying the basic

constructs of IoT applications. By archiving the previous

specifications and corresponding artifacts into a csar file, and

deploying it in a TOSCA environment, the deployment of the



AHU application onto various gateways can be automated.

This section will further discuss our experience gained from

attempting to employ TOSCA in the IoT domain that is abun-

dant of proprietary and largely heterogeneous frameworks.

1) Acknowledge the heterogeneity. In our previous work,

we have proposed and prototyped the IoT PaaS frame-

work that aims at more efficient and scalable IoT service

delivery. The basic assumption is that IoT infrastructure

is heterogeneous and will continue to be so. Thus, rather

than proposing another ”universal” architecture, we try

to develop a methodology to easily integrate different

domain-specific protocols and data models. That is

domain mediator in the IoT PaaS architecture. Even

worse than the situation in data exchange protocols, the

deployment processes of an application can vary among

IoT solutions even if the applications are realizing the

same service. Following the same principle of avoiding

proposing another ”universal” management process, we

leverage TOSCA to manage such heterogeneity in a co-

herent way—using a common vocabulary and syntax to

describe application configurations and their deployment

processes. As demonstrated in our AHU example, the

node and relationship models can be shared for the same

application, and the artifact models can be reused for

gateways using the same software framework.

2) Other TOSCA features. This paper used several main

features of TOSCA, namely Node types, Relationship

types, Artifact types, Properties, Interfaces and corre-

sponding templates. This assumes that TOSCA will pro-

cess this service template in a declarative manner—the

process of deployment is implicitly inferred according

to the relationships expressed in the topology template.

This will work for relatively simple applications as

the simplified AHU. However, for more complicated

applications, Plans, or the imperative approach, will

be needed to explicitly invoke lifecycle operations and

automate complex management processes. Furthermore,

explicitly expressing the Requirement and Capability

types will help the TOSCA environment to more accu-

rately understand the dependencies between nodes, thus

improve the reusability of models.

3) Tooling and efforts of applying TOSCA. As a new

standard, the implementation of corresponding TOSCA

tools is still in progress. The available tools have not

realized all the standardized features. We are in the

process of connecting the work-in-progress TOSCA

environment with established IoT frameworks. We view

this as a crucial effort in the early stage of the new stan-

dard. When the tool is matured and user contributions

grow, more efforts will fall on collecting and improving

models so that they can easily be reused. The tedious

efforts of modeling each tiny aspect of IoT applications

will eventually be rewarded with greater efficiency and

reusability in the application management process.

VI. RELATED WORK

The research and application of TOSCA is still in its

infancy. The early works are generally focused on exploring

the possibilities of applying TOSCA for various management

tasks, thus providing feedbacks to the standardization efforts

and gaining experiences for industrial adoption. Wettinger et

al. [13] presents several concepts that integrate both model-

driven cloud management and configuration management. The

goal of the overall approach is to combine the advantages of

these service management paradigms based on TOSCA. Binz

et al. [14] uses TOSCA to describe application topologies in a

portable and manageable way. Based on this common TOSCA

description the authors present an approach that merges two

application topologies into one, to save resources by sharing

similar components, but preserve the functionality of both

applications. Breitenbucher et al. [15] proposes an approach

that enables the management of composite applications and

their deployment on a higher level of abstraction. Furthermore

the authors show how high and low level management tasks

can be implemented separately and fully automated applied

to the respective applications, by facilitating the features of

TOSCA. The work proposed in this paper is well in line with

these early academic works on applying TOSCA to various

scenarios. This paper presents the first effort of extending the

application scope of TOSCA to an even more challenging

area—IoT applications. It is also integral to our ongoing work

on enabling the convergence of IoT and cloud through the IoT

PaaS architecture.

This paper used Niagara and Sedona for demonstration.

There are also other IoT frameworks that aim at facilitating

device integration, protocol normalization and IoT application

development. As these frameworks approach IoT infrastruc-

tures with different focuses, they are incompatible with each

other and more of such frameworks are expected to emerge in

the future.

IoTSyS7[2] is a gateway concept that integrates various sen-

sor and actuator systems, which can be found in current home

and building automation systems. The integration middleware

provides a stack of communication protocols for embedded

devices based on various standards to support interoperability

that gets directly deployed on 6LoWPAN devices. openHAB8

presents an integration platform that operates on a higher

level of abstraction. The architecture is based on an event bus

in combination with a publish-subscribe pattern, realized on

OSGi. To integrate any kind of device of an IoT infrastructure,

abstract items are defined that represent these devices. In

addition, bindings are used to bind items to concrete hardware,

protocols or interfaces. This concept allows the platform to

be vendor-neutral and hardware/protocol-agnostic. Since in

IoT Systems most devices use their own proprietary com-

munication stack and interfaces, it is challenging to offer the

gathered data in a standardized way. Dawson-Haggerty et al.

[16] proposes sMAP that tries to overcome this challenge by

7https://code.google.com/p/iotsys/
8http://code.google.com/p/openhab/



presenting physical information via RESTful interfaces using a

simple JSON schema. This allows consumers to retrieve data,

without the need to access the underlying infrastructure and

dealing with proprietary formats. Based on sMap, Dawson-

Haggerty et al. [17] presents BOSS, a distributed system that

provides a collection of crucial, common and reusable services

that enable the development of portable and robust applications

for heterogeneous physical environment.

All introduced frameworks require considerable efforts to

understand their application management process, and tedious

manual configurations are a norm. Our work is complementary

to the aforementioned frameworks. To be best of our knowl-

edge, this paper presents the first attempt to address the IoT ap-

plication deployment problem by using a domain-independent

standard to explicitly specify the component topologies and

management operations.

VII. CONCLUSION

In the face of the growing heterogeneity in IoT infrastructure

and the need for more reusable and scalable IoT solutions, we

propose to leverage cloud as a horizontal platform for manag-

ing the lifecycle of IoT applications. This paper presented the

first efforts of using TOSCA, a new cloud standard, to formally

describe the internal topology of application components and

the deployment process of IoT applications. The feasibility

of TOSCA for this purpose is demonstrated by describing the

application components, relationships and artifacts of the AHU

application using the first edition of the TOSCA specification.

By inputing these descriptions to the TOSCA environment, the

deployment process can be interpreted and automated.

As TOSCA is a young standard and the tools are still

under development, we are in close contact with the TOSCA

core team to accelerate the development process of core

TOSCA tools and contribute the models and interfaces that

are commonly needed in IoT applications. On modeling IoT

applications, our future work is twofold. First is to produce

more matured and detailed models for the applications we

have already supported on IoT PaaS platform, especially those

in building management domains. Second is to start to apply

TOSCA to more IoT application domains along with the

application development on IoT PaaS.

ACKNOWLEDGMENT

This work is sponsored by Pacific Controls Cloud Comput-

ing Lab (PC3L)9, a joint lab between Pacific Controls L.L.C.,

Dubai and the Distributed Systems Group of the Vienna

University of Technology.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[2] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Building Automa-
tion and Smart Cities: An Integration Approach Based on a Service-
Oriented Architecture,” in 2013 27th International Conference on Ad-

vanced Information Networking and Applications Workshops. IEEE,
Mar. 2013, pp. 1361–1367.

9http://pc3l.infosys.tuwien.ac.at/

[3] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: Bridg-
ingWireless Sensor Networks into Internet of Things,” 2010 IEEEIFIP

International Conference on Embedded and Ubiquitous Computing, pp.
347–352, 2010.

[4] Tridium, “JACE Controller.” [Online]. Available:
http://www.tridium.com/cs/products / services/jace

[5] F. Li, M. Vögler, M. Claeß ens, and S. Dustdar, “Efficient and scalable
IoT service delivery on Cloud,” in 6th IEEE International Conference
on Cloud Computing, (Cloud 2013), Industrial Track, Santa Clara, CA,
USA, 2013.

[6] OASIS, “Topology and Orchestration Specification for Cloud
Applications (TOSCA).” [Online]. Available: https://www.oasis-
open.org/committees/tc home.php?wg abbrev=tosca

[7] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable Cloud Services
Using TOSCA,” IEEE Internet Computing, vol. 16, no. 3, pp. 80–85,
May 2012.

[8] F. Li, M. Vögler, S. Sehic, S. Qanbari, S. Nastic, H.-L. Truong, and
S. Dustdar, “Web-Scale Service Delivery for Smart Cities,” Internet

Computing, IEEE, vol. 17, no. 4, pp. 78–83, 2013.
[9] OASIS, “Open Building Information Exchange

(oBIX).” [Online]. Available: https://www.oasis-
open.org/committees/tc home.php?wg abbrev=obix

[10] ThereCorporation, “ThereGate.” [Online]. Available:
http://therecorporation.com/en/platform

[11] IETF, “Constrained Application Protocol (CoAP).” [Online]. Available:
http://tools.ietf.org/html/draft-ietf-core-coap-08

[12] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the SOA-Based Internet of Things: Discovery, Query, Selection,
and On-Demand Provisioning of Web Services,” IEEE Transactions on

Services Computing, vol. 3, no. 3, pp. 223–235, Jul. 2010.
[13] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter,

F. Leymann, S. Moser, I. Schwertle, and T. Spatzier, “Integrating Config-
uration Management with Model-Driven Cloud Management Based on
TOSCA,” in Proceedings of the 3rd International Conference on Cloud

Computing and Service Science, CLOSER 2013. Aachen, Germany:
SciTePress, 2013, pp. 437 – 446.

[14] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann, and A. Weiß, “Improve
Resource-Sharing through Functionality- Preserving Merge of Cloud
Application Topologies,” in Proceedings of the 3rd International Confer-

ence on Cloud Computing and Service Science, CLOSER 2013. Aachen,
Germany: SciTePress, 2013.

[15] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in Proceed-

ings of the 3rd International Conference on Cloud Computing and
Service Science, CLOSER 2013. Aachen, Germany: SciTePress, 2013.

[16] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “sMAP:
a simple measurement and actuation profile for physical information,”
in Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems - SenSys ’10. New York, New York, USA: ACM Press,
Nov. 2010, p. 197.

[17] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “BOSS: building operating system services,”
in Proceedings of the 10th USENIX conference on Networked Systems

Design and Implementation. USENIX Association, Apr. 2013, pp.
443–458.


