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ABSTRACT
Pervasive environments are characterized by rich and dy-
namic context, where users need to be continuously informed
about services relevant to their current context. Implicit dis-
covery requests, triggered by changes of user context, avail-
able services, or user preferences are prevalent in such envi-
ronments.

This paper proposes a proactive service discovery approach
for pervasive environments to address these implicit requests.
Services and user preferences are described by a formal con-
text model, which effectively captures the dynamics of con-
text and the relationship between services and users. Based
on the model, we propose a proactive discovery algorithm to
continuously present the most relevant services to the user in
response to changes of context, services or user preferences.
Numeric coding methods are applied in different phases of
the algorithm to improve its performance. A proactive ser-
vice discovery system is proposed and the context model is
grounded in a smart home environment. Experimental re-
sults show that our approach can efficiently provide the user
with up-to-date information about useful services.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory

1. INTRODUCTION
Pervasive environments are typically user-centric, featur-

ing an increasing number of devices, rich user context and
various user preferences. In such environments, Service-
Oriented Architecture (SOA) has been widely applied for in-
tegrating devices, sensors, and software applications [3] [17].
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This paper addresses a fundamental requirement in perva-
sive environments — to continuously discover the most rel-
evant services for users in an ever-changing context.

Service discovery approaches in pervasive environments
evolved from the traditional SOA field, where explicit user
requests are the driving factors of service discovery. In per-
vasive environments, however, user context and user prefer-
ences become essential aspects when deciding which of the
available services are most interesting to the user in a certain
situation. These continuously changing aspects post a sig-
nificant challenge to state-of-the-art service discovery mech-
anisms. Location changes have prevalently been addressed
in the literature [15][9]. But other than location, the changes
of time, environment, physical status, and service status can
all affect the service discovery result. We argue that most
of the service discovery requests are implicit, meaning that
the system should discover services in response to the afore-
mentioned changes, even if users did not issue an explicit
request to the service system via a user interface. The capa-
bility of capturing these implicit requests will improve user
experience significantly.

This paper presents a novel service discovery approach for
pervasive environments. The goal is to proactively and con-
tinuously discover services that fit the ever-changing context
and preferences of users. The discovery approach is based on
a formal context model exploiting multi-dimensional space–
Hyperspace Analogue to Context (HAC). The model extends
the concept of space beyond the spatial relationship com-
monly observed in the literature, so context properties other
than location receive equal recognition when discovering ser-
vices. Services are situated in HAC by formalizing their
relationship to context. User preferences are modeled as
scopes in the hyperspace, transforming service discovery to
scope matching problem. We apply a series of numeric cod-
ing schemes to HAC for improving the performance of the
discovery algorithm. Based on the proposed models and
algorithm, we ground the HAC model in a smart home en-
vironment and present a proactive, context-driven service
discovery system. Our experimental results show that our
approach can provide users with continuous updates of rel-
evant services in real-time.

The paper is organized as follows: Section 2 introduces a
motivating scenario. Section 3 defines the Hyperspace Ana-
logue to Context and related concepts. Section 4 proposes
our proactive discovery algorithm and the service discovery
system, followed by Section 5 which presents experimental



results of the algorithm. Section 6 surveys closely related
work of service discovery and context modeling. The paper
concludes with a discussion of future work.

2. MOTIVATING SCENARIO
Frida suffers from a neurodegenerative disease (Amyotro-

phic Lateral Sclerosis (ALS). She relies on a Brain Com-
puter Interface (BCI) [6] for a number of daily activities
like home appliance control, communication and handling
emergencies. Nowadays BCI systems can recognize up to 50
different input commands [6]. However, to enhance usabil-
ity, the number of alternatives displayed on the BCI input
screen is often limited to less than 25 icons. This principle
also applies more generally to mobile devices and all kinds
of users: with too many input alternatives, user interfaces
often get confusing and the usability decreases.

Several hundreds of services may be installed in a smart
home environment, however only a fraction of those services
are useful given a user’s current context. A proactive ser-
vice discovery system is needed, which can exploit dynamic
user context, user preferences and service availability with
the aim of identifying the best services for a given situa-
tion. Consider a typical morning with Frida awaking in her
bed. Based on her current context and her preferences, the
system displays different options on her BCI screen, for ex-
ample Raise headboard, Turn on TV and Open blinds. After
she has selected to adjust the headboard to a comfortable
position, the system detects the context change and shows
instead Call nurse. When she moves to the kitchen, bed-
room services are no longer useful to her; her device could
be updated with new options: Make coffee, Check fridge
content and Find recipe. Meanwhile, a heavy storm is com-
ing. A service to close all open windows in her house ap-
pears on her screen, Close windows. When having breakfast,
Frida suddenly experiences difficulties swallowing, so via the
BCI she notifies the system of this symptom by choosing
Report a health problem, which also results in a context
change. Such indications about Fridas dangerous physical
status could also be reported by a sensor. A new service list
containing Call nurse, Call emergency service, Call relatives
is presented to Frida. All updates of the service list hap-
pen automatically without Frida explicitly requesting a new
service discovery.

The scenario is only a fragment of Frida’s daily life. Her
context is rich and ever-changing, which includes temporal,
spatial, device information, user actions and user status. It
is simply impractical for the user to keep track of all context
changes and issue explicit discovery requests accordingly. A
service discovery approach is not only necessary to identify
all available services in a given context, but also to select the
ones of most interest to the user. For dealing with the differ-
ent types of context information, we need to define a formal
model for describing context, services as well as user pref-
erences. Based on this model we can then propose a proac-
tive discovery algorithm, which reacts to context changes
on-the-fly, identifies fitting services and matches those with
the user’s preferences. Although our scenario is based on a
special-needs user, the expected capabilities are appealing
to all users.

3. HYPERSPACE ANALOGUE TO CONTEXT
Hyperspace Analogue to Context (HAC) is a concept to

model context as a multi-dimensional space, effectively cap-
turing continuously changing information from various con-
text sources. In this section we describe HAC and its opera-
tions in a series of definitions. Based on these, we can model
all necessary information for our proactive service discovery
algorithm, including services and user preferences.

3.1 Basic definitions

Definition 1 (n-Dimensional HAC). An n-Dimen-
sional HAC is a space H =< D1, D2...Dn >, where each
dimension Di denotes a type of context.

In HAC, a dimension is the meta data to describe the data
type and value set for a specific type of context, for exam-
ple location, time, and status of a service. Depending on
the data type, the values of a dimension can be continuous
or discrete, infinite or limited. For a location dimension,
the values could be the rooms in a house; for a tempera-
ture dimension it could be the values between zero and one
hundred degree Celsius. All dimensions together span the n-
dimensional space of all potential context descriptions. The
number of dimensions may be large because of the complex-
ity of pervasive environments; however most context descrip-
tions will use only a fraction of all dimensions.

Definition 2 (Context point). The context point of
an object o in space H is co =< d1, d2...dn >, where di ∈ Di.

The context of an object is described as a point in HAC.
The changing of its context is considered as the object mov-
ing in HAC. For example, in our scenario the context of
Frida may be < dlocation = bedroom, dphysical = normal >.
When an emergency happens, Frida is moved to another
point: < dlocation = bedroom, dphysical = abnormal >.

Definition 3 (Context Scope). A context scope C

is a subspace in H. C =< D1, D2...Dn >, where Di ⊆ Di.

A context scope limits the value sets for the dimensions.
It is often used to describe a condition, e.g.< Dhumid =
[60 . . . 70], Dtemp = [15 . . . 18] > describes a condition for the
temperature to be between 15 and 18◦C and the humidity
between 60% and 70%. We define a context point c to be
within a context scope C as: c ∈ C ⇐⇒ ∀i, di ∈ Di.

3.2 Operations in HAC

Definition 4 (Basis). In an n-Dimensional HAC, a
basis is a vector B =< b1, b2...bn >, where bi ∈ {0, 1}.

The basis identifies those context dimensions relevant for
a context description. The basis is defined for both context
scope and context point. The basis of a context scope C

is B(C) =< b1, b2...bn >, where bi = 0 ⇐⇒ Di = φ.
The basis of a context point c is B(c) =< b1, b2...bn >,
where bi = 0 ⇐⇒ di is not relevant. For example, in
H =< D1, D2, D3 > a context point c =< d1, d3 > has the
basis B(c) =< 1, 0, 1 >.

Definition 5 (×B). ×B is an operation to render a
partial view of context. C′ = C×B, when ∀i, (D′

i = Di ⇐⇒
bi = 1) ∧ (D′

i = φ ⇐⇒ bi = 0).



This operation can be applied to both context scope and
context point. For example, if H =< D1, D2, D3 > with c =<

d1, d2, d3 > and C =< D2 >, then c × B(C) =< d2 >

Definition 6 (×∆c). ×∆c =< ∆d1, ∆d2...∆dn > is
an operation to change a context point. ∆di is the difference
of a certain dimension, d′

i = di ×∆di. If di doesn’t change,
∆di = φ.

The ∆c operation effectively moves a context from one
point to another in HAC. Context changes as described by
∆c are the main driving force of service discovery in HAC.

3.3 Services and user preferences

Definition 7 (Context-aware Service). A context-
aware service s is situated in HAC. It can be invoked in a
certain context scope and invoking it will change the context
of the user. Thus, two types of context scopes characterize
the relationship between services and HAC.

• Input context CsI is the triggering condition of service
s. When user is in CsI , service s becomes one possible
choice. Formally, cu × B(CsI) ∈ CsI .

• Output context CsO is the possible context after run-
ning a service. Formally cu × B(CsO) ∈ CsO.

If a service s is successfully executed, a transition of user
context cu → c′

u
happens such that cu ×B(CsI) ∈ CsI and

c′u × B(CsO) ∈ CsO . An example service s which turns on
the oven and heats it up to a desired temperature could be
described as having input context CsI =< Doven = [off ] >

and CsO =< Doven = [on], DovenTemp = [120 . . . 250] >.
According to Definition 4, the basis of the input context

of each service is a n-dimensional vector, indicating which
dimensions are relevant to the service. This concept is one
of the key factors in our algorithms performance.

Definition 8 (User Preferences). The preferences
of user u are defined as the set of context scopes that the user
would like to be situated in. P

u = {(w1, P1), (w2, P2) . . . ,

(wt, Pt)}, where each Pi is a context scope, wi ∈ (0, 1) is the
weight of each preference.

User preferences describe the goal of service discovery:
suggesting relevant services that lead to a new context to
match a preferred context given by a user. A user will typi-
cally have many preferences for different situations. A pref-
erence definition Pi may set preferred values for one or more
dimensions. We use the notion of context scope rather than
context point for preference because a scope is more flexible
for expressing the possibly fuzzy goals of the user, such as
”the temperature should be between 20-25◦C”. The weight
represents the importance of each preference, e.g. a ”no fire”
preference is obviously more important than one concerning
a comfortable lighting. It needs to be noted, that the col-
lection and analysis of user preference is beyond the scope
of this paper.

3.4 HAC in the smart home
There is a plethora of context types [1][20] that can form

the dimensions for HAC. In the following we introduce a
list of dimensions we have identified in typical smart home
environments. However the list is intended not to be exhaus-
tive, but illustrative. The dimensions can easily be adapted
or extended to more general pervasive environments.

Location The location Dlocation of persons or objects is a
context dimension typically used in context-aware sys-
tems. The area that a service is available in is of major
importance for determining which services are applica-
ble in a given situation. We mainly use relative loca-
tion between objects rather than absolute coordinates
because they are more convenient for service discovery
and more intuitive to user. e.g. in the kitchen or in
front of the house.

Time The time Dtime describes when an action is happen-
ing. In some services a user may be interested only
within a specific time frame. The time can be de-
scribed in absolute terms (November 19th 2009, 11:01
am) or relative terms (after the washing is finished).

Environment Service discovery can also be driven by changes
in the environment. In our scenario, the service Close
windows is presented after the detection of rain. Each
relevant environmental property can be seen as a con-
text dimension. In a smart home we may for example
monitor the temperature Dtemperature, the humidity
Dhumidity or the noise level Dvolume.

Physical status Physical status is critical to users in need
of continuous monitoring and caring, such as Frida in
our scenario. The heart rate Dheartrate, breath rate
Dbreathrate, and blood pressure Dbloodpressure are the
general metrics. More specific dimensions in this cat-
egory can be added for specific diseases and with the
support of special devices.

Device status The status of devices has direct effects on
the service discovery result. Obviously the service Close
windows is of no use if the windows are already closed.
In the smart home we can identify a multitude of po-
tential device statuses as dimensions, for example for
media devices DmediaStatus (on, off, play, pause, for-
ward) or the coffee machine DcoffeeStatus (on, off, mak-
ing coffee). Quality of Service (QoS)[16][14] metrics
can also be described as dimensions of device status.

4. PROACTIVE SERVICE DISCOVERY

4.1 Context matching
For the service discovery algorithm we need to be able

to assess how well a service can fulfill a user preference,
i.e. whether the service output context changes the current
context in such a way that the user preference is fulfilled. For
comparing services and selecting the ones that match a given
set of user preferences best, a numerical representation of
how well one context scope matches another one is necessary.

4.1.1 Context matching score
Evaluating how well a service matches a request is a well-

known problem in web service discovery research. Typically
the subsumption hierarchy of service parameters and capa-
bilities is used to find out which services can fulfill a request
[13]. In context matching we are not only looking for full
matches, i.e. a service output context that can fully fulfill a
preference. Information about which services bring the sys-
tem nearer to the user goal is just as valuable. Intuitively we
need to calculate how much of the user preference context
is covered by the service output context.



The context matching score matching(C1, C2) is a nu-
merical assessment of how well C2 fulfills C1. It is com-
posed of the individual matching of dimensions in the scopes.
Since scope C1 is to be matched, only the k dimensions set
in C1, i.e. those with B(D) = 1, need to be considered.
According to Equation 1, the dimensional matching value
dmatch(D1, D2) is determined by calculating the overlap
between the two dimension values D1 and D2, dividing it
by the size of D1. This equation captures the notion that if
D2 is fully contained in D1, then dmatch(D1, D2) = 1. If
B(D1) = 0 or B(D2) = 0, of course dmatch(D1, D2) = 0.

dmatch(D1
, D

2) =

(

|D1∩D2|

|D1|
if B(D1) = 1 ∧ B(D2) = 1

0 else

(1)
The overall matching score is determined according to

Equation 2 by adding the individual dimension matching
scores and dividing by k, the number of set dimensions in
C1. Dividing by k effectively penalizes the dimensions that
can not be fulfilled by C2.

Matching(C1
, C

2) =

Pn

i=1
dmatch(D1

i , D2

i )

k
(2)

4.1.2 Numerical encoding
The actual calculation of the dimension overlap depends

of course on the datatype of the respective dimensions. For
numerical values on an interval scale, this is straightforward.
However in a smart home there are many dimensions with
non-numerical values. This includes the status of various
devices, e.g. play/pause/start/on/off for a media center or
a location expressed as rooms of the house. In these cases it
is more adequate to model a dimension with concepts in an
ontology [5] than with numerical values. Figure 1 shows for
example an extract of an ontology for the location dimension
in a smart home. As in this example, the expressiveness of a
taxonomy using only is-a relationships is typically sufficient
when modeling context dimensions.

Figure 1: Taxonomy of location concepts

For being able to efficiently calculate the dimension match-
ing of non-numeric dimensions, we encode the ontology using
the postorder interval scheme proposed by Agrawak et al [2].
A concepts postorder number is defined as its position in a
postorder (depth-first) traversal of the hierarchy. Each con-
cept is represented by an interval of the form [i, j], with j
being the postorder number of the concept and i being the
lowest postorder number among its descendants. The in-
tervals reflect thereby the subsumption hierarchy, a concept

B is subsumed by a concept A, if B’s interval lies within
A’s interval. For a correct calculation of the overlap be-
tween concepts, we needed to slightly modify the encoding
such that j is represented by the highest postorder number
among the descendants of the nodes. Figure 1 shows the
intervals for the concepts of the location ontology.

By using this encoding scheme, the dimension matching
for ontology concepts becomes very similar to numerical di-
mension matching. Set operations are used to determine
the number of concepts contained in a dimension value and
in the overlap between two values. In the location ontol-
ogy, for example, the overlap between D1 = {room} and
D2 = {kitchen} can be calculated by dmatch(D1, D2) =
|{1,2,3}∩{2}|

|{1,2,3}|
= 1

3
. The encoding scheme allows for a very ef-

ficient calculation of the dimension match value without the
need for reasoning about the subsumption hierarchy. The
modeling of a context dimension can be considered static,
so that the encoding of the ontology can be pre-computed
at configuration time.

4.2 Proactive service discovery algorithm
Based on the previous introductions of matching algo-

rithm and ontology coding scheme, this section presents our
efficient proactive algorithm for service discovery in HAC.
The efficiency of the algorithm is assured by two mecha-
nisms. First, services that are not affected by a context
change are filtered out with a fast bit-set operation and ex-
cluded from the evaluation phase. Second, we maximize the
reuse of previous discovery results by keeping those services
not affected by the changed context in the result set. Al-
gorithm 1 runs continuously in response to the update of
context information. We call each execution of the algo-
rithm a round. A new round can also be started by adding
new services or changing user preferences.

Figure 2 illustrates the relationship between algorithm in-
put and output. The input parameters of Algorithm 1 are
as follows.

• Spre is the service set discovered in the previous round
of the algorithm. Spre contains the services currently
presented to the user. For the initial round of the
algorithm, Spre is set to empty, φ. It will then be
updated iteratively with the result of each execution
round, Sranked.

• S is the whole set of services registered in the envi-
ronment. The service input and output context are
represented as numeric values according to the con-
cept coding mechanisms presented in Section 4.1.

• cu is the current context of the user. cu is a con-
text point with the dimension values set to reflect the
current status of the user. Again all elements of the
context are represented by numeric values.

• ∆cu is the change of user context compared to the
previous status of cu, as defined in Definition 6. In
our algorithm, only the basis of ∆cu is used, i.e. only
the bit-set telling the algorithm which dimensions have
changed.

• P
u is the set of user preference (Definition 8).
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Figure 2: Illustration of algorithm input and output

Algorithm 1 Proactive Service Discovery

1: procedure ServiceDiscovery(Spre, S, cu, ∆cu, P
u)

2: Scand = φ

3: for ∀s ∈ S do
4: if B(∆cu) ∧ B(CsI) 6= 0 then
5: Scand = Scand + s

6: end if
7: end for
8: Sranked = Spre − Scand

9: for ∀s ∈ Scand do
10: c′u = cu × B(CsI)
11: if c′u ∈ CsI then
12: s.score = 0
13: for ∀(wi, Pi) ∈ P

u do

14: CsO′

= CsO × B(P u)

15: score = wi ∗ Matching(Pi, C
sO′

)
16: if score > s.score then
17: s.score = score

18: end if
19: end for
20: Sranked.InsertOrdered(s)
21: end if
22: end for
23: return Sranked

24: end procedure

Lines 3 to 7 form the first phase of our service discovery,
which identifies the services that are affected by the con-
text change and adds them to a candidate service set Scand.
The basis of the context change and the service input con-
text is evaluated: B(∆cu) ∧ B(CsI) 6= 0. A non-zero result
indicates that service s is listening to at least one of the
changed dimensions in ∆c. Although the loop is applied to
all the services in the current environment, it costs only a
very small fraction of the algorithm execution time, since for
each service it simply entails a fast bit-set operation. Scand

is the input to the second phase of discovery.
Line 8 initializes the result of the algorithm Sranked. The

result of the previous round is reused by keeping all previ-
ously discovered services that are not affected by the context
change. The intersection of Spre and Scand, however, con-
tains those previously discovered services that are affected
by the changed context and that will therefore have to be
re-evaluated in the second phase of the algorithm.

Candidate services are ranked and evaluated in lines 9-22.
Line 10 keeps in c′u only the dimensions related to the input
context of a service. If c′u is in the scope of service input
context CsI (line 11), this service will be included in the
algorithm result.

The next steps evaluate how well the service fulfills the

in

s
c
u

out

P
u

Score

Figure 3: Illustration of ranking

given user preferences. Again, only those dimensions of the
service output context are considered, that are relevant to
the user preference (line 14). For each of the preferences,
the matching method is invoked in line 15. The matching
score is tuned by the weight of each preference. For each
service only the highest score of preference matching will
be used for ranking (line 16-17). Recalculating the score
each time is unnecessary for the currently static preferences
and service descriptions, but will become important in our
future work where we plan to support also dynamic user
preferences. The result is inserted into the ranked service
set according to the matching score. Figure 3 illustrates
the ranking phase.

4.3 System architecture
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Figure 4: System architecture

Figure 4 depicts how the HAC-based proactive service dis-
covery interacts with other components in our smart home
system. A typical smart home environment contains sensors
to detect the context and services to be invoked by users.
Users interact with the system via user devices, e.g. BCI
and mobile devices. Context information from heteroge-
neous sources is collected and processed by the Context Pro-
visioning component, which is a complex event processing
system, producing formatted context events. The Service
Management stores service descriptions, monitors and in-
vokes home services. Service registration and unregistration
are also performed by this component. The Change Detec-
tion decides when to trigger service discovery. It aggregates
context, preference and service information as input param-
eters of the service discovery algorithm. The threshold for
invoking the discovery algorithm depends on each context
dimension. Especially for numeric dimensions, the thresh-
old that constitutes a context change should be decided by
user requirements and system performance. For example,
it is unnecessary to rediscover services for every tempera-
ture sensor reading. Our algorithm is implemented in the
Discovery Processing component. Since HAC is a general
concept and specific smart-home service environments can



have different sets of dimensions depending on the available
devices and user requirements, the Dimension Management
component is introduced to customize the types of context
information. Numerical encoding is carried out by this com-
ponent when adding or changing a dimension. It is used for
configuring not only our service discovery approach for deal-
ing with diverse context information, but also the change
detection component to interface with different context pro-
visioning and preference management systems.

5. EXPERIMENTS

5.1 Performance evaluation
The performance of the service discovery significantly in-

fluences the users experience. Context changes can happen
very frequently and the discovery results should quickly re-
flect these changes. We have identified five important vari-
ables that can influence the performance of the algorithm:
(i) the number of available services, (ii) the number of di-
mensions, (iii) the number of user preferences, (iv) the per-
centage of services affected by a context change (in the fol-
lowing referred to as affected services), and (v) the percent-
age of services whose matching score needs to be calculated
(in the following referred to as applicable services).

We have performed several experiments to show the sys-
tem performance in different settings. For each of the ex-
periments we have generated testing sets that vary some of
the variables, keeping the rest fixed. We have used con-
servative estimates of a real smart home when setting the
experimental input, e.g. we generally assume that 30% of all
services are applicable — in a real home with a high service
diversity we expect a much smaller number of applicable ser-
vices, which will in turn result in shorter execution time of
our algorithm. All of the experiments were performed on a
desktop PC with an Intel Core 2 Duo CPU with 3 GHz and 4
GB RAM running Linux, and were run for 100 replications.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  100  200  300  400  500  600  700  800  900  1000

D
is

co
ve

ry
 ti

m
e 

[m
s]

Number of services

10

50

100

Number of dimensions

Figure 5: Discovery time depending on number of
services and dimensions (30% affected services, 30%
applicable services, 25 preferences)

Figure 5 shows how the discovery time depends on the
number of services and dimensions. It can be seen that the
system scales well for the number of dimensions and services.

With 1000 services and 100 dimensions, the discovery time
equals to circa 40 milliseconds (with a standard deviation of
1.3 milliseconds), allowing for a near real-time update of the
user interface.
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Figure 6: Discovery time depending on number of
services and percentage of affected services (50 di-
mensions, 30% applicable services, 25 preferences)

Figure 6 shows how the discovery time depends on the
percentage of affected services. The best results can of
course be achieved with 0% affected services; in this case
only the bit-set operations to identify the services affected by
the context change need to be performed. When increasing
the number of affected services, also the number of necessary
matching score calculations increases. We can see that the
system also scales well in this regard, for 100% affected ser-
vices, the discovery time increases by circa a tenfold, equal-
ing circa 60 milliseconds (with a standard deviation of 1.4
milliseconds).
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The influence of the percentage of affected services and
the number of preferences both concern the matching part



of the algorithm. We could therefore safely measure just
the influence of the preferences, and from the results draw
conclusions also about the influence of the percentage of
affected services. The results of this experiment can be seen
in Figure 7. Again even with a tenfold increase of services
as well as preferences, the discovery time only increases by
a tenfold (70 milliseconds, with a standard deviation of 1.8
milliseconds).

5.2 Effectiveness evaluation
We have tested how well our discovery approach is able

to present the most relevant services to the user with only
a limited number of icons on the user interface. We first
generated a set of 10 preferences and of 100 applicable ser-
vices such that each service fulfills one of the preferences to
a randomly varying degree. We then ran the service discov-
ery algorithm and trimmed the results down to the k best
services, with k being the number of icons to be displayed.
To find out how well this service selection fulfills the prefer-
ences, we have merged all preferences into one context scope
PrefAll =< D1, D2...Dn >, where Di is defined by Equa-
tion 3, in which t is the number of preferences. Similarly the
output context of all services is merged to ServAll and that
of the k selected services to ServSel. We could then calcu-
late how well the preferences are covered using Equation 4,
which normalizes the matching score between PrefAll and
ServSel according to the maximum matching score achiev-
able with all services. For coverage calculation, we assumed
the same weight for all preferences.

Di =
t

[

j=1

D
Pj

i (3)

Coverage =
Matching(PrefAll, ServSel)

Matching(PrefAll, ServAll)
(4)

 0

 20

 40

 60

 80

 100

6 9 12 16 20 25

P
re

fe
re

nc
e 

co
ve

ra
ge

 [%
]

Number of icons

Figure 8: Preference coverage depending on the
number of icons displayed

Figure 8 shows the results of this experiment for a vary-
ing number of icons. Even with only service 9 icons, we
can already achieve around 60% of the maximum preference
coverage, with 25 icons over 90% can be achieved. The re-
maining 75 services not included in this selection fulfill the
preferences only to a very small degree, so our discovery re-
sult is an optimal tradeoff between the limitation of user
interface and desirable services.

6. RELATED WORK
Service discovery in pervasive environments has been in-

tensively investigated in recent years [19][18]. Early discov-
ery approaches were based on the functional description of
services, for instance, service category, semantic description
and key words. For enhancing service discovery, many re-
search efforts involved Quality of Service (QoS) and context
in different phases. However, as far as we know, few work
has acknowledged context as a first-class criterion and mo-
tivating factor in service discovery. In other words, explicit,
request-driven service discovery approaches are predominant
in pervasive environments. Two examples are given in the
following paragraph.

Mokhtar and Preuveneers et al. [11] proposed the EASY
(Efficient semAntic Service discoverY) framework which takes
QoS and context into account. User preference is not con-
sidered in EASY. To improve the performance of service dis-
covery, the semantic description of services is optimized by
numeric coding scheme, which is a widely adopted method
to improving the performance of ontology processing. In our
work, another set of numeric coding schemes are applied to
the essential aspects of context model, i.e. basis and context
concepts. Park and Yoon et al. [14] presented the concept
of Virtual Personal Space (VPS) to extend the scope of ser-
vice discovery. VPS conceptually extended the concept of
space beyond the location domain by including QoS, user
rating and service load in service discovery. User preference
is not explicitly expressed, but inferred from feedbacks. The
factors considered in VPS are service-oriented rather than
context-oriented. Moreover, neither EASY nor VPS con-
sider the impact of continuous context changes on service
discovery.

There are few works that have addressed proactive discov-
ery as a complement to explicit request-driven service dis-
covery. However, our work distinguishes itself substantially.
Bellavista and Corradi et al. [4] proposed a user-centric ser-
vice view for explicit discovery. Similarly, Hesselman and
Tokmakoff et al. [7] presented the idea of a persistent dis-
covery request. Our goal is similar to these two in terms of
updating the set of relevant services dynamically. However,
we described a comprehensive formal model which contains
different types of context, and an efficient numeric-based al-
gorithm to reflect the changes in context, user preference,
and services in real time. Moreover, detailed performance
of our approach and the method for evaluating discovery
results are presented.

Our HAC has been inspired by (HAL) Hyperspace Ana-
logue to Language [10] and the context space of assump-
tions [8]. Both approaches originated in the Artificial In-
telligence domain. HAL is used for understanding natu-
ral language and measuring the difference between state-
ments. Context space of assumptions aims to analyze in-
terpretation of assumptions within different communication
contexts, which is completely different to the meaning of
context in pervasive environments. In our domain, Padowitz
and Loke et al. [12] have proposed a usage of space theory
for situation reasoning. In this work concepts are generally
treated as non-numeric enumerates so that no comparison is
applicable, thereby leaving out a large spectrum of context
information. In contrast, HAC uses ontologies and numeric
coding to characterize the relationship between concepts.
HAC also formalizes the methods to alter different views of
dimensions by basis and to describe context transitions by



changes. Most importantly, our goal is largely different to
situation reasoning, so based on HAC, we model services
and user preferences to propose a context-driven service dis-
covery approach.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a proactive service discovery

solution for pervasive environments. In such environments,
users need to have access to the most relevant and inter-
ested services within a rich and dynamic context. A theo-
retical model—Hyperspace Analogue to Context (HAC)—is
proposed to describe context, services and user preference.
HAC includes useful operations to tailor context views and
describe context changes. Since performance is an impor-
tant factor for the usability of continuous service discovery,
we have applied a series of performance improvement ap-
proaches. Services that are related to a specific context up-
date are identified with a fast bit-set operation. Context on-
tologies are encoded numerically so that no costly reasoning
has to be performed during the discovery. And existing ser-
vice discovery results are efficiently reused to minimize the
need for context matching. Our experimental results proved
that our system can efficiently and effectively provide users
with up-to-date information about the most relevant and
interesting services. We have proposed a set of example di-
mensions and a proactive service discovery system to embed
the algorithm into a smart home environment. In addition,
our context model and discovery approach could also assist
traditional, explicit service discovery by limiting their search
scope.

We are currently implementing the interface to BCI and
mobile user devices. Field tests with different kinds of users
will be conducted to get valuable feedback on our service dis-
covery system. We also plan to improve the configurability
and usability of proposed approach. We will incorporate an
online feedback analysis that updates user preferences based
on typical service choices in certain context. Furthermore,
the mechanism to dynamically assign dimension weights in
the service matching calculations is under investigation.
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