Patterns for Measuring Performance-Related
QoS Properties in Distributed Systems

Ernst Oberortner
Distributed Systems Group, Information Systems Institute
Vienna University of Technology, Austria
e.oberortner @infosys.tuwien.ac.at

Uwe Zdun
Software Architecture Group, Institute for Distributed and Multimedia Systems
University of Vienna, Austria
uwe.zdun@univie.ac.at

Schahram Dustdar
Distributed Systems Group, Information Systems Institute
Vienna University of Technology, Austria
dustdar@infosys.tuwien.ac.at

In distributed systems, clients can access a server’s objects via a network. Service Level Agree-
ments (SLA) can exist, which specify — among other things — performance-related Quality of
Service (QoS) properties between the client and the server, such as round-trip time, processing
time, or availability. For a provider, i.e., the server’s host, serious financial consequences or other
penalties can follow in case of not fulfilling the SLAs. The consumer, i.e., the client, wants to
evaluate that the provider complies with the guaranteed SLAs. Designing and developing a QoS-
aware distributed system means facing many design challenges, such as where and how to mea-
sure the performance-related QoS properties. This paper presents design practices and patterns for
measuring such QoS properties by extending existing patterns. The pattern’s implementations are
exemplified in a web service-oriented distributed system. The focus of the pattern lies on the QoS
measuring impact on the client’s or server’s performance, the extend of separation of concerns,
the property of reusability, the preciseness of the measured QoS properties, and the vulnerability
to forgery by the server or the client. This paper’s patterns should help software architects and
developers in building an efficient solution for measuring performance-related QoS properties in
a distributed system.

1 Introduction

In a distributed system, service level agreements between service provider and consumer can exist. An
SLA is a contract that contains — among other things — agreements on performance-related properties
when the consumer accesses the providers services over a network. SLLAs assure that the consumers get
the service they paid for and that the service provider fulfils the SLA guarantees. If the server provider
can not meet the goals, then serious financial consequences or other penalties can follow. Service
providers need to know what they can promise within the SLAs and what their IT infrastructure can
deliver. On the other hand, the consumer wants to observe and validate that the server provider does
not violate the guaranteed SLAs [19, 11].

In this work we concentrate on SLA clauses that contain mainly performance-related Quality of
Service (QoS) measurements for validations. During the development of an appropriate QoS monitor-
ing infrastructure with the distributed system, many challenging design problems have to be faced. For

example, where to measure the SLA’s QoS properties, because they can be measured in various layers
on the client-side or the server-side, as well as in intermediary components of the network commu-
nication. We concentrate on the following design challenges of measuring performance-related QoS
properties: (1) Does the QoS measuring impact the system’s performance? (2) Does the QoS measur-
ing provide precise QoS measurements? (3) Does the QoS measuring provide a good separation of
concerns so that it does not modify the client’s or server’s implementation? (4) Can the QoS measure-
ments be forged in case they have to be reported? and (5) Is the QoS measuring solution reusable for
new clients or servers?

We document design practices and patterns of measuring performance-related QoS properties,
such as round-trip time, network latency, or processing time [12, 17, 16, 21]. The paper evaluates the
presented patterns against the challenging design problems and gives advice in the decision making
for building QoS-aware distributed systems. The background of this work are established patterns,
presented in the Gang of Four (GoF) book [6], the Pattern-Oriented Software Architecture (POSA)
series [5, 18, 4], and the Remoting Patterns book [22]. The patterns described herein are meant for
software architects and developers who have to design and develop distributed systems and decide
how to measure performance-related QoS properties within the distributed system.

The presented patterns do not take into account how to store or evaluate the measurements. The
main focus of the patterns lies on distributed systems where clients invoke the server’s remote objects in
an RPC request/response style. The patterns can be applied in synchronous invocations and have to be
slightly modified to be usable in asynchronous invocations. Patterns for message-oriented distributed
systems, such as presented in the Enterprise Integration Patterns book [7], can be used and extended
to implement the QoS-aware communication between the clients and the remote objects. Although,
measuring QoS in multicast distributed systems is outside the scope of this work.

This paper is organized as follows: The next section, Section 2, explains the relevant existing
patterns and performance-related QoS properties which build the basis of the presented patterns within
this paper. In Section 3 we present the patterns for measuring the performance-related QoS properteis.
To get a better understanding of the patterns, Section 4 exemplifies their implementations in a web
service-oriented distributed system. Next, Section 5 summarizes the main findings of the patterns with
respect to the design challenges. We conclude with Section 6.

2 Background

This section gives some needed background information on basic patterns in distributed systems that
build the basis of the presented patterns within this paper. First, the basic patterns and their relation-
ships are described. The second part of this section explains the background on performance-related
QoS properties used in this paper’s patterns.

2.1 Basic Patterns in Distributed Systems

In Figure 1 we illustrate the typical activities within a distributed system when a client invokes some
server’s remote object. Mostly, a middleware manages the communication between the client and the
server, hiding the heterogenity of the underlying platforms and providing transparency of the dis-
tributed communications. The middleware can access the network services offered by the operating
system for accessing and transmitting requests to the server’s remote objects over the network [22].

For accessing the client’s middleware, the REQUESTOR pattern can be used [22]. The REQUESTOR
invokes the remote object’s operation using the underlying middleware. Also, the client’s application
can access the middleware following the CLIENT PROXY pattern [22] to provide a good separation of
concerns and to attach additional information to the client’s requests. The CLIENT PROXY invokes the

II

/ Client \ f Server \

| Daomait

g I

. . Don
g invoke Client invoke *
- Remote

Object

Application

>
) 2)
c Client Proxy invoke £ invoke
S >
S5 5
Sz \/ @ Invoker
S o
forwar £
= orward Requestor 5
S forwar
7/ S orward
Middleware \t Middleware

Client —.é_\ request Server
Request Handler N\ //>. Request Handler

\ // /
Invocation Invocation

Interceptor Interceptor

Messaging
Layer

response

Figure 1: An overview of existing patterns in distributed systems

middleware using the REQUESTOR pattern. The implementation of the client’s middleware can follow
the CLIENT REQUEST HANDLER pattern [22], to send the requests over the network to the server and
to handle the server’s response.

The implementation of the server’s middleware can follow the SERVER REQUEST HANDLER pat-
tern [22]. A SERVER REQUEST HANDLER receives the incoming requests, performs additional pro-
cessing, and forwards the requests to the INVOKER of the remote objects. The INVOKER [22] receives
the requests from the SERVER REQUEST HANDLER, can perform additional processing again, and dis-
patches the request to the corresponding remote object. After the remote object processed the incoming
request it sends the response back to the INVOKER, which performs some additional processing, and
forwards the response to the SERVER REQUEST HANDLER. The SERVER REQUEST HANDLER can
perform again some additional processing and forwards the response to the requestor.

The INVOCATION INTERCEPTOR pattern [22], which is based on the INTERCEPTOR pattern [18],
provides hooks in the invocation path to perform additionally required actions, such as logging or
securing the invocation data. Mostly, the client’s or server’s middleware provides functionalities for
placing INVOCATION INTERCEPTORS into the invocation path. Hence, an INVOCATION INTERCEP-
TOR can process and manipulate the available invocation data, which depends on the INVOCATION
INTERCEPTOR’s place in the invocation path. The middleware can provide the feature of attaching
and changing an INVOCATION INTERCEPTOR dynamically during the runtime of the system, such as
by using an API or configuration files. As a consequence, the INVOCATION INTERCEPTOR implies a
higher complexity of the middleware’s implementation. An INVOCATION INTERCEPTOR can attach
the context-specific information to the INVOCATION CONTEXT [22] of the invocation data. In this pa-
per, we assume the usage of the INVOCATION CONTEXT pattern for storing the performance-related
QoS measurements during remote object invocations.

Client and server interactions can take place within a local area network (LAN) or over a wide area
network (WAN), such as the Internet. If a client wants to invoke a remote object that is not located

III

in the same LAN, the client request must be sent over a WAN to the corresponding remote object’s
LAN. In this case, inside the LAN a proxy server can be used, whose implementation follows the
well-known PROXY pattern. Client and server can make use of the different PROXY patterns, such as
such as CLIENT PROXY, VIRTUAL PROXY, and FIREWALL PROXY [4].

LAN LAN

Client

Client g Client
Web Proxy /\

Server
Server g Server

Web Proxy /\

Figure 2: Using the WEB PROXY pattern

Figure 2 illustrates the usage of the PROXY pattern for implementing a web proxy. In this scenario,
every component — client, server, and web proxy — features some middleware that manages the network
access. For accessing a remote object over a WAN, the client-side WEB PROXY receives the requests
from the clients within the LAN. It applies additional processing to the client’s request, marshals it,
and sends it into the WAN. A server-side WEB PROXY receives requests over a WAN, unmarshals
them, applies additional processing, and forwards it to the appropriate remote object in the same LAN.
After the remote object’s processing, the server-side WEB PROXY receives the response, marshals
it, applies additional processing, and sends it back to the client-side requestor. The client-side WEB
PROXY receives the server-side response, applies additional processing and forwards the response to
the appropriate client.

2.2 Performance-Related QoS Properties

Figure 3 shows some basics of some existing remoting middlewares, such as in web services frame-
works like Apache CXF! or Apache Axis2?. The invocation data, between the client and the server,
flows in the middleware through so-called chains, following the above described patterns. Client and
server have both an incoming and an outgoing chain — IN Chain and OUT Chain in Figure 3 — which
are responsible for processing the incoming requests and outgoing responses, respectively. Chains con-
sist of multiple phases, making it possible to specify precisely where to hook INVOCATION INTER-
CEPTORS into the invocation path.

Many performance-related QoS properties have been reported in the literature that can be mea-
sured and monitored in a distributed system [12, 17, 16, 21]. This paper focuses on the following
performance-related QoS properties:

o The Round-Trip Time is a client-side QoS property and it measures the elapsed time between the
sending of the client’s request and receiving the server’s response.

o The Marshaling Time can be measured on the client and server-side. It is a measurement of
the elapsed time for serializing the invocation data into the transport format of the underlying
network.

"http://cxf.apache.org/
nttp://ws.apache.org/axis2/

v

Marshaling Network Unmarshaling Processing
Time Latency Time Time

A A A

Client's Middleware Server's M ddleware/

——HTRTITTF LIS

OUT Chain IN Chain

N
IN Chain OUT CHAIN N
NS
Client
Server
] (J
v v v v
Round-Trip Unmarshaling Network Marshaling
Time Time Latency Time
Response Execution
Time Time

Figure 3: Measuring points of performance-related QoS concerns

The required time for transmitting the marshaled invocation data over the network is called the
Network Latency. It requires measuring points on the client- and the server-side. The Network
Latency can be measured during the transmission of the client’s request and during the transmis-
sion of the server’s response.

The Response Time is a client-side QoS property and measures the elapsed time between trans-
mitting the serialized invocation data to the server and the reception of the server’s response.

On the server-side the Processing Time is the elapsed time for processing an incoming request.
It does not take the marshaling and unmarshaling time into account.

The Unmarshaling Time can be measured on the client-side and server-side. On the server-side
it measures the elapsed time of de-serializing the incoming invocation data of the client’s request
to be compatible to the overlying layers. Similar, on the client-side it is a measure of the required
time of de-serializing the invocation data of the server’s response.

The Execution Time is a server-side QoS property. It is a measure about the complete required
time of a client’s request, i.e., unmarshaling, processing, and marshaling.

3 Patterns for Measuring Performance-Related QoS Properties

In a distributed system, the client invokes the the server’s remote objects, the server receives the
incoming requests, processes them, and returns the response. During this process, the negotiated
performance-related QoS properties within an SLA have to be measured. This section explains pat-
terns for measuring performance-related QoS properties, by listing the the forces and consequences of
each pattern for use on the client- and on the server-side.

Pattern: QoS INLINE

An SLA contains negotiated performance-related QoS properties where only the elapsed time of a
remote object invocation is relevant to the client, i.e., the round-trip time. For the server it is relevant
to measure the elapsed time of processing a client’s requests, i.e., the processing time. The server may
be interested to find some possible bottle-necks within the remote object’s behaviour as well.

How can the client’s and the remote object’s implementation be instrumented for measuring
performance-related QoS properties?

Consider the typical scenario of measuring performance-related QoS properties in distributed sys-
tems. The client invokes some server’s remote object via a underlying middleware (see Section 2.1).
The middleware transmits the client’s request to the remote object using a network. The remote object’s
middleware receives the request, the remote object processes the request, and returns the response back
to the client. The client’s and the remote object’s implementation have to be instrumented to measure
the SLA’s performance-related QoS properties.

Instrumentation Instrumentation
Code Code

>
©
~ o -
< < = 7
RN 3 Remote | .-*
~ Client a -)
% o Object o’
£
<
Q
@.
=
Middleware Middleware

Figure 4: The QOS INLINE pattern

Instrument the client’ and the remote object’ implementation with local measuring points by
placing them directly into their implementation.

Figure 4 shows the QOS INLINE pattern. The client invokes a remote object using a middleware and
wants to measure the elapsed time of the remote object invocation. Hence, the client’s implementation
can be instrumented for measuring the round-trip time. On the server-side, the remote object receives
the client’s request and has to measure the processing time. Again, the remote object’s implementation
can be instrumented directly with local measuring points.

On the client-side, the round-trip time can be measured precisely by calculating the time difference
between sending the request and receiving the response. The client-side implementation of the QOS
INLINE pattern is simple and affects the client’s behaviour only slightly.

On the server-side, the processing time of the client’s request can be measured precisely because
multiple measurement points can be placed at arbitratry places in the remote object’s implementation.
Hence, it is also possible to find bottle-necks within the processing of the client’s request. Dependent
on the number of measuring points, the implementation of the server-side QOS INLINE pattern does
have insignificant affect on the remote object’s performance.

The QOS INLINE pattern does not provide a good separation of concerns because the measuring
points are placed into the source code directly. Also, the QOS INLINE pattern is not a reusable solution
because existing clients and remote objects have to be instrumented and redeployed individually. In
case the client and the server are measuring the negotiated performance-related QoS properties inde-
pendently, both can fake the QoS measurements.

A general consequence of the QOS INLINE pattern is that not many performance-related QoS prop-
erties can be measured. At the client-side, it is easy to measure the round-trip time, but, difficult to
measure performance-related QoS properties that have to be measured in some underlying network
layers, such as the network latency. It is easy to measure the processing time at the server-side, and the
round-trip time at the client side. But on both sides it is difficult to measure performance-related QoS
properties that have to be measured in some underlying layers, such as the network latency. Assuming

VI

a small number of measuring points, separate tools, such as packet sniffers, can be utilized to measure
the performance-related QoS properties that are not measurable with the QOS INLINE pattern.

Known Uses:

e Because of the simplicity of the QOS INLINE pattern, every source code can be extended with
time measurements. The QOS INLINE pattern can not be applied in distributed systems only, also
in local function calls or object method invocations. Using the QOS INLINE pattern is advisable
if the QoS measurements are relevant in the client’s and remote object’s source code.

e In [10], the authors extend the client’s and remote object’s implementation with local measur-
ing points to measure performance-related QoS properties in web service-oriented distributed
systems.

Pattern: Q0S WRAPPER

The negotiated SLAs between client and server include performance-related QoS properties with re-
spect to the elapsed times of remote object invocations. The client and remote object have to be instru-
mented for measuring the negotiated performance-related QoS properties. The client’ and the remote
object’s implementation should be instrumented with a reusable solution that provides a good separa-
tion of concerns.

Which solution is reusable and provides a good separation of concerns for instrumenting the
client and the remote objects for measuring performance-related QoS properties?

Measuring performance-related QoS properties during remote object invocations can be done by
instrumenting the client’s or remote object’s implementation directly. But, this solution does not pro-
vide a good separation of concerns and reusability. It is not possible to attach the measuring of the
performance-related QoS properties to existing clients and remote objects without redeployment. For
improvement, the performance-related QoS properties have to be measured separated from the client’s
and remote object’s implementation.

Client Remote

E— Object
>
S
©
S

QoS 2 Qos
Wrapper) Wrapper
c
£
Q
i IS
LS.
Middleware Middleware

Figure 5: The QOS WRAPPER pattern

Instrument the client’s and remote object’s implementations with local Q0S WRAPPERS that
are responsible for measuring the performance-related QoS properties. Let the clients invoke the
remote objects using a client-side QOS WRAPPER. Extend the remote objects with a server-side
QOS WRAPPER that receives the client’s requests.

VII

Figure 5 illustrates the QOS WRAPPER pattern. The client invokes a remote object using a client-
side QOS WRAPPER that offers the client the remote object’s interfaces, takes over the remote object
invocation, and the measuring of the performance-related QoS properties. At the server-side, the QOS
WRAPPER processes the incoming requests by invoking the corresponding remote object, measures the
server-side performance-related QoS properties separated from the remote object’s implementation,
and returns back the remote object’s response to the requesting client.

Every client and remote object can be instrumented with a local QOS WRAPPER, providing a
uniform measuring of the performance-related QoS properties and a reusable solution. Also, a QOS
WRAPPER provides a good separation of concerns because it measures the performance-related QoS
properties separated from the client’s and remote object’s implementation.

In case the client and the server are measuring the negotiated performance-related QoS properties
independently, both can fake the QoS measurements. On the client-side, the remote object invocations
are insignificantly lengthened because the client invokes the remote object not directly, but via the
QOS WRAPPER. Hence, a client-side QOS WRAPPER provides precise QoS measurements. A server-
side QOS WRAPPER can insignificantly lengthen the remote object invocations as well, but, it measures
the QoS properties precisely.

A general consequence of the QOS WRAPPER pattern is that not many performance-related QoS
properties can be measured. The client’s QOS WRAPPER can measure the round-trip time and the
server’s QOS WRAPPER the processing time. But on both sides it is difficult to measure performance-
related QoS properties that have to be measured in some underlying layers, such as the network latency.
Separate tools, such as packet sniffers, can be utilized for measuring the performance-related QoS
properties.

The client-side QOS WRAPPER can be implemented following the CLIENT PROXY pattern [4],
whereas the server-side QOS WRAPPER can be implemented following the INVOKER [22] pattern.

Known Uses:

o Afek et al. [1] implemented a framework for QoS-aware remote object invocations over an
ATM network. The authors extended the Java RMI interface by providing an API to the clients.
Following the QOS WRAPPER pattern, the client-side API ensures QoS by providing a good
separation of concerns. A server-side QOS WRAPPER server acquires and arranges the service
with the desired QoS.

e Mani and Nagarajan [10] illustrate an example of a QOS WRAPPER for measuring the
performance-related QoS of web services. The implementation of the measurements follows
the QOS INLINE pattern by putting time calculations within the automatically generated QOS
WRAPPER. In web service-oriented distributed systems, clients invoke the remote web services
via a stub, which can be automatically generated using a wsd12java tool. The automatically
generated stubs can be extended with the required QoS measurements following the QOS
WRAPPER.

Pattern: QOS INTERCEPTOR

Clients and remote objects have to be instrumented for measuring performance-related QoS properties
with a good separated, reusable and precise solution. Because of SLA negotiations it is required to
measure as many as possible performance-related QoS properties that can be the reasons for long-
running remote object invocations and SLA violations. Access to the middleware’s implementation
is given, allowing its instrumentation for measuring the required performance-related QoS properties
also on the lower layers of the invocations or the wire.

VIII

How should the middleware be instrumented for measuring performance-related QoS prop-
erties of remote object invocations? How should the middleware be designed and implemented
to be dynamically configureable by the middleware users?

Let’s consider that the client and the server’s remote object have access to their underlying middle-
ware and can instrument it individually and dynamically for measuring the performance-related QoS
properties. The desired solution requires that the middleware offers facilities of attaching the imple-
mentation of the required QoS measuring dynamically. The middleware’s instrumentation should be
reusable, enhancing the deployment of new clients and remote objects. Furthermore, it should be pos-
sible to measure all relevant performance-related QoS properties (see Section 2.2) precisely, having a
good separation of concerns.

Client Remote

m @ Object

2
3
@ Middleware | c | Middleware
® 3 ®
A @
| beforelnvocation(...) | |before|nvocation(...)| % | beforelnvocation(...) | | beforelnvocation(...) |
[
T 5] £~ o
Client Client Server Server
Interceptor 1 Interceptor N Interceptor 1 Interceptor N

Figure 6: The QOS INTERCEPTOR pattern

Hook QOS INTERCEPTORS into the invocation path that are responsible for measuring the
performance-related QoS properties. Provide possibilities in the middleware for attaching a QOS
INTERCEPTOR dynamically, such as APIs or configuration files.

Figure 6 demonstrates the QOS INTERCEPTOR pattern, which can be used on the client- and the
server-side. The only requirement is that the middleware provides the feature of attaching new QOS
INTERCEPTORS. In this case, it is possible to attach and replace QOS INTERCEPTORS dynamically.
Multiple QOS INTERCEPTORS can be placed in the invocation path, where each of them is responsible
for measuring different performance-related QoS properties. Hence, it is possible to find bottle-necks
of long-running remote object invocations. Having access to the middleware’s implementation results
in more precise measurements of performance-related QoS properties.

The QOS INTERCEPTOR has the benefit that the client’s and remote object’s implementations do
not have to be instrumented for measuring the performance-related QoS properties. The client’s and
remote object’s middleware are instrumented to hook QOS INTERCEPTORS into the invocation path.
A QOS INTERCEPTOR provides a good separation of concerns because the measuring is separated
from the client’s and remote object’s implementation. Because a QOS INTERCEPTOR is hooked in the
client’s or remote object’s local middleware, a precise measuring of almost all performance-related
QoS properties can be achieved. In addition, a QOS INTERCEPTOR is reusable because existing QOS
INTERCEPTORS can be attached dynamically into the middleware of existing clients and remote ob-
jects.

Placing multiple QOS INTERCEPTORS into the invocation path can result in long-running remote
object invocations, affecting the client’s or remote object’s performance. Furthermore, the middle-
ware’s complexity increases by providing hooks or interfaces for attaching and changing QOS IN-
TERCEPTORS in the invocation path dynamically. In case the client and the server are measuring the
negotiated performance-related QoS properties independently, both can fake the QoS measurements.

The QOS INTERCEPTOR pattern is an extension of the INVOCATION INTERCEPTOR pattern [22].

IX

Known Uses:

e Many middleware infrastructures for remote object invocation offer the facilities for adding re-
quired QOS INTERCEPTORS into the invocation path, such as OpenORB3, NET Remoting4,
Apache Axis2, or Apache CXF. A difference between existing technologies lies in the naming
of the QOS INTERCEPTOR. For example, in OpenORB and Apache CXF they are called infer-
ceptors, in Apache Axis2 handlers, and in the .NET Remoting framework the RealProxy has to
be extended to intercept the remote object invocations.

e To provide a good separation of concerns, the authors of the QoS CORBA Component Model
(QOSCCM) [14] use the QOS INTERCEPTOR pattern to easily adapt an application for measuring
performance-related QoS properties.

Pattern: Q0s REMOTE PROXY

In distributed systems, the client and the remote object do not have to be necessarily located in the
same local area network (LAN). In this case, the client invokes the remote object via a wide area
network (WAN), such as the Internet.

How to introduce a good separated, reusable, and uniform infrastructure for measuring the
performance-related QoS properties in the case when client and remote objects are not located
in the same LAN?

In many cases, the server hosts the remote object and is not located in the client’s LAN. Hence,
the client has to access the remote object via a WAN. Client and server want to measure performance-
related QoS properties. The desired solution should be uniform for each client and remote object,
enhancing the deployment of new clients and remote objects. Also, a good separated and reusable QoS
measurement infrastructure is desired.

Client's
LAN

Server’s
LAN

Remote
Object

Client

)

Client QoS QoS Remote
— Remote Proxy Remote Proxy Obiject

Remote
Object

Client

Figure 7: The QOS REMOTE PROXY pattern

Implement and setup a QOS REMOTE PROXY in the client’s and remote object’s LAN that
takes over the responsibility of measuring the performance-related QoS properties. In the client’s
LAN, configure each client to invoke the remote objects via the LAN’s QOS REMOTE PROXY. In
the server’s LAN, make each remote object only be accessible via a QOS REMOTE PROXY.

3http ://openorb.sourceforge.net/
*http://msdn.microsoft.com/en-us/library/kwdt6w2k (VS.71) .aspx

Figure 7 shows an infrastructure where the client and the remote object are not located in the same
LAN. As shown, the QOS REMOTE PROXY pattern can be applied in both LANs. The client’s QOS
REMOTE PROXY receives the client’s request, performs the required QoS measurements, and forwards
the request to the remote object’s LAN. A server-side QOS REMOTE PROXY receives the client’s re-
quests (directly or via the client’s QOS REMOTE PROXY), performs the required QoS measurements,
and forwards the request to the appropriate remote object. After the remote object processed the re-
quest, it sends the response back to the server-side QOS REMOTE PROXY that measures the required
performance-related QoS properties and forwards the response to the requestor. The client-side QOS
REMOTE PROXY receives the response (from the remote object directly or from the server-sid QOS
REMOTE PROXY), performs QoS measuring, and forwards the response to the appropriate client.

In the client’s and the server’s LAN, a QOS REMOTE PROXY provides a good separation of concerns
because the measuring of the performance-related QoS properties is separated. Also, there is no impact
on the client’s and server’s performance. In addition a QOS REMOTE PROXY is a reusable solution. Each
new client can be configured to invoke the remote object via the client’s LAN QOS REMOTE PROXY.
Also, it is possible to configure each remote object that is only accessible via the server’s LAN QOS
REMOTE PROXY.

At minimum one extra hop in the client’s and server’s LAN is needed because of accessing the QOS
REMOTE PROXY instead of accessing the WAN or the remote object directly. Hence, the measurements
of the performance-related QoS properties at the QOS REMOTE PROXY differ from the client’s and
remote object’s local QoS measurements. In case the client and the server are measuring the negotiated
performance-related QoS properties independently, both can fake the QoS measurements.

A client-side QOS REMOTE PROXY can affect the client’s performance slightly. But, a QOS RE-
MOTE PROXY can impact the performance of the client’s LAN because each client has to invoke the
remote object via the QOS REMOTE PROXY. On the server-side, a QOS REMOTE PROXY does not affect
the performance of the remote object directly, but, it can have an impact on the server’s LAN. A QOS
REMOTE PROXY inside the server’s LAN can be implemented as a load-balancer, gateway, reverse
proxy, dispatcher, as well as a firewall following the appropriate patterns [4].

The QOS REMOTE PROXY does not necessarily require that the client and the remote object are
located in different LANSs. In a case where client and remote object are located in the same LAN, the
setup of one QOS REMOTE PROXY inside the LAN is adequate.

Known Uses:

e Wang et al. [20] introduce a QoS-Adaptation proxy that receives the clients’ requests, performs
the QoS measurements, and forwards the clients’ requests to their destinations. The clients’
applications remain unchanged while the proxy performs the necessary adaptations and QoS
measurements.

e The Corba IIOP specifications [13] introduce the VisiBroker [3] environment that uses the QOS
REMOTE PROXY pattern for measuring the performance-related QoS properties.

e The Apache TCPMon’ tool can be instrumented to serve as a proxy between the clients and the
server’s remote objects. An implementation of the QOS REMOTE PROXY is to extend this tool
for measuring performance-related QoS properties.

Shttp://ws.apache.org/commons/tcpmon/

XI

4 Selected Example: Measuring performance-related QoS proper-
ties of web services

This section exemplifies the presented patterns for measuring performance-related QoS properties
within a web service-oriented distributed system [15, 2]. We implemented the clients and remote ob-
jects using the Apache CXF web service framework. In this example we implemented a web service
which offers the functionality to login into a remote system. The service’s operation receives a user-
name and a password from the client and checks if the client is authorized to enter. In the following,
we present the client-side implementation of the presented patterns.

Pattern: Qos INLINE

Figure 8 shows a code excerpt of a client that invokes a web service and measures the round-trip time
following the QOS INLINE pattern. We used the Apache CXF’s feature of implementing a dynamic
client where we do not have to use the wsd12 java tool for generating the web service’s stub explicitly.

public class LoginServicedient {

public void call Logi nService() {

JaxWsDynani cd i ent Factory dcf = JaxWsDynani cC i ent Factory. newl nstance();
Cient client = dcf.createCient("http://|ocal host: 5001/ wat chne/ | ogi n?wsdl ") ;
try {

/* measure current tinme */

I ong tBeforelnvocation = System nanoTi ne();

/* call the web service */

client.invoke("login", new Qbject[]{"client","password"});
/* measure the round trip tine */
I ong tRoundTrip = System nanoTime() - tBeforelnvocation;

} catch (Exception e) {
e.printStackTrace();
}

}

public static void nmain(String[] args) {
new Logi nServi ceClient().callLoginService();

}

Figure 8: Measuring the round-trip time following the QOS INLINE pattern

The client offers a callLoginService method to invoke the web service’s Login operation.
First, we have to instantiate the JaxWsDynamicClientFactory, following the FACTORY pattern
[6]. Then, the client is created by using the previously instantiated FACTORY. The client puts two QoS
measuring points around the actual web service invocation — client .invoke (. ..) —to measure the
round-trip time of the web service invocation.

Pattern: Q0S WRAPPER

In Figure 9 we illustrates a web service client that measures the round-trip of the web service invocation
following the QOS WRAPPER pattern. Instead of placing measuring points for the round-trip time in
the client’s implementation directly, the client invokes the web service via a local QOS WRAPPER.
The implemented QOS WRAPPER offers the same interface to the client as the remote object. In this
example, the QOS WRAPPER takes over the responsibility of measuring of the round-trip time of a web
service invocation.

Instead of invoking the web service directly, the client calls the invoke method of the
QosWrapper. Within the invoke method, the QOS WRAPPER measure the elapsed time of the web
service invocation, i.e., the round-trip time.

XII

public class LoginServiceCient {
public void callLoginService() {
— _ /* invoke the Login Wb service */
“ 7™ new QuSW apper. | ogin("client","password");

/
7}) :
) public slatlc_vmd !THIH(.StTII'\g[] args)_{ _
1 new Logi nServiced ient().callLoginService();
y 1
: public class QoSWapper {
private Client |oginClient;
| public QoSWapper() {
\ /* initialize Ws stubs */
\ JaxWsDynani cC i ent Factory dcf =
\ JaxWsDynanmi cCl i ent Fact ory. newi nst ance() ;
\\ this.loginCient = dcf.createCient("./wsdl/login. wsdl");
So }

\‘-> public void login(String sUsernane, String sPassword) {
/* neasure current time */
I ong tBeforelnvocation = System nanoTi ne();
/* call the requested service */
I ogi nd i ent.invoke("login",
new Obj ect [] {sUser nane, sPassword});
/* neasure tine difference */
| ong tRoundTrip = System nanoTime() - tBeforelnvocation;

Figure 9: Measuring the round-trip time following the QOS WRAPPER pattern

Pattern: QOS INTERCEPTOR

The QOS INTERCEPTOR pattern can be implemented easily using the Apache Axis, Apache CXF web
services framework or in object-oriented RPC middlewares, such as CORBA, .NET Remoting, and
Windows Communication Foundation.

public class LoginServicedient {
public void callLoginService() {
/* call requested service */
JaxWsDynani cC i ent Factory dcf = JaxWsDynani cCli ent Fact ory. new nstance();
Client client = dcf.createCient("http://local host: 5001/ watchme/ | ogi n?wsdl ") ;

/* add the interceptors to the invocation path */
client.getQutlnterceptors().add(new RoundTri pTi nel nter ceptor(Phase. SETUP));
client.getQutlnterceptors().add(new Rou’ndTri pTi nel nt er cept or (Phase. SETUP_ENDI NG) ;
d
/* call the Login Wb service */ ,’
try { /’
res = client.invoke("login", new bject[]{"client","password"});
} catch (Exception e) {
e.printStackTrace(); /
} I
} [}
public static void main(String[] 4qrgs) {
new Logi nServicedient().call Logi nService();

} \
} \ public class RoundTripTinel nterceptor {
\ public RoundTripTi el nterceptor(String sPhase) {
\ super (sPhase) ;
\ }
\

Samea _>publ ic void handl eMessage(Message nsg) throws Fault {
i f(this.getPhase().equal sl gnoreCase(Phase. SETUP)) {
/* set the current tine in the invocation context */
QoSDat a qos = (QoSDat a) msg. get (QoSDat a. cl ass) ;
if(qos==null) {
gos = new QoSData();
}

qos. set RoundTri pTi ne(Syst em nanoTi me());
meg. set Cont ent (QoSDat a. cl ass, qos);

} else if(this.getPhase().equalslgnoreCase(Phase. SETUP_ENDI NG) {
QoSDat a qos=(QoSDat a) nsg. get Cont ent (QoSDat a. cl ass);
if(qos!=null) {

/* set the round-trip time in the invocation context */
| ong tRoundTrip = System nanoTi me() - qos. get RoundTri pTi me();
qos. set RoundTri pTi nme(t RoundTri p/ 1000000) ;
} else {
throw new Fault(...);
}

Figure 10: Measuring the round-trip time following the QOS INTERCEPTOR pattern

Figure 10 shows an excerpt of the client’s implementation and the implemented QOS INTERCEP-
TOR for measuring the round-trip time of a web service invocation. First, the client initializes the
generated stubs of the web service, creates objects of the interceptors, and defines where to place them
into the invocation path. In our example, the RoundTripTimeInterceptor measures the round-trip
time between the SETUP and SETUP_ENDING phases of the client’s OUT chain. The Apache CXF web

XIII

service framework provides facilities for attaching the interceptors to the invocation path by calling
the getOutInterceptors () .add () method.

The handleMessage method of the RoundTripTimeInterceptor contains the business logic
of the QOS INTERCEPTOR. In the SETUP phase, the interceptor puts the current time into the INVOCA-
TION CONTEXT — QoSData — of the message. In the SETUP_ENDING phase, the interceptor calculates
the time difference — the round-trip time — and puts it again into the INVOCATION CONTEXT.

Pattern: Q0S REMOTE PROXY

The QOS REMOTE PROXY offers interfaces to the clients to invoke remote objects and takes over the
responsibility of measuring the performance-related QoS properties. In comparison to the previously
shown QOS WRAPPER example, the client does invoke the web service via the QOS REMOTE PROXY
over the LAN and not directly.

public class Logindient {
private Cient gosRenoteProxy;

public LoginCient() {
/* initializze the QoS Renobte proxy */
JaxWsDynani cCl i ent Factory dcf = JaxWsDynani cCl i ent Fact ory. newl nstance();
thi s. gosRenot eProxy = dcf.created ient(
"http://128.131.172. 205: 8251/ qos- r enot e- pr oxy");
}

public void callLoginService() {
/* call the login Web service via the QoS renote proxy */

7~ this. qosRenot eProxy. | ogi n("client","password");
;o
\
‘\ Machine Boundary
A}
\\ public class QoSRenoteProxy {
\
\ private Client loginCient;
\
\ public Login() {
\ /* initialize W8 stubs */
\ JaxWsDynani cCl i ent Factory dcf = JaxWsDynani cCli ent Fact ory. new nstance() ;
\\ this.loginCient = dcf.createCient("./wsdl/login. wsdl");
N }
~

> public bool ean login(String sUserID, String sPassword) {
/* measure current time */
| ong tBeforelnvocation = System nanoTi me();
/* call the requested service */
bool ean b = this.loginCient.|ogin(sUserlD, sPassword);
/* measure tine difference */
roundtrip = System nanoTine() - tBeforelnvocation;

/* Return the received response to the client */
return b;

Figure 11: Measuring the round-trip time following the QOS REMOTE PROXY pattern

We illustrate our Apache CXF implementation of a QOS REMOTE PROXY in Figure 11. The client
invokes the 10gin method of the QOS REMOTE PROXY instead of calling the web service’s 1ogin op-
eration directly. As illustrated, the QOS REMOTE PROXY performs the measuring of the performance-
related QoS properties. In our example, the implemented QOS REMOTE PROXY measures the round-trip
time of the web service invocation.

5 Discussion

This section provides information about possible ways of the patterns’ implementations and lists pos-
sibilities of future work to store and evaluate the QoS measurements.

X1V

Aspect-oriented Implementation of the Patterns

A possible way to implement some of the presented patterns and to provide a good separation of
concerns, is to follow the aspect-oriented programming (AOP) paradigm. An aspect is a construct that
contains the separated concern’s implementation and a description of how to weave it into the code
[9, 8.

To improve the separation of concerns within the QOS INLINE pattern, its implementation can fol-
low the AOP paradigm. Implementing an aspect-oriented QOS INLINE solution results in a QOS WRAP-
PER. The aspects of measuring performance-related QoS properties are separated from the client’s or
remote object’s implementation, resulting in a good separation of concerns. Furthermore, the measur-
ing aspects can be reused and attached to new deployed clients and remote objects.

The QOS INTERCEPTOR pattern can be implemented following the AOP paradigm. Such a solution
is interesting if the middleware does not provide hooks for placing a QOS INTERCEPTOR into the
invocation path.

In the case where the QOS REMOTE PROXY has additional responsibilities to measuring
performance-related QoS properties, its implementation can follow the AOP paradigm. Hence, it is
possible to separate the QOS REMOTE PROXY’S QoS measuring from its business logic.

Automatic Generation of the Patterns

It is possible to generate the presented patterns and their components for measuring the performance-
related QoS properties automatically. In general, all reusable parts can be generated automatically.

Following the QOS INLINE pattern, it is difficult to generate the measuring points into existing
clients or remote objects. Only clients and remote objects that have to be newly deployed can be gener-
ated automatically including the measuring points. The client’s or the remote object’s implementation
has to be developed manually. Following the AOP paradigm, it is possible to generate the required
aspects for measuring the performance-related QoS properties automatically.

A QOS WRAPPER can be generated automatically and the generic parts of the client’s and remote
object’s implementations for accessing the client or remote object via the QOS WRAPPER.

QOS INTERCEPTORS can be generated and attached to the client’s and remote object’s middle-
ware automatically for measuring the performance-related QoS properties. Existing clients and remote
objects can be extended easily.

It is possible to generate a QOS REMOTE PROXY automatically. New clients can be generated and
configured to access the remote objects only via the generated QOS REMOTE PROXY. Also, it is possi-
ble to generate the remote objects automatically and to configure them that they are only accessible via
a QOS REMOTE PROXY. Existing clients and remote objects have to be re-configuried or re-deployed.

Storing and Evaluating the QoS Measurements

This paper’s patterns cover the aspects of measuring performance-related QoS properties in distributed
systems. A further important aspect is how to store and evaluate the QoS measurements. Many possibil-
ities of storing the QoS measurements exist, such as using local log files or databases. It is also possible
to forward the measurements to a QoS monitor by using, for example communication channels [7].
The QoS monitor can be either centralized or de-centralized, and can evaluate the QoS measurements
immediately or at later stages.

The implementation of the QOS INTERCEPTORS can follow the INVOCATION CONTEXT pattern
for storing an invocation’s QoS measurements. The QOS INTERCEPTOR pattern provides possibilities

XV

to forge the QoS measurements by simply changing the stored QoS measurements in the INVOCATION
CONTEXT or for whatever reasons. The available information of the INVOCATION CONTEXT depends
on the interceptor’s location in the invocation path. To overcome this problem, a centralized QoS
monitor can be developed which receives the INVOCATION CONTEXT when a QOS INTERCEPTOR is
executed.

Evaluating performance-related QoS properties brings the necessity to avoid violations of the ne-
gotiated QoS concerns within the SLAs. A monitoring component is required that measures the QoS
properties in a predictive and pro-active way to give warnings to the system users to avoid possible
future violations. Still a huge research challenge is to implement systems that react to the warnings
and avoid violations automatically.

A possibility of storing and evaluating performance-related QoS properties in distributed systems
is to use an event-based system. A Complex Event Processing (CEP) engine receives QoS events from
the clients and services, stores them, and evaluates them. A CEP evaluates the QoS events using pre-
defined QoS rules that are checked against the received events during the runtime of the system.

6 Conclusion

The contribution of this paper are four patterns that focus on measuring performance-related QoS prop-
erties in distributed systems. The patterns are extensions of well-known existing patterns, presented in
the Gang of Four (GoF) book [6], the Pattern-Oriented Software Architecture (POSA) series [5, 18, 4],
and in the Remoting Patterns book [22]. We highlighted the patterns concerning their impact on the
client’s or service’s performance, their reusability, the extent of separation of concerns, the preciseness
of the QoS measurements, and the vulnerability to forgery of the QoS measurements.

The paper gave background information on the existing patterns as well as on the pattern’s
relevant performance-related QoS properties. We exemplified the patterns for measuring client-side
performance-related QoS properties in web service-oriented distributed systems. As a future work
we intend to describe and define patterns on storing and evaluating the gathered QoS measurements.
This paper’s patterns should help software architects and developers in designing architectures for
measuring performance-related QoS properties in a distributed system.

Acknowledgment

We would like to thank our shepherd Andy Carlson for his constructive and supporting help during the
shepherding process to improve the quality of the patterns and the paper itself.

Also, this work was supported by the European Union FP7 project COMPAS, grant no. 215175.

References

[1] Y. Afek, M. Merritt, and G. Stupp. Remote Object Oriented Programming with Quality of Service or
Java’s RMI over ATM, 1996.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts, Architectures and Appli-
cations. Springer, October 2003.

[3] Borland. VisiBroker — A Robust CORBA Environment for Distributed Processing, 2009.

[4] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture, Volume 4: A
Pattern Language for Distributed Computing. Wiley, 2007.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software Archi-
tecture, Volume 1: A System of Patterns. Wiley, 1996.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1995.

XVI

(7]
(8]

(9]

[10]

[19]

[20]

[21]

[22]

G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview of
Aspect]. In ECOOP ’01: Proceedings of the 15th European Conference on Object-Oriented Program-
ming, pages 327-353, London, UK, 2001. Springer-Verlag.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect—
Oriented Programming. In ECOOP, pages 220-242, 1997.

A. Mani and A. Nagarajan. Understanding quality of service for Web services — Improving the per-
formance of your Web services, 2002. http://www. ibm.com/developerworks/library/
ws—quality.html, last accessed: May 2010.

E. Oberortner, U. Zdun, and S. Dustdar. Tailoring a model-driven Quality-of-Service DSL for Vari-
ous Stakeholders. In MISE ’09: Proceedings of the 2009 ICSE Workshop on Modeling in Software
Engineering, pages 20-25, Washington, DC, USA, 2009. IEEE Computer Society.

L. O’Brien, P. Merson, and L. Bass. Quality Attributes for Service-Oriented Architectures. In SDSOA
’07: Proceedings of the International Workshop on Systems Development in SOA Environments, page 3,
Washington, DC, USA, 2007. IEEE Computer Society.

0. M. G. (OMG. Common Object Request Broker Architecture/Internet Inter-ORB Protocol (COR-
BA/IIOP), 2008.

0. M. G. (OMG. Quality Of Service For CCM (QOSCCM), 2008.

M. P. Papazoglou. Web Services: Principles and Technology. Pearson, Prentice Hall, 2008.

S. Ran. A Model for Web Services Discovery with QoS. SIGecom Exch., 4(1):1-10, 2003.

F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Performance and Dependability Attributes
of Web Services. In ICWS ’06: Proceedings of the IEEE International Conference on Web Services,
pages 205-212, Washington, DC, USA, 2006. IEEE Computer Society.

D. C. Schmidt, H. Rohnert, M. Stal, and D. Schultz. Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects. John Wiley & Sons, Inc., New York, NY, USA, 2000.

The Service Level Agreement Zone. SLA Information Zone, 2007. http://www.sla-zone.co.
uk/ (last accessed: 09/2010).

Q. Wang, Q. Ye, and L. Cheng. An Inter-Application and Inter-Client Priority-Based QoS Proxy
Architecture for Heterogeneous Networks. In ISCC ’05: Proceedings of the 10th IEEE Symposium
on Computers and Communications, pages 819-824, Washington, DC, USA, 2005. IEEE Computer
Society.

W. D. Yu, R. B. Radhakrishna, S. Pingali, and V. Kolluri. Modeling the Measurements of QoS Re-
quirements in Web Service Systems. Simulation, 83(1):75-91, 2007.

U. Zdun, M. Kircher, and M. Volter. Remoting Patterns. IEEE Internet Computing, 8:60-68, 2004.

XVII

suzoped pojuasard oy Jo uonezLRWIWNS] 9[qRL

'$109[qo 9jowaI pue
SJUSI[O MU JOJ Pasnal oq
ued AXO0dd HLOWHY SO0

3unsixa asnedaq ‘poon

uonejuawduwt
$,309[qo 9)0waI J0 S JUAI[O
woij Suunseaw So0)
pajeredos Jo asneoaq ‘SOx

sjuauaInsedw o)
asroaxduwr oY) Surpe9|
AX0dd 210NTY SO0

) $s2008 01 paxmnbaz st
NV oy ur doy enxe uy

"SUOIIBO0AUI 303[q0
910w AY) SuAYISu[
1ey) paxmbai st NV

a3 ur doy [euonIppe auQ

19730
yoea jo Apuopuadopur
way) Junnseaw are A3y}
9SBD Ul SJUaWAINSBIW
SoQ) a3 2310J
UEd JUSI[D PUB JOAIOS

AXO0dd ALONHYT SO0

's300[qo 9j0waI pue
SJUSI[O MAU JOJ Pasnal oq
ued YOLdIDYHLNI SOO
3unsxa asnedsaq ‘poon

uonejuawarduwr
$,109[qo 910w 10 S, JUAL[D
woiy Surmsedw S0
pojeredas Jo asneoaq ‘Sox

owrny Jurpeysiew
JO Aouaje[yIomjau
se yons ‘santadoid
SoQ) Jo Ioquinu 31e|
© JO UOIJBLIBA [RWITUIIA

SUOT)BOOAUL
199[qo 9jowar ayj Jo
Suruay3uay Jueoyrugisuy

uxoned LXHLNOD
NOILLVDOANI 3y}
3ursn £q sjuowaInseaw
SoQ a3 2310J
UEBd IOAISS PUB JUSI[D
‘uonn[os pauIquIod € uf

YOLIIDYHLNI SOO

's300[qo 9j0waI pue
SJURIO MU IOJ pasnal
9q UBD YAIdVIM SOO
3unsIxa asned9q ‘poon

uonejuowo[dur
$,309[qo 910Wa1 10 S JUSI[O
woij Jurmseaw o)
pareredas Jo asneoaq ‘S9x

‘own 3urssaooxd
J0 owmn dmm-punos
se yons ‘sonradoid
SoQ JOo Iaquinu [[eus
© JO UOTJBLIBA [RUWITUIIA

SUOT)BOOAUL
1990[qo 910wl Ay} Jo
Suruoy)Suay Jueoyruisuy

19130
yoea Jo Apyuapuadapur
way) Junnseaw are A9y}
9SO UI SJUSWRINSBAUI
SoQ a3 2310J
Ued JUSI[O PUB JOAISS

AdddviIMm SO0

uonejuowedur
$,309[qo 910Wa1 10 S JUSI[O
ojur sjurod Jurmseawr
SoQ) Jo juswaoed
10011p JO @sned9q ‘peq

KIRSS909U
uonejuawerdwr s 399[qo
9JOWAI JO S JUAI[D JO
UOTIBOYIPOW ISNBIAQ ‘ON

-own 3urssaoold
1o owmn din-punoz
se yons ‘sentadoid
SoQ) Jo Iaquinu [[ews
© JO JUSWIAINSBAW 9S10I]

joedunt
QourwIoyIad [eWIUIA

y)o
yoea jo Apuapuadopur
woy} SuLInseauwt I8 A9
9SO UI SJUSWAINSBAU
SoQ) 9y} 2310J
ued JUII[O PUB JOAIDS

ANIINI SOO

Annqesnay

SUIDUO))
Jo uoneaedag

SIUAWIINSBIA SO0
ISINIJ

UBUWLIONIdJ
uo Jeduy

SJUIURINSBIIA] SO0
3y} Sursioyq

wed

XVIII

