
Tailoring a Model-Driven Quality-of-Service DSL for Various Stakeholders

Ernst Oberortner, Uwe Zdun, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1, 1040 Vienna, Austria
{e.oberortner,zdun,dustdar}@infosys.tuwien.ac.at

Abstract

Many service-oriented business systems have to com-
ply to various contracts and agreements. Multiple tech-
nical and non-technical stakeholders with different back-
ground and knowledge are involved in modeling such busi-
ness concerns. In many cases, these concerns are only en-
coded in the technical models and implementations of the
systems, making it hard for non-technical stakeholders to
get involved in the modeling process. In this paper we
propose to tackle this problem by providing model-driven
Domain-specific Languages (DSL) for specifying the con-
tracts and agreements, as well as an approach to separate
these DSLs into sub-languages at different abstraction lev-
els, where each sub-language is tailored for the appropri-
ate stakeholders. We exemplify our approach by describing
a Quality-of-Service (QoS) DSL which can be used to de-
scribe Service Level Agreements (SLA). This work provides
insights into how DSLs can be utilized to model and enrich
service-oriented business systems with concerns defined in
contracts and agreements.

1. Introduction

A major requirement for many contemporary service-
oriented business systems is to comply to contracts and
agreements, such as Service Level Agreements (SLA).
SLAs are contracts between service providers and service
consumers which assure that service consumers get the ser-
vice they paid for and that the service fulfils the SLA’s
requirements, such as availability, accessibility, or perfor-
mance. For a provider it could result in serious financial
consequences if the SLAs are not fulfilled. Hence, ser-
vice providers need to know what they can promise within
SLAs and what their IT infrastructure can deliver. To vali-
date SLAs, mainly Quality-of-Service (QoS) measurements
about services are collected and utilized [3].

Today, service-oriented business systems are modeled
with different frameworks or notations to increase their pro-

ductivity and to reduce their complexity. In this context,
multiple stakeholders – technical and non-technical – with
different background and knowledge are involved in the
modeling process [4]. But, to the best of our knowledge,
no framework or notation exists which provides the facil-
ities for modeling service-oriented business systems with
contracts and agreements they have to comply to and for in-
volving multiple technical and non-technical stakeholders.

One possible way of modeling service-oriented business
systems is to use Domain-specific Languages (DSL) [7].
DSLs are small languages that are tailored to be particu-
larly expressive in one certain problem domain. A DSL
describes the domain knowledge via a graphical or textual
syntax which is tied to domain-specific modeling elements.
DSLs are often developed by following the Model-driven
Software Development (MDSD) [14] paradigm to describe
the graphical or textual DSL syntax through a precisely
specified language model. Using MDSD-based DSLs for
modeling service-oriented business systems enables tech-
nical and non-technical experts to work at higher levels of
abstraction [8].

In this paper we introduce our approach for specifying
the contracts and agreements, as well as how MDSD-based
DSLs are divided into multiple sub-languages at different
abstraction levels, where each sub-language is tailored for
the appropriate stakeholders. Our approach is exempli-
fied by an MDSD-based DSL for specifying QoS measure-
ments, SLAs, and actions. The DSL is separated into two
different languages. The first language is tailored for non-
technical experts, and the other one for technical experts.
Non-technical experts, also called domain experts, can work
with familiar domain constructs for specifying which QoS
values have to be measured on which services, such as re-
sponse time or wrapping time [11]. Also, the high-level
DSL supports the modeling of the SLAs and the actions
which should be performed if an SLA gets violated. The
second language, the DSL for technical experts, provides
constructs for specifying how the different QoS values have
to be measured and how the actions are performed on a par-
ticular platform or technology.

This paper is organized as follows: The following Sec-
tion 2 illustrates the constitution of MDSD-based DSLs.
Section 3 describes our approach. An example of following
our approach is shown in Section 4. Next, Section 5 lists
some benefits and drawbacks of our approach which were
collected during this work. Related work is listed in Section
6. Finally, Section 7 summarizes the paper and character-
izes future work.

2. Domain-specific Languages (DSL) based
on Model-driven Software Development
(MDSD)

A common development approach for DSLs is Model-
driven Software Development (MDSD) which provides
different levels of abstraction and platform-independence.
Figure 1 depicts the major artifacts of MDSD-based DSLs
(see also [14, 6]).

Model Instance

DSL
Concrete Syntax

Model
(DSL Abstract Syntax)

Meta-Model
based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using

**

Schematic
Recurring Code

produces

1..

1..* 1..*

Individual Code
uses

* *

Figure 1. DSLs based on MDSD – relevant ar-
tifacts

A DSL consists of an abstract and a concrete syntax.
The abstract syntax, which represents the language model,
defines the elements of the domain and their relationships
without considering their notations. The meta-model de-
fines how the domain elements and their relations have to
be described [14]. The concrete syntax describes the rep-
resentation of the domain elements and their relationships
in a suitable form for the DSL stakeholders. Abstract and
concrete syntax enable DSL users to define model instances
with a familiar notation to represent particular problems
of the domain. The ultimate goal of the transformations,
which are defined on the language model, is to transform
the model instances into executable languages, such as pro-
gramming languages or process execution languages. The
MDSD tools are used to generate all those parts of the (exe-
cutable) code which are schematic and recurring, and hence
can be automated.

DSLs based on MDSD, from now on just called DSLs,
can provide multiple levels of abstractions to help multiple

stakeholders, with different backgrounds and knowledge, to
express relations and behaviors of a domain with familiar
notations. The goal is that each stakeholder – maybe with
the help of other stakeholders – can easily understand, val-
idate, and even develop parts of solution needed. For in-
stance, domain experts do not have to deal with technologi-
cal aspects, such as programming APIs or service interface
descriptions. Domain experts can assist the technical ex-
perts that they can map not well-known domain problems
to an appropriate technological model. This leads to an in-
tense collaboration between the different stakeholders and
lowers the possibility of misunderstandings [13].

The goal of DSLs is to be more expressive, to tackle
complexity better, and to make modeling easier and more
convenient [16]. However, successful development of a
DSL requires the involvement of domain and technical ex-
perts, including the design of the notation and the evaluation
of the expressive power of the language.

3. Our DSL Approach

To offer expressive and convenient languages for the dif-
ferent stakeholders, our approach provides a horizontal sep-
aration of DSLs into multiple sub-languages, where each
sub-language is tailored for the appropriate stakeholders.
Our approach of separating DSLs into two sub-languages
at different levels of abstraction is illustrated in Figure2.

High-level DSL
Syntax

High-Level
Language

Model

Low-level DSL
Syntax

extends

Low-Level
Language

Model

extends

represents

represents

*

*

1

1

High-Level
Model

Instance

Low-Level
Model

Instance

extends

instanceOf *

*

1

1 instanceOf

defined in

1 *

defined in

1 *

Domain Expert

Technical Expert

Figure 2. DSLs based on MDSD - separation
into high-level and low-level languages

Domain experts can work with a language, from now on
called high-level language, where the terminologies and no-
tations are close or equal to the domain terminology. Tech-
nical experts can express the additionally needed technical
aspects with a language, from now on called low-level lan-
guage, where the terminologies and notations are close or
equal to the terminology of the used technology. The syn-
tax of the high-level and low-level languages is based on
language models. Low-level language models can extend
the high-level language models or vice versa, e.g., by using
inheritance. The DSLs are used to define model instances of
the high-level and low-level language models. Each model

instance represents concrete solutions of a particular prob-
lem of the domain. After the definition of high-level and
low-level model instances, schematic recurring code can be
generated automatically, as illustrated in Figure 1.

Following our approach does not mean that only a sep-
aration into two levels, such as high-level and low-level, is
possible. Also, it is possible to provide multiple different
levels of abstractions where each level of abstraction is tai-
lored for the designated stakeholders. The number of differ-
ent levels of abstractions depends on the problem domain,
as well as on the number of the different type of stakehold-
ers.

The following section provides an example of follow-
ing our approach for separating and tailoring model-driven
DSLs. As illustrated in Figure 2, a separation into two lev-
els – high-level and low-level – is provided, and the levels
of abstraction are tailored for domain and technical experts,
respectively.

4. An Example: The QoS DSL

The purpose of the following DSL is to enable the DSL
users to model service-oriented business systems for mea-
suring Quality-of-Service (QoS) of Web services, Service-
Level-Agreements (SLA) based upon QoS measurements,
and actions which should be performed if SLAs get vio-
lated. We provide two DSLs: The first one, the high-level
language, is tailored for domain experts, whereas the second
one, the low-level language, is tailored for technical experts
and extends the high-level language model. Only the merg-
ing of the two DSLs results in a complete language model
from which a running system is generated.

Domain experts should be able to model which QoS val-
ues have to be measured for a specific Web service to ful-
fil the contractually agreed SLAs, as well the actions. The
high-level DSL should provide expressive notations that are
named similar to the terminology of the QoS and SLA do-
mains. An example of specifying the given requirements
is: If the response time of a service is longer than 10 sec-
onds, then send an e-mail to the administrator of the service
provider.

Technical experts need a language for specifying how
the different QoS values are measured in the used Web ser-
vice framework, as well as how the defined actions are exe-
cuted or performed. In this example, the low-level language
extends the high-level one by using inheritance, because it
enriches and extends the high-level language model with
the additionally needed technical concerns, e.g., how the re-
sponse time is measured on a particular Web service frame-
work. Similar to high-level DSLs, the constructs and ex-
pressions of the low-level DSL are named similar or equiv-
alent to the appropriate technology.

In the following we will describe the language models

of the high-level and low-level DSLs, how the high-level
models get extended by the low-level ones, and how both
DSLs can be used by domain and technical experts.

4.1. The QoS DSL Models

4.1.1 The High-Level QoS Model

The requirements for the high-level QoS DSL can be formu-
lated as follows: SLAs are associated with QoS measure-
ments of Web services, as well as with actions. The main
focus of this work lies on performance QoS measurements,
such as response time and wrapping time [12].

Figure 3 depicts the language model of the high-
level QoS DSL.Services are associated withQoS
measurements. We provide classes for measuring
Performance andDependabilityQoS values, as de-
scribed in [12]. EachQoS Measurement hasService
Level Agreements which are in relation with different
Actions that should be performed if an SLA gets violated.

Service QoS Measurement

Perfomance Dependability

Wrapping Response Availability Accuracy

*

1 Service Level
Agreement

Action

*

1

*

Mail SMS

Figure 3. The model of the high-level QoS lan-
guage

The high-level language model is extended by the fol-
lowing low-level model through inheritance. The low-level
language model contains all necessary facilites for model-
ing the technological aspects to generate a running system
from the model instances described with the DSLs.

4.1.2 The Low-Level QoS Model

The expressions of the low-level QoS DSL depend on the
technology on which the DSL is based. We decided to use
the open-source Apache CXF Web service framework [15]
in our prototype. The requirements can be modelled as fol-
lows: The communication between service client and ser-
vice provider is based on message-flows. Each message-
flow consists of a number of phases, where each phase can
contain handlers for measuring QoS values. For instance,
the handler for measuring the response time is associated to
two certain phases of the client’s message-flow.

Figure 4 depicts the low-level language model of the
QoS DSL and how the low-level model extends the
high-level model. TheService class of the low-level

model extends theService class of the high-level lan-
guage model by using inheritance. Services are enriched
with Operations which have a particular number of
Parameters. For measuring QoS values of services, such
as the response time,QoSHandlers are associated to ser-
vices. Again, QoS handlers of the low-level model ex-
tend QoS measurements of the high-level language model
through inheritance. In our case, theQoSHandler class
extends theResponse class of the high-level language
model. Handlers are associated toPhases where each
phase corresponds to a certainMessageFlow. Using
these classes, the technical experts can specify in which
phases of which message-flows the QoS values of a service
have to be measured.

JavaClass

ServiceOperation

Parameter MessageFlow

PhaseQoSHandler
1*

1*

*

* *

*
*

* *

* * * *

1

*

*

Service

High-level
model

Low-level
model

Response

Figure 4. The model of the low-level QoS lan-
guage

The relationship between the names of the constructs of
the DSL syntax and the name of the classes defined in the
language models can be equivalent or different. If they are
equivalent, the classes of the language models can be used
to define model instances directly. If they are different,
complex mappings between the DSLs constructs and the
language model classes are required [8]. To avoid this extra
effort, the classes of the high-level and low-level QoS lan-
guage models and the provided constructs within the high-
level and low-level QoS languages in this example are as-
sumed to be equal.

4.2. Using the QoS DSL: An Example

In this section we demonstrate how the language models
and the DSLs are connected, so that domain and techni-
cal experts can use the appropriately tailored high-level and
low-level DSL. The following DSLs were developed and
used within Frag [17].

4.2.1 Using the High-Level QoS DSL

In the high-level language, the domain experts can assign
QoS measurements to Web services, define SLAs, and de-

fine actions which should be executed if a violation against
an SLA occurs. Figure 5 gives a technical view of the high-
level language, which is based on the model in Figure 3.

define a service, measure the response time,
define an SLA, and define an action
Service create QoSService

-measure [ResponseTime create QoSResponseTime
-assert [SLA create ResponseAssertion

-set predicate "LONGER THAN"
-set value "10"
-set unit "SECONDS"
-set actions [Mail create SendMailToProvider
-set mailto "admin@provider"]]]

Figure 5. Assign QoS measurements to a ser-
vice by using the high-level QoS DSL

In our example, the classService of the language
model is used to create a Web service,QoSService,
where theResponseTime should be measured. An SLA
assertion,ResponseAssertion, is created by the high-
level language model classSLA, assigned to the measured
response time, and should be performed if the response time
is LONGER THAN 10 SECONDS. The idea of specifying
a predicate (e.g.,LONGER THAN), a value (e.g.,10), and a
unit (e.g.,SECONDS) for SLA assertions is taken from [11].
The classMail of the high-level language model is used to
define that an e-mail should be sent to the service provider.

Based on the technical view of the high-level QoS DSL
in Figure 5, a more understandable textual or graphical user
interfaces can be generated automatically. A possible vi-
sualization of the technical view is illustrated in Figure 6.

QoSService:Service QoSResponseTime:ResponseTime

ResponseAssertion:SLA
 "LONGER THAN 10 SECONDS"

SendMailToProvider:Mail
 mailto "admin@provider"

Figure 6. A possible graphical view of the
high-level DSL

4.2.2 Using the Low-Level QoS DSL

Using the low-level QoS DSL helps the technical experts to
specify how messages flow – between service client and ser-
vice provider – within the Apache CXF Web service frame-
work [15]. The service client and service provider sides
have in- and out-flows, where in-flows are responsible for
handling incoming messages, and out-flows are responsible
for handling outgoing messages. In- and out-flows consist

of phases. After specifying the phases, the technical expert
defines where each QoS value has to be measured. Figure
7 provides an excerpt of using the low-level language on
specifying how the response time is measured.

define the message-flows and the phases
ClientFlow create ClientOutFlow -superclasses ClientFlow
OutPhase create OutSetup
OutPhase create OutSetupEnding

assign phases to message flows
ClientOutFlow phases {OutSetup OutSetupEnding}

define in which phases the response time is measured
ResponseTime measuredInFlows {ClientOutFlow}
ResponseTime measuredBetweenPhases {

OutSetup OutSetupEnding}

Figure 7. Specifying technological require-
ments by using the low-level QoS DSL

First, the in- and out-flows of the service client,
ClientInFlow and ClientOutFlow, are speci-
fied. Then the phases of the out-flow,OutSetup and
OutSetupEnding, are defined and assigned to the out-
flow of the client,ClientOutFlow. Finally, the flows
and phases, between which theResponseTime is mea-
sured, are specified.

After the high-level and low-level problems are modeled,
the model instances are merged to produce a generated sys-
tem. In our work, we generated executable code for the
Apache CXF Web service framework [15]. How code is
generated is out of scope within this paper.

5. Lessons Learned

This section describes discovered benefits and draw-
backs of our approach, as well as considerations for future
work.

The requirements within a domain change much more
often than the technological requirements. One of the pri-
mary advantages of the separation into high-level and low-
level languages, as proposed in the example of this paper, is
that the technical experts have to specify the technological
aspects just once. For instance, the response time is mea-
sured within the defined phases every time, independent of
the specified SLAs in the high-level language. Hence, the
SLAs can be specified multiple times without changing any
technological aspects. Furthermore, a common advantage
of model-driven DSL approaches is that the language mod-
els are easily extensible. Hence, when following our ap-
proach, each language model can be separately extended in
an easy way. In this context, a drawback is that technolog-
ical requirements have to be redefined, or at worst remod-
eled, when the used technologies get changed.

A discovered disadvantage lies in the overlapping con-
cerns between the different language layers when a hori-
zontal separation into multiple sub-languages is provided.
To find a remedy, model-driven DSL approaches provide
facilities for extending high-level concerns with low-level
concerns or vice versa, by using inheritance, associations,
or compositions. For the time being, another disadvantage
of our approach it that only a horizontal separation into mul-
tiple sub-languages is provided. Hence, our approach is
not feasible in providing a vertical separation into different
viewpoints or completely different domains. We envision to
solve this problem in our future work.

As shown, model-driven DSL approaches can suppress
the arising drawbacks of providing multiple languages
which are tailored for the appropriate stakeholders. The fol-
lowing section mentions some related work and their differ-
ences to our approach.

6. Related Work

This section is divided into three parts, where each part
refers to work that has been done or that is still in progress
with respect to our main contributions of this work.

MDSD-based DSLs:
Kelly and Tolvanen [4] illustrate their collected experi-
ences of designing and developing Domain-specific Mod-
eling Languages (DSML) for general business systems. In
contrast to our work, their code generators aim to provide
full code generation only from the defined models of the
domain experts. Technical experts are not involved in the
modeling process. But, modeling service-oriented business
systems without technical stakeholders can be a drawback.

Tailoring DSLs for Various Stakeholders:
Voelkl et al. [5] write about the different roles in the soft-
ware development process with domain-specific model-
ing languages (DSML). An introduction to the MontiCore
framework is given, which is a code generator and a lan-
guage processing environment. Language developers can
define the syntax of the modeling language in the form of a
context-free grammar. Within our approach, the syntax of
the DSLs is expressed by language models which facilitates
the definition of the DSL syntax.

Even though the realization of this approach is different
to ours, the idea of this work is similar, as Freudenstein et
al. [1] also support multiple stakeholders within their DSL
approaches for modeling Web applications.

Defining or Modeling QoS and SLAs:
Rosenberg et al. [11] propose a top-down modeling ap-
proach for capturing functional and non-functional QoS

concerns of Web service based business processes. The ap-
proach is based on transformations from WS-CDL to BPEL,
but it does not provide multiple separated and tailored lan-
guages for technical and non-technical stakeholders.

The following two approaches are extensions to UML.
The Object Management Group (OMG) [9] introduces
a UML profile for modeling QoS. Their QoS frame-
work is separated into three packages:QoSCharacteristics,
QoSConstraints, andQoSLevels. A Service-oriented archi-
tecture Modeling Language (SoaML) is presented in [10].
This language is also a UML profile and provides the facil-
ity for modelingServiceContracts between service
providers and consumers. In contrast to our approach, the
use of one QoS UML profile requires background knowl-
edge of the UML which is difficult to understand for non-
technical stakeholders.

7. Conclusion and Further Work

In this paper we presented an approach for tailoring
model-driven DSLs for various stakeholders with different
background and knowledge. The approach is demonstrated
by using a model-driven DSL for specifying QoS concerns
of service-oriented business systems. The DSL was sep-
arated and tailored for two different kinds of stakeholders,
i.e., domain and technical experts. One language – the high-
level language – was tailored for domain experts and pro-
vides constructs for specifying the SLAs and actions which
should be performed if an SLA gets violated. The second
language – the low-level language – was tailored for techni-
cal experts and provides constructs for specifying how the
different QoS values have to be measured and how the ac-
tions are performed in a particular Web service framework.

As future work we envision the adaptation of the pre-
sented QoS DSL to its foreseen users to evaluate and an-
alyze the expressive power of our DSLs. Also, we want
to provide an automatic generation of easily understandable
user interfaces based on the language models as shown in
Figure 6. Finally, we want to support the modeling of QoS
policies, facing the challenges introduced in [2].

This work shows that it is possible to develop model-
driven DSLs with familiar notations for modeling service-
oriented business systems with contracts and agreements
they have to comply to. By following our approach, mul-
tiple stakeholders – technical and non-technical – with dif-
ferent background and knowledge can be involved in the
modeling process.

Acknowledgement:
This work was supported by the European Union FP7
project COMPAS, grant no. 215175.

References

[1] P. Freudenstein, J. Buck, M. Nussbaumer, and M. Gaedke.
Model-driven Construction of Workflow-based Web Appli-
cations with Domain-specific Languages. InMDWE, 2007.

[2] J. Hoffert, D. Schmidt, and A. Gokhale. DQML: A Model-
ing Language for Configuring Distributed Publish/Subscribe
Quality of Service Policies. InProceedings of the 10th In-
ternational Symposium on Distributed Objects, Middleware,
and Applications, 2008.

[3] L. jie Jin, V. Machiraju, and A. Sahai. Analysis on Service
Level Agreement of Web Services. Technical report, HP
Laboratories, 2002.

[4] S. Kelly and J.-P. Tolvanen.Domain-Specific Modeling: En-
abling Full Code Generation. John Wiley & Sons, March
2008.

[5] H. Krahn, B. Rumpe, and S. Voelkel. Roles in Software
Development using Domain Specific Modelling Languages.
In In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling 2006, pages 150–158, 2006.

[6] B. Langlois, C.-E. Jitia, and E. Jouenne. DSL Classification.
In OOPSLA 7th Workshop on Domain Specific Modeling,
2007.

[7] M. Mernik, J. Heering, and A. M. Sloane. When and How to
Develop Domain-specific Languages.ACM Comput. Surv.,
37(4):316–344, 2005.

[8] E. Oberortner, U. Zdun, and S. Dustdar. Domain-Specific
Languages for Service-Oriented Architectures: An Explo-
rative Study. InServiceWave, pages 159–170, 2008.

[9] Object Management Group (OMG). UML Profile for Mod-
eling Quality of Service and Fault Tolerance Characteristics
and Mechanisms.

[10] Object Management Group (OMG). Service oriented archi-
tecture Modeling Language (SoaML) – Specification for the
UML Profile and Metamodel for Services (UPMS), 2008.

[11] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and
S. Dustdar. Integrating Quality of Service Aspects in Top-
Down Business Process Development Using WS-CDL and
WS-BPEL. InEDOC ’07: Proceedings of the 11th IEEE In-
ternational Enterprise Distributed Object Computing Con-
ference, page 15, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[12] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping
Performance and Dependability Attributes of Web Services.
In ICWS ’06: Proceedings of the IEEE International Con-
ference on Web Services, pages 205–212, Washington, DC,
USA, 2006. IEEE Computer Society.

[13] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering.Computer, 39(2):25–31, 2006.

[14] T. Stahl and M. Voelter.Model-Driven Software Develop-
ment. J. Wiley and Sons Ltd., 2006.

[15] The Apache Software Foundation. Apache CXF. http://
cxf.apache.org/.

[16] J.-P. Tolvanen. Domain-Specific Modeling: How
to Start Defining Your Own Language, 2008.
http://www.devx.com/enterprise/Article/30550.

[17] U. Zdun. The Frag Language. http://frag.sourceforge.net/.

