
A Platform for Run-time Health Verification of
Elastic Cyber-physical Systems

Daniel Moldovan, Hong-Linh Truong
Distributed Systems Group, TU Wien, Vienna, Austria

E-mail: {d.moldovan,truong}@dsg.tuwien.ac.at

Abstract—Cyber-physical Systems (CPS) have components de-
ployed both in the physical world, and in computing envi-
ronments, such as smart buildings or factories. Elastic Cyber-
physical Systems (eCPS) are adaptable CPS capable of aligning
their resources, cost, and quality to varying demand. eCPS have
started to generate interest in various domains due to their
adaptability, such as Industrie 4.0. In Industrie 4.0 they can link
manufacturing processes with private or public cloud services,
and adapt to varying usage patterns and requirements. However,
industrial eCPS are mission critical systems designed with strict
requirements. Using cloud services increases the complexity of
eCPS and introduces particular challenges in ensuring their run-
time health. Failures can appear at appear at cloud provider from
the virtualization middleware, physical resources, or software
configuration. eCPS failures can also occur due to management
operations, software bugs, or resources congestion. While static
verification methods can determine failure sources, they are
less applicable to eCPS infrastructures. eCPS can have complex
hardware and software stacks, and might use third-party black-
box components(e.g., sensors, cloud services). To this end, a new
approach to run-time health verification is required to ensure
eCPS continue to fulfill their operating requirements during
their lifetime. In this paper we introduce an approach and
supporting platform for verifying at run-time if the components
of elastic cyber-physical systems are: (i) deployed and running,
(ii) correctly configured, and (iii) provide expected performance.
We evaluate our platform on an eCPS for analysis of streaming
data from smart environments.

Keywords-elastic system, run-time verification, cyber-physical,
health

I. INTRODUCTION

A Cyber-physical System (CPS) is a system which has com-
ponents deployed both in the physical world (e.g., industrial
machines, smart buildings), and in computing environments
(e.g., data centers, cloud infrastructures)[1]. For example, a
smart factory could be considered as a CPS having compo-
nents: (i) inside assembly robots, (ii) inside sensor gateways
deployed in the factory to collect environmental conditions,
and (iii) deployed in a private data-center to analyze data
collected from robots and sensor gateways. An Elastic Cyber-
physical Systems (eCPS) can further add/remove components
at run-time, from computing resources to physical devices.
Elasticity enables eCPS to align their costs, quality, and
resource usage to load and owner requirements.

eCPS have started to generate interest in various domains

This work was partially supported by the European Commission in terms
of U-Test H2020 project (H2020-ICT-2014-1 #645463)

due to their adaptability. Such a domain is Industrie 4.01, in
which industrial enterprises can build complex elastic cyber-
physical systems linking their manufacturing processes with
private or public cloud services. Industrial eCPS would enable
manufacturing processes to adapt to varying usage patterns and
requirements. However, industrial systems are usually mission
critical, designed with strict requirements. Combining them
with cloud and elasticity introduces particular challenges and
problems which need to be addressed for realizing industry-
level eCPS. In general, managing systems using cloud services
requires a lot of effort[2]. First, there is almost certain that
failures at the cloud provider end will occur during the system
lifetime [3], [4], [5]. Failures can originate in the cloud hard-
ware layer, from physical resources such as servers, storage,
or network elements [6], [7]. A second source of failures is
the virtualization middleware used in the eCPS, which can
either fail itself due to internal bugs, or can cause the failure
of the software running on top of it [8]. Determining virtual-
ization failures is ever more important as CPS functionality is
increasingly virtualized. Today we can find virtualized sensors,
gateways, or communication networks[9], which increase the
complexity of managing eCPS. Another cause of failures is
system management operations, such as upgrades, which can
generate failures due to incorrect configurations or interfering
operations [10]. Failures can also occur due to software bugs
or resource congestion.

To this end, run-time health verification is required to
ensure eCPS fulfill their operating requirements, especially
after scaling actions adding/removing components at run-
time. Most of the existing run-time verification approaches
focus on the design of formal methods for the specification
of properties that must be verified at run-time [11], [12],
or simulate the system behavior in order to verify it [13],
[14]. Further, approaches which deal with running systems do
not consider their elasticity, such as anomaly detection [15],
[16], [6], or complex event processing [17]. eCPS run-time
verification requires a mechanism for executing verification
tests designed with system elasticity in mind. The platform
should be customizable to cope with heterogeneity between
components of cyber-physical systems, and enable their run-
time verification. Due to the novelty of elastic cyber-physical
systems, health analysis features should be provided to be
used both by humans and software controllers in determining

1http://www.plattform-i40.de/

Fig. 1: Architecture and deployment stack of elastic CPS for analysis of streaming data

unwanted behavior.
In this paper we address the problem of ensuring com-

plex elastic cyber-physical systems operate according to their
requirements. To this end, we introduce an approach and
supporting platform for verifying at run-time if system’s
components: (i) are deployed and running, (ii) are correctly
configured, and (iii) provide expected performance.

To achieve our objective, in the rest of this paper we identify
and answer the following research questions :

1) How to capture and manage the structure and deploy-
ment stack of Elastic Cyber-physical Systems?: by introducing
a model for describing their deployment stack and communi-
cation dependencies, and conceptual method for building run-
time verifiable eCPS.

2) How to describe run-time verification strategies for
Elastic Cyber-physical Systems with varying structure and
deployment stack complexity?: by defining a domain-specific
language for expressing health verification strategies at various
levels of complexity.

3) How to verify Elastic Cyber-physical Systems at run-time
considering their particular verification capabilities, structure,
and deployment stack?: by defining and implementing a
mechanism for enforcing both direct and indirect verification
tests, and an integrated run-time health verification platform.

The rest of this paper is structured as follows. Section II
presents the motivation behind this work. Section III de-
tails our approach for run-time verification of elastic cyber-
physical systems. Section IV introduces our run-time verifica-
tion platform prototype evaluated on an elastic cyber-physical
system for analysis of streaming data coming from smart
environments. Section V compares and contrasts related work.
Section VI concludes the paper and outlines future work.

II. MOTIVATION

The owner of a smart factory builds an elastic cyber-physical
system (eCPS) for analysis of streaming data coming from
the factory’s industrial robots, machines, and environmental
sensors (Fig. 1). The system can scale to adapt to changes
in load or factory requirements by adding and removing both
physical and cyber components. Factory sensors robots send
data to physical devices called Sensor Gateways. The gateways

perform local data processing and sends the data through
a HAProxy2 HTTP Load Balancer to Streaming Analytics
services hosted in virtual machines in a Private Cloud. The
Streaming Analytics service is deployed as a software artifact
in a Tomcat3 web server. Selected analytics results are pub-
lished to interested parties through a third-party Messaging
Service offered as it is by a Public Cloud provider.

The smart factory owner wants to ensure that the system
is healthy and operates within specified parameters, especially
after scaling actions which add/remove components. I.e., the
system is correctly configured, its components are deployed
and running, and provides expected performance.

To better understand the health issues affecting elastic
cyber-physical system, in the following we discuss in general
their scaling and failure possibilities. In Fig. 3 we exemplify
the possibilities of scaling system components according to
their deployment stack. First, one might be able to change
software properties at Software Level. Considering that
each instance of a system component runs as a standalone
process, at the Process Level one is able to create more
component instances, and destroy them processes when no
longer needed. This level can benefit situations in which
the component does not suffer from resource congestion,
and there are still enough computing resources unused. The
next elasticity level is the Virtualization Container
Level, in which processes belonging to different component
instances are executed in isolation, due to specific concerns.
At this level one can create multiple such containers (e.g.
Docker4) inside the same virtual or physical machine. Similar
to the container level, at the Virtual Machine Level one
is able to allocate/deallocate virtual machines to run instances
of a system component or virtual containers, providing com-
plete OS isolation between each VM, and thus, potentially
increased security. Finally, at the Cloud level, one is able
to change the cloud provider used by the system, while in
the Physical World a user can chose where to deploy
and run the physical devices and machines. As each of these

2http://www.haproxy.org/
3http://tomcat.apache.org/
4https://www.docker.com/

Fig. 2: Approach for run-time verification of elastic cyber-physical systems

Fig. 3: Possibilities to horizontally scale a system component

Stack Level Potential failure causes
Service Incorrect configuration. Software bugs. User behavior.

OS Process Incorrect configuration. Resources congestion.
Virtual Container Incorrect configuration. Container middleware failure.

Resources congestion.
Virtual Machine Incorrect configuration. Virtualization middleware failure.

Resources congestion.
Physical Physical device/machine hardware failure. Network failure.

Device/Machine Power failure.

TABLE I: Example of potential failures at system different
deployment stack levels

levels provides elasticity capabilities, very complex eCPS can
be created by combining them.

eCPS failures might occur during the enforcement of scaling
actions, or during the normal operation of the system. We
capture main failure possibilities and example of potential
failure causes in Table I. At the software level common sources
of failure are software bugs, incorrect software configura-
tion, or resources congestion. Virtual machines and containers
can also exhibit failures originating in configuration errors,
virtualization middleware, resources congestion or failure of
underlying hardware. In public cloud providers errors can
also appear from interaction errors, cost issues, or natural
phenomena. Finally, physical devices can exhibit failures gen-
erated by external sources such as failure in power, network
communication, or device hardware.

For maintaining elastic cyber-physical systems within their
operation parameters, their owners need to determine and
pinpoint the cause of system health problems. To this end
in this paper we introduce a new approach and supporting
platform for run-time health verification of eCPS.

III. RUN-TIME HEALTH VERIFICATION APPROACH

We introduce a platform for run-time health verification of
elastic cyber-physical systems (eCPS) addressing the needs ex-
pressed in the previous section (Fig. 2), providing functionality

for:
1) Specifying the logical structure of elastic cyber-physical

systems, introducing a model capturing their deployment
stack and communication dependencies.

2) Managing the run-time structure of elastic cyber-
physical systems, introducing a decentralized
notification-based system for managing addition/removal
of system components.

3) Specifying verification strategies, introducing a domain-
specific language for defining periodic and event-driven
execution of direct and indirect verification tests on
different system components.

4) Executing verification strategies, introducing a dis-
tributed mechanism based on remote code execution
for execution of verification tests and collection of
verification results.

5) Notifying interested parties about the verification re-
sult, introducing mechanisms for notifying users about
changes in the result of verification tests.

A. Health verification tests

We consider verification as enforcement of verification tests
considered black boxes. This enables us to manage verification
tests customized for specific systems, increasing the applica-
bility of our approach. To this end we conceptually define a
verification test as a function Test in Eq.1:

Test : D → R ∈ [0, 100]|

{
0 = complete failure

100 = complete success
(1)

The function applies a set of custom operations having
as domain D system specific parameters, and as output a
real non-negative number in the [0..100] domain. The output
indicates the degree with which the system passed the test,
0 meaning complete test failure and 100 complete success.
Using a range for test results enables the specification of also
intermediary states, such as ”degraded system behavior”, as
values between 0 an 100. It is the responsibility of specific
users to define custom tests and translate their results in the
[0,100] range according to particular system requirements and
their beliefs over system health [18].

B. Modeling elastic cyber-physical systems

To realize the functionality for specifying the logical struc-
ture of elastic cyber-physical systems we need a model for
capturing the deployment stack and dependencies of system
components. As our goal is run-time verification of real eCPS,

Fig. 4: High level eCPS model

the model must capture the state of the run-time infrastructure.
The model must also be applicable to heterogeneous eCPS,
and easy to extend with additional types of components
depending on particular systems. To this end we introduce
an abstract model (Fig. 4) for representing eCPS components
and their run-time instances. Our model targets only the
infrastructure of eCPS and is designed with simplicity and
generality in mind. These properties allow the model to be
applied to a wide range of systems without requiring a large
amount of domain-specific knowledge.

We first capture Physical Machine, Physical Device, and
Virtual Machine (VM) components, crucial in describing sys-
tems which run both in the cloud and in the physical world.
We capture Virtual Container components to describe and
verify virtualization containers such as Docker. Increasing
the verification detail, we capture OS Process, and Service
components. Capturing components from different stack levels
enables hierarchical testing, in which we can verify the lower
level (e.g., VM), and if that succeeds, verify the higher levels
(e.g., OS Process running inside a VM). Additional component
types can be defined by extending the Type enumeration.

A system Component can have one or more Component
Instances according to the system’s run-time structure. E.g.,
multiple instances of the Streaming Analytics component
from Section II. A component instance can be hostedOn
another component, e.g., an OS Process running inside a
Virtual Machine. The reverse relationship of hostedOn is
hosts, enabling model navigation in the opposite direction.
Instances can also communicate with other instances, cap-
tured with a connectsTo relationships. Further, components
can be combined to achieve functionality. We use the term
Composite Component to describe combinations of multiple
system components working towards the same functionality
goal. For example, the Streaming Analytics component using
a VM hosting a Web Server hosting in turn a RESTful Service.

Literal Description
Type Represents a component type according to elastic system representation

model captured in Fig. 4
ID Represents a custom component ID used to identify a component (e.g.,

a system component) in the system’s design-time structure
UUID Represents the unique ID of a deployed system component instance. An

elastic system component (e.g., web server) can have multiple instances
running at one time.

Event Represents a custom defined system event identified by its name or ID
(e.g., scale-out)

TABLE II: Literals in verification strategy grammar
Keyword Description

Description Marks the test description section
name Marks the name of the test to be executed

description Human-readable description of the test to be executed
timeout Defines a timeout in which test result must be received before

considering the test failed
Triggers Marks the test triggers section defining when the test is executed

event Specifies that the test should be executed when certain events are
encountered

on Used to specify on which system component the event must be
detected to trigger test execution

every Used to specify periodical test execution
Execution Marks the section describing what component executes the test
executor Defines for which components the test is executed, and which

components will execute it
for Used to define what component executes a test defined for the same

or another component

TABLE III: Keywords in verification strategy grammar

C. Preparing eCPS for health verification

To be verifiable, systems must expose the necessary ver-
ification capabilities to determine health problems deemed
important. To this end, a user of our platform must first answer
the next questions:

1) What characterizes a system and its components as
healthy?: The system developer must decide what does it
mean to be healthy for each system component and deploy-
ment stack level.

2) When and how can the system and its components fail?:
Depending on particular systems, failures can appear anytime,
or can be induced by certain control processes.

3) When and how can the system and its components
encounter health issues?: Depending on particular systems,
unhealthy behaviors can appear anytime, or could be induced
by certain control processes.

4) What verification capabilities provide information about
system health?: It is important to understand what are the
verification capabilities provided by the system, and which
must be implemented.

Answering these questions enables system owners or devel-
opers to define appropriate verification strategies, for which
we introduce in the next section a domain specific language.

D. Defining verification strategies

We realize the functionality for specifying system verifica-
tion strategies by introducing a domain-specific language. The
language identifies a set of concepts required to identify the
system component to be verified, the verification tests to be
enforced, and events defining when the verification tests should
be executed. We capture these concepts in Table II, and use
them in the language as literals. The keywords used in the
language are defined and explained in Table III.

In the following we describe in Extended Backus-Naur
Form (EBNF) our grammar for specifying verification strate-
gies. Non-terminals are marked using <>, optional specifica-
tions with [], and groupings with (). | should be interpreted as
logical OR, and ::= as ”is defined as”. Enumerations of zero
or more elements are marked as ∗{element}, and of one or
more elements as +{element}.

Using Production 2 we allow for maximum flexibility the
identification of the system component to verify by its ID,
instance ID, or Type (according to types defined in Fig. 4).
We further capture custom system events used to trigger test
executions by event name/id. For flexibility, we enable the
enumeration of one or more component or event identifiers
using Production 3.

< id >::= (Type ”.” < type >) |
(ID | UUID | Event) ”.” < string > (2)

< idExpr >::= < id > ∗ {”, ” < id >} (3)

We write one verification strategy for each verification test,
structured in three parts: (i) test properties Description,
(ii) specification of test execution Triggers , and (iii) test
Execution information. The test properties can be defined
using Production 4, specifying for each test a name, a human-
readable description, and optional timeout. The name is used
to identify the test. A timeout is used to mark as failed tests
which do not return results in the specified interval of time.
< dExpr >::= Description (name ” : ” < string >)

(description ” : ” < string >)

[(timeout ” : ” < integer > < timeUnit >)]
(4)

We use triggers to specify when a particular test should be
executed using Production 5. A trigger can be an event, or a
periodic timer.

< tExpr >::= Triggers

(+{event ” : ” < string > on < idExpr >})
(every ” : ” < integer > < timeUnit >) (5)

We support both direct and indirect tests, as detailed in
the next section. Thus, in the last strategy section we specify
using Production 5 which component will execute the test. One
or more executor specifications can be defined, describing
which specific executor to execute the test for which specific
component identifier. A distinct keyword states that the
test executor must be other than the test target, useful in exe-
cuting indirect tests from components with the same identifier
(e.g., pinging a VM from another VM).

< eExpr >::= Execution+ {executor ” : ”

< idExpr > for + {< idExpr >}[distinct]} (6)

E. Verification strategies enforcement process

For enforcing verification tests we define two core entities.
The first entity is a centralized run-time Verification Orches-
trator. It is responsible for managing the system structure,

Fig. 5: Run-time verification process and interactions

dispatching tests, and collecting and analyzing results. The
second core entity is a Test Executor. One Test Executor can be
deployed along each system component, and it is responsible
for executing tests received from the Verification Orchestrator.
It further sends events notifying the Verification Orchestrator
when a component instance was added or removed.

We determine two types of verification tests to support:
direct and indirect. Direct tests are executed by the test
executor of the tested component. E.g., verifying the CPU
usage of a VM can be done from inside the VM. However,
many tests must be executed indirectly. Thus, an indirect test
is executed by a third party executor, either the test executor of
the component hosting the tested component, or an unrelated
executor. E.g., verifying if a VM is running can be done by
pinging it from another VM using an indirect test.

The core verification entities and defined interactions are
depicted in (Fig. 5). To verify eCPS at run-time, we must
maintain an accurate view over their run-time structure, i.e.,
their components’ instances. eCPS can be controlled and
managed using both centralized and decentralized mechanisms
[19]. A centralized controller could inform about any changes
to the system’s structure, such as addition/removal of com-
ponents. However, in autonomous distributed control, each
system component might be its own controller. To cover both
scenarios, we design a mechanism in which each system
component is responsible for notifying about any changes
concerned to itself. E.g., each component instance notifies that
it has been added to the system, or before being removed. We
consider that any action that changes the structure of an elastic
system can be mapped to two fundamental actions: {add,
remove} component. We represent the steps and interactions
in our approach as a sequence diagram in Fig. 5. When a

new component instance is added in the system (e.g., scaling-
out), it will query (step 1.1) the unique identifier (UUID)
of the component hosting it (if any). It will then use the
UUID to instantiate a Test Executor (step 1.2), which notifies
the Verification Orchestrator (step 1.3) that a new component
instance was added. The Verification Orchestrator dispatches
verification tests. If an indirect test is dispatched (step 2.1), it
will be executed by the test executor of the targeted component
(i.e., hostedTE:TestExecutor). Indirect tests (step 3.1) are
executed by the test executor receiving the test command from
the Verification Orchestrator (e.g., hostingTE:TestExecutor).
Finally, when a system component is removed from the system
(e.g., scaling-in), the component notifies its test executor (step
4.1), which in turn notifies the Verification Orchestrator (step
4.2), which removes the component from its internal system
representation. The Verification Orchestrator also generates
events to which third parties can subscribe for component ad-
dition/removal and test execution results, enabling controllers
to reach system behavior.

IV. EVALUATION

A. Verification platform prototype

We implement our run-time verification platform prototype5

(Fig. 6) in Python due to its reduced complexity in deploy-
ing and operating the platform. Our platform implements
the two entities described in Section III-E: a centralized
Verification Orchestrator providing most of the
platform’s functionality, and a Test Executor component
deployed along system components to enforce verification
tests. We expect custom test executors to be implemented
for particular target systems, and provide a Messaging
Queue. The queue acts as a communication broker between
the Verification Orchestrator and Test Executors, hiding their
particular implementation details from each other. We use
RabbitMQ6 for the queuing middleware, as it supports both
AMQP and MQTT protocols, providing a queuing solution
applicable to a wide range of systems and components. The
platform’s functionality is divided between: (i) a System
Structure Manager handling any structure-related oper-
ation; (ii) an Events Manager handling the processing of
events received from the test executors due to verification
results or addition/removal of system component instances;
(iii) a Tests Execution Manager dispatching verifica-
tion tests; (iv) a Persistence Manager using SQLite7

to persist system and verification information; and (v) a UI
Manager handling interactions with the platform’s web user
interface. For ease of use and integration with third party
software components, we implement the interactions with
our run-time verification platform as RESTful services using
Flask8 and JSON9. We also implement a web-based interface

5http://tuwiendsg.github.io/RuntimeVerification/
6https://www.rabbitmq.com/
7https://www.sqlite.org/
8http://flask.pocoo.org/
9http://www.json.org/

Fig. 6: Run-time verification platform prototype

relying on HTML, Javascript and and D3.js10 enabling human
users to interact with our platform. A verification test is a self-
contained sequence of Python code and we provide a library to
report the results of particular test executions. We also provide
a contextualization mechanism that injects in each python test
variables denoting the ids and uuids of the test target and
executor to be used in the test.

B. Defining What?, When?, and How? to verify

In the rest of this section we highlight the capabilities of
our platform using the system described in Section II. The
system owner deploys Sensor Gateway components on
RaspberryPi11. A private OpenStack cloud is used to deploy
and run instances of Streaming Analytics composite
component. For each instance a VM is deployed, running a
Tomcat process hosting a Streaming Analytics web service.
Finally, a the Messaging Service uses a third party
message queue software as a service from CloudAMQP12.

To verify the health of an eCPS, the user first needs to
determine What?, When?, and How? to verify. In the following
we focus on the Streaming Analytics composite com-
ponent and detail how our platform supports its verification.
The health indicators determined from answering the above
questions are captured in TABLE IV. The system owner
first determines What? to verify considering the component
structure, and determines the following health indicators:

• The VM component is healthy if it is network accessible
(TABLE IV row 1)

10https://d3js.org/
11https://www.raspberrypi.org/
12https://www.cloudamqp.com/

• The Tomcat component is healthy if its Java process
runs and it receives requests from the Load Balancer
(TABLE IV row 2)

• The Service component is healthy if its response time
is < 1s (TABLE IV row 3)

Next, the user determines When to verify each health indica-
tor, and defines one or more verification descriptions for each
indicator using our domain specific language introduced in
Section III-D. The strategy for verifying if the VM component
is healthy is depicted in Listing 1. As the Streaming Analytics
is elastic, network accessibility should be verified when a
new VM is created. A test Trigger entry is added (Line 5)
for the event: "Added" for ID.”VM.StreamingAnalytics”
representing the Streaming Analytics VMs, detected by our
verification platform. VMs can also fail at run-time due to
various factors. Network accessibility should be also verified
periodically during the system’s run-time. To this end a
every: 30 s periodic test trigger is defined in the strategy
(Line 6). The executor of the test must also be specified. VM
network accessibility should be verified from outside the VM.
Thus, a distinct executor is requested (Line 9), having the
type VirtualMachine. Finally, a timeout specifies how
long to wait for the test result before considering that it has
failed (Line 2). This is useful if something happened to the
test executor component, e.g., it has also failed.

The user must further decide How each health indicator
can be verified depending system capabilities. The VM net-
work accessibility indicator can be verified using the ping
command available in each VM operating system. Using our
platform, the test is defined as a standalone Python script
depicted in Listing 2. The script can use contextualized
variables injected at test execution by our platform, such
as targetID, which for VMs is their IP (Line 6). It is
the responsibility of the test designer to use domain-specific
knowledge in implementing the test logic and deciding when
a test is successful or not (Lines 8-11). Each test result is be
returned using the type defined by our platform (Line 13).

Component What When Verification test
to verify? to verify? to verify? implementation

1. VM VM network
accessible

After event: VM
ADDED Linux ping

commandPeriodically:
every 30
seconds

2. Tomcat

Tomcat Java
process runs.

After event: VM
ADDED

Linux-specific
commands: ps
aux | grep
tomcat

Tomcat receives
requests from the
Load Balancer

After event: VM
ADDED

Custom system
capability to
verify if IP of VM
hosting Tomcat
processes is in
Load Balancer
configuration file

3. Service Service response
time is < 1s

Periodically:
every 30
seconds

Custom
service API
exposing response
time

TABLE IV: Health indicators for Streaming Analytics com-
posite component

Listing 1: VM network accessible: verification strategy
1 D e s c r i p t i o n
2 t imeout : 30
3
4 T r i g g e r s
5 every : 30 s
6 event : ” Added ” on ID . ”VM. S t r e a m i n g A n a l y t i c s ”
7
8 Execut ion
9 e x e c u t o r : d i s t i n c t Type . V i r t u a l M a c h i n e f o r

10 Type . V i r t u a l M a c h i n e

Listing 2: VM network accessible: test implementation
1 # t e s t imp lemen ted as s t a n d a l o n e py tho n code
2 # a l l i m p o r t s must be l o c a l
3 os = impor t (’ os ’)
4 # c o n t e x t u a l i z e d ” t a r g e t I D ” v a r i a b l e
5 # e x e c u t i n g cus tom OS command
6 r e s p o n s e = os . sys tem (” p ing −c 1 ” + t a r g e t I D)
7 # c o n s t r u c t r e s u l t
8 i f r e s p o n s e == 0 : # i f p ing f a i l s r e s p o n s e i s 256
9 s u c c e s s = 100

10 e l s e :
11 s u c c e s s = 0
12 # T e s t R e s u l t t y p e p r o v i d e d by our v e r i f i c a t i o n p l a t f o r m
13 re turn T e s t R e s u l t (s u c c e s s , r e s p o n s e)

Using our language a user can easily specify what, when,
and how to verify. Enabling users to define their verifica-
tion test as self-contained Python ensures our approach is
applicable to a wide range of systems, Python enabling the
implementation of both simple and complex tests.

C. Managing structure of elastic cyber-physical systems

To verify a system, its static structure description is sub-
mitted to our platform as JSON. An excerpt is shown in
Listing 3, detailing the Streaming Analytics composite com-
ponent. The system is described as a recursive composition
of components according to the model introduced in Sec-
tion III-B. Each component has a name, type, and potential
containedComponents. A component can also be hosted
on another component, indicated by hostedOn property.

In the following we evaluate if our platform detects when
the system structure changes due to additions and removal

Listing 3: Static system structure JSON description
{ ’name ’ : ’ System ’ ,

’ containedComponents ’ : [
{ ’name ’ : ’ S t r e a m i n g A n a l y t i c s ’ ,

’ type ’ : ’ Composite ’ ,
’ containedComponents ’ : [
{ ’name ’ : ’VM. S t r e a m i n g A n a l y t i c s ’ ,

’ type ’ : ’ V i r t u a l M a c h i n e ’
} ,
{ ’name ’ : ’ P r o c e s s . Tomcat ’ ,

’ type ’ : ’ P r o c e s s ’ ,
’ hostedOn ’ : ’VM. S t r e a m i n g A n a l y t i c s ’

} ,
{ ’name ’ : ’ S e r v i c e . S t r e a m i n g A n a l y t i c s ’ ,

’ type ’ : ’ S e r v i c e ’ ,
’ hostedOn ’ : ’ P r o c e s s . Tomcat ’

}
]

} ,
{ ’name ’ : ’ LoadBalancer ’ ,
. . .
,{ ’name ’ : ’ M e s s a g i n g S e r v i c e ’ ,
. . .

No. Component Information
Type ID UUID

1 VirtualMachine VM.StreamingAnalytics 10.99.0.68
2 Process Process.Tomcat 10.99.0.68-Tomcat
3 Service Service.StreamingAnalytics 10.99.0.68-Tomcat-

StreamingAnalytics

TABLE V: Events information for added/removed Streaming
Analytics instance

Fig. 7: Number of component instances determined from
added/removed events

of Streaming Analytics components. To simulate the behavior
of elastic systems, we implement a cloud controller which
scales out the system by adding 10 Streaming Analytics
component instances, one instance every 2 minutes. After
the initial additions, the system goes through a set of 10
scale in/out operations adding and removing one Streaming
Analytics component instance every 10 minutes. Finally, the
system scales down by removing one Streaming Analytics
instance every 2 minutes. In the current evaluation setup the
test executors are deployed as OS services inside each VM.

Adding a component instance implies allocating a new VM,
deploying and starting a Tomcat process on it, hosting a
Streaming Analytics service. Additionally, the IP of the new
VM is added in the system’s Load Balancer, enabling
the added component to handle requests and data. One Test
Executor is deployed for each VM, Process, and Service
components. The executor is implemented in our prototype to
send messages to the run-time verification platform when the
executor service is started and stopped.

Table V shows the events generated by the test executors
of one Streaming Analytics instance. Each event contains
information about the type, ID, and UUID (unique instance
id) of each added component, along with more information
not shown here, such as id of the component’s system. Based
on these events we depict in Fig. 7 the number of VM, Tomcat,
and Service instances over the evaluation time.

This evaluation shows that our platform can be applied on
elastic cyber-physical systems, as it can be used to detect when
component instances are added or removed.

D. Determining system health problems due to scaling

Next we focus on evaluating how our platform aids users in
determining if particular system components are not healthy.
To this end we inject failures when scaling the Streaming
Analytics component. We prepare three VM images to be used
in scaling. One image contains a correct component configu-
ration. In the second image the component’s Tomcat process

Fig. 8: Verification results for added Streaming Analytics
instances

does not register itself in the Load Balancer after starting. In
the third configuration the Tomcat process fails to start. Our
platform is used to verify the system and generate events if any
of the defined tests for Tomcat and Service components fail
(row 2 in Table IV). We use the previously implemented cloud
controller and iteratively scale out the Streaming Analytics
component by adding one VM at a time, iterating through
the three configurations. For testing if the added Streaming
Analytics instances are healthy we define 2 tests: (i) a Tomcat
Running test verifying if the Tomcat process is running, and
(ii) a Registered in Load Balancer test verifying if
the IP of the VM hosting the Tomcat process appears in the
system’s Load Balancer configuration.

In Fig. 8 we depict with columns for each test Passed
and Failed events generated by our platform for the first 6
scale out actions. We further depict with a line the number of
Streaming Analytics instances, to easily identify that the test
results belong to a newly added component instance. In the 6
scaling actions, 3 instances are created for each configuration.
From the figure we see that the first instance using the correct
configuration passes all tests. The second instance fails the
second test, due to configuration 2 not registering the instance
in the Load Balancer. The third instance fails both tests.

Thus, using our platform, users can define fine-grained
verification strategies and test their systems at multiple levels.

E. Determining system health problems at run-time

In the following we highlight how our approach can detect
virtual infrastructure failures occurring at run-time. We focus
on the health indicator from row 1 in Table IV, and use
our platform to define a verification strategy for periodically
testing if each VM is network accessible. We use the pre-
viously implemented cloud controller, deploy 10 Streaming
Analytics instances (i.e., VMs), and introduce iteratively 20
infrastructure failures by suspending one random VM at a
time. Fig. 9 depicts the test failures determined by our platform
and the associated VM IP which has been determined not to
function anymore by not responding to ping.

This evaluation scenario highlighted that our platform can
be used to determine health problems emerging during system
run-time, identifying the failed component.

Fig. 9: Determined virtual infrastructure failures

F. Verifying third-party system components

In the following we verify black-box components which
permit interaction only through well-defined APIs and do not
allow installation of test executors. Verifying such components
is crucial for eCPS deployed in industrial scenarios (e.g.,
Industrie 4.0) where manufacturing machines and robots are
considered system components. In the following we focus
on the third-party black-box Messaging Service. The
service is offered by CloudAMQP, exposing over Internet
the API of a standalone RabbitMQ deployment. The system
owner answers the What? and When? to verify that the
component is alive, i.e., its provider has not encountered
failures. How? to verify is answered by checking if the
RabbitMQ API ”/api/overview” is online and accessible. Then,
a developer implements the verification test as a Python
sequence of code issuing a HTTP GET with his CloudAMQP
credentials to the service’s API. The system owner or de-
veloper further defines a verification strategy to execute the
test every 30 seconds from any running VM, describing
the test executor as executor: Type.VirtualMachine
for ID."MessagingService". Finally, the developer
can send an alive message to our platform (Table V) notifying
that the component is running and should be tested.

Using our platform, a system owner can verify directly and
indirectly both white and black-box components. This is crucial
in verifying eCPS operating in industrial scenarios, which can
be composed from both white-box software components and
black-box physical devices provided by third parties.

V. RELATED WORK

Most of existing verification approaches can be classified
from three perspectives: (i) approaches relying on formal
methods for the specification of properties that must be verified
at run-time, (ii) approaches verifying systems by simulating

run-time behaviors and verifying state transitions, and (iii) ap-
proaches verifying running systems deployed in real scenarios.

Belonging to the first category, Garcı́a-Valls et al.[20] in-
troduce an approach for formally verifying at run-time config-
uration changes in adaptive cyber-physical systems resulting
from adaptation processes. Baldellon et al.[11] monitor system
properties at run-time, using historical monitoring data to
trigger transitions in a Petri net that describes behavioral and
temporal properties of the system. Camilli et al.[12] employ
a similar approach, using Time-Basic Petri nets to specify
and verify the behavior of self-adaptive systems. Compared
with formal approaches we tackle problems related verifying
running systems. We consider that formal methods provide
the techniques for designing verification strategies, and our
approach provides the necessary mechanisms for enforcing
them at system run-time.

Verifying systems using simulations, Cardozo et al.[13]
introduce an approach using symbolic code execution to
maintain the system state and verify the system behavior with
respect to a set of defined behavioral requirements. The authors
also argue that as systems grows in complexity, it becomes
increasingly difficult to verify about every possible runtime
adaptation in a static context, verifying the system’s run-time
behavior becoming crucial in determining potential failures.
Torjusen et al.[21] argue that properties and objectives of self-
adaptive systems must be verified at run-time to cope with
changing environmental conditions and the self-adaption itself.
To this end the authors introduce run-time verification enablers
in a feedback adaptation loop of to guarantee the achievement
of security properties in eHealth systems. Ferrante et al.[14]
introduce a pattern-based mechanism for describing system
behavioral requirements as contracts, explicitly capturing the
conditions and assumptions over the behavior and interaction
of all system components. Mdhaffar et al. [22] define an
adaptive complex event processing architecture for analysis of
cloud systems, switching between centralized and distributed
analysis depending on requirements. In our approach we
do not simulate system behavior. Instead, we introduce a
mechanism for verifying real systems during their run-time.

Verifying running systems, Doelitzscher et al.[15] deal with
security intrusions in cloud-based systems. The authors intro-
duce a behavioral learning solution which detects behavioral
anomalies. Wang et al.[16] introduce a flexible monitoring
and analysis middleware for troubleshooting large-scale multi-
tier applications used for on-line processing of live data. The
middleware collects metrics and determines based on a set
of rules when the metric values exceed allowed boundaries.
Chen et al.[6] introduce a machine learning approach for
predicting job-level and task-level failures in clouds based
on historical resource usage metrics. Saleh et al.[17] define a
framework for complex event processing which collects cloud
infrastructure utilization metrics as data streams. The data
streams are further analyzed to determine patterns and rela-
tionships providing behavioral indicators about cloud systems.
Bonakdarpour et al.[23] introduce a time-triggered approach to
run-time verification, in which a monitor takes samples from

the system with a constant frequency, in order to analyze its
health. Nelissen et al.[24] highlight that run-time verification
cannot be achieved without appropriate monitoring and test
enforcement mechanisms, and introduce an approach relying
on code introspection for building a run-time verification
platform. Todman et al.[25] argue that static testing cannot
determine all health problems that can occur at run-time
for large systems, and introduce an approach for embedding
verification tests as asserts in the system hardware.

Most verification approaches require detailed knowledge
about the eCPS software, or do not consider its elasticity. We
differ as we introduce a customizable mechanism relying on
verification capabilities exposed by each system component.
We further tailor our approach for systems which change their
structure at run-time, automatically managing their structure.

VI. CONCLUSIONS

In this paper we have introduced an approach and supporting
platform for run-time verification of elastic cyber-physical sys-
tems (eCPS). We have highlighted the importance, challenges,
and problems in verifying such systems at run-time. We have
defined a model for representing from simple to complex
system structures and deployment stacks, based on which
we have introduced an approach for verifying them at run-
time. We have defined a domain-specific language enabling
the specification of verification strategies with varying levels
of complexity, supporting both direct and indirect execution
of verification tests. We have implemented our approach in
a platform for run-time verification of eCPS. The platform
provides functionality for automatically managing the chang-
ing structure of eCPS, and generates events for each change
in system structure and verification test results. We have
evaluated our approach on an eCPS having both white and
black-box components for analysis of streaming data coming
from smart environments. We have demonstrated that using
our platform, users can successfully verify elastic cyber-
physical systems with complex deployment stack, manage
their changing structure, and determine health problems.

We further plan to study and develop classification and
analysis techniques on the events received from the verification
platform, towards creating a controller to enforce actions
addressing determined eCPS health problems.

REFERENCES

[1] E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, p. 4837, 2015.

[2] “5th annual trends in cloud computing,” CompTIA, Tech. Rep.,
October 2014. [Online]. Available: https://www.comptia.org/resources/
5th-annual-trends-in-cloud-computing

[3] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto,
“Online failure prediction in cloud datacenters by real-time message
pattern learning,” in International Conference on Cloud Computing
Technology and Science (CloudCom), Dec 2012, pp. 504–511.

[4] B. Javadi, J. Abawajy, and R. Sinnott, “Hybrid cloud resource provi-
sioning policy in the presence of resource failures,” in International
Conference on Cloud Computing Technology and Science (CloudCom),
Dec 2012, pp. 10–17.

[5] A. Sampaio and J. Barbosa, “Dynamic power- and failure-aware cloud
resources allocation for sets of independent tasks,” in International
Conference on Cloud Engineering (IC2E), March 2013, pp. 1–10.

[6] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure prediction of jobs
in compute clouds: A google cluster case study,” in International
Symposium on Software Reliability Engineering Workshops (ISSREW),
Nov 2014, pp. 341–346.

[7] R. Potharaju and N. Jain, “When the network crumbles: An empirical
study of cloud network failures and their impact on services,” in Annual
Symposium on Cloud Computing (SOCC). New York, NY, USA: ACM,
2013, pp. 15:1–15:17.

[8] J. Navas-Molina and S. Mishra, “Cudswap: Tolerating memory exhaus-
tion failures in cloud computing,” in International Conference on Cloud
and Autonomic Computing (ICCAC), Sept 2014, pp. 15–24.

[9] H. L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.

[10] M. Fu, L. Zhu, L. Bass, and A. Liu, “Recovery for failures in rolling
upgrade on clouds,” in International Conference on Dependable Systems
and Networks (DSN), June 2014, pp. 642–647.

[11] O. Baldellon, J. C. Fabre, and M. Roy, “Minotor: Monitoring timing
and behavioral properties for dependable distributed systems,” in Pacific
Rim International Symposium on Dependable Computing (PRDC), Dec
2013, pp. 206–215.

[12] M. Camilli, A. Gargantini, and P. Scandurra, “Specifying and verifying
real-time self-adaptive systems,” in International Symposium on Soft-
ware Reliability Engineering (ISSRE), Nov 2015, pp. 303–313.

[13] N. Cardozo, L. Christophe, C. De Roover, and W. De Meuter, “Run-
time validation of behavioral adaptations,” in International Workshop on
Context-Oriented Programming (COP). New York, NY, USA: ACM,
2014, pp. 5:1–5:6.

[14] O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, C. Sofronis,
and M. DAngelo, “Monitor-based run-time contract verification of dis-
tributed systems,” in International Symposium on Industrial Embedded
Systems (SIES), June 2014, pp. 1–4.

[15] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, “Anomaly detection
in iaas clouds,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 1, Dec 2013, pp. 387–394.

[16] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar, M. Wolf,
and C. Huneycutt, “Vscope: Middleware for troubleshooting time-
sensitive data center applications,” in International Middleware Con-
ference (Middleware), 2012, pp. 121–141.

[17] O. Saleh, F. Gropengiesser, H. Betz, W. Mandarawi, and K.-U. Sattler,
“Monitoring and autoscaling iaas clouds: A case for complex event
processing on data streams,” in International Conference on Utility and
Cloud Computing (UCC), Dec 2013, pp. 387–392.

[18] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz,
and R. Norgren, “Understanding uncertainty in cyber-
physical systems: A conceptual model,” Tech. Rep., Nov
2015. [Online]. Available: https://www.simula.no/publications/
understanding-uncertainty-cyber-physical-systems-conceptual-model

[19] A. De Paola, M. Ortolani, G. Lo Re, G. Anastasi, and S. K. Das,
“Intelligent management systems for energy efficiency in buildings: A
survey,” ACM Computing Surveys, vol. 47, no. 1, Jun. 2014.

[20] M. Garcı́a-Valls, D. Perez-Palacin, and R. Mirandola, “Time-sensitive
adaptation in cps through run-time configuration generation and verifica-
tion,” in Computer Software and Applications Conference (COMPSAC),
July 2014, pp. 332–337.

[21] A. B. Torjusen, H. Abie, E. Paintsil, D. Trcek, and A. Skomedal,
“Towards run-time verification of adaptive security for iot in ehealth,”
in European Conference on Software Architecture Workshops (ECSAW).
New York, NY, USA: ACM, 2014, pp. 4:1–4:8.

[22] A. Mdhaffar, R. Ben Halima, M. Jmaiel, and B. Freisleben, “A dynamic
complex event processing architecture for cloud monitoring and analy-
sis,” in IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, Dec 2013, pp. 270–275.

[23] B. Bonakdarpour, S. Navabpour, and S. Fischmeister, “Time-triggered
runtime verification,” Formal Methods in System Design, vol. 43, no. 1,
pp. 29–60, 2013.

[24] G. Nelissen, D. Pereira, and L. M. Pinho, Ada-Europe International
Conference on Reliable Software Technologies. Cham: Springer Interna-
tional Publishing, 2015, ch. A Novel Run-Time Monitoring Architecture
for Safe and Efficient Inline Monitoring, pp. 66–82.

[25] T. Todman and W. Luk, “Runtime assertions and exceptions for stream-
ing systems,” in International Conference on Field programmable Logic
and Applications, Sept 2013, pp. 1–4.

