
Modeling Elasticity Trade-Offs in Adaptive Mixed
Systems

Muhammad Z.C. Candra, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstraße 8/184-1, A-1040 Vienna, Austria
Email: m.candra,truong,dustdar@dsg.tuwien.ac.at

Abstract—In the past decade, elastic computing has emerged
as a popular solution approach for on-demand computing re-
sources’ provisioning. Today, such dynamic resource provisioning
is used not only in machine-based computing systems but also in
mixed systems containing machine- and human-based computing
elements. Many efforts have been undertaken to achieve resource
elasticity. However, to provide a truly elastic computation, system
designers also need to foresee trade-offs between cost, quality,
and resources. Unfortunately, the lack of modeling tools leads to
difficulty in designing on-demand provisioning strategy in mixed
systems. In this paper we present a modeling tool named Elasticity
Profile (EP) that specifies constructs for modeling the elastic
behavior of mixed systems with respect to trade-offs between cost,
quality, and resources. We also present a conceptual framework
where our EP can be deployed, utilized, and bound to runtime
systems. Furthermore, we demonstrate the suitability of EP model
using several use cases.

Keywords—cloud computing, human computing, elasticity strat-
egy, elasticity modeling tool

I. INTRODUCTION

In the plethora of cloud computing today, we are seeing
elastic computing as a popular mechanism for achieving dy-
namic resource provisioning. Elasticity defines one key quality
of cloud computing: resources must be managed by scaling
up and down as needed so that limited resources can be
offered for potentially unlimited uses [1]. When designing a
system with an elastic behavior, it is important to consider
not only the resources but also the trade-off between cost and
quality. Let us consider, for example, a typical Software-as-
a-Service (SaaS) of a complex application which consists of
many application components; each component has its own
quality metrics such as performance, reliability, throughput,
and so on. These quality metrics may be dynamically specified
by the customer and affect the SaaS provider’s decision to
scale up/down resources. These changes eventually affect the
cost needed for the resource provisioning and the cost charged
to the customer.

Nowadays, human-based computation also plays an impor-
tant role in overall service architectures. Many efforts have
been done for dynamic human-based resources provisionings
on the cloud such as found in crowdsourcing. A mixed system
is a system that contains a mix of both, machine-based
computing elements (MCEs), and human-based computing
elements (HCEs). The following simplified cases illustrate
elastic behaviors in the context of MCEs and HCEs:

• If the CPUs utilizations of existing machine instances
are above 80%, then an additional machine instance
must be added.

• When the average utilization of the human workers
on a running pool is above 8 hours per day, then
additional workers must be assigned to the pool.

• A human-task requester wants to pay a cheaper price
if the worker takes more than 1 hour to finish the task.

In such situations, several challenging questions may arise.
How can providers and/or requesters model the cost of a
service based on the quality adjustment? And furthermore, how
the reseources can be scaled based on the quality changes?

To the best of our knowledge, currently there are no tools
which can be used to effectively model the aforementioned
elastic behavior for both MCEs and HCEs. In this paper,
we introduce Elasticity Profile (EP) as a tool for explicit
modeling of systems’ elastic behavior to achieve a dynamic
resource provisioning. In EP, we introduce the notion of
adaptable objects and their corresponding metrics, which are
applicable for MCEs and HCEs. Furthermore, EP also provides
declarative constructs for defining behaviors to model the
dynamic relation between those objects and metrics. Using
our proposed tool, a system designer can model system’s
behaviors as dynamic relationships between resources, cost,
and quality. EP is designed to enhance services, applications,
and workflows, so that the resources, cost, and quality can be
adapted based on the changing runtime environment.

The main contribution of our research is to provide a
modeling tool and framework for describing, deploying, and
utilizing the elastic behavior of adaptive mixed systems. In
particular, our work presented in this paper focus on the
following:

• Elasticty Profile (EP), which specifies constructs that
can be used to model trade-offs and the dynamic
provisioning of resources, and

• a conceptual runtime framework for EP as a mecha-
nism and platform for EP deployment and execution.

Furthermore, an evaluation to the proposed model is conducted
by modeling several use cases using EP.

This paper is organized as follows. Section II discusses
some works related to the dynamic resources provisioning for
human-based and software-based systems. Details of the EP

model that consists of objects, metrics, activities, and rules
are presented in Section III. In Section IV, we discuss how the
model is loosely coupled with the runtime system, and how
an implementation can be bound. In Section V we present the
conceptual runtime framework for EP. Section VI demonstrates
the applicability of our model using some example use cases.
Finally, Section VII concludes the paper.

II. RELATED WORK

Recent surveys on elastic computing, e.g., [2], [3], show a
significant amount of works that deal with elasticity strategies.
Several techniques for achieving autonomic elasticity based
on traditional sensor-actuator mechanisms have been proposed
by both industry and academy, e.g., [4]–[6]. Other techniques
allow execution of elasticity strategies based on user-driven
policies. A quite common method for defining such policy
is using a rule-based approach, e.g., [7], [8]. Most of the
aforementioned works focus on achieving an efficient resource
scaling on a certain layer. Our work focus on providing a
tool for explicit modeling of multi-dimensional elastic be-
haviors that considers the trade-offs between resources, cost,
and quality. Furthermore, we introduce the concept of elastic
objects as an encapsulation of live runtime entities that can
be bound to any remote objects. This concept allows easier
abstraction on the dynamicity of the runtime environment
since an object may represent any entities on any service
layers, e.g., it can represent a component on an infrastructure,
platform, application, or data layer. Moreover, current elastic
computing efforts do not take into account the emerging
human-based computing resources provisioning on the cloud
such as crowdsourcing.

Another approach to program elasticity is proposed by
using SYBL directive language [9]. SYBL can be implemented
in particular languages for assisting the compilation and execu-
tion of application, so that it supports elasticity. For example,
SYBL for Java can be used to inject an object representing a
cloud resource into a subsequent variable. Our EP is more
focus on the modeling of the elastic runtime environment
instead on providing language to program elastic applications.
Furthermore, a single EP document can be used for different
applications implemented in different languages, as long as
they concern about the same objects and metrics as discussed
in Section III. EP extends SYBL in a way that a profile can be
attached to a SYBL-enriched application to control the runtime
adaptation strategy without changing the application logic.

In addition to services, applications, and workflows, our
EP model can also be used with configuration frameworks
such as the emerging Topology and Orchestration Specification
for Cloud Applications (TOSCA) framework [10]. TOSCA is
an OASIS standard to enable a portable description of cloud
applications and services. To enable elastic behavior on a
portable cloud service, an EP can be defined and attached to
the corresponding TOSCA configuration.

Recently, the concept of dynamic resource provisioning
is also applicable for human-based computing resources. The
Human-Provided Service (HPS) concept introduces a frame-
work that allows workers to publish their capabilities and
skills as services [11]. To extend this concept to a team of
worker, the Social Compute Unit (SCU) is introduced as a

construct, which consists of loosely coupled virtual and nimble
teams of computing resources with specific skills in specific
problem domains [12]. Also, some efforts have been done
to extend the BPEL [13] to support human capabilities. In
particular, BPEL4People [14] is the BPEL extension to enable
human interactions in business processes. BPEL4People is
based on WS-HumanTask specification [15], which introduces
the definition of human tasks. These works allow integration
of human-based resources into processes. However, humans
are known to have very dynamic quality properties. Our
framework offers a methodology to model the relationships
between non-functional properties of human-based computing
resources, and the process’ quality and cost.

III. ELASTICITY PROFILE

In our framework, an elastic behavior is modeled by the
notion of Elasticity Profile (EP). An EP can be used in an
application layer or a platform layer. In the application layer,
an EP can be attached to workflows or distibuted applications.
And in the platform layer, an EP can be used to complement
the system configuration. An EP contains constructs for defin-
ing objects, metrics, behavior, and activities using a syntax
shown in Grammar 1. The following subsections discuss these
constructs.

〈ep〉 ::= profile 〈identifier〉 { 〈statement〉* }

〈statement〉 ::= 〈objects statement〉
| 〈metrics statement〉
| 〈activities statement〉
| 〈behavior statement〉

Grammar 1. Overall Grammar of Elasticity Profile (EP)

A. Objects and Metrics

In an adaptive system, we deal with objects and manip-
ulation of the objects. The objects in EP are representations
of any components of a system or a process that can behave
elastically. Models described using EP focus on objects and
the adaptation of objects’ properties, which can be measured
through metrics. In order to make these objects adaptable, two
steps are needed: first, properties must be associated with the
objects during the modeling phase; and second, at runtime,
the adaptation strategies are decided for these objects based
on their properties and runtime information.

When modeling an elastic behavior of a system using EP,
we first need to identify which objects/components of the
system should be made adaptable. For example,

a) for MCEs, the objects can be
• instances of real- or virtual-machines (e.g., in-

stances can be terminated or a new instance can
be created),

• storage as in Data-as-a-Service (e.g., the capacity
of a storage can be increased or decrease), and

b) for HCEs, the objects can be
• human-based tasks (e.g., non-functional require-

ments such as deadline and acceptance criteria can
be changed),

• human workers (e.g., the fee and quality rating can
be dynamic).

TABLE I. EXAMPLE OF MACHINE AND HUMAN METRICS

Metric Dimension Machine Metrics Human Metrics

Resources

Quality

Cost Task price, hourly price

Number of resources,
utilization,
storage capacity,
bandwidth capacity

Number of resources,
utilization

Response time,
throughput,
availability

Response time, rating,
availability, throughput,
task acceptance rate

Cost / API calls,
virtual instance / hours

To model properties of the objects, we define a set of
metrics. In the modeling phase, each object are associated
with multiple metrics. These metrics represent the quality, re-
source, and cost properties of the objects, e.g., such as in [16],
[17]. Table I lists some examples of metrics for machine-
based and human-based elements. Inside an EP, objects and
metrics are declared without implementation using a syntax
shown in Grammar 2. In our framework, these objects and
metrics (as well as activities) are lately bound during
runtime as discussed in Section IV.

〈objects statement〉 ::= objects { 〈objects list〉 } ;

〈objects list〉 ::= 〈object identifier〉
| 〈object identifier〉 , 〈objects list〉

〈metrics statement〉 ::= metrics { 〈metrics list〉 } ;

〈metrics list〉 ::= 〈metric〉
| 〈metric〉 ; 〈metrics list〉

〈metric〉 ::= 〈object identifier〉 has 〈metric method list〉
〈metric method list〉 ::= 〈metric method〉[(〈value〉)]

| 〈metric method〉[(〈value〉)] , 〈metric method list〉

Grammar 2. Objects and Metrics Grammar

B. Behavior and Activities

A system designer models the behavior of a system to
achieve a set of goals. For attaining the goals, the designer can
define a set of trade-offs between resources, cost, and quality
of the system. In EP, these trade-offs are decribed using first-
order logic.

For example, in the context of human-tasks workflow,
our goal is to maintain the human workers’ performance by
ensuring that these resources are not overloaded. A individual
worker is said to be overloaded when the utilization is above 8
hours per day. Therefore, we would like to make a trade-offs:
for ensuring performance we should add additional human
workers when the utilization is reaching 8 hours. We could
model this behavior using the following first-order logic:

∀(worker, pool)

Worker(worker) ∧ActivePool(pool)∧
IsMember(worker, pool)∧
HourUtilization(worker) >= 8

⇒ AddWorker(pool)

Our EP model also has the potential to be used for design-
ing a system that follows a certain compliance requirement. For
example, we have a Data-as-a-Service (DaaS) with a certain
data location requirement: because of regulatory laws, all data
for European customers must be placed in Europe. We could

model this compliance requirement in EP using the following
rule:

∀(data, customer) ∃(datacenter)
Data(data) ∧ Customer(customer)∧
Datacenter(datacenter)∧
BelongsTo(data, customer)∧
Location(customer) ==′ europe′∧
Location(datacenter) ==′ europe′∧
Available(datacenter)

⇒ AssignDatacenter(data, datacenter)

The behavior section of an EP contains several rules in
the form of implication statements. During runtime, the objects
and their metrics are asserted and serve as the fact for these
rules. Each of these rules contain two parts: the conditions and
the consequences. Optionally, a priority attribute that defines
the order of the rules’ evaluation may also be specified for
each rule. Grammar 3 shows the syntax of the behavior
section in EP.

When the condition of a rule is evaluated to true, its
consequence part is applied. Expressions in the condition
part use objects and metrics defined previously as operands.
Borrowing from Drool language [18], the expression in the
condition part may contain an instance binding that allows a
reference to an instance of object obtained from a collection
of constrained objects on which the expression is evaluated.
This is particularly useful for evaluating and modifying the
metric of a particular object instance. Furthermore, other
features for condition expression from Drool language, such
as accumulator for measuring aggregated metrics, are also
adopted.

Common operators normally found in first-order logic can
be used in the condition expression to evaluate objects and
metrics. These include logical operators, relational operators,
and quantifiers. Furthermore, we also introduce two loose con-
straint operators: (highest) and (lowest), which are applicable
to any metric that belongs to an object in the collection. These
operators can be used to loosen up constraints, so that we
could still achieve the goal with the best effort. For example,
when we evaluate worker offers, we can assign a task to a
worker whose location is the nearest possible (lowest distance)
to Vienna.

The consequence part of a rule may contain one or more
statements. The following four types of statements can be used:

1) Assignment statement is used to change a metric of an
object, e.g., changing the fee of a task.

2) Assertion statement is used to assert an object to the fact
base. The object asserted can be either a new one or a
replacement of an existing object.

3) Invocation statement is used to invoke an operation pro-
vided by the runtime platform. For example, it can be used
to invoke remote operations for creating a new instance
of a computing resource.

4) Exception statement is used to raise an error that should
be further handled by the runtime platform. For example,
it can be used when the deadline of a task is approaching.

In EP, the remote operations and exception handlers are
declared in the activities section using syntax defined in
Grammar 4.

〈behavior statement〉 ::= behavior { 〈implication list〉 } ;

〈implication list〉 ::= 〈implication〉
| 〈implication〉 ; 〈implication list〉

〈implication〉 ::= check [:〈priority〉] (〈condition〉) { 〈consequences〉 }
〈consequences〉 ::= 〈consequence〉 | 〈consequence〉; 〈consequences〉
〈consequence〉 ::= 〈metric identifier〉 = 〈value〉

| assert 〈instance identifier〉
| trigger 〈action identifier〉(〈value list〉)
| throw 〈exception identifier〉(〈value〉)

Grammar 3. Behavior Grammar

〈activities statement〉 ::= activities { 〈activities list〉 } ;

〈activities list〉 ::= 〈activity〉
| 〈activity〉, 〈activities list〉

〈activity〉 ::= 〈activity identifier〉(〈activity param list〉)

Grammar 4. Activities Grammar

Interested readers may get the complete EP syntax provided
on the supplemented material online1.

IV. RUNTIME BINDING

To be meaningful and useful, the objects, metrics, and
activities defined in Elasticity Profile (EP) must be bound to
real entities in the system at runtime. The objects, metrics,
and activities constructs in EP are loosely coupled from
their implementations. Therefore, designing an elastic behavior
requires less assumptions about the runtime system. This
approach allows the seperation of concern between the design
of the elastic behavior and the implemention of the runtime
system. This is particularly useful, for example, when an
application or a service should be deployed and executed on
different runtime platforms provided by different vendors.

Elastic Reasoning Agent (ERA) (discussed in Section V)
is responsible for interpreting an EP and bind the objects,
metrics, and activities using certain mechanisms provided by
the runtime systems or their proxies. The aforementioned
constructs in EP are bound to real entities using the following
mechanisms:

a) Objects: are bound using subscriptions to event
notifications. ERA sends a subscription request to the runtime
system and the runtime system send a notification message,
which contains the object, to ERA when the object being
monitored is created or modified in the runtime system. For
example, ERA may ask a human-based workflow engine to
send a notification when a human-based task is instantiated.

b) Metrics: are bound using remote getter and setter
methods. A metric may either have both getter and setter
methods or only a getter method (i.e., a read-only metric). For
example, a metric obtained from a predictive algorithm for
measuring the future reliability of a system is read-only. Upon
evaluation of a rule during runtime, when a metric is requested
or assigned with a new value, ERA invokes its getter or setter
methods.

c) Activities: are bound using remote method invoca-
tions. ERA simply calls this procedure using the provided
parameters when necessary.

1http://www.infosys.tuwien.ac.at/prototypes/ElasticityModeling/

El
as

ti
c

R
ea

so
n

in
g

A
ge

n
t

(E
R

A
)

Objects
Collection
(Fact-base)

Resources Managers

retrieve
assert

subscribe

invoke

Runtime Engines

2b

1a

2a

3a

3b

4
5a 5b

6

Workflow
Engine

Application
Container

Service
Container

Runtime Proxies

Behavior

Metrics

7

Activities

Cost

Quality

Resources

Humans

MachinesMachines

Resources

Workflows,
Services,

Distributed Apps

Elasticity
Profile

(EP)

Binder
Plugins

Profile
Binding

1b

2a

Fig. 1. Conceptual Runtime Framework. (1) An EP is attached to a
workflow/application and an associated binding is defined. (2) The EP & work-
flow/application are deployed. (3) The runtime layer executes the workflow/ap-
plication and manages runtime resources. (4) Using binder ERA subscribes
for object assertions through proxies. (5a) Runtime metrics are retrieved. (5b)
Runtime objects are asserted. (6) Reasoning based on behaviorial rules decides
what (7) activities to take.

The runtime binding mechanism is defined separately from
EP. The binding could utilize standards protocols for remote
invocations such as Remote Procedure Call (RPC) or Web
service protocols (e.g., Java RMI, SOAP, RESTful, etc.). An
example of an EP runtime binding using RESTful Web service
can be found on the supplemented material.

V. RUNTIME FRAMEWORK

In this section, we present the conceptual runtime frame-
work that enables integration of Elasticity Profile (EP) with
runtime systems by means of Elastic Reasoning Agent (ERA)
as depicted in Figure 1. ERA manages the collection of objects
defined in EP and their associated metrics. ERA has the
capability to reason about strategies to obtain elastic behaviors
based on the behaviorial rules provided in an EP using a
production rule system. ERA is also empowered by binder plu-
gins that contains implementations for specific remote method
invocation protocols. Several bindings may be active for the
same EP to allow integration of different systems.

The resource managers manage resources required for
executions by runtime engines. This underlying runtime layer
provides the execution platform and resource management.
This platform can be in the form of a service or application

container deployed on a cloud infrastructure, or a scientific or
business workflow engine. This underlaying layer can also be a
system that utilizes a crowdsourcing platform as a human task
execution environment. These underlying runtime layer entities
are beyond the scope of this paper. Runtime proxies may be
required and implemented using specific APIs for a particular
runtime system. These proxies enable ERA to interact with
runtime systems for obtaining objects and their metrics, as
well as invoking remote actions.

An EP can be attached to workflows, services, distributed
applications, or system configurations. Before being deployed,
a binding for the EP should be defined based on a specific
protocol provided by the runtime systems or their proxies.
During the deployment stage, an EP and its binding specifica-
tion are deployed to ERA and the workflow/service/application
is deployed to a runtime engine. The EP deployed to ERA
contains all definitions required to achieve the desired elastic
behavior. The objective of modeling elasticity is essentially
to define the behavior of a process or system in response
to the changing properties of the system’s objects. These
objects are asserted by the runtime layer as requested by ERA
through a binding mechanism as discussed in Section IV.
During execution, objects may be created and asserted to
the ERA’s fact base; or they can be destroyed and removed
from the fact base. Furthermore, the EP also contains metrics
definition for these objects and as necessary ERA may call
remote methods provided by the runtime layer to get or to set
the metrics. Through these metrics we can capture the non-
functional properties of the objects (e.g., resources) involved
in runtime. Together, these objects and metrics will be utilized
by ERA to decide whether it is necessary to invoke adaptability
activities during runtime.

VI. USE CASES

This section demonstrates an elastic behavior modeling
using Elasticity Profile (EP). Our purpose in evaluating our
model is to study its applicability for real use cases. The use
case presented here exemplifies some main features of our
model. More use cases and complete EP codes can be found
online on the supplemented material.

Here, we present a typical workflow for a monitoring and
management service of IT infrastructures as shown in Figure 2.
This system contains a Social Compute Unit (SCU) construct,
which represents virtual and nimble teams of experts [12]. A
single SCU instance represents a single execution unit that
consists of a group of experts with different skills required for
solving a task.

The system monitors and manages IT infrastructures owned
by customers. Sensors on the infrastructures generate events,
which then captured by a pool of MCEs running analyzer
software. When a suspicious event is detected, the analyzers
raise a warning to the monitoring agents. These stand-by
human agents analyze the warning further. If it is believed
that the warning requires an investigation, the agent issues a
ticket which indicates the incident. The issuance of the ticket
triggers an initialization of an SCU, which contains experts
with a set of skills required for investigating the incident
and administering the infrastructure to fix the problem. A
mechanism for composing such SCU is discussed in [19].

Infrastructures

Monitoring
Agents

Events
Analyzers

SCU Experts

Knowledge-
Base

Knowledge-
Base

Administration Tools

Ev
en

ts

W
ar

n
in

gs

In
ci

d
en

ts

A
ct

io
n

s

Fig. 2. SCU-based IT Infrastructure Monitoring and Management

Using EP, as shown in Listing 1, we model this system as
as a system that has an elastic behavior with respect to three
dimensions: cost, quality, and resources. From cost perspective,
customers have options to choose two types of services, which
are premium and regular services. This categorization implies
different guarantees with respect to quality of service (QoS),
especially the performance of the service which represents the
maximum response time for handling an incident. Therefore,
these QoS guarantees lead to different strategies for provision-
ing resources (both MCEs and HCEs).

1 profile SCU_IT_Management {
2 objects {
3 Customer, Event, Warning, Incident, Analyzer,
4 MonitoringAgent, ExpertSCU
5 };
6 metrics {
7 Customer has ServiceType, ...;
8 Incident has Lifetime, ...;
9 Analyzer has Utilization, Type, ...;

10 ExpertSCU has ExpertiseLevel, ...;
11 ...
12 };
13 actions {
14 AddAnalyzer(ANALYZER_TYPE),
15 ReduceAnalyzer(ANALYZER_TYPE),
16 AddMonitoringAgent(),
17 ReduceMonitoringAgent(),
18 UpgradeSCU(ExpertSCU, EXPERTISE_TYPE),
19 TimeoutException(Incident),
20 ...
21 };
22
23 behavior {
24
25 /* Dynamically scale analyzer for premium
26 service based on the average utilization
27 of the premium analyzers */
28 check (Number(doubleValue > 0.8)
29 from accumulate(
30 Analyzer(Type==PREMIUM_MACHINE and
31 u:Utilization),
32 average(u))) {
33 /* scale up */
34 trigger AddAnalyzer(PREMIUM_MACHINE);
35 };
36 check (Number(doubleValue < 0.2)
37 from accumulate(
38 Analyzer(Type==PREMIUM_MACHINE and
39 u:Utilization),
40 average(u))) {
41 /* scale down */
42 trigger ReduceAnalyzer(PREMIUM_MACHINE);
43 };
44

45 /* Scale monitoring agent based on the number of
46 queued warnings */
47 check (Number(intValue > 20)
48 from accumulate(w:Warning(), count(w))) {
49 /* scale up */
50 trigger AddMonitoringAgent();
51 };
52 check (Number(intValue < 5)
53 from accumulate(w:Warning(), count(w))) {
54 /* scale down */
55 trigger ReduceMonitoringAgent();
56 };
57
58 /* Upgrade SCU when the deadline is
59 approaching*/
60 check (Incident(Lifetime > 2 * 3600 and
61 getCustomer().ServiceType==PREMIUM and
62 scu:getAssignedSCU()) and
63 (scu.ExpertiseLevel < HIGH_EXPERTISE)) {
64 /* increasing expertise level,
65 i.e., it will add more experts with
66 higher expertise */
67 trigger UpgradeSCU(scu, HIGH_EXPERTISE);
68 };
69
70 /* Timeout exception for premium customer */
71 check (i:Incident(Lifetime > 4 * 3600 and
72 getCustomer().ServiceType==PREMIUM)) {
73 throw TimeoutException(i);
74 };
75 ...
76 };
77 }

Listing 1. EP for SCU-based IT Infrastructure Monitoring and Management

The type of service taken by customers affects how re-
sources are provisioned for handling incidents from the cus-
tomers’ infrastructures. In the EP snippet depicted in Listing 1,
we show how to obtain dynamic resources provisioning for
premium customers. To assure fast event analysis, we scale the
analyzer machines up and down so that the average utilization
is between 0.8 and 0.2. Furthermore, when an incident is not
resolved within 2 hours, we “upgrade” the assigned SCU by
adding more experts with higher expertise level. If after 4
hours the incident is still not resolved, an exception is thrown,
e.g., it may notify the supervisor or the manager so that they
can take strategic actions. Moreover, our snippet also shows
how we can scale the pool of the monitoring agents to assure
that the number of raised warnings in the queue is not too
much or too few. Note that the metrics’ thresholds and actions
can be specified differently for other types of customers using
different sets of EP rules.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduce Elasticity Profile (EP) as a tool
for modeling the elastic behavior of a system. We present some
entities required to model the desired behavior and how this
model can be serialized into a profile document and bound
to runtime implementations. We also discuss the conceptual
runtime framework for EP that can be used to integrate EP
platform with runtime systems. Furthermore, we also show
the applicability of EP using some use cases.

The framework presented in this paper is part of our
ongoing research on human based computation and elastic
computing. One of main challenges is to obtain metrics’
measurement models for human based computing elements

with respect to the human dependability properties. As part
of our continuing work, we are also interested in investigating
elasticity discovery and negotiation, so that we could automat-
ically match service requests with service offerings.

ACKNOWLEDGEMENTS

The first author of this paper is financially supported by
the Vienna PhD School of Informatics2.

REFERENCES

[1] S. Dustdar, Y. Guo, B. Satzger, and H.L. Truong. Principles of elastic
processes. Internet Computing, IEEE, 15(5):66–71, 2011.

[2] L.M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically scaling
applications in the cloud. ACM SIGCOMM Computer Communication
Review, 41(1):45–52, 2011.

[3] G. Galante and L.C.E. Bona. A survey on cloud computing elasticity.
In Utility and Cloud Computing (UCC), 2012 IEEE Fifth International
Conference on, pages 263–270. IEEE, 2012.

[4] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pages 559–570. IEEE,
2011.

[5] H.C. Lim, S. Babu, and J.S. Chase. Automated control for elastic stor-
age. In Proceedings of the 7th international conference on Autonomic
computing, pages 1–10. ACM, 2010.

[6] Amazon Web Services. Auto scaling. http://aws.amazon.com/
autoscaling/. [Online; accessed February-2013].

[7] L. Rodero-Merino, L.M. Vaquero, V. Gil, F. Galán, J. Fontán, R.S.
Montero, and I.M. Llorente. From infrastructure delivery to ser-
vice management in clouds. Future Generation Computer Systems,
26(8):1226–1240, 2010.

[8] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L.M.
Vaquero. Service specification in cloud environments based on exten-
sions to open standards. In Proceedings of the fourth international
ICST conference on communication system software and middleware,
page 19. ACM, 2009.

[9] G. Copil, D. Moldovan, H.L. Truong, and S. Dustdar. Sybl: an
extensible language for controlling elasticity in cloud applications. In
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE/ACM, 2013.

[10] T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services
using tosca. Internet Computing, IEEE, 16(3):80–85, 2012.

[11] D. Schall, H.L. Truong, and S. Dustdar. The human-provided services
framework. In 10th IEEE Conference on E-Commerce Technology,
pages 149–156. IEEE, 2008.

[12] S. Dustdar and K. Bhattacharya. The social compute unit. Internet
Computing, IEEE, 15(3):64–69, 2011.

[13] D. Jordan et al. Web Services business Process Execution Language
(WS-BPEL) 2.0. OASIS Standard, 11, 2007.

[14] M. Kloppmann et al. WS-BPEL extension for people–bpel4people.
Joint white paper, IBM and SAP, 2005.

[15] A. Agrawal et al. Web Services Human Task (WS-HumanTask), version
1.0. 2007.

[16] GR Gangadharan and V. D’Andrea. Service licensing: conceptualiza-
tion, formalization, and expression. Service Oriented Computing and
Applications, 5(1):37–59, 2011.

[17] S. Ran. A model for web services discovery with qos. ACM Sigecom
exchanges, 4(1):1–10, 2003.

[18] M. Proctor, M. Neale, P. Lin, and M. Frandsen. Drools docu-
mentation. http://www.jboss.org/drools/documentation.html. [Online;
accessed February-2013].

[19] B. Sengupta, A. Jain, K. Bhattacharya, H.L. Truong, and S. Dustdar.
Who do you call? problem resolution through social compute units. In
Proceedings of the 10th International Conference on Service Oriented
Computing (ICSOC), pages 48–62. Springer, 2012.

2http://www.informatik.tuwien.ac.at/teaching/phdschool

