
Vienna University of Technology

Information Systems Institute

Distributed Systems Group

Elastic Process Optimization –
The Service Instance Placement
Problem

P. Hoenisch, D. Schuller, C. Hochreiner, S. Schulte,
S. Dustdar

p.hoenisch@infosys.tuwien.ac.at

TUV-1841-2014-01 Oct. 31, 2014

The Vienna Platform for Elastic Processes (ViePEP) is a research Busi-

ness Process Management System (BPMS) which additionally provides

the functionalities of a cloud resource controller. As the name im-

plies, the system is able to plan, schedule, and enact elastic processes

in the cloud. ViePEP allows the integration of di↵erent optimization

approaches, which could aim, e.g., at minimum makespans, minimum

costs, or a combination thereof. Within this Technical Report we present

an optimization model to tackle the challenges of scheduling service in-

vocations among cloud-based computational resources. This specific opti-

mization approach – the Service Instance Placement Problem – considers

di↵erent kinds of QoS attributes and aims at cost-e�ciency.

Keywords: Cloud Computing, Elastic Processes, Optimization, Schedul-
ing, Business Process Management

c�2014, Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1

A-1040 Vienna, Austria

phone: +43 1 58801-18402

fax: +43 1 58801-18491

http://www.infosys.tuwien.ac.at/

1

Elastic Process Optimization –
The Service Instance Placement Problem

Philipp Hoenisch⇤, Dieter Schuller†, Christoph Hochreiner⇤, Stefan Schulte⇤, Schahram Dustdar⇤
⇤Vienna University of Technology, Austria

Email: {p.hoenisch, s.schulte, c.hochreiner, dustdar}@infosys.tuwien.ac.at †Technische Universität
Darmstadt, Germany

Email: schuller@kom.tu-darmstadt.de

F

Abstract—The Vienna Platform for Elastic Processes (ViePEP) is
a research Business Process Management System (BPMS) which
additionally provides the functionalities of a cloud resource controller.
As the name implies, the system is able to plan, schedule, and
enact elastic processes in the cloud. ViePEP allows the integration of
different optimization approaches, which could aim, e.g., at minimum
makespans, minimum costs, or a combination thereof.

Within this Technical Report we present an optimization model
to tackle the challenges of scheduling service invocations among
cloud-based computational resources. This specific optimization
approach – the Service Instance Placement Problem – considers
different kinds of QoS attributes and aims at cost-efficiency.

1 INTRODUCTION
In recent years, Business Process Management (BPM)
evolved to an important factor in many companies [8].
Business processes are composed of human and soft-
ware services to realize a specific business logic, func-
tionality or service. Managing the execution of such
business processes in an automatic way is a prominent
field of research and various concepts, methodologies
and (software) frameworks have been proposed to
tackle these challenges. In the field of computer sci-
ence, solutions have been proposed where web service
technologies and service compositions are used to
model and execute business processes automatically
[6], [7].

However, BPM may span several companies and
is responsible for providing services to a variety of
users. Hence, BPM has to be able to handle poten-
tially thousands of process requests simultaneously
[1]. Further, while some processes are requested on a
fixed interval, others may be requested rather ad-hoc
and have a higher priority. In combination, with the
complexity of handling hundreds of services, a BPMS
is needed which is able to control a process landscape
in a proactive and reactive way. This means that the
BPMS has to schedule process executions, lease and
release resources in advance, execute processes and
has to be able to find countermeasures in the case of
failures.

In our former work, we presented ViePEP – a frame-
work which is such a BPMS and is able to control
a complex process landscape. ViePEP makes use of
Cloud-based computational resources for deploying
software services, executing processes, monitor ing
their executions. Thus, the platform is able to enact
elastic processes, i.e., business processes carried out
using elastic cloud resources [2]. ViePEP is able to
reduce the risk of over- and under-provisioning of
resources, while guaranteeing the needed level of
Quality of Service (QoS) [3], [4], [9], [10]. To find an
optimal scheduling and resource allocation for elastic
processes, an elastic reasoning mechanism (ERM) is
needed [2]. This ERM can be based on different ap-
proaches, e.g., linear optimization, genetic algorithms,
or other heuristics.

Within this Technical Report we present one possible
solution approach for the ERM. For this, we apply
mixed integer linear programming (MILP), following
a worst-case analysis. The resulting Service Instance

Placement Problem (SIPP) can be solved using a solver
like CPLEX1. The SIPP allows to handle complex
processes and schedule their executions among cloud-
based computational resources in a cost-efficient way
while considering given Service Level Agreements
(SLAs).

2 OPTIMIZATION PROBLEM

The following table describes an optimization model
to solve the SIPP. Through the application of this
model, it is possible to minimize the occurring costs
for leased resources, i.e., Virtual Machines (VMs) and
SLA penalties which could accrue due to delayed
process instances.

The first column in Table 1 comprises the objective
function for the SIPP. The objective function is subject
to minimize the overall cost in terms of leasing and

1. http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

2

penalty cost. Table 2 presents the variables used in
Table 1. The objective function comprises 4 terms:

The first term
P

v2V

c

v

· �(v,t) computes the total
cost which accrue when �(v,t) VM instances of type
v are leased in a certain time period t. Each VM
type may have different leasing cost per time period
(Billing Time Units – BTUs) which is expressed as c

v

.
The second term

P
w2W

P
i

p

2I

p

c

p

i

p

· ep
i

p

computes the
cost which accrue if deadlines of process instances
are violated, i.e., a process instance is delayed. The
penalty cost have to be paid per delayed process
instance. For computing these penalties we apply
a linear function as described in [5]: Each process
instance comprises cost per time unit which have to be
paid if it gets delayed, i.e., cp

i

p

. This value is multiplied
with the actual period for which the process instance
is delayed, i.e., with e

p

i

p

.
The third term, i.e.,

P
v2V

P
k

v

2K

v

(!

C

f

·fC

k

v

+!

R

f

·fR

k

v

)

is used to reduce the overall cost of unused resources.
Unused resources are defined as the sum of free re-
source capacities fC

k

v

in terms of CPU and f

R

k

v

in terms
of RAM for all leased VM instances. Free resource
capacities are multiplied with certain weights !

C

f

and
!

R

f

, respectively, to be not too dominant within the
whole model.

The fourth term, i.e.,P
p2P

P
i

p

2I

p

P
j

i

p

2J

⇤
i

p

1
DL

i

p

�⌧

t

x(j
i

p

,k

v

,t) is used
to compute the urgency of process instances. For
that, we subtract the current point in time ⌧

t

from
the deadlines DL

i

p

and compute the corresponding
reciprocal value. As this value (1

DL

i

p

�⌧

t

) gets larger
the closer the deadline is, more urgent process
instances are assigned a higher priority.

Beside of the objective function, the SIPP consists of
several other constraints which help to minimize the
overall cost. In addition, after solving the SIPP model,
the involved variables provide detailed instructions
what service (of a certain service type) should be
deployed onto which VM and what service instance
should be invoked for a particular process instance
step.

REFERENCES
[1] Breu, R., Dustdar, S., Eder, J., Huemer, C., Kappel, G., Köpke,

J., Langer, P., Mangler, J., Mendling, J., Neumann, G., Rinderle-
Ma, S., Schulte, S., Sobernig, S., Weber, B.: Towards Living
Inter-Organizational Processes. In: 15th IEEE Conf. on Busi-
ness Informatics (CBI 2013). pp. 363–366. IEEE (2013)

[2] Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of
Elastic Processes. IEEE Internet Computing 15(5), 66–71 (2011)

[3] Hoenisch, P., Schulte, S., Dustdar, S.: Workflow Scheduling
and Resource Allocation for Cloud-based Execution of Elastic
Processes. In: 6th IEEE Intern. Conf. on Service Oriented
Computing and Applications (SOCA 2013). pp. 1–8. IEEE
(2013)

[4] Hoenisch, P., Schulte, S., Dustdar, S., Venugopal, S.: Self-
Adaptive Resource Allocation for Elastic Process Execution.
In: 6th Intern. Conf. on Cloud Computing (CLOUD 2013). pp.
220–227. IEEE (2013)

[5] Leitner, P., Hummer, W., Dustdar, S.: Cost-Based Optimization
of Service Compositions. IEEE Trans. on Services Computing
6(2), 239–251 (2013)

[6] Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Ef-
fectiveness of Process-Oriented Information Systems: Prob-
lem Analysis, Critical Success Factors, and Implications. IEEE
Trans. on Systems, Man, and Cybernetics, Part C 38(3), 280–
291 (2008)

[7] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.,
Krämer, B.J.: Service-Oriented Computing Research Roadmap.
In: Service Oriented Computing (SOC). pp. 38–45. No. 05462
in Dagstuhl Seminar Proceedings, Intern.es Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany (2006)

[8] Rosemann, M., vom Brocke, J.: The Six Core Elements of
Business Process Management. In: Handbook on Business
Process Management 1, pp. 107–122. Springer-Verlag Berlin
Heidelberg (2010)

[9] Schulte, S., Hoenisch, P., Venugopal, S., Dustdar, S.: Intro-
ducing the Vienna Platform for Elastic Processes. In: Perfor-
mance Assessment and Auditing in Service Computing Works.
(PAASC 2012) at 10th Intern. Conf. on Service Oriented Com-
puting (ICSOC 2012). LNCS, vol. 7759, pp. 179–190. Springer
(2013)

[10] Schulte, S., Schuller, D., Hoenisch, P., Lampe, U., Dustdar, S.,
Steinmetz, R.: Cost-Driven Optimization of Cloud Resource
Allocation for Elastic Processes. Intern. J. of Cloud Computing
1(2), 1–14 (2013)

3

TABLE 1: Service Instance Placement Problem – Constraints

Constraint Description

min
P
v2V

c

v

· �(v,t) +
P

w2W

P
i

p

2I

p

c

p

i

p

· ep
i

p

+

P
v2V

P
k

v

2K

v

(!

C

f

· fC

k

v

+ !

R

f

· fR

k

v

)

�
P
p2P

P
i

p

2I

p

P
j

i

p

2J

⇤
i

p

1
DL

i

p

�⌧

t

x(j
i

p

,k

v

,t)

This is the overall minimization function. For its de-
scription see above the textual description

⌧

t+1 + e

i

p

+ e

run

j

i

p

 DL

i

p

+ e

p

i

p

This constraint demands the deadlines for the single
process instances not to be violated for all process
instances

⌧

t+1 � ⌧

t

+ ✏ This constraint computes the starting point of the next
optimization period

e

i

p

= e

seq

i

p

+ e

L

a

i

p

+ e

L

x

i

p

+ e

RL

i

p

Computes the remaining execution time for a whole
process instance considering the different durations for
sequences, AND-Blocks, XOR-Blocks and Loops

e

seq

i

p

= ê

s

i

p

� ex

j

⇤
i

p

, if x(j⇤
i

p

,k

v

,t) = 1

e

seq

i

p

= ê

s

i

p

, else
Computes the remaining execution time for a sequence
of process steps

e

L

a

i

p

= max

l2L

a

(ê

l

i

p

� ex

j

⇤
i

p

), if x(j⇤
i

p

,k

v

,t)

e

L

a

i

p

= max

l2L

a

(ê

l

i

p

), else
Computes the remaining execution time for an AND-
Block while taking the maximum of the involved paths

e

L

x

i

p

= max

l2L

x

(ê

l

i

p

� ex

j

⇤
i

p

), if x(j⇤
i

p

,k

v

,t)

e

L

x

i

p

= max

l2L

x

(ê

l

i

p

), else
Computes the remaining execution time for an XOR-
Block while taking the maximum of the involved paths

e

RL

i

p

= re · ês
i

p

� ex

j

⇤
i

p

, if x(j⇤
i

p

,k

v

,t)

e

RL

i

p

= re · ês
i

p

, else
Computes the remaining execution time for a Loop
while taking the maximum of all sub-paths multiplied
by the maximum of iterations

ex

j

⇤
i

p

=

P
v2V

P
k2K

v

((e

j

⇤
i

p

+�

j

⇤
i

p

+�)x(j⇤
i

p

,k

v

,t)) Computes the variable ex

j

⇤
i

p

which involves the re-
maining execution time, the remaining VM-startup
time, and the remaining deployment time

ê

s

i

p

=

P

j

i

p

2J

seq

i

p

(e

j

i

p

+�

j

i

p

+�) Computes the variable ê

s

i

p

which involves the remain-
ing execution time, the remaining VM-startup time, and
the remaining deployment time

ê

l

i

p

=

P

j

i

p

2J

l

i

p

(e

j

i

p

+�

j

i

p

+�) Computes the variable ê

l

i

p

which involves the remain-
ing execution time, the remaining VM-startup time, and
the remaining deployment timeP

p2P

P
i

p

2I

p

P
j

i

p

2J

i

p

x(j
i

p

,k

v

,t)

 (�(k
v

,t) + y(k
v

,t)) ·M
Demands that if a service invocation is scheduled on a
certain VM, the VM either has to be already running,
or has to be started

x(j1
i

1
p

1
,k

v

,t) + x(j2
i

2
p

2
,k

v

,t)  1 Demands that two different services types are not
allowed to be run on the same VMP

p2P

P
i

p

2I

p

P
j

i

p

2(J⇤
i

p

[J

run

i

p

)

r

C

(j
i

p

,k

v

)x(j
i

p

,k

v

,t)

 s

C

v

Demands that the host VM has enough resources in
terms of CPU for all assigned service invocations

g(k
v

,t) · sC
v

�P
p2P

P
i

p

2I

p

P
j

i

p

2(J⇤
i

p

[J

run

i

p

)

r

C

(j
i

p

,k

v

)x(j
i

p

,k

v

,t)

 f

C

k

v

Computes the amount of free resources in terms of CPU
of a specific VM

P
p2P

P
i

p

2I

p

P
j

i

p

2(J⇤
i

p

[J

run

i

p

)

r

R

(j
i

p

,k

v

)x(j
i

p

,k

v

,t)

 s

R

v

Demands that the host VM has enough resources in
terms of RAM for all assigned service invocations

Continued on next page

4

TABLE 1 – Continued
Constraint Description

g(k
v

,t) · sR
v

�P
p2P

P
i

p

2I

p

P
j

i

p

2(J⇤
i

p

[J

run

i

p

)

r

R

(j
i

p

,k

v

)x(j
i

p

,k

v

,t)

 f

R

k

v

Computes the amount of free resources in terms of
RAM of a specific VM

g(k
v

,t) � �(k
v

,t) Helper constraint to check if a VM is already running
g(k

v

,t) � y(k
v

,t) Helper constraint to check if a VM has to be started
g(k

v

,t)  �(k
v

,t) + y(k
v

,t) Helper constraint to ensure that a VM is either already
running or has to be started

(e

j

i

p

+�

j

i

p

· (1� z(j
i

p

,k

v

,t))

+� · (1� �(k
v

,t)))x(j
i

p

,k

v

,t)

 d

k

v

,t

+ y(k
v

,t) ·D
This constraint demands, that the remaining leasing
duration of a certain VM instance needs to be long
enough to finish the service invocation and to deploy
the service, if required

e

run

k

v

j

i

p

 d

k

v

,t

+ y(k
v

,t) ·D Demands that a VM’s remaining leasing duration is
long enough to finish all service invocations which
have been started in a former time periodP

k2K

v

y(k
v

,t)  �(v,t) Computes the amount of leased VMs
P
v2V

P
k2K

v

x(j
i

p

,k

v

,t)  1 Demands that a specific service instance can only be
invoked on one VM

x(j
i

p

,k

v

,t) = 1 Demands that x(j
i

p

,k

v

,t) = 1 if a service instance is
assigned to a specific VM k

v

in time period t

x(j
i

p

,k

v

,t) 2 {0, 1} Demands that x(j
i

p

,k

v

,t) is either 0 or 1

g(k
v

,t) 2 {0, 1} Demands that g(k
v

,t) is either 0 or 1

y(k
v

,t) 2 N0 Defines the limitation for y(k
v

,t), i.e., to be a natural

number
e

p

i

p

2 R+ Demands that the variable e

p

i

p

(the execution time) is a
rational number

ê

j

i

p

= e

j

i

p

+�

j

i

p

+� Demands that ê

p

i

p

is the sum of the execution time,
deployment time, and VM-startup time

e

run

j

i

p

= 0, if j
i

p

finished

e

run

j

i

p

= max

⇣
0, ê

j

i

p

� (⌧

t

� ⌧

t

s

)

⌘
, else

Computes the remaining execution time of a running
service invocation for a certain process step. This value
is 0 if the service invocation is already finished, or
otherwise represents a certain amount of time

5

TABLE 2: Service Instance Placement Problem – Variables

Variable Description

v 2 V = {1, ..., v#} V specifies the set of Virtual Machine (VM) types and
v is a specific type.

k

v

2 K

v

= {1, ..., k#
v

} K

v

specifies the amount of VMs of type v and k

v

defines the k

th VM instance of type v.
p 2 P = {1, ..., p#} P specifies the set of process models and p is a specific

process model.
i

p

2 I

p

= {1, ..., i#
p

} I

P

is the set of all process instances and i

p

represents
a specific process instance of process model p.

j

i

p

, j

⇤
i

p

2 J

i

p

= {1, ..., j#
i

p

} J

i

p

is the set of process steps of a process instance i

p

which have to be invoked to fulfill i
p

. j
i

p

is a specific
process step of the process instance i

p

and j

⇤
i

p

is the
next process step of process instance i

p

.
j

i

p

run 2 J

run

i

p

= {1, ..., jrun#}
i

p

J

run

i

p

defines a set of running process steps of process
instance i

p

and j

i

p

run defines specific running process
step of the process instance i

p

.
l 2 L = {1, ..., l#}, L

a

, L
x

, L
re

L indicates the set of all paths and l indicates a specific
path within a process. L

a

, L
x

, L
re

defines the paths for
AND-Blocks, XOR-Blocks or Repeat Loops.

e

i

p

e

i

p

is the remaining execution time of process instance
i

p

.
e

p

i

p

Defines the amount of penalties which accrue if the
process instance i

p

is delayed.
DL

i

p

Defines the deadline for the process instance i

p

, i.e., a
specific point in time represented as the time elapsed
since 01/01/1970 in milliseconds.

e

j

i

p

, erun
j

i

p

, erunk

v

j

i

p

e

j

i

p

is the remaining execution time of step j of process
instance i

p

. erun
j

i

p

(or e

run

k

v

j

i

p

) is the remaining execution
time of the already running process step j of process
instance i

p

(on the k-th VM of type v).
ex

j

i

p

, ex
j

⇤
i

p

These are helper variables defining the combined re-
maining execution time, remaining deploy time and
VM start-up time if the process step j of process
instance i

p

is scheduled.
ê

l

i

p

, ês
i

p

Defines the combined remaining execution time, re-
maining deploy time and VM start-up. s defines if this
step is part of sequence or Repeat Loop and l defines if
this step is part of a complex pattern, e.g., AND-Block,
XOR-Block.

e

seq

i

p

, eLa

i

p

, eLx

i

p

, eRL

i

p

Defines the execution time for a sequence (eseq
i

p

), AND-
Block (eLa

i

p

), XOR-Block (eLx

i

p

), or Repeat Loop (eRL

i

p

) for
a specific process instance i

p

.
t, ⌧

t

, ⌧
t+1, ⌧

t

s

t defines the beginning of a time period, ⌧

t

defines
the current time period, and ⌧

t+1 defines the next time
period, i.e., a point of time in the future and ⌧

t

s

defines
a specific point of time.

s

C

v

, sR
v

Defines the total resource supply of VM type v in terms
of CPU (sC

v

) and RAM (sR
v

).
f

C

k

v

, fR

k

v

Defines the available resources of the VM k

v

in terms
of CPU (fC

k

v

) and RAM (fR

k

v

) after subtracting already
running or scheduled process steps.

Continued on next page

6

TABLE 2 – Continued
Variable Description

r

C

(j
i

p

,v), r
R

(j
i

p

,v) Defines the required amount of resources in terms of
CPU (C) and RAM (R) for a process step j

i

p

on a VM
of type v.

st

j

Defines the service type of the process step j.
�

st

j

,�
j

i

p

Defines the time it takes to deploy a service of type
st of process step j or of a specific process step j of
process instance i

p

.
�

v

, � �

v

defines the time it takes to start a new VM of type v

expressed in milliseconds. � defines the max of starting
a VM of any type, i.e, max

v2V

(�

v

).
z(st

j

,k

v

,t) Indicates whether a specific service type st

j

is deployed
on the VM k

v

in time period t.
z(j

i

p

,k

v

,t) This variable indicates if the service type of a service
step j

i

p

has the same service type as the service instance
which is deployed on VM k

v

in ⌧

t

.
x(j

i

p

,k

v

,t) Defines if the process step j of process instance i

p

should be invoked on VM k

v

in time period t.
y(k

v

,t) Defines how often a VM k

v

should be leased in time
period t, i.e., how many BTUs.

g(k
v

,t) Helper variable indicating if the VM k

v

is running in
time period t or needs to be started.

�(k
v

,t) Indicates if the VM k

v

was running in time period t.
�(v,t) Defines the amount of leased VMs of type v in time

period t.
d(k

v

,t), d(k
v

,t�1) Defines the remaining leasing duration of VM k

v

in
time period t or t� 1.

BTU The Billing Time Unit (BTU) defines one leasing duration
for which cost apply, i.e., a certain time period in
milliseconds.

c

v

Defines the leasing cost of VM type v in BTUs.
re Defines the maximum amount of repetitions within a

Repeat Loop.
c

p

i

p

Defines the penalty (cost) per time unit of delay for the
process instance i

p

.
M M is a constant needed to give some constraints a

higher weight.
✏ Defines the a short time period in milliseconds which

is used to prevent deadlocks.
!

C

f

, !R

f

Helper variables, representing constant values to give
more weight to the wasted resources term in the opti-
mization function.

