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Abstract—The Vienna Platform for Elastic Processes (ViePEP) is
a research Business Process Management System (BPMS) which
additionally provides the functionalities of a cloud resource controller.
As the name implies, the system is able to plan, schedule, and
enact elastic processes in the cloud. ViePEP allows the integration of
different optimization approaches, which could aim, e.g., at minimum
makespans, minimum costs, or a combination thereof.

Within this Technical Report we present an optimization model
to tackle the challenges of scheduling service invocations among
cloud-based computational resources. This specific optimization
approach – the Service Instance Placement Problem – considers
different kinds of QoS attributes and aims at cost-efficiency.

1 INTRODUCTION
In recent years, Business Process Management (BPM)
evolved to an important factor in many companies [8].
Business processes are composed of human and soft-
ware services to realize a specific business logic, func-
tionality or service. Managing the execution of such
business processes in an automatic way is a prominent
field of research and various concepts, methodologies
and (software) frameworks have been proposed to
tackle these challenges. In the field of computer sci-
ence, solutions have been proposed where web service
technologies and service compositions are used to
model and execute business processes automatically
[6], [7].

However, BPM may span several companies and
is responsible for providing services to a variety of
users. Hence, BPM has to be able to handle poten-
tially thousands of process requests simultaneously
[1]. Further, while some processes are requested on a
fixed interval, others may be requested rather ad-hoc
and have a higher priority. In combination, with the
complexity of handling hundreds of services, a BPMS
is needed which is able to control a process landscape
in a proactive and reactive way. This means that the
BPMS has to schedule process executions, lease and
release resources in advance, execute processes and
has to be able to find countermeasures in the case of
failures.

In our former work, we presented ViePEP – a frame-
work which is such a BPMS and is able to control
a complex process landscape. ViePEP makes use of
Cloud-based computational resources for deploying
software services, executing processes, monitor ing
their executions. Thus, the platform is able to enact
elastic processes, i.e., business processes carried out
using elastic cloud resources [2]. ViePEP is able to
reduce the risk of over- and under-provisioning of
resources, while guaranteeing the needed level of
Quality of Service (QoS) [3], [4], [9], [10]. To find an
optimal scheduling and resource allocation for elastic
processes, an elastic reasoning mechanism (ERM) is
needed [2]. This ERM can be based on different ap-
proaches, e.g., linear optimization, genetic algorithms,
or other heuristics.

Within this Technical Report we present one possible
solution approach for the ERM. For this, we apply
mixed integer linear programming (MILP), following
a worst-case analysis. The resulting Service Instance

Placement Problem (SIPP) can be solved using a solver
like CPLEX1. The SIPP allows to handle complex
processes and schedule their executions among cloud-
based computational resources in a cost-efficient way
while considering given Service Level Agreements
(SLAs).

2 OPTIMIZATION PROBLEM

The following table describes an optimization model
to solve the SIPP. Through the application of this
model, it is possible to minimize the occurring costs
for leased resources, i.e., Virtual Machines (VMs) and
SLA penalties which could accrue due to delayed
process instances.

The first column in Table 1 comprises the objective
function for the SIPP. The objective function is subject
to minimize the overall cost in terms of leasing and

1. http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/
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penalty cost. Table 2 presents the variables used in
Table 1. The objective function comprises 4 terms:

The first term
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, respectively, to be not too dominant within the
whole model.
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to compute the urgency of process instances. For
that, we subtract the current point in time ⌧

t

from
the deadlines DL

i

p

and compute the corresponding
reciprocal value. As this value ( 1

DL

i

p

�⌧

t

) gets larger
the closer the deadline is, more urgent process
instances are assigned a higher priority.

Beside of the objective function, the SIPP consists of
several other constraints which help to minimize the
overall cost. In addition, after solving the SIPP model,
the involved variables provide detailed instructions
what service (of a certain service type) should be
deployed onto which VM and what service instance
should be invoked for a particular process instance
step.
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TABLE 1: Service Instance Placement Problem – Constraints

Constraint Description
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TABLE 1 – Continued
Constraint Description
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TABLE 2: Service Instance Placement Problem – Variables

Variable Description
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Continued on next page
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TABLE 2 – Continued
Variable Description
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BTU The Billing Time Unit (BTU) defines one leasing duration
for which cost apply, i.e., a certain time period in
milliseconds.

c

v

Defines the leasing cost of VM type v in BTUs.
re Defines the maximum amount of repetitions within a

Repeat Loop.
c

p

i

p

Defines the penalty (cost) per time unit of delay for the
process instance i

p

.
M M is a constant needed to give some constraints a

higher weight.
✏ Defines the a short time period in milliseconds which

is used to prevent deadlocks.
!

C

f

, !R

f

Helper variables, representing constant values to give
more weight to the wasted resources term in the opti-
mization function.


