
Virtualizing Communication for
Hybrid and Diversity-Aware

Collective Adaptive Systems
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Philipp Zeppezauer, BSc
Matrikelnummer 0926320

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dr.techn. Hong-Linh Truong

Wien, 02.12.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Virtualizing Communication for
Hybrid and Diversity-Aware

Collective Adaptive Systems
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Philipp Zeppezauer, BSc
Registration Number 0926320

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dr.techn. Hong-Linh Truong

Vienna, 02.12.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Philipp Zeppezauer, BSc
Herrnaugasse 16, 5020 Salzburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I wish to thank various people for their contribution to this Master’s thesis. Hong-Linh Truong,
my supervisor, for his guidance, enthusiastic encouragement and useful critiques of this thesis,
and everyone who contributed to the Smart Society Project. I am particularly grateful for the
guidance and assistance given by Dipl.-Ing. Ognjen Scekic throughout the creation of the Mas-
ter’s thesis and the project. I would also like to express my thanks to the various members of the
Distributed Systems Group at the University of Technology Vienna.

Finally, I wish to thank my family and especially my parents for their support and encourage-
ment throughout my study.

This work is partially supported by the EU FP7 SmartSociety project under grant No 600854.

iii

Abstract

Hybrid and Diversity-Aware Collective Adaptive Systems (HDA-CAS) form a broad class of
highly distributed systems comprising a number of heterogeneous human-based and machine-
based computing (service) units. These units are required to perform tasks on their own and
in cooperation with other units to solve complex problems. Therefore, they typically interact
and collaborate in an ad-hoc manner. These units form dynamic adaptive collectives, which are
subject to constant change. Whenever possible, the collectives are allowed to self-orchestrate,
using familiar collaboration tools and environments.

The flexibility of these collectives makes them suitable for processing elaborate tasks. At the
same time, building a system to support diverse types of communication types in such collectives
is challenging, because the way how human-based and machine-based units communicate differs
fundamentally. To be able to use both in a hybrid system, the actual way of communication
between the units has to be virtualized and handled in the system independently of the actual type
of the communication participants allowing for a uniform communication between applications
of the HDA-CAS platform and individual service units.

In this thesis, the fundamental communication challenges for HDA-CAS are addressed and
requirements, and properties of communication in a HDA-CAS are formulated. This thesis
discusses these problems and presents a concept of how to virtualize the communication with
service units and collectives. Therefore, the notion of service units is extended and the con-
cept of communication adapters is discussed. Furthermore, this thesis presents a design of a
middleware which uses the concepts for virtualizing the communication between, within and
among collectives and service units. The middleware is able to handle numerous, intermittently
available, human and machine-based service units, and manage the notion of collectivity trans-
parently to the programmer. A prototype implementation for validation and evaluation purposes
is also provided.

v

Kurzfassung

Hybrid and Diversity-Aware Collective Adaptive Systems (HDA-CAS) bilden eine umfassende
Klasse von hochgradig verteilten Systemen, die aus einer Vielzahl von heterogenen Compu-
ting (Service) Units, basierend auf Menschen oder Maschinen, bestehen. Diese Service Units
erledigen Aufgaben sowohl selbständig, als auch in Kooperation mit anderen Service Units um
komplexe Probleme zu lösen. Daher interagieren und arbeiten sie in der Regel in einer Ad-hoc-
Weise zusammen. Diese Service Units bilden dynamische, adaptive Kollektive (so genannte
’Collectives’), die einem ständigen Wandel unterworfen sind. Wann immer möglich, ist es den
Collectives erlaubt, sich selbst zu orchestrieren und vertraute Tools und Umgebungen für die
Zusammenarbeit zu nutzen.

Durch ihre Flexibilität sind diese Collectives für die Verarbeitung aufwendige Aufgaben
geeignet. Jedoch ist der Aufbau eines Systems, das verschiedenen Arten von Kommunikations-
typen in einem solchen Collective erlaubt, eine Herausforderung, weil sich die Art und Weise,
wie menschliche und maschinelle Service Units kommunizieren, grundlegend unterscheidet. Um
beide Arten in einem hybriden System nutzen zu können, muss die Kommunikation mit diesen
virtualisiert werden und unabhängig des tatsächlichen Typs behandelt werden. Dies erlaubt eine
einheitliche Kommunikation zwischen der HDA-CAS Plattform und den individuellen Service
Units.

In dieser Diplomarbeit werden die grundlegenden Herausforderungen der Kommunikation
in HDA-CAS besprochen und Anforderungen und Eigenschaften der Kommunikation in einem
HDA-CAS formuliert. Diese Arbeit diskutiert diese Probleme und stellt ein Konzept vor, wie die
Kommunikation mit den Service Units und Collectives virtualisiert werden kann. Daher wird der
Begriff der Service Units erweitert und das Konzept der Communication Adapters wird disku-
tiert. Darüber hinaus stellt diese Arbeit die Architektur und das Design einer Middleware vor,
die die Konzepte für die Virtualisierung der Kommunikation zwischen und innerhalb der Col-
lectives und Service Units verwendet. Die Middleware ist in der Lage, zahlreiche menschliche
und maschinelle Service Units und Collective transparent für den Programmierer zu behandeln.
Eine Prototyp-Implementierung für die Validierung und Bewertung des Designs wird ebenfalls
vorgestellt.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Motivating Scenarios . 2
1.3 Results . 5
1.4 Structure of the Thesis . 6

2 State of the Art 7
2.1 Multi-agent Systems . 7
2.2 Swarm Robotics . 9
2.3 Service-based Systems . 9
2.4 Crowdsourcing Platforms . 10
2.5 Enterprise Service Busses (ESBs) . 10

3 Virtualizing Communication 13
3.1 Requirements for Communication . 13
3.2 Key Concepts . 14

4 Communication Middleware Design 17
4.1 Architecture . 17
4.2 Messages . 32
4.3 Application Programming Interfaces (APIs) 37
4.4 Algorithms . 52

5 Implementation and Evaluation 61
5.1 Implementation . 61
5.2 Requirement and Design Evaluation . 67
5.3 Functional Evaluation . 68
5.4 Performance Evaluation . 70

6 Conclusions and Future Work 73
6.1 Summary . 73
6.2 Future Work . 73

List of Terms and Acronyms 75

ix

Bibliography 77

x

CHAPTER 1
Introduction

Collective Adaptive System (CAS) [20] is a term for highly distributed systems consisting of
numerous autonomous computing elements, each with individual properties and preferences, but
supporting the fundamental property of collectiveness. Collectiveness implies that the individual
elements need to communicate and collaborate in order to reach common decisions, or perform
tasks jointly. To provide collectiveness, CASs gather sets of multiple computing elements into
so called collectives, that provide additional functionality compared to single computing ele-
ments due to their collective capabilities [32]. Adaptiveness is another basic property of CASs,
defining that at any given time computing elements are allowed to join and leave the system, and
collective compositions as well as task execution goals can be dynamically altered. This implies
that CAS are open systems, subject to constant change.

CASs come in a variety of forms; [32] defines that in research there are ”bio-inspired and
self-organizing branches, evolutionary and adaptive-control strategies, different software and
hardware approaches”. This thesis focuses on one specific form of CAS: Hybrid and Diversity-
Aware Collective Adaptive Systems. Hybrid and Diversity-Aware Collective Adaptive Sys-
tems (HDA-CASs) [25] additionally add the heterogeneity to the founding principles of CASs.
This means that they inherently support communication and collaboration among different types
of computing elements, such as software/machines, people and things (e.g., sensors). To support
heterogeneity, the platform has to virtualize the communication with computing elements and
communicate regardless of whether they are humans, machines or things, as well as regardless
of the application that makes use of such computing elements.

To support the development of this field the European Union funded the collaborative project
SmartSociety1 [38], comprised of ten universities and institutes. The goal of this project is to
build a HDA-CAS that combines and virtualizes humans, machines and things to build a smarter
society.

This thesis will discuss the problems of communication that emerge when building a Hy-
brid and Diversity-Aware Collective Adaptive System that incorporates humans, machines, and

1Full title: ”Hybrid and Diversity-Aware Collective Adaptive Systems: When People Meet Machines to Build a
Smarter Society“. http://www.smart-society-project.eu/

1

http://www.smart-society-project.eu/

things (e.g., sensors, actuators). In the main part of the thesis, a system – called SmartCom –
will be presented and discussed in detail which claims to solve these problems. In the following
this system will be referred to as ’Communication Middleware’ or just ’Middleware’. Although
the presented middleware is intended to be used within the SmartSociety platform, it is not
specifically designed for this single purpose and is therefore generally applicable as a commu-
nication middleware to a wide number of similar HDA-CAS platforms. Therefore, this thesis
will only make explicit references to the SmartSociety platform within the introduction of the
thesis and will simply use the term ’platform’ afterwards to emphasize the general applicability.
In addition, components of the HDA-CAS platform will be called ’platform components’.

1.1 Problem Statement

Figure 1.1 shows the high-level architecture of the SmartSociety platform and presents the mid-
dleware’s operational context. The SmartSociety platform supports the programming and execu-
tion of computations involving humans, machines and things. The users of the platform (e.g., a
smart-city maintenance provider; see Section 1.2 for details) submit complex tasks to an applica-
tion running on the platform – the so called SmartSociety application. The application performs
the task – with the help of features of the platform, e.g., orchestration – by assembling and en-
gaging collectives of service units to execute the (sub-)tasks collaboratively. A service unit [43]
is an entity that consists of a peer (human, machine, or things) and a context (the concept of
service units will be described in detail in Section 3.2.1).

The way how human-based and machine-based units (e.g., software) communicate differs
fundamentally. While inter-machine communication relies on well-defined concepts, technolo-
gies, and protocols on multiple layers (e.g., TCP, or REST), human communication in a digital
environment is unconstrained and supported by different communication tools (e.g., email, or
Social Networks). To be able to use both in a hybrid system, the actual way of communication
between the units has to be virtualized and handled in the system independently of the actual
type of the communication participants.

1.2 Motivating Scenarios

The following section takes a look at two motivating scenarios. The first one deals with dis-
aster/crisis management [13, 17], such as a flooding, and how an HDA-CAS can support the
management thereof by supporting communication among heterogeneous types of service units,
such as flooding experts, medical workers and common citizens. The second part of this section
presents a scenario that deals with a smart-city and the maintenance work thereof which also re-
quires a lot of communication between equipment manufacturers, coordination and monitoring
centers, and maintenance workers.

Further interesting scenarios in the context of CAS would be, for example, a tourist guidance
application driven by locals to recommend events and sights, a restaurant/bar recommendation
application driven by locals, or a car-sharing application. [2]

2

SmartSociety Platform (HDA-CAS)

SmartSociety
Applications

App1
module

App2
module

App3
module

U
se

r
A

p
p

 A

Compiler

U
se

r
A

p
p

 B

SM
A

R
TC

O
M

 M
id

d
le

w
a

re

AppN
module

Sm
ar

tS
o

ci
et

y
A

PI
s

 Provenance

 Orchestration

 Elasticity

 Incentives

 etc.

°°°

developers

users

 context

Execution Context

Incentives

QoS

Communication

or

or

Service Unit (SU)

SU

Human Peer

SU

Machine Peer
(e.g. Web Service)

SU

Human Peer

Figure 1.1: Operational context for the middleware. Components belonging to the communica-
tion middleware are marked in blue.

1.2.1 Disaster Management

Let us consider a municipality which wants to leverage a HDA-CAS platform to build and de-
ploy a distributed application for emergency response (e.g., a massive flooding in a city and
surrounding areas). A dedicated application is developed and deployed on top of the platform
on the HDA-CAS platform. Interested citizens can participate by registering their phone num-
ber via a web interface to receive SMS notifications, or download a specific peer application
on their smartphones. Further possibilities would be to register their email address or any other
form of communication. By registering, the citizens become human-based service units and
are eligible to participate and to be invited to join different possible collectives belonging to the
emergency response application. The system also provides the possibility to register as an expert
in a certain field (e.g., boat owner, medical worker, radio amateur). The goal of the application
is to utilize the capabilities and the mobility of these service units to enhance the emergency re-
sponse management. Besides humans also software units can participate in the application and
provide certain functionality, like Complex Event Processing or Data Analysis on data provided
by weather stations and sensor observing the water level in rivers to detect dangerous situations.

Now let us consider that the weather data indicates heavy rain and the water level of the

3

river flowing through the municipality will be critical within hours. This situation is detected
by the data analysis component which immediately starts the emergency procedure. Collectives
of ordinary citizens are formed and asked to evaluate the situation in their neighborhood. All
of these service units are notified using their preferred method (e.g., SMS, or email) or on their
dedicated application. In case of an increasing water level, the system automatically forms
further collectives which are asked to reinforce the existing dams with additional sand bags.

However, despite the effort in reinforcing the dams, the water levels keep rising and parts
of the municipality are flooded. As the status of road connections and citizens trapped in their
homes is unclear, further assistance from citizens is required. Therefore, all registered citizens
are combined to local collectives and are requested to update a Google Map2 and provide infor-
mation about the status of road connections and trapped citizens. Additionally they can upload
a picture to a Dropbox3 folder with a geo-tag. Besides the regular communication channels, a
Twitter4 post is created that encourages unregistered citizens to participate and respond to the
request using a specific hashtag. This data (i.e., updated statuses on the map, pictures in the
Dropbox folder and responses on Twitter) is automatically collected by the platform and pro-
vided to the authorities to rescue citizens and improve the handling of the disaster.

This scenario has been chosen because it is already well-known and incorporates all im-
portant aspects and functionalities that are required for the virtualization of communication on
such a platform: sending messages to service units and collectives, selecting the communication
channels for individual service units, interactions between humans and machines, and collecting
feedback data from various communication channel.

1.2.2 Smart-City Maintenance

Let us consider a smart-city that consists of numerous geographically dispersed buildings and
infrastructure facilities each with thousands of sensors that monitor these buildings and facilities.
And let us consider a smart-city maintenance provider (MP), a company running a monitoring
center that collects and analyzes data of these sensors (e.g., Pacific Controls Galaxy5).

The MP provides the centralized service of both predictive and corrective maintenance to
its customers (building/equipment owners/tenants). This means that MP control centers actively
monitor events originating from various sensors and perform Complex Event Processing on these
data flows. If a potential or actual malfunction is detected they dispatch collectives of experts
to analyze the situation in detail. If necessary, the physical maintenance work is performed
on the ground by a collective of technicians. The (human) experts are contracted to work on-
demand with the MP, subject to their availability and the actual work performed by them. These
collectives consist of multiple human units as well as software units that support their work,
each of these units with own preferences on communication.

Since each equipment manufacturer has different issue analysis and reparation procedures,
when equipment from different manufacturers is interconnected in a smart building, detecting

2https://www.google.at/maps
3https://www.dropbox.com/
4https://twitter.com/
5http://www.pacific-galaxy.com/

4

https://www.google.at/maps
https://www.dropbox.com/
https://twitter.com/
http://www.pacific-galaxy.com/

the cause of an anomaly event sequence cannot easily be done by following prescribed proce-
dures. The complexity grows further when considered at the scale of a smart city, with thousands
of building, each with a unique equipment mix, age, environment, and agreed service-level.
Therefore, a conventional workflow type of orchestration does not fit well for such a scenario.
Rather, collectives of human experts perform loosely-controlled collaboration patterns in order
to detect and repair the problem in the most efficient way, considering the particular context, and
making use of supporting software tools when needed (e.g., for data analysis, communication).

1.3 Results

The goal of this thesis is the theoretical principles for supporting virtualization and communi-
cation within described Hybrid and Diversity-Aware Collective Adaptive System (HDA-CAS)
platforms. Furthermore, the thesis presents requirements, as well as an architecture, design, ap-
plication programming interfaces (APIs) and a prototype implementation of a middleware solv-
ing the problems. The proposed system provides the communication and virtualization primi-
tives to support heterogeneity, collectivity and adaptiveness.

In addition the system provides native support for virtualizing collectives by hiding the com-
plexity of communication with a dynamic collective as a whole and passing of instructions from
the HDA-CAS execution engine to it, making it a first-class, programmable entity. This native
support allows to communicate with the collective members transparently, regardless of whether
they are human-based or machine-based (e.g., sensors, or software). Single human, sensor or
software services are able to participate in different collectives concurrently, acting as different
service units with different SLA, delivery and privacy policies.

The proposed middleware supports collaboration patterns on a higher level. A collaboration
pattern controls the effort within a collective in a loose manner. Instead of over-regulating in-
teractions, the collaboration patterns set the limits within which the service units are allowed to
self-organize, using familiar collaboration tools and environments.

A collaboration pattern consists of the following elements:

• Relationship topology – specifying different topologies (e.g., independent, tree, ring, sink,
random) and relation types formalizing relationships among service units in a collective.
The meaning of the relations is application specific, and can be used to express communi-
cation, data, or command flow.

• Collaboration environment – specifying access to familiar external tools that the service
units can use to collaborate among themselves (e.g., Google Docs, Dropbox). When a
collective is formed, service units are provided with instructions and appropriate access
credentials for the previously set up collaboration environment.

• Communication channels – analogously to the collaboration environment, the pattern
should specify access to familiar external tools that the service units can use to com-
municate among themselves and with SmartSociety Platform.

• Security and privacy policies – policies to restrict the communication and interaction with
specific (sub)collectives or with predefined communication channels.

5

• Delivery policies – policies to control how messages are delivered to service units using
their communication channels and preferences.

In addition the system will provide services that can be used by the HDA-CAS platform to
enforce incentives [34] or to track provenance [9] (i.e., tracking the origins and the processing
of data) within the communication middleware.

The results of this thesis are partially published at the 10th International Workshop on Engi-
neering Service-Oriented Applications (WESOA’14) in Paris, France in November 2014 [47].

1.4 Structure of the Thesis

This thesis is broken into six chapters. The introduction discusses the problem and the motiva-
tion of the thesis and introduces some common terms of the research field of collective adaptive
systems. Following the introduction, Chapter 2 discusses the state of the art in communication
in related research fields. Furthermore, we will take a look at common open-source enterprise
service busses because their functionalities are related to these that are required by the problem
statement.

Chapter 3 discusses the key concepts for virtualization of communication in HDA-CAS.
Chapter 4 presents the design of a middleware as the suggested solution to the problem stated
in the introduction of this thesis. First, the architecture of the proposed system is examined
and the individual components are described in detail regarding their purpose and functionality.
Furthermore, the mapping of the stated problem to the suggested solution is discussed. Addi-
tional service components that support the communication but do not provide core functionality
are described at the end of the first section. Following the architecture of the system, the com-
munication using messages is described in Section 4.2. This section discusses the structure of
messages, how they are routed and the predefined messages used in the system. Section 4.3
discusses the application programming interfaces of the components described in the beginning
of the chapter. The following section (Section 4.4) describes some algorithms that are used by
components of the systems and finally the last section of this chapter (Section 5.1) discusses
briefly the implementation of the prototype of the middleware.

In Chapter 5, the suggested solution is evaluated by means of one of the motivating sce-
narios, and some design decision, functional and non-functional requirements, are discussed.
Furthermore, some small performance evaluations are presented. Finally Chapter 6 concludes
this thesis and provides an outlook on future work.

6

CHAPTER 2
State of the Art

The research field of HDA-CAS is new, but highly varied, and in its many niches builds upon dif-
ferent founding technologies and research results, spanning research areas, such as: autonomous
agents in multi-agent based systems, robotics, bio-inspired collectives, human-provided ser-
vices, crowdsourcing and web-scale workflow technologies. This thesis only focuses on the
communication aspect, in particular on the communication with hybrid units (i.e., humans, ma-
chines and things). To the best of the knowledge of the author, no other platforms or middle-
ware systems offer the virtualization for communication of collectives, humans and machines
in a HDA-CAS in a similar manner. This section discusses the state of the art in handling the
communication and virtualization between entities (e.g., service units and a system) in multiple
HDA-CAS-related research fields. The end of this chapter discusses some popular enterprise
service busses that are used for the communication and the interaction of multiple components
using different communication styles. Existing approaches are reviewed and compared to the
requirements defined in Chapter 1 and the proposed middleware presented in Chapter 4.

2.1 Multi-agent Systems

Multi-agent Systems (MAS) are systems that consist of multiple computing elements (called
agents) that interact with each other [44]. Agents are characterized by the following two ca-
pabilities [44]: i) autonomous actions (i.e., deciding what they have to do themselves to reach
their objectives); and ii) the interaction with other agents to cooperate, coordinate, negotiate and
exchange data.

One of the crucial communication aspects of multi-agent based systems is the agent com-
munication language that is used by the peers to understand each other. The papers [14, 33]
give an overview of the landscape of agent communication languages (ACLs) and discusses two
fully-specified languages: FIPA ACL and KQML. KQML [21] defines three layers: a content
layer, a message layer and a communication layer. The content layer contains application spe-
cific content in any format. The message layer defines how the message are handled (e.g., if it

7

is a negotiation, or a query) and further details like the ontology, or the language of the mes-
sage. Finally the communication layer defines how the communication should be handled by
defining the receiver, sender and further parameters. FIPA ACL [22] has been developed by
the “Foundation for Intelligent Physical Agents” (FIPA), an ”IEEE Computer Society standards
organization that promotes agent-based technology and the interoperability of its standards with
other technologies” [3]. The FIPA ACL specification has been used for example in the Java
Agent DEvelopment (JADE) Framework [7]. The FIPA ACL defines a set of message types
which can be used for the interaction of agents, but message contents are application specific.
According to [33] both languages are almost identical.

In [10], authors propose a middleware that supports communication among agents on dif-
ferent platforms and programming languages. They use a different runtime for each platform
and exchange messages between these runtimes to achieve a cross-platform communication of
agents.

GAIA [40] is a distributed middleware infrastructure for active spaces (i.e., physical envi-
ronments with lots of user interaction with a large variety of devices, i.e., an office). It acts as
a meta-operating system supporting the development and execution of portable applications. It
coordinates software units as well as heterogeneous network devices. The middleware can also
be used to register and query services within an active space. Internally it uses CORBA [27] for
the interaction between individual units but it is also possible to provide a customized imple-
mentation for the communication between units.

The Context Toolkit [19] is a context-aware middleware. It supports the development and
deployment of context-aware applications. A system using the Context Toolkit consists of con-
text widges (i.e., software components providing access to context information) and a distributed
infrastructure that hosts these widgets. Communication between the widges is handled by web-
standards such as HTTP and XML.

The PACE middleware [28] is a middleware for complex, heterogeneous, and context-aware
distributed systems. The whole middleware consists of a context management system, a pref-
erence management system, and a programming toolkit. The internal messaging framework
allows the communication between application components and middleware services. Interface
definitions are mapped to stubs which handle the communication (e.g., stubs for RPC). These
stubs can be generated for various programming languages and technologies which makes the
system very flexible. Note that all nodes in the system have to use the same stub to be able to
communicate with each other.

Compared to the approach in this thesis, MAS communication focuses only on peer-to-peer
interactions, lacking interactions with a managing system that needs to impose specific commu-
nication patterns or privacy constraints. Therefore, MAS systems fully rely on the semantics
built into the language for this. Additionally, agents in MAS are usually uniform, and the agent
type is known in advance, while a middleware for a HDA-CAS platform has to support service
units using different communication channels during runtime.

Similarly to middlewares of multi-agent system, which offer automated transformation be-
tween agent languages, the middleware also needs to offer message transformation between
different message formats used in HDA-CAS. The logical message model in the middleware
addresses the same abstraction layers as the mentioned ACLs – the application specific contents

8

of the message is encapsulated into a message format that dictates different delivery and privacy
policies, while personal preferences of peers and availability of communication channels dictate
how the actual message delivery is performed at the communication layer. The content layer is
managed by the sender, the message layer by the middleware, while the communication layer is
managed also by the middleware but on behalf of the receiver.

2.2 Swarm Robotics

Swarm Robotics is inspired by social insects like bees and aims at the coordination of a large
number of simple robots [4]. The work on peer communication is multifaceted, usually in a ho-
mogeneous environment (all robots are of the same kind) and only peer-to-peer. In the ASCENS
project [45] (focusing on collective adaptive system) one of the communication strategies relies
on the visual communication. [11] describes such a visual communication where many homo-
geneous robots have a common task and try to solve it collectively. The robots have to be able
to see each other and use different lights to indicate the task they are working on. Conflicts on
task selection are handled between the conflicting peers. The coordination is decentralised and
handled in a peer-to-peer manner.

Besides this approach, there are also some swarm robotic projects/algorithms which com-
pletely avoid explicit communication among peers, for example in [31].

Since this research area is inspired by nature, the agents tend to use physical signals to
perform communication, and self-organize, exhibiting collective intelligence. This area served
mostly as inspiration to make the ”natural” human communication tools a first-class citizens of
proposed middleware presented in Chapter 4, and to support unmanaged peer-to-peer commu-
nication. In practice this means to support communication and collaboration tools that human
peers are likely to use in their every-day lives and integrate them with the middleware in hope
that this attracts humans to use HDA-CAS platforms more easily and more naturally, but also
to exploit a wide array of existing functionalities these tools offer. For example, instead of hav-
ing to install a dedicated application to receive a request, the user can simply use its existing
mail/Twitter application to receive the request, and upload the result of his/her work on Drop-
box to share it with others. In this way, users need not learn to use additional applications, and
can also leverage the infrastructure resources and implementational maturity of existing tools.

2.3 Service-based Systems

The ALLOW Ensembles project deals with the concept of cell ensembles [6]. These ensembles
consist of cells that are given a declaratively-defined behaviour, but the actual workflows, that
they execute, adapts during runtime depending on the collective (ensemble) goal. The focus
here is on adaptation of workflows to achieve the adaptability of CAS, whereas the virtualiza-
tion and communication with human and machine elements is performed through standardized
Web Service (WS–*) technologies. They use BPEL4Chor [18] for inter-cellular choreography.
Using WS-BPEL4People [42] or Adaptive Pervasive Flows [8] one can also incorporate human
activities.

9

The ASCENS project focuses on the peer-to-peer approach in machine-only ensembles/col-
lectives (e.g., robots, vehicles, storage nodes) [46]. Similarly to SmartSociety, the ASCENS
models the fundamental constructs as service-based components, however, due to the specificity
of coordination languages they use, at the communication layer they use Pastry [41] and extend
it with the SCRIBE protocol [12] to support message routing and delivery in a peer-to-peer fash-
ion via any- and multicasts [36]. This behavior differs from the approach of this thesis since we
provide a centralized middleware for message exchange, while relying on an adaptive concept
of centrally managed collective.

2.4 Crowdsourcing Platforms

Crowdsourcing Platforms like Jabberwocky [5], TurKit [35] or CrowdLang [37] utilize human
capabilities to solve problems.

Jabberwockys computing stack consists of Dormouse, ManReduce and Dog. Dormouse
provides the functionality to interact with humans and machines using a platform-independent
programming environment that sits on top of other crowdsourcing platforms. ManReduce fol-
lows the MapReduce paradigm but enables the programmer to decide whether to use a human or
machine in both, the map and the reduce phase. Finally Dog is a high-level scripting language
that makes use of ManReduce and has been created to increase the flexibility of the programming
environment. [5]

Amazon provides a web service called Amazon Mechanical Turk [1] that allows to issue
small human tasks, so called Human Intelligent Tasks (HITs). Human workers can solve these
tasks and get a monetary reward after finishing successfully. Usually these tasks are independent
of each other and can be created and solved in parallel. Turkit provides a programming environ-
ment on top of Amazon’s Mechanical Turk that enables the programmer to define a workflow
of tasks. It is able to collect the results of finished tasks and create further tasks based on these
results. [35]

However, in reality they are frameworks/components/libraries layered on top of existing
human-computation commercial platforms, such as Amazon Mechanical Turk, Clickworker,
CrowdFlower. This implies that fundamentally, the virtualization and communication on the
lowest level is limited by the functionalities offered by the underlying platform. The focus is put
on (adapting) the workflow to be executed. For each workflow action the underlying platform’s
API is used to offer the corresponding human task to the crowd. In this respect, to a platform
user, the virtualized concept of the peer in these systems is a programming language construct
describing peer’s capabilities, constraints, and promised rewards which are passed on to the un-
derlying platform which ultimately provisions the peers to perform the task. The concept of
collectives is not supported, neither are unconstrained peer-to-peer communication.

2.5 Enterprise Service Busses (ESBs)

An Enterprise Service Bus (ESB) [15] is a software architecture that aims to handle the commu-
nication between various software applications and components of a system (e.g., in an enter-
prise) in a service-oriented architecture. Another important purpose of an ESB is the integration

10

of several systems. The following section discusses a few popular Enterprise Service Busses
because they provide similar functionality as the presented middleware in Chapter 4. The fol-
lowing discussion of popular open-source ESBs is based on the comparison in [16] in 2011 with
respect to the currently available versions. Due to the requirements for virtualization of commu-
nication in an HDA-CAS, we will only take a look at messaging, integration with adapters, pri-
vacy and delivery policies, access control, and multi-tenancy of Mule ESB (3.5.0) [39], Apache
ServiceMix (5.1.1) [24], JBoss ESB (4.12) [30], and WSO2 ESB (4.8.1) [29].

MuleESB provides patterns for message routing but does not provide message normalization
within the ESB, messages are translated only as needed. As many other ESBs MuleESB does
also support custom adapters and is shipped with many predefined adapters. It fully supports
different security protocols for access control. The ESB does also provide some kind of multi-
tenancy but does not enforce any policies at runtime. [16, 39]

Apache ServiceMix provides various patterns for message routing and uses normalized mes-
sages to integrate components. By using Apache Camel1 various adapters can be used by Apache
ServiceMix to integrate components. Furthermore, it is possible to define custom adapters to
adopt the ESB to new technology. Apache ServiceMix does not support any privacy or delivery
policies that can be applied to specific components and it seems that it does not provide multi-
tenancy as well. The ESB provides different security methods using JAAS to provide access
control to the system. [16, 24]

JBoss ESB also provides various patterns for message routing and uses normalized messages
too. It also supports the creation of custom adapters but they are not as flexible due to some
restrictions compared to other ESB providers. JBoss ESB provides access control for different
components and also a (limited) support for policies. The ESB does also provide some kind of
multi-tenancy. [16, 30]

WSO2 ESB does support all functionality mentioned above except the dynamically enforce-
ment of policies and is - considering only the discussed requirements - the most advanced ESB
available. [16, 29]

In general all discussed middlewares provide adapters to communicate with components
and custom adapters to adopt to new technology advancement. All ESBs, except MulESB, use
normalized messages internally for the messaging and routing. In general none of the presented
ESBs comes with support of addressing of collectives which is one of the key features of the
proposed middleware in this thesis. Furthermore, the support of humans interacting with the
system is generally not considered.

1http://camel.apache.org/

11

http://camel.apache.org/

CHAPTER 3
Virtualizing Communication

This chapter presents the requirements as well as the key concepts for the virtualization of com-
munication in Hybrid and Diversity-Aware Collective Adaptive Systems (HDA-CASs).

3.1 Requirements for Communication

A middleware supporting communication between humans, machines, and things in a HDA-
CAS has to fulfill the following requirements, which have been gathered by examining the prop-
erties of HDA-CAS and possible interactions of peers and components of such a system:

1. Virtualization – supporting heterogeneous human-based and machine-based service units
as uniformly addressable entities; Supporting ‘collective’ as a first-class, dynamically-
defined entity.

2. Heterogeneity – supporting various types of communication channels (protocols) be-
tween the platform and service units as well as among service units/collectives, trans-
parently to the platform.

3. Communication – providing primitives for: message transformation, routing, delivery
with configurable options (e.g., retry, expiry, delay, or acknowledgment). Allowing to
send unicast messages to single service units as well as multicast messages to multiple
service units that are part of a collective.

4. Scalability – ability to handle large number of intermittently available service units.

5. Extensibility – ability to extend the system with further communication channels intro-
duced due to technological advancements in the future.

6. Persistence – message persistence and querying of messages to analyze and derive met-
rics/incentives [34], or to gain further insights in the handling of communication.

7. Asynchronous Communication – due to the high response time of humans (i.e., minutes
to hours or even days compared to milliseconds/seconds of machine-based service units)

13

8. Security – even if not a key functionality, it should be possible to provide primitive au-
thentication of messages and service units, as well as a simple session management.

The communication with service units has to be handled independently of their actual type,
allowing for a uniform communication between applications of the platform and individual ser-
vice units. Platform components should be able to send messages to service units which are
identified by a unique identifier. The mapping of the identifier to the communication channel of
service units should be handled by the middleware with the assistance of platform components
that are managing service units and collectives. Since service units are not limited to a sin-
gle communication channel, there might be multiple mappings of identifiers of service units to
communication channels (e.g., a service unit can be contacted using a mobile application and/or
SMS, or access the system via a mobile application and a web browser concurrently).

3.2 Key Concepts

The following sections present the key concepts of virtualizing communication in HDA-CAS.
The first section extends the notion of a service unit, which describes a peer and a context. The
second section takes a look at communication adapters and how they are essential to fulfill the
expected requirements.

3.2.1 Service Unit

The notion of a service unit is based on the concepts introduced in [43]. A service unit is an
entity provisioned and utilized through service models (e.g., on-demand and pay-per-use). As
presented in Figure 3.1, a service unit consists of:

• Peer – abstraction of a physical or virtual entity performing the computation or executing
a task. Can be a human, a machine, or a thing (e.g., a sensor). If not explicitly mentioned,
the notion of a peer always describes the whole service unit in the following.

• Context – a set of parameters describing the execution context of the particular HDA-CAS
platform and the applications in which the service unit is participating.

The context parameters can include: execution Id, QoS requirements, performance metrics,
associated incentives [34]. To describe the communication with a service unit, the context also
consists of a Communication Context. The communication context defines the context of con-
versations, and negotiations in which the service units participate, as well as context-dependent
virtualization and communication channels (e.g., using email, SMS). This context is important
for communication since each service unit has its own preferences on communication, e.g., some
humans prefer email, others a dedicated mobile application.

In general service units can use different communication channels to interact with the HDA-
CAS platform, e.g., a human-based service unit can communicate via email and Twitter inter-
changeably, receive task descriptions and track progress through a web application, and com-
municate with other units within the collective through a dedicated mobile application. Alter-
natively service units can make use of external software services, serving as collaborative and

14

 context

Execution Context

Incentives

QoS

Communication

or

or

Service Unit (SU)

human

machine

thing

Figure 3.1: Concept of a service unit. It consists of a peer and a context.

utility tools. For example, a software service like Doodle1 can be used to agree upon partici-
pation times, or Dropbox as a common repository for performed tasks. Both human-based and
machine-based service units can drive the task processing, e.g., a software may invoke workflow
activities which are performed by human-based service units; or, conversely, human-based ser-
vice units can orchestrate the execution independently, using software services as data analytics,
collaboration and coordination tools.

A collective is a dynamic entity that consists of multiple service units in order to reach
common decision or to perform tasks jointly. At any given time, service units are allowed to join
or leave collectives, which makes them highly adaptive and dynamic.

3.2.2 Communication Adapter

The concept of Communication Adapters (simply called ’adapters’) is important for the proposed
middleware since it is essential to fulfill the expected requirements. This section describes the
adapters from the functional perspective. Section 4.1.1 takes a look at the technical perspective
of adapters.

Functionally the adapters are components that handle the communication with a service unit
(peer in the following) over a certain communication channel either by sending a message (e.g.,
by sending an email to the peer’s email address) or by receiving feedback from peers (e.g., a
peer responded to a mailing list). The middleware uses adapters to abstract and virtualize peers
to the rest of the platform. The concept of an adapter allows for:

1. Hybridity – by enabling different communication channels to and from peers. Adapters
effectively handle the communication and provide the abstraction of the peer’s concrete
type and communication preferences.

1http://doodle.com/

15

http://doodle.com/

2. Scalability – by enabling the middleware to cater to the dynamically changing number of
peers and workload during the execution.

3. Extensibility – new types of communication and collaboration channels can easily be
added at a later stage transparently to the rest of the HDA-CAS platform.

4. Usability – human-based service units are not forced to use dedicated applications for
collaboration, but rather freely communicate and (self-)organize among themselves by
relying on familiar third-party tools. Adapters can provide access to or utilize such tools
in order to handle the communication with peers.

5. Load Reduction and Resilience – by requiring that all the feedback from peers goes
exclusively and unidirectionally through external tools first, only to be channeled/filtered
later through a dedicated input adapter, the middleware is effectively shielded from un-
wanted traffic load, delegating the initial traffic impact to the infrastructure of the external
tools. At the same time, failure of a single adapter does not affect the overall functioning
and availability of the middleware.

16

CHAPTER 4
Communication Middleware Design

This chapter presents a communication middleware called SmartCom, which uses the concepts
of the previous chapter to provide virtualization of communication to a Hybrid and Diversity-
Aware Collective Adaptive System (HDA-CAS) platform. In the following this system will be
refer to as middleware. The primary goal of the middleware is to virtualize and handle the
communication between platform components of the HDA-CAS, applications and peers, and
among peers themselves. In this chapter, the notion of a peer always describes the whole service
unit as described in Section 3.2.1.

Section 4.1 takes a look at the general architecture of the system and how the functionalities
are mapped and handled within the system and its various components. Afterwards, Section
4.2 examines how the middleware handles messages between the platform, the applications,
the middleware, collectives, and the peers, and how messages look like. Section 4.3 presents
the application programming interfaces (APIs) of the components that have been described in
Section 4.1. Finally, Section 4.4 outlines some more complex algorithms that are used by the
system.

4.1 Architecture

This section presents the various components of the middleware that are responsible for the
virtualization and the handling of communication with peers in a HDA-CAS. Each component
is described in detail regarding its purpose, its functionalities and how they interact with other
components of the system. The implementation of the proposed system and components is
discussed briefly in Chapter 5.

Figure 4.1 presents a conceptual overview of the proposed middleware. Platform compo-
nents on the left hand side usually initialize the communication and messages are sent to peers
and collectives on the right hand side by utilizing the middleware for the communication. Such
outgoing messages are called Output Messages. Peers can reply to received messages by send-
ing messages themselves to the middleware. Additionally they can use additional tools (e.g.,

17

Communication Middleware

Peers

Tools

Input
Adapter
Input

Adapter
Output
Adapter

Input
Adapter
Input

Adapter
Input

Adapter

Services

Message
Info

Service

Message
Query
Service

Communication Engine

Messaging and
Routing

Manager

Adapter
Manager

Authentication
Manager

M
es

sa
ge

 B
ro

ke
r

Platform
Components

<<REST>>

Figure 4.1: Overview of the communication middleware. Platform Components are part of the
HDA-CAS platform and peers/tools are external to the system.

uploading a file to a file server) which are monitored by the middleware (i.e., the system checks
regular if there are updates/changes). These ingoing messages are called Input Messages. A
communication between different peers is also supported, but they are not required to commu-
nicate with each other solely by using the middleware. This approach allows the wide spread
integration of workflows and HDA-CAS applications with the middleware because it does not
limit already existing communication patterns among peers (e.g., a telephone call) by enforcing
own models but rather supports additional communication and interaction if required.

Being a first-class citizen, interactions with, within and among collectives are also supported.
However, this communication is handled on the peer-level for each peer that is part of the collec-
tive. Due to this reason, collectives are not mentioned explicitly in most components described
below. Collectives are only handled specifically at the initialization of a communication in the
Messaging and Routing Manager (see Section 4.1.2). At this point the members of a collective
are resolved and handlers are registered to detect successful and unsuccessful communication
attempts.

The component in the middle of the Figure 4.1 represents the middleware and its various
subcomponents. The box on the left hand side labeled as ’Platform components’ indicates exter-
nal components, which are part of the HDA-CAS platform, as well as applications running on a
HDA-CAS. Peers, and tools used by peers (e.g., a file server or a mailing list) are also considered

18

as being external to the system.
The middleware consists of four groups of components:

• Adapters are used to handle and abstract the actual communication with peers and tools
over communication channels (e.g., sending an email, SMS or making a REST call) from
the rest of the middleware and the platform. The technology that is used by adapters to
send and receive messages depends on the actual implementation and is abstracted from
the rest of the system by providing a common interface for all adapters. This is important
to provide virtualization of peers. Furthermore, this allows the adaptation of technological
advancements in communication.

• Communication Engine consists of components that provide the core functionality of
the system. They are responsible for the handling of messages which are intended to be
sent to or received from peers and tools. These components are responsible to resolve
the members of collectives and to initialize the communication. Additional functionalities
like message authentication, the management and execution of adapters, and routing of
messages are also provided by the components of the Communication Engine.

• Services support the peers, platform components of the HDA-CAS and applications, and
provide additional information on communication aspects. Furthermore, they can be used
– for example – to derive metrics (e.g., average response time) and profiles [26] for peers
or to supervise/monitor the communication.

• Message Broker is used to decouple the execution of the various components of the sys-
tem and to handle bigger workloads by supporting scalability (i.e., multiple components
listen for messages on a single queue). Furthermore, the queues of the broker are used for
the routing of messages which is determined by the Messaging and Routing Manager of
the Communication Engine.

The following sections describe the internal structure and further details of the components
mentioned above. A fully detailed diagram of all the components working together is presented
in Figure 4.2.

4.1.1 Adapters

The functional aspect of adapters has been described in Section 3.2.2. This section discusses the
technical aspect of adapters within the middleware. In general there are two different types of
adapters: Output Adapters and Input Adapters. They differ in their behavior as the Output
Adapter is only allowed to contact a peer (i.e., send a message to a peer) and the Input Adapter
is only allowed to receive input messages from an external tool or peer.

The reason behind this distinction is that the two types are handled differently. Whereas
Output Adapters are shared among all applications running on the platform, Input Adapters are
usually created by applications and are dedicated to receive input messages for the application
that created the adapter. Their behavior is application specific compared to the behavior of
Output Adapter which is considered as peer specific.

19

SmartCom - Communication Middleware

Messaging and Routing Manager

Adapter Manager

Addresses Address
Resolver

Adapter
Execution

Engine

Adapter
Handler

cache for contact
data of peers

AdaptersMessage Broker

Input Adapter Execution

Input Pull Adapter

Adapter
Implementation

Input Pull/
Push

Adapter
API

Authentication Manager

Sessions
Authentication

Provider

Authentication
Request
Handler

AUTH Queue

MIS Queue

Control Queue

Input Queue

C
o

m
m

u
n

ic
at

io
n

 A
P

I

C
o

lle
ct

iv
e

In

fo
 A

P
I

P
la

tf
o

rm
 C

o
m

p
o

n
en

t(
s)

N
o

ti
fi

ca
ti

o
n

C

al
lb

ac
k

A
P

I

Routing
Rules

Messages

Input
Handler

Message
Logging
Service

Routing
Rule

Engine

Message Handler

Request Queues

Output Queues

Log Queue

P
e

er
 In

fo

A
P

I

Output Adapter Execution

Output Adapter

Adapter
Implementation

Output
Adapter

API

P
e

er
A

u
th

e
n

ti
ca

ti
o

n

C
al

lb
ac

k
A

P
I

executes

cached

Peers

Tools

Message Info Service

Message
Information

Request Handler

M
e

ss
ag

e
 In

fo

Se
rv

ic
e

A
P

I

<<REST>>

Message Query Service

Query Handler

M
e

ss
ag

e
 Q

u
er

y
Se

rv
ic

e
A

P
I

Figure 4.2: Detailed view of the communication middleware.

This difference in behavior is also expressed in the way they are created. Output Adapters
are only registered in the system as adapter types (e.g., an email adapter that sends emails to
peers) and their lifecycle (i.e., registration, creation, execution, and removal) is handled by the
Adapter Manager (discussed in Section 4.1.2). On the other hand, Input Adapters are created
by applications running on the platform and are passed to the middleware because they might
require special configuration. Consider an Input Adapter that monitors a folder of a FTP server,
such an adapter would require a path to be specified as well as some additional information like
username and password. This data has to be provided by applications because this information
is application specific. Therefore, Input Adapters are not shared among different applications.

Output Adapters Output Adapters are responsible for sending messages from the middleware
to peers. There are two categories of Output Adapters: Stateful Output Adapters and Stateless

20

Middleware

Output Adapter Execution

Stateless Output Adapter

Output Queue

Control Queue

Adapter
Implementation

Output
Adapter

API

Output Adapter Execution

Stateful Output Adapter

Output Queue
Adapter

Implementation

Output
Adapter

API

Peer

Peer

Peer

Figure 4.3: Concept of the Output Adapter

Output Adapters. Stateful Output Adapters instances are created per peer, whereas single State-
less Output Adapters instances are used to send messages to different peers. Both categories
have to be provided with peer specific contact data, such as an email address or an URL. The
necessary data to contact a peer with an Output Adapter is provided by the Adapter Manager at
each invocation. Additionally, Stateful Output Adapters are provided with this data also at the
beginning of their lifecycle, because they might require to maintain additional conversational
data based on this peer information. Due to the different lifecycles (further details below) they
are provided with that data during the creation of the adapter. Figure 4.3 presents the internal
structure of both categories of Output Adapters. The boxes labeled ’Adapter Implementation’
indicate the actual implementation of the corresponding adapter (e.g., code that issues a REST
call). It can also be observed that both adapters have their own Output Queue but they share
one Control Queue. Output Queues are adapter specific queues which are used for outgoing
messages that still have to be handled. The Control Queue is used to notify the middleware that
the sending was successful or of an error. Instances of both categories have to implement the
Output Adapter API (see Section 4.3.2).

The lifecycle of an Output Adapter depends on whether it is stateful or stateless. Both,
Stateful Output Adapters and Stateless Output Adapters, have to be registered in the system by

21

calling the Adapter Manager (see Section 4.1.2).

• In case of a Stateless Output Adapter, the adapter is instantiated and executed immedi-
ately because they are shared among peers. This approach has the advantage that there
is no need to instantiate the adapter of a specific type at any point in the future, which
eliminates the need for synchronization and locking to ensure that there is only a single
instance of this adapter. Note that further scaled out instances and the primary instance of
the same adapter are considered as a single instance from the conceptual point of view.

The disadvantage of this approach is that resources, such as computation time and mem-
ory, are assigned to the adapter even if the adapter is not used to communicate with
peers. Nevertheless, due to the usually limited resource consumption of Stateless Out-
put Adapters, this disadvantage is acceptable.

• In case of a Stateful Output Adapter the adapter is only instantiated on-demand because
there is an instance per peer that uses this adapter for communication. If there are many
peers using an adapter type (e.g., an email adapter) there are also many adapter instances
which causes a higher resource consumption compared to Stateless Output Adapters.
Hence, creating them on-demand and – if they have not been used for some time – re-
moving them reduces this resource consumption.

Adapters of both categories are usually just removed if the appropriate method of the Adapter
Manager is called. However, instances of Stateful Output Adapters could be discarded earlier
to save resources in case they have not been used for some time. Removing an Output Adapter
means that the corresponding communication channel cannot be used by the middleware to
interact with peers. For example, removing an Output Adapter that sends emails results in not
being able to contact any peer using emails unless another Output Adapter handling emails is
registered.

Input Adapters Input Adapters are responsible for either waiting for input or for actively
checking for input from peers or tools. Input Adapters can be implemented using a push or
pull mechanisms. Adapters using push are called Input Push Adapters. They are notified by
the external tool/communication channel of new developments (e.g., a new mail in the mailing
list) via a push notification. On the other hand, Input Pull Adapters are handled and executed
by the Adapter Execution Engine. The pull is triggered in a certain interval or based on a
programmed request (e.g., a peer has only one hour to send a file to a FTP server. After the
time runs out, the pull adapter checks if there is a file available). This request is expressed
by putting a corresponding message in the Request Queue of a pull adapter. This message
instructs the adapter to execute a pull. Figure 4.4 presents the internal structure of both Input
Adapter categories. Instances of both categories push the received message to the Input Queue.
Input Push Adapters have to implement the Input Push Adapter API (see Section 4.3.2),
instances of Input Pull Adapters have to implement the Input Pull Adapter API (see
also Section 4.3.2).

22

Middleware

Input Adapter Execution

Input Push Adapter

Input Queue

Adapter
Implementation

Input Push
Adapter

API

Peer/
Tool

Input Adapter Execution

Input Pull Adapter

Request Queue
Adapter

Implementation

Input Pull
Adapter

API

Peer/
Tool

Figure 4.4: Concept of Input Push Adapters and Input Pull Adapters.

The lifecycle of Input Adapters completely depends on applications. They are created and
removed by applications because their configuration is application specific. Consider an Input
Adapter that checks a FTP server for new files and each application requires an application-
specific directory to be observed. This configuration cannot be managed by the middleware
because it highly depends on applications and the concrete technology used. Therefore, the in-
stantiation and removal of Input Adapters is handled by applications and not by the middleware.

The lifecycle of Input Push Adapters is special, because after adding them to the Adapter
Manager they have to register a technology-specific handler that is responsible for the reception
of push notifications. This handler has to be destroyed again when the adapter is removed. For
example, an adapter using a server socket has to register it at the beginning and destroy it at the
end of its lifecycle.

4.1.2 Communication Engine

The Communication Engine is the core of the execution system of the middleware and is re-
sponsible for the communication between the platform, the applications, and the peers using
messages and adapters. The Communication Engine consists of the Adapter Manager, Authen-

23

Adapter Manager

Addresses

Address
Resolver

Adapter
Execution
Adapter

Execution
Adapter

Execution
Adapter

Execution

Adapter
Execution

Engine

executes

Adapter
Handler

C
o

m
m

u
n

ic
at

io
n

A

P
I

Messaging and
Routing

Manager

System
Component
(e.g., Task
Execution

Engine)

cache for contact
data of peers

Figure 4.5: Subcomponents of the Adapter Manager and interaction with other internal and
external components.

tication Manager, and the Messaging and Routing Manager. The interactions of the subcompo-
nents can be examined in Figure 4.2.

Messages that should be sent to peers are passed to the Messaging and Routing Manager
which decides based on internal routing rules how to forward messages (i.e., which compo-
nent/adapter handles the message). Messages are sent to and received from the peers using
corresponding Input and Output Adapters (described in Section 4.1.1), which are created, man-
aged and executed by the Adapter Manager. The Authentication Manager is responsible to verify
the authenticity of a peer and to provide a security token to peers that allows the middleware to
verify the sender of a message. These components are described in the following sections.

Adapter Manager

The Adapter Manager is responsible for the lifecycle management (i.e., registration, creation,
initialization, execution, and removal) of adapters intended for the communication with peers.
Adapters are responsible for sending and receiving messages from peers using a communica-
tion channel (e.g., SMS or email). Further details on adapters can be found in Section 4.1.1
and Section 3.2.2. The Adapter Manager consists of the following subcomponents which are

24

described below: Adapter Execution Engine, Adapter Handler, Address Resolver and multiple
Adapter Executions. Figure 4.5 shows the internal structure of the Adapter Manager and how
the subcomponents interact with each other.

The Adapter Handler manages the registered but not yet instantiated instances of Output
Adapters. Both categories of Output Adapters are registered at the Adapter Handler, although
Stateless Output Adapters are instantiated immediately, Stateful Output Adapters are just regis-
tered. In case a message has to be sent to a peer using a stateful adapter, the Adapter Handler
creates an instance of the adapter for the recipient of the message and passes its reference to
the Messaging and Routing Manager. The reference of an adapter represents the address of the
adapter specific Output Queue of the Message Broker the adapter pulls messages from. The
Adapter Handler prevents the instantiation of multiple stateful adapter for a single peer. The
selection of the required adapters for a communication with a peer is based on the Peer Channel
Addresses1. The Peer Channel Address is the internal representation of a communication chan-
nel used by a peer. Input Adapters are not registered at the Adapter Handler but rather executed
immediately and handled according to their category (i.e., push or pull adapter). The detailed
algorithm can be examined in Section 4.4.1.

Instances of both types of adapters are executed by the Adapter Execution Engine. There-
fore, every adapter is assigned to an Adapter Execution which handles its execution. The
Adapter Execution retrieves messages from queues, determines the address information of com-
munication channels of peers, calls the appropriate methods from the Adapter APIs (see Sec-
tion 4.3) and publishes messages to queues. The behavior of the Adapter Execution depends
on whether it handles an Input Adapter or an Output Adapter. Executions of Output Adapters
retrieve messages from the Output Queue and initiate the communication. Executions for Input
Pull Adapters wait for pull requests in the Request Queue and initiate a pull request upon recep-
tion of a message. Input Push Adapters handle the adapter’s execution on their own, they are not
assigned to Adapter Executions.

To support scaling out to handle big workloads, each Output Adapter initially listens for new
messages on a single, adapter specific Output Queue of the Message Broker (see Section 4.1.3).
Scaled out instances of an adapter pull messages from the same queue which allows multiple
instances to handle messages of the queue concurrently. Conceptually, the initial instance of the
adapter and the scaled out instances are considered as a single adapter instance, because there is
no difference in semantics, just an increase in performance. Therefore, we will not differentiate
between these instances in this description. Note that Stateful Output Adapters and Stateless
Output Adapters differ in their behavior regarding scalability. Since Stateful Output Adapters
are per peer there is hardly any need for scaling out these instances because a higher workload
only occurs in rare cases. Since they are shared, Stateless Output Adapters have to be scaled out
much more often, especially if there are lots of peers using the communication channel handled
by the adapter.

Platform components and applications have to create instances of Input Adapters themselves
and pass these instances to the middleware using the Communication API (see Section 4.3).
Input Adapters either receive messages from peers or tools directly via push notification or they
check an external tool (e.g., a folder on a FTP server or a mailing list) regularly if there is a new

1They consist of a unique name (e.g., Email) and a list of parameters (e.g., an email address)

25

AUTH Queue

Control Queue

Authentication Manager

Sessions

System
Component
(e.g., Peer
Manager)

P
e

er
A

u
th

e
n

ti
ca

ti
o

n

C
al

lb
ac

k
A

P
I

Authentication
Provider

Messaging and
Routing

Manager

Authentication
Request
Handler

Figure 4.6: Concept of the Authentication Manager

message represented by a new resource (e.g., a new file) available. On the other hand, platform
components are not able to create instances of Output Adapters directly. Such instances are
created on demand because - unlike Input Adapters - they are shared among all applications
running on a HDA-CAS platform.

Peer Channel Addresses for instantiated adapters are stored in the Addresses Data Storage.
These addresses are needed by adapters to be able to contact a peer. The Address Resolver
is responsible to resolve address requests by Adapter Executions. When an adapter is sending
a message to a peer, the Adapter Execution provides the address of that peer by querying the
Address Resolver. The data storage acts as a cache for Peer Channel Addresses to speed up
the execution of adapters because the Peer Channel Addresses are usually managed by platform
components and calling them regularly might be a limiting factoring regarding performance and
throughput.

Authentication Manager

The Authentication Manager is used to authenticate peers and verify the authenticity of their
messages in the system. Authentication request messages (see Section 4.2.3) are dropped in the
AUTH Queue by the Messaging and Routing Manager and are collected by the Authentication
Request Handler. This handler interacts with the Peer Authentication Callback
API (see Section 4.3.3) to get information on the peer and to authenticate the peer (using the
credentials provided in the message). After the successful authentication, the manager creates a
security token that can be used by peers and the middleware to provide security features (e.g.,
message authentication or message encryption). This token is only valid a certain period of
time. The time period between the creation of the token and the invalidating thereof is called
session. The result of the authentication is passed to the Control Queue in form of a response
message. The Authentication Provider can be used by the Messaging and Routing Manager to

26

AUTH Queue

MIS Queue

Control Queue

Input Queue

Messaging and Routing Manager

C
o

m
m

u
n

ic
at

io
n

A

P
I

C
o

lle
ct

iv
e

In

fo
 A

P
I

System
Component
(e.g., Task
Execution

Engine)

N
o

ti
fi

ca
ti

o
n

C

al
lb

ac
k

A
P

I

Routing
Rules

Messages

Input
Handler

Message
Logging
Service

Routing
Rule

Engine

Adapter
Manager

Message Handler

Request Queues

Output Queues

Log Queue

P
e

er
 In

fo

A
P

I
Authentication

Manager

cached

Figure 4.7: Concept of the Messaging and Routing Manager

verify the authenticity of a message – if required. Figure 4.6 presents the internal structure of
the Authentication Manager.

The Authentication Manager uses a Sessions Data Storage to handle the sessions of peers.
Sessions consist of a session token that can be used by peers to authenticate messages, and a
timestamp. This timestamp is used to invalidate a session after a predefined period of time.
Whether this time stamp is updated upon each usage of the session or just at the beginning of
the session is up to the implementation of the Authentication Manager. If a message arrives with
a token of an invalid session, the peer has to be informed to renew its token. Such messages
should be discarded or at least retained until the peer authenticates itself again.

Messaging and Routing Manager

The Messaging and Routing Manager is responsible for the handling of internal and external
messages of the system. Figure 4.7 presents the internal structure and the communication with
external components of the Messaging and Routing Manager. Messages are sent to peers, col-
lectives, or components by this component. Upon reception of a message the Message Handler
handles the messages according to the type of the receiver of the message.

If the receiver of the message is a peer, the Message Handler determines the correspond-
ing adapter(s) that should be used for the communication. If there are no adapters available,
new ones have to be created. Therefore, the Message Handler queries the Peer Info API

27

(see Section 4.3.3) to retrieve the information about a peer which contains the communication
channels used by the peer. Since this information does not change very often, it can be cached
to improve the performance of further requests. In the following, the Adapter Manager is in-
structed to create new adapters according to the peer’s communication channels and delivery
policies. After the successful creation of adapters, the message is put in the corresponding Out-
put Queues of the adapters.

If the receiver of the message is a collective, the members of the collective have to be de-
termined in order to initiate the communication. Therefore, the Message Handler queries the
Collective Info API (see Section 4.3.3). After receiving the members of the collective,
a new message is created and sent to every member using the procedure described in the previous
paragraph.

If the receiver of a message is an internal or external component, the Message Handler di-
rectly forwards it to the corresponding component either by putting it into a special queue or
by notifying the Notification Callback API (see Section 4.3.3) of the corresponding
component. The Messaging and Routing Manager uses routing (described later in this sec-
tion) to be able to determine the corresponding component. If no receiver is set for a message,
the Message Handler notifies a platform component using the Notification Callback
API, because there is no possibility to determine a receiver due to the stateless nature of the
middleware.

The complete algorithm can be found in Section 4.4.2. Platform components can regis-
ter themselves in the Messaging and Routing Manager to receive notifications upon messages
through the Notification Callback API. All registered callbacks implementing this
API are invoked whenever a message arrives that cannot be handled by the middleware.

Besides the primary recipient of a message, further recipients of messages can be determined
based on Routing Rules, which are handled by the Routing Rule Engine. Rules can be added
by platform components and applications to implement special communication patterns, or to
simplify the communication and reduce overhead. For example, in an application a message
of a specific subtype is always transferred to a software service; the message can be forwarded
directly to the software instead of sending it the application first. Further details on routing are
discussed in the following section about routing.

The Input Handler pulls incoming input messages (e.g., a response from a peer) from the
Input Queue and incoming control messages (e.g., a communication error message) from the
Control Queue. Both messages are forwarded to the Message Handler that determines their
destination. It is possible to scale out the Input Handler to improve the performance of the
handling of input and control information.

The Message Logging Service is responsible for the logging of all sent and received mes-
sages to a persistent database. This information can be used to debug the middleware, or to
analyze the data and create – for example – incentives or profiles of peers. This information can
be retrieved by using the Message Query Service (see Section 4.1.4).

Routing There are two types of routing available in the proposed middleware. The first type
of routing is purely internal and represents the determination of corresponding adapter(s) that
have to be used for the communication with a peer. No routing rules are involved in this process.

28

This activity involves that the Adapter Manager is instructed to instantiate new adapters if there
are none available for a specific peer. This type of routing also has to keep track of changes in
the peer information of a peer because this might result in the recreation/removal of previously
instantiated adapters. Additionally, the delivery policy (described later on) of a peer has to be
tested for changes because this might also trigger instantiations/removals of adapters using the
Adapter Manager.

The second type of routing determines further recipients of a message based on the following
properties of messages: type and subtype, receiver, and sender . This routing information can be
added by providing Routing Rules which are stored in the Routing Rule Engine. The resulting
routing defines additional recipients of the message which can either be peers, collectives, or
internal and external components. Note that routing rules with an empty recipient are not allowed
due to obvious reasons. Routes are determined by matching the properties of the message to
properties of the routing rules, whereas setting properties of the routing rules null matches
every corresponding property of the message. The route is determined by the properties in
ascending order. First, the type is determined, afterwards the subtype, then the receiver and
finally the sender of the message. Because null matches anything, it is not allowed to provide
a routing rule with the type, subtype, receiver, and sender being null together. This restriction
prohibits that all messages of the system are forwarded to a single peer. Besides that there are
no further restrictions on routing rules.

The second type of routing adds flexibility to the system in terms of communication. It
allows applications to implement special communication patterns – e.g., a monitoring peer that
logs all the messages sent to a specific collective without being part of the collective. Note that
routing rules also impose a potential security risk to applications, it allows – for example – to
easily implement eavesdropping on private conversation. The presented routing is also not multi-
tenancy aware which also imposes a security risk because routing rules from an application A
might also match messages from an application B. Future versions of the proposed middleware
should address this problem in particular.

Handling of Policies

The middleware handles two types of policies. The first type are peer-specific privacy policies
which have to be considered when sending a message to a peer. Privacy policies might restrict
the sending of messages based on their properties or at a certain time (e.g., during the night)
which means that the sending has to be aborted. Privacy policies of peers are managed outside
of the middleware and are retrieved by calling the Peer Info API (see Section 4.3.3).

The second type of policies are the delivery policies. There are multiple levels where they
have to be considered and enforced. They are described in the following:

1. The first level of delivery policy enforcement is on the message level. At this level it is
possible to specify how messages are delivered, initially there is just an option to deter-
mine whether a successful sending of a message is acknowledged or not. In general the
delivery policies on this level and any other level are not restricted to this behavior. They
can be easily extended in further versions of the middleware.

29

2. The second level of delivery policies is concerned with the peer delivery policies. Be-
sides specifying the peer’s communication channels in the peer’s profile (in an external
component), it can also specify how it has to be contacted using these addresses. The op-
tions TO_ALL (all addresses are used), TO_ANY (any address is used) and PREFERRED
(preference is expressed by the order of addresses) are available. The enforcement of this
policies is handled by the Messaging and Routing Manager. When a message is sent to a
peer, the manager registers a handler that listens for acknowledgment messages from the
corresponding adapters which indicate a successful sending. Unsuccessful sending is indi-
cated by a communication error message of the adapter. The TO_ALL policy requires that
all adapters are able to send the message, whereas TO_ANY requires only one adapter to
be successful. The delivery policy PREFERRED fails if the message could not be sent to
the preferred adapter of the peer. In case of an unsuccessful delivery based on the chosen
delivery policy, a failure message is forwarded to the sender of the initial message.

3. The third and highest level of delivery policies is concerned with the sending of messages
to collectives. This information about delivery policies is provided by the Collective
Info API (see Section 4.3.3) and defines how messages should be sent to members
of the collective. Options include TO_ALL_MEMBERS and TO_ANY. Upon sending
a message to a collective, there is also a handler registered to enforce the policy. The
behavior on this level is similar to the one on the peer level but successful sending is
indicated by a successful policy enforcement on the peer level. TO_ALL_MEMBERS
means that the sending of messages has to be successful for each peer based on the peers’
delivery policies, if one of these policies fails, the enforcement on the collective level fails
too. On the other hand the TO_ANY policy only requires the sending to one peer to be
successful.

Note that the failure of a policy enforcement is always reported to the sender of the initial
message, the success case is just reported if required by the policy on the message level of the
initial message.

4.1.3 Message Broker

The purpose of the Message Broker is to decouple the executions of the various components of
the middleware. Furthermore, it is used to implement the first type of routing (see Section 4.1.2)
to send messages to the correct adapters that have to forward it to the peers. Some of the queues
of the Message Broker have already been mentioned in previous chapters, in the following we
briefly describe all available queues that are used within the system:

• Control Queue: contains messages that have been sent by internal components and are
needed to control the internal flow of messages, to forward results of internal service
invocations (e.g., answer of an authentication request), to indicate (communication) errors,
or to enforce delivery policies.

• Input Queue: is a single queue that is filled with input messages of peers by all Input
Adapters. These messages are handled by the Messaging and Routing Manager according
to the specified receivers and additional routing rules.

30

Message Query Service

MessagesQuery Handler
M

e
ss

ag
e

 Q
u

er
y

Se
rv

ic
e

A
P

I

Figure 4.8: Concept of the Message Query Service

• Output Queues: contain the output messages that should be handled by adapters to send
a message to a peer over a communication channel. There is exactly one output queue for
each Output Adapter.

• Request Queues: are used to force Input Pull Adapters to perform a pull. There is one
queue for each of these adapters so that they can be notified separately to pull for new
input.

• AUTH Queue: is a special queue for messages that are intended for the Authentication
Manager. Messages in this queue are authentication request messages (see Section 4.2.3)
which consist of the username and password so that peers can be authenticated.

• MIS Queue: is a special queue for messages that are intended for the Message Info
Service. These messages are usually request messages (see Section 4.2.3) for information
about a certain message indicated by a certain type and subtype.

• Log Queue: is intended for all messages that are handled within the middleware and that
have to be logged. Messages in this queue are consumed by the Message Logging Service
of the Messaging and Routing Manager which saves the messages to a database.

4.1.4 Services

Message Query Service

The Message Query Service provides an interface to query sent and received messages. Fig-
ure 4.8 presents the internal structure of the Message Query Service. The Query Handler is
responsible for the handling of queries and the execution of queries in the database. This service
can be used to query all internal and external messages that have been handled by the middle-
ware.

31

Message Info Service

Message
Information

Request Handler

M
e

ss
ag

e
 In

fo

Se
rv

ic
e

A
P

I

Control Queue

MIS Queue

<<REST>>

System
Component (e.g.,

Task Execution
Engine)

Figure 4.9: Concept of the Message Info Service

Message Info Service

The Message Info Service provides information about messages based on their type and sub-
type. It is used by peers to get information on how to interpret a message and how to respond.
Furthermore, it provides a human-readable description of the message’s structure and contents,
as well as its semantic meaning and relation with other messages. This service could also be
improved to return an explanation how to interpret the message in a machine-readable way. The
prototype (described in Section 5.1) provides a simple textual description that the worker can
fetch to interpret the message semantics, especially with respect to related messages. The ser-
vice maintains a database to store the message information which is updated through platform
components. Figure 4.9 shows the internal structure of the Message Info Service and how it is
connected to the queues.

The service can be used by a peer either by sending a message info request (see Section 4.2.3)
to an adapter or by invoking a REST service that provides the corresponding data. Since this
data is application specific, it has to be provided by the application using the Communication
API (see Section 4.3.2).

4.2 Messages

The middleware exchanges messages with platform components, the adapters as well as with
some internal components (i.e., the Authentication Manager and the Message Info Service).
Therefore, the notion of messages is important. The following section takes a look at how these
messages look like, how the routing of messages is handled and some predefined message types

32

are discussed. Note that further message types and subtypes can be defined by programmers of
applications for a HDA-CAS. The semantics of such message types and subtypes depend on the
application that created them.

4.2.1 Message Structure

The following section presents the structure of messages that are used within the middleware.
The structure is quite similar to the FIPA ACL Message Structure [23], but some properties have
been removed and others added to fit the requirements of the middleware.

Each message consists of several mandatory and optional fields. The most important fields
of a message are the Id of the message, the sender, the type and subtype. These and further
fields are discussed and described in Table 4.1. Listing 4.1 outlines a simple message containing
instructions for a task in the JSON format.

1 {
2 "id": "2837",
3 "type": "TASK",
4 "subtype": "REQUEST",
5 "sender": "peer291",
6 "receiver": "peer2734",
7 "conversation-id": "18475",
8 "content": "Check the status of system 32"
9 }

Listing 4.1: Example message with instructions for a task

After receiving a message, Output Adapters are responsible to transform them to the appro-
priate technology-related and peer-understandable representation and send the message using a
communication channel. On the other hand, Input Adapters are responsible for the transforma-
tion of received messages of a technology-related message format (e.g., email) to an internal
message.

Messages that are related to a specific execution of an application are required to have a
execution-dependent conversation-Id, otherwise it is not possible to associate a message with the
corresponding execution. Note that the middleware does not use the conversation-Id internally,
this functionality has to be provided by a platform component.

4.2.2 Routing of Messages

The routing of messages is handled by the Messaging and Routing Manager according to rules
based on the message’s type, subtype, receiver and sender. The order (type, subtype, receiver,
sender) also defines the priority, which means that the type has the highest priority and the sender
the lowest. Further information on routing can be found in Section 4.1.2.

33

Field Description

Type This field defines the high-level purpose of the message (e.g., control message,
input message, metrics message, etc.). This field is especially important for the
routing of messages within the system.

Subtype This field is defined by the component that is in charge of the message (i.e., it
is component specific). The subtype combined with the type of the message de-
fines the purpose of the message. The subtype can also be used by programmers
of applications to define custom message types for their application.

Message-Id A global unique identifier is assigned to every message within the system by the
Messaging and Routing Manager.

Sender-Id The sender-Id specifies the sender of the message (can be a component, peer,
etc.). Sender-Ids are unique within the systems. Sender-Ids are either predefined
in case of an internal component or are assigned by a platform component.

Receiver-Id
(o)

The receiver-Id specifies the receiver of the message (can be a component, peer,
collective). Can also be empty if the receiver is not clear.

Conversation-
Identifier (o)

Denotes the system identifier for the conversation. This identifier can be used
by platform components to map the message to the actual execution instance of
an application. For example: application A is executed twice at the same time:
A1 and A2. The conversation-Id is used to associate the messages with the right
executions A1 or A2. If there is no conversation (e.g., for internal messages),
the conversation-Id can also be empty.

Content (o) Defines the content of the message including instructions and data that are
needed to execute the message. This can be empty in case of simple messages
(e.g., acknowledge messages).

TTL (o) Time to live. Defines a time interval in which a message is valid. For example: a
peer has one hour to post pictures in a folder of a FTP server, after this time the
middleware stops looking for pictures in the folder and creates an error message
if there are no pictures.

Language (o) Denotes the language of the message. This can be a natural language, like En-
glish or German, as well as a computer format like binary. The initial intention
of this field are logging and debugging purposes. In future versions a translation
service could be introduced that makes use of this field.

Security-
Token (o)

The security token can be used to guarantee the authenticity of messages or to
encrypt the content of the message.

Delivery-
Policy (o)

Specifies the delivery policy of the message. This field can be used to specify
if the sender wants an acknowledgement in case of a successful sending of the
message.

RefersTo (o) This field can be used to specify that this message refers to another message.

Table 4.1: Structure of messages. Optional fields are marked with (o).
34

4.2.3 Predefined Messages

The middleware defines some predefined messages. These messages are needed for special
purposes, like authentication, or to indicate specific behavior (i.e., an acknowledged message)
or exceptional cases and errors. The following sections describe these predefined messages and
define their intended usage in the system. The subtypes of the messages are defined in the
corresponding rows within brackets and in capital letters.

Control Messages

Control messages are exchanged within the middleware and are exposed to the application.
Control messages are always indicated by the message type CONTROL. Their intention is to
indicate specific control behavior (e.g., acknowledgment of a message) or exceptions during the
communication. Their are described in detail below. Table 4.2 presents the various subtypes.

Message Description
Acknowledge
(ACK)

This message is sent by the output adapter if the message has been suc-
cessfully sent to the peer. Note that this does not imply peer’s acceptance
of the contents of the message, but is used to implement functionali-
ties such as read receipts. This message is not sent if the programmer
requires a fire-and-forget sending behavior (i.e., she doesn’t care if it
actually has been delivered).

Error (ERROR) An error message that indicates a generic error. This message is handled
based on the routing rules.

Communication
Error
(COMERROR)

This error message indicates an error during the communication. This is
reported to the sender of the initial message.

Timeout
(TIMEOUT)

This message indicates that a time out has appeared in the system and
that the message couldn’t be delivered in time or there was no response
within a certain time.

Table 4.2: Predefined subtypes of Control Messages.

Message Info Messages

These messages are handled by the Message Info Service (see Section 4.1.4). and are intended
for requests of message information by peers over dedicated input adapters and for the reply
of such a request. All such messages are required to have the message type MESSAGEINFO.
Table 4.3 presents the two subtypes of message info messages.

Authentication Messages

Authentication messages are used to perform authentication of a peer in the system and pro-
vide him with a security token that is valid for a specific time period (internally called session).

35

Message Description
Message Info Re-
quest (REQUEST)

Request by a peer to the Message Info Service for information on how
to interpret and handle a given message based on its type, and subtype.

Message Info Re-
sponse (REPLY)

Response of the Message Info Service to a peer that contains information
on how to interpret and handle a given message.

Table 4.3: Message Info Request and Reply Messages.

Such messages are handled by the Authentication Manager (see Section 4.1.2) which interacts
with a platform component to verify the identify of a peer. Further information can be found
in section 4.1.2. Authentication messages always have the type AUTH. AuthenticationRequest
messages are sent by peers to the system whereas the three other messages (AuthenticationRe-
sponse, AuthenticationFailed, AuthenticationError) are sent back from the middleware to the
peer. Table 4.4 describes the used subtypes.

Message Description
Authentication Re-
quest (REQUEST)

Authentication request message of a peer that contains its credentials.
The Authentication Manager queries a platform component to verify the
peer’s credentials. After the successful verification, a security token is
created and sent to the peer.

Authentication Re-
sponse (REPLY)

Response message for an authenticate request message from the middle-
ware to the peer. It contains a security token that can be used in further
requests to verify the identity of a peer.

Authentication
Failed (FAILED)

Special response for an authenticate request message from the middle-
ware to the peer that indicates that the authentication failed. The purpose
of this message is to distinguish between the cases of a failed authenti-
cation and a authentication error on the basis of the message’s subtype.

Authentication Er-
ror (ERROR)

Special response message for an authenticate message from the middle-
ware to the peer that indicates that there was an error during the authen-
tication of the peer. Such an error might be that, for example, no external
platform component is available that can verify the credentials.

Table 4.4: Authentication Messages.

36

4.3 Application Programming Interfaces (APIs)

The following section takes a look at the API of the middleware. First, we examine the public
entities that are needed to interact with the system. Afterwards, we take a look at the callback
entities that are needed by the middleware to get required information for the communication.
Finally, the interfaces and their methods are described in detail to get an understanding on how
to interact with the system.

4.3.1 Data Structures

Table 4.5 presents the data structures that are exchanged between the middleware and the plat-
form components. They are mainly used by the public entities described in Section 4.3.2, and
the callback entities described in Section 4.3.3.

Entity Description
Identifier Defines an identifier object that distinguishes between different

types (peer, collective, component, message) and Id combinations.
Message Message that is exchanged between applications, the middleware

and peers. There are also internal messages that are just handled
between middleware components, or applications and middleware
components. See Section 4.2 for details.

RoutingRule Defines a rule of how messages should be handled within the mid-
dleware. This feature can be used to improve the handling of mes-
sages and increase the performance. A common use case is that a
response message from peer A of a specific type is always be sent
to peer B. See Section 4.2.2 for details.

PeerChannelAddress Defines an address for a communication channel of a peer that can
be handled by a specific adapter. It contains a list of parameters
that can be used by an adapter to contact the peer (e.g., an email ad-
dress). The number of parameters, their syntax and semantic mean-
ing depend on the adapter. See Section 4.1.1 for details.

QueryCriteria An entity that can be used to specify the criteria of a query. It
is created using the Message Query Service. After specifying the
criteria, a call can be made to query the database.

PeerInfo Provides communication related information about a specific peer
such as the used communication channels (PeerChannelAddresses),
delivery policies defined by the peer as well as privacy policies
that restrict the communication behavior. A peer is identified by
an Identifier object.

CollectiveInfo Provides the members of a specific collective as well as the col-
lective’s delivery policy. A collective is identified by an Identifier
object.

Table 4.5: Domain model and data structures of the middleware.

37

4.3.2 Public Entities

Table 4.6 describes the interfaces that are exposed by the middleware to clients. These entities
are required to interact with the system and receive response. The interfaces and their methods
are described in the following sections in detail.

Entity Description
Communication Main entity that is used for the communication with the middle-

ware. New messages are sent using this interface and it also allows
to register new adapters and routing rules.

OutputAdapter Adapter that is responsible to send messages to peers. There are
two types of OutputAdapters: stateless and stateful adapters.

InputPushAdapter Adapters that receive messages from peers via push communica-
tion.

InputPullAdapter Adapters that receive messages from peers via pull communication,
i.e. they query the corresponding endpoint in regular intervals.

MessageInfoService Provides information on a specific message, i.e. how to interpret
the message and the relationship to other messages.

MessageQueryService Service that allows to query persisted messages.

Table 4.6: Public entities of the middleware that are used to interact with the system.

Communication API

This section discusses the main API for the interaction with peers, collectives, and the mid-
dleware for the purpose of communication. It provides methods to start the interaction with
collectives and peers, and also defines methods to extend and manipulate the behavior of the
middleware. Figure 4.10 presents the Communication API in UML notation.

public Identifier send(Message message) throws CommunicationException

Send a message to a collective or a single peer. The method assigns an Id to the
message and handles the sending asynchronously, i.e., it returns immediately and does not
wait for the sending to succeed or fail. Errors and exceptions thereafter are sent to the
Notification Callback API (see Section 4.3.3). Optionally, received acknowledgments are
communicated back through the Notification Callback API.
The receiver of the message is defined by the message, it can be a peer, a collective, or
a component. If the receiver is not set, the message will be sent back to the Notification
Callback API immediately.

Parameters
message - Specifies the message that should be handled by the middleware. The
receiver of the message is defined by the message.

38

<<Interface>>

Communication

+ send(Message): Identifier
+ addRouting(RoutingRule): Identifier
+ removeRouting(RoutingRule): Identifier
+ addPushAdapter(InputPushAdapter): Identifier
+ addPullAdapter(InputPullAdapter, long): Identifier
+ addPullAdapter(InputPullAdapter, long, boolean): Identifier
+ removeInputAdapter(Identifier):InputAdapter
+ registerOutputAdapter(Class<? extends OutputAdapter): Identifier
+ removeOutputAdapter(Identifier):void
+ registerNotificationCallback(NotificationCallback): Identifier
+ unregisterNotificationCallback(Identifier): boolean

Figure 4.10: Communication API

Returns
Returns the internal Id of the middleware to track the message within the sys-
tem.

Throws
CommunicationException - A generic exception that is thrown if something
went wrong in the initial handling of the message.

public Identifier addRouting(RoutingRule rule) throws InvalidRuleException

Add a route to the routing rules (e.g., route input from peer A always to peer B).
Returns the Id of the routing rule (can be used to delete it). The middleware checks if the
rule is valid and throw an exception otherwise.

Parameters
rule - Specifies the routing rule that should be added to the routing rules of the
middleware.

Returns
Returns the middleware internal Id of the rule

Throws
InvalidRuleException - If the routing rule is not valid (e.g., all fields are null).

39

public RoutingRule removeRouting(Identifier routeId)

Remove a previously defined routing rule identified by an Id. As soon as the method
returns the routing rule is not applied any more. If there is no such rule with the given Id,
null is returned.

Parameters
routeId - The Id of the routing rule that should be removed.

Returns
The removed routing rule or null if there is no such rule in the system.

public Identifier addPushAdapter(InputPushAdapter adapter)

Adds an input push adapter that waits for push notifications. Returns the Id of the
adapter.

Parameters
adapter - Specifies the input push adapter.

Returns
Returns the middleware internal Id of the adapter.

public Identifier addPullAdapter(InputPullAdapter adapter, long interval)

Adds an input pull adapter that pulls for updates in a certain time interval. Returns
the Id of the adapter. The pull requests are issued in the specified interval until the adapter
is explicitly removed from the system.

Parameters
adapter - Specifies the input push adapter.
interval - Interval in milliseconds that specifies when to issue pull requests. Can
not be zero or negative.

Returns
Returns the middleware internal Id of the adapter.

40

public Identifier addPullAdapter(InputPullAdapter adapter, long interval, boolean
deleteIfSuccessful)

Adds an input pull adapter that pulls for updates in a certain time interval. Returns
the Id of the adapter. The pull requests are issued in the specified interval. If deleteIf-
Successful is set to true, the adapter is removed in case of a successful execution (i.e., a
message has been received), it continues in case of a unsuccessful execution.

Parameters
adapter - Specifies the input pull adapter.
interval - Interval in milliseconds that specifies when to issue pull requests. Can
not be zero or negative.
deleteIfSuccessful - delete this adapter after a successful execution

Returns
Returns the middleware internal Id of the adapter.

public InputAdapter removeInputAdapter(Identifier adapterId)

Removes a input adapter from the execution. As soon as this method returns, the
adapter with the given Id is not executed any more. It returns the requested input adapter or
null if there is no adapter with such an Id in the system.

Parameters
adapterId - The Id of the adapter that should be removed.

Returns
Returns the input adapter that has been removed or nothing if there is no such
adapter.

public Identifier registerOutputAdapter(Class<? extends OutputAdapter> adapter)
throws CommunicationException

Registers a new type of output adapter that can be used by the middleware to get in
contact with a peer. The output adapters are instantiated by the middleware on demand.
Note that these adapters are required to have an @Adapter annotation which describes the
name and the type of the adapter (stateful or stateless). Otherwise an exception is thrown.
In case of a stateless adapter, it is possible that the adapter is instantiated immediately. If
any error occurs during the instantiation, an exception is thrown.

41

Parameters
adapter - The output adapter that can be used to contact peers.

Returns
Returns the middleware internal Id of the registered adapter.

Throws
CommunicationException - If the adapter could not be handled, the specific
reason is embedded in the exception.

public void removeOutputAdapter(Identifier adapterId)

Removes a type of output adapters. Adapters that are currently in use are removed
as soon as possible (i.e., current executions of communication will not be aborted and
waiting messages in the adapter queue are still transmitted).

Parameters
adapter - Specifies the adapter that should be removed.

public Identifier registerNotificationCallback(NotificationCallback callback)

Register a notification callback that is called if there are new input messages avail-
able.

Parameters
callback - Callback for notification.

Returns
Returns the middleware internal Id of the registered notification callback (can
be used to remove it).

public boolean unregisterNotificationCallback(Identifier callback)

Unregister a previously registered notification callback.

Parameters
callback - Callback for notification.

42

Returns
Returns true if the callback could be removed, false otherwise.

Output Adapter API

The Output Adapter API is used to implement an adapter that can send (push) messages to a peer.
Therefore, the push method has to be implemented. Output Adapters receive a message from
the middleware, transform this message to the adapter specific format (e.g., email) and push it
to the peer over an external communication channel (e.g., send the message to a web platform
or a mobile application). As described in Section 4.1.1 there are Stateless Output Adapters
and Stateful Output Adapters. Stateless adapters are required to have a default constructor (no
parameters) whereas stateful adapters can have a default constructor or a constructor with a
single parameter of type PeerChannelAddress. Stateful Output Adapters are created on demand
by the middleware. Figure 4.11 presents the Output Adapter API in UML notation.

<<Interface>>

OutputAdapter

+ push(Message, PeerChannelAddress): void

Figure 4.11: Output Adapter API

public void push(Message message, PeerChannelAddress address) throws AdapterExcep-
tion

Push a message to the peer. This method defines the handling of the actual commu-
nication between the platform and the peer.

Parameters
message - Message that should be sent to the peer
address - The address of the peer and adapter specific contact parameters.

Throws
AdapterException - If an exception occurred during the sending of a message

Input Push Adapter API

The Input Push Adapter API is used to implement an adapter for a communication channel
that uses push to get notified of new messages. The concrete implementation has to extend the

43

InputPushAdapter class, which provides methods that support the implementation of the adapter.
The external tool/peer pushes the message to the adapter, which transforms the message into
the internal format and calls the publishMessage of the InputPushAdapter class. This method
delegates the message to the corresponding queue and subsequently to the correct component
of the system that handles input messages. The adapter has to start a handler for the push
notification (e.g., a handler that uses long polling) in its init method and remove this handler in
the cleanUp method (e.g., a server socket).

<<Abstract>>

InputPushAdapter

+ publishMessage(Message): void
schedule(PushTask): void
cleanUp(): void
init(): void

Figure 4.12: Input Push Adapter API

public void init()

Method that can be used to initialize the adapter and other handlers like a push no-
tification handler (if needed). For example, to create a server socket that listens for
connections on a specific port.

public void cleanUp()

Clean up resources that have been used by the adapter. Scheduled tasks using the
schedule(PushTask) method have already been marked for cancellation, when this method
is called.

protected void publishMessage(Message message)

Publish a message that has been received. This method has to be called when imple-
menting a push service to notify the middleware that there was a new message.

Parameters
message - Message that has been received.

44

protected void schedule(PushTask task)

Schedule a push task that is executed in the context of the adapter. This method
should be used to reduce the resource consumption of push adapters by using an executor
service. Using this method also guarantees the clean removal of adapters from the execution.

Parameters
task - Task that should be scheduled

Input Pull Adapter API

The Input Pull Adapter is dedicated to pull messages from external tools or peers. For exam-
ple, it can query a FTP server if there is a new file available. Instances of input adapters are
always related to a single application and therefore in the context of the application, because
their semantics depend on the application. Each Input Pull Adapter is executed by a single
Adapter Execution of the Adapter Manager (see Section 4.1.2), which is responsible to call the
pull method in certain intervals. Input Pull Adapters are created by applications and therefore
provided with the initialization parameters by the application itself, implying a stateful adapter.

Having a stateful pull adapter has some advantages:

• The state of the communication (e.g., the corresponding execution Id of input messages)
is always saved in the adapter and there is no need to save it in the Adapter Manager.

• race conditions due to the parallel execution of a single adapter are not possible because
each adapter is only executed by a single thread. Therefore, no synchronization has to be
applied to the adapter.

• The pull method does not require any parameters. Specific settings for adapters (e.g., an
URL) can be set during the instantiation of the adapter and there is no need for a dirty
parameter passing to a stateless adapter (e.g., a map or list of objects/strings).

This approach also has some disadvantages:

• Input Pull Adapters have to be created by a platform component or on higher levels (e.g.,
at the programming level).

• There might be a problem if too many adapters are running at the same time due to the
amount of resources (i.e., memory) or required execution time. Due to the design of the
Adapter Manager the Adapter Execution Engine could run on multiple machines which
would eliminate or at least reduce this problem.

• Adapters have to be cleaned up properly by the creator of the adapter

45

<<Interface>>

InputPullAdapter

+ pull(): Message

Figure 4.13: Input Pull Adapter API

public Message pull() throws AdapterException

Pull data from a predefined location. If there is no data available, null is returned.

Returns
Returns a new message or null if there is no new information.

Throws
AdapterException - If an exception occurred during the pull operation.

Message Info Service API

The Message Info Service provides information about the semantics of messages, how to inter-
pret them in a human-readable way and which messages are related to a message. Therefore, it
provides methods to query message information and to add additional information to messages.

<<Interface>>

MessageInfoService

+ getInfoForMessage(Message): MessageInformation
+ addMessageInfo(Message, MessageInformation): void

Figure 4.14: Message Info Service API

public MessageInformation getInfoForMessage(Message message) throws UnknownMes-
sageException

Returns information about a given message to the caller. This contains how the mes-
sage has to be interpreted, how it is related to other messages and which messages are
expected in response to this message.

46

Parameters
message - Instance of a message. Must contain at least either the message Id or
the message type, other parameters are optional, are used as a template.

Returns
Returns the information about a given message

Throws
UnknownMessageException - If no message of that type found or the Id of the
message is not valid.

public void addMessageInfo(Message message, MessageInformation info)

Add information on a given message. If there already exists information for a mes-
sage, it is replaced by this one.

Parameters
message - Specifies the message.
info - Information for messages of the type of parameter message.

Message Query Service API

This service can be used to query the logged messages that have been handled by the system.
All internal and external messages are logged by the Messaging and Routing Manager. To query
the service, a QueryCriteria object has to be used that specifies the query and executes the query.

<<Interface>>

MessageQueryService

+ createQuery(): QueryCriteria

Figure 4.15: Message Query Service API

public QueryCriteria createQuery()

Creates a query object that can be used to specify the criteria for the query.

47

Returns
Returns a query criteria object that can be used to specify parameters and exe-
cute the query.

4.3.3 Callback Entities

Callback entities are used by the system to interact with platform components which are not
part of the middleware but that the middleware communicates with and depends on for specific
features. The corresponding components have to implement the callbacks in order to be able to
communicate with them. Table 4.7 presents an overview of the available callback entities. These
entities are described in detail in the following sections.

Entity Description
PeerAuthenticationCallback The Peer Authentication Callback is used by the system to ver-

ify the identity of a peer (used for authentication) and to pro-
vide security functionalities.

PeerInfoCallback The Peer Info Callback is used to resolve peer information
about a peer. This information does not change very often but
is queried quite frequently, therefore retrieved data should be
cached as long as the callback does not provide the required
performance throughput.

CollectiveInfoCallback The Collective Info Callback is used by the middleware to re-
solve the peers that are in a collective. This information cannot
be stored in the middleware because it changes frequently, two
consecutive calls might not result in the same response.

NotificationCallback This Notification Callback is used by the middleware to notify
a platform component about messages that are not intended to
be handled by the middleware. This includes messages like
task results or task-related information like communication er-
rors.

Table 4.7: Callback entities of the middleware.

Peer Authentication Callback API

This callback is used to authenticate a peer within the middleware because such information
is not stored within the system but is provided by some platform component that implements
this interface. After a successful authentication a session should be created to avoid calling this
callback too often due to the unforeseeable performance impact.

48

<<Interface>>

PeerAuthenticationCallback

+ authenticate(Identifier, String: boolean

Figure 4.16: Peer Authentication Callback API

public boolean authenticate(Identifier peerId, String password) throws PeerAuthentica-
tionException;

Authenticates a peer, i.e. checks if the provided credentials match the peer’s creden-
tials in the system.

Parameters
peerId - Id of the peer.
password - Password of the peer

Returns
Returns true if the credentials are valid, false otherwise

Throws
PeerAuthenticationException - If an error occurs during the authentication.

Peer Info Callback API

This callback is used to resolve information about a peer, the so called PeerInfo. This informa-
tion does not change very often but is queried quite frequently, therefore, retrieved data should
be cached as long as the callback does not provide the required performance throughput.

<<Interface>>

PeerInfoCallback

+ getPeerInfo(Identifier): PeerInfo

Figure 4.17: Peer Info Callback API

49

public PeerInfo getPeerInfo(Identifier id) throws NoSuchPeerException

Resolves the information about a given peer (e.g., provides the address and the adapter that
should be used).

Parameters
id - Id of the requested peer

Returns
Returns information about a peer, such as the communication channel addresses
and the preferred delivery policy.

Throws
NoSuchPeerException - If there exists no such peer.

Collective Info Callback API

This API is used to provide information regarding the composition and the state of the collectives
to the middleware, in order for the middleware to allow to platform components the functionality
of addressing their messages on the collective level.

<<Interface>>

CollectiveInfoCallback

+ getCollectiveInfo(Identifier): CollectiveInfo

Figure 4.18: Collective Info Callback API

public CollectiveInfo getCollectiveInfo(Identifier collective) throws NoSuchCollectiveEx-
ception

Resolves and returns the members of a given collective Id.

Parameters
collective - The Id of the collective.

Returns
Returns a list of peer Ids that are part of the collective and other collective
related information.

50

Throws
NoSuchCollectiveException - If there exists no such collective.

Notification Callback API

The Notification Callback is used to inform the different platform components of the messages
that arrived for them (e.g., to inform the components about task results or other task-related
information like an error) or that the receiver of a message could not be determined.

Since the middleware does not save any conversational state, it is not possible to determine
the right recipient if multiple platform components are implementing the Notification Callback
API. Therefore, these components are required to be capable of handling (filtering) unexpected
messages.

<<Interface>>

NotificationCallback

+ notify(Message): void

Figure 4.19: Notification Callback API

public void notify(Message message)

Notifies the corresponding callback about task results or task-relation information
like an error.

Parameters
message - The received message.

51

4.4 Algorithms

The following section presents some important algorithms of the middleware in pseudocode
which are needed for the creation and handling of adapters, as well as the handling and routing
of messages in the middleware.

4.4.1 Creation of Output Adapters

Algorithm 4.1 describes how Output Adapters are created/instantiated in the Adapter Manager
(see Section 4.1.2) based on a peer’s delivery policy and the provided addresses of communica-
tion channels.

The algorithm prefers Stateless Output Adapters over Stateful Output Adapters because they
have a smaller impact on the performance of the system. All or at least multiple peers share one
Stateless Output Adapter, therefore, they have a lower resource usage. Contrary to Stateful Out-
put Adapters, Stateless Output Adapters are instantiated immediately after their registration in
the system, therefore, they are not instantiated using this algorithm. On the other hand, Stateful
Output Adapters are instantiated per peer and on demand, because they have a higher resource
usage in the system compared to Stateless Output Adapters.

Depending on the chosen delivery policy the algorithm either instantiates a single adapter
(in case of the delivery policy PREFERRED) or multiple adapters (in case of delivery poli-
cies TO_ALL_CHANNELS and AT_LEAST_ONE). Note that the ordering of addresses de-
fines the preference of communication channels (and therefore adapters) of a peer. Also note
that TO_ALL_CHANNELS means all available channels, therefore, it is not an error if there is
no adapter registered in the system that can handle a specific address. The intentional meaning
is that the sending to all available communication channels has to succeed. The same applies for
adapters that could not be instantiated due to an error. Finally the algorithm returns the internal
Ids of adapters, which are required by the Messaging and Routing Manager and the Message
Broker to send messages to peers. If no adapters have been found, the returned list is empty.

4.4.2 Handling of Messages

Messages are handled by the Messaging and Routing Manager (see Section 4.1.2). Every in-
coming message, regardless of whether it is from an internal component, an application or a
peer is handled by the handleMessage function. Algorithm 4.2 depicts the function. Line 7 of
the algorithm indicates the application of a routing rule which has been described in Section
4.2.2.

First, the message is assigned with a unique message Id which is used to track the message
within the middleware. Additional to the receiver of the message (can also be empty), further
receivers - if there are any - are determined by the Routing Rule Engine based on routing rules
(see Section 4.1.2). Note that the delivery policy handler is only created if the receiver of the
message has been set and it is only created for the first receiver. This prevents the case of
receiving an acknowledge and a communication error message for messages that have been sent
to multiple receivers. Further details on the enforcement of delivery policies can be found in the

52

1 Function createAdapterInstances is
input : Peer information (peerInfo)
output: Identifiers of the created adapters

2 addresses = peerInfo.addresses;
3 policy = peerInfo.deliveryPolicy;

4 for all address in addresses do

5 if there is a stateless adapter instance available for this address then
6 add the address of the stateless instance to the result list;
7 if policy == PREFERRED then
8 return result list;
9 else

10 continue with next address;
11 end

12 else if there is a stateful adapter implementation for this address then

13 if there is already an instance of that adapter for this peer then
14 add the address to the result list;
15 if policy == PREFERRED then
16 return result list;
17 else
18 continue with next address;
19 end
20 end

21 instantiate new stateful adapter with a unique ID;
22 add new instance to the instances of stateful adapters;
23 add new instance to the result list;

24 if policy == PREFERRED then
25 return result list;
26 else
27 continue with next address;
28 end
29 else
30 log that there was an unknown adapter;
31 end
32 end
Algorithm 4.1: Creation of adapters instances for a peer based on peer’s delivery policy.

53

1 Function handleMessage is
input : Message (msg)

2 if message Id is empty then
3 create unique message ID;
4 end

5 createPolicyHandlers = false;

6 if message receiver is not null then
7 add the message receiver to the receiver list;
8 createPolicyHandlers = true;
9 end

/* check if there are further receivers */
10 get further receivers from the routing engine (based on routing rules);
11 add them to the receiver list;

12 if receiver list is empty then
13 send error message to NotificationCallback;
14 return;
15 end

16 for each receiver in receiver list do
17 if receiver is component then
18 forward message to component;
19 continue;

20 else if receiver is collective then
21 deliverToCollective(msg, receiver, createPolicyHandlers); // Alg. 4.3
22 else
23 try
24 deliverToPeer(msg, receiver, createPolicyHandlers); // Alg. 4.4
25 catch
26 send error message to the sender of the message;
27 createPolicyHandlers = false;
28 end
29 end

Algorithm 4.2: Handling of messages in the Messaging and Routing Manager.

54

following section. Finally the presented algorithm forwards the message to the corresponding
receivers.

Algorithm 4.3 describes how the messages are forwarded to a collective and Algorithm 4.4
describes how the messages are forwarded to single peers. The function calls registerCollec-
tiveMessageDeliveryAttempt and registerPeerMessageDeliveryAttempt indicate the registration
of a policy handler that observes whether a delivery policy has been enforced for an outgoing
message or if there was an error during communication (see the corresponding paragraph in
Section 4.1.2).

1 Function deliverToCollective is
input : Receiver (collective)

Message (msg)
Boolean value whether to create delivery policy handler (createHandlers)

2 retrieve collective info (collInfo) from CollectiveInfoCallback;

3 if createHandlers then
// to trace the enforcement of delivery policies

4 registerCollectiveMessageDeliveryAttempt(msg, collInfo.deliveryPolicy);
5 end

6 for each peer in collInfo.peers do
7 try
8 deliverToPeer(msg, receiver, createHandlers); // see Alg. 4.4
9 catch

10 enforceCollectiveDeliveryPolicy(new error message);

11 if collInfo.deliveryPolicy is TO_ALL_MEMBERS then
/* delivery failed because the massage could not

be sent to everyone */
12 break;
13 end
14 end
15 end

Algorithm 4.3: Sending messages to a collective.

First, the algorithm retrieves the collective info from the CollectiveInfoCallback directly.
This object contains information about the delivery policy of the collective as well as the peers
that are currently part of the collective. If required (indicated by the variable createHandlers) a
collective message delivery attempt is registered. Thereafter the message is delivered to every
peer which is currently part of the collective. Note that this membership is subject to constant
change.

Similar to sending messages to a collective, the peer info are retrieved first. It consists of
the delivery policy, privacy policies and contact addresses for adapters (which are not used in
this algorithm). First, the algorithm checks if a message is allowed to be sent to a peer at the

55

1 Function deliverToPeer is
input : Receiver (peer)

Message (msg)
Boolean value whether to create delivery policy handler (createHandlers)

2 retrieve peer info (peerInfo) from PeerInfoCallback;

3 for each policy in peerInfo.privacyPolicies do
// check if policy allows sending messages

4 if !policy.condition(msg) then
5 throw an exception;
6 end
7 end

8 if createHandlers then
// to trace the enforcement of delivery policies

9 registerPeerMessageDeliveryAttempt(msg, peerInfo.deliveryPolicy);
10 end

11 determine list of adapters (adapterList) from routing engine;

12 if adapterList is empty then
13 throw exception;
14 end

15 for each adapter in adapterList do
16 send output message to adapter using the message broker;
17 end
18 end

Algorithm 4.4: Sending messages to peers.

moment based on its privacy policies. If required (indicated by the variable createHandlers) a
peer message delivery attempt is registered. The list consists of Ids of adapters which can send
the message to this peer. Finally, using the Message Broker the message is sent to the peer over
each adapter (indicated by its Id) that has been returned previously by the routing engine.

Enforcing delivery policies

As described in Section 4.1.2 there are multiple delivery policies on three different levels (col-
lective, peer and message level) which have to be enforced. Handlers for these policies are
registered during the sending of messages to peers and collectives (see Algorithm 4.3 and 4.4)
but the enforcement of policies is handled upon reception of acknowledge and communication
error messages which are sent by adapters.

Table 4.8 describes how the data structure to enforce collective delivery policies might look
like. The MessageID and the SenderID represent the composed key that identifies an entry.
There is a policy handler for every entry that keeps track of the policy enforcement for a specific
message and sender, and decides whether a policy has been enforced, if there are still results

56

missing or if it failed. The acronym CollPolEDS is used instead of ”collective delivery policy
enforcement data structure” in the following.

MessageID SenderID Policy Policy Handler
msg1 sender1 TO_ALL_MEMBERS policyHandlerInstance1
msg2 sender2 TO_ALL_MEMBERS policyHandlerInstance2
msg3 sender1 TO_ANY policyHandlerInstance3

Table 4.8: Data structure to enforce collective delivery policies (CollPolEDS). Underlined en-
tries indicate the composed key for each entry.

Table 4.9 describes the proposed data structure to enforce peer delivery policies. It looks
almost the same as the CollPolEDS except that the ID of the receiver is added to the composed
key. Multiple entries of this data structure might correspond to a single entry in the CollPolEDS.
In case of a message being sent only to a peer, there is no corresponding entry in the CollPolEDS.

MessageID SenderID ReceiverID Policy Policy Handler
msg1 sender1 receiver2 TO_ALL_CHANNELS policyHandlerInstance1
msg2 sender2 receiver3 AT_LEAST_ONE policyHandlerInstance2
msg3 sender1 receiver1 PREFERRED policyHandlerInstance3

Table 4.9: Data structure to enforce peer delivery policies. Underlined entries indicate the
composed key for each entry.

If a message is sent to a collective, a corresponding entry is created in the CollPolEDS. For
every peer in the collective an additional entry is created in the peer delivery policy enforce-
ment data structure. Ingoing acknowledge and communication error messages from adapters are
handled on the peer level first and only if that level indicates a successful or erroneous enforce-
ment of the delivery policy, the collective level is enforced. This behaviour can be observed
in Algorithm 4.5 which handles the enforcement on the peer level. If there is a corresponding
entry in the CollPolEDS, the enforcement is redirected to the collective level because the peer
delivery policy has been successfully enforced (in case of Line 9) or there was an error during
enforcement (in case of Line 19).

Algorithm 4.6 describes the delivery policy enforcement on the collective level.

57

1 Function enforcePeerDeliveryPolicy is
input : Acknowledge or communication error Message (msg)

2 try
3 if checkPeerDeliveryPolicy(msg) then // might throw an exception
4 entry = discardPeerPolicyEntry(msg);
5 if entry == null then // Policy has already been enforced
6 return;
7 end
8 if collectiveDeliveryPolicyHasEntry(msg) then
9 enforceCollectiveDeliveryPolicy(msg); // see Alg. 4.6

10 else if entry.messagePolicy == ACKNOWLEDGE then
11 send acknowledgement to entry.sender;
12 end
13 catch

/* msg can only be a communication error message */
14 entry = discardPeerPolicyEntry(msg);
15 if entry == null then // Policy has already been enforced
16 return;
17 end
18 if collectiveDeliveryPolicyHasEntry(msg) then
19 enforceCollectiveDeliveryPolicy(msg); // see Alg. 4.6
20 else
21 send communication error message to entry.sender;
22 end

23 Function checkPeerDeliveryPolicy is
input : Acknowledge or communication error Message (msg)

24 policy = getPeerDeliveryPolicy(msg.id, msg.sender, msg.receiver);
25 if policy == null then
26 return false; // entry has already been evicted
27 end
28 if msg.subtyp == ACKNOWLEDGE then
29 return policy.check();
30 else
31 throw exception; // indicates that this is an error message

32 end
Algorithm 4.5: Enforcing a delivery policy on the peer level.

58

1 Function enforceCollectiveDeliveryPolicy is
input : Acknowledge or communication error Message (msg)

2 try
3 if checkCollectiveDeliveryPolicy(msg) then // might throw an

exception
4 entry = deleteCollectivePolicyEntry(msg);

5 if entry.policy == ACKNOWLEDGE then
6 send acknowledgement to the entry.sender;
7 end
8 end
9 catch

10 entry = deleteCollectivePolicyEntries();

11 send error message to the entry.sender;
12 end

13 Function deleteCollectivePolicyEntry is
input : Message (msg)
output: collective delivery policy entry

14 lock(collectiveDiscardCondition); // prohibits race conditions

// delete entries because policy has been enforced
15 entry = discardCollectivePolicyEntry(msg);
16 for every corresponding entry in the peer delivery policy data structure do
17 discardPeerPolicyEntry(entry);
18 end

19 unlock(collectiveDiscardCondition);
20 return entry;
21 end

22 Function checkCollectiveDeliveryPolicy is
input : Message (msg)
output: true if delivery policy has been enforced, false otherwise

23 policy = getCollectiveDeliveryPolicy(msg.content, msg.sender);
24 if policy == null then
25 return false; /* policy has already been enforced */
26 end
27 if msg.subtyp == ACKNOWLEDGE then
28 return policy.checkAcknowledge(); /* returns true if this

message enforced the policy */

29 else
30 return policy.checkError(); /* can throw an exception or just

return false */

31 end
Algorithm 4.6: Enforcing a delivery policy on the collective level.

59

CHAPTER 5
Implementation and Evaluation

The first section of this chapter discusses the implementation of the proposed middleware of
Chapter 4. It discusses the chosen technology and the available adapters, furthermore it describes
how to extend the system with further adapters, which is one of the most important aspects of the
system regarding extendibility. Section 5.1.1 analyzes the design of the middleware that has been
presented in Chapter 4 regarding the requirements on collaboration patterns and requirements of
HDA-CASs which have been formulated in the introduction of this thesis (Chapter 1).

The sections afterwards evaluates the approach presented in the previous chapter in terms of
semantics, functionality and performance. Section 5.2 evaluates the semantics of the proposed
system based on the motivating scenario presented in Section 1.2. Section 5.3 takes a look at the
evaluation of the functionality. Finally this chapter discusses the performance of the prototype
in Section 5.4.

5.1 Implementation

A working prototype of the middleware has been implemented in Java 1.71 and is available on
GitHub2. It can be used directly by HDA-CAS platforms running on the Java Virtual Machine.
Additionally, other platforms can interact with the middleware using the set of provided APIs.

The prototype implementation provides the following adapters to test the functionality of the
system:

• REST input and output adapters

• SOAP input and output adapters

• Email input and output adapters

1James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex Buckley. 2013. The Java Language
Specification, Java SE 7 Edition (1st ed.). Addison-Wesley Professional.

2https://github.com/tuwiendsg/SmartCom

61

https://github.com/tuwiendsg/SmartCom

• Android3 output adapter

• Dropbox4 input and output adapters

Further information on the usage of the provided adapters can be found on GitHub5. Additional
third-party adapters can be loaded as plug-ins and instantiated when needed.

The middleware uses MongoDB6 as a database system for its various subsystems. Depend-
ing on the usage of the middleware, either an in-memory or dedicated database instances of
MongoDB can be used. For the in-memory MongoDB instances the middleware uses the Flap-
doodle Embedded MongoDB7. The database system could be easily changed by replacing the
implementations for the various Data Access Objects (DAOs) with implementations for other
database systems.

To decouple the execution of the HDA-CAS platform and the communication we use Apache
ActiveMQ8 as the Message Broker with an additional internal abstraction layer on top of the
Message Broker.

The various subsystems and the whole system can be build using Apache Maven9. The
APIs are provided in the ’api’ module of the prototype implementation. The communication
middleware can be started by instantiating the class at.ac.tuwien.dsg.smartcom.SmartCom and
calling its initializeSmartCom() method. The methods getCommunication(), getMessageInfoS-
ervice(), and getQueryService() provide the services and classes that allow the interaction with
the middleware. Further information about the implementation can be found on GitHub5.

5.1.1 Requirement Verification

The following section discusses how the collaboration patterns – that were formulated in Sec-
tion 1.1 – are fulfilled by the suggested solution.

• Relationship topology – since such a relationship topology is application specific, the mid-
dleware does not handle them but also does not restrict them. By providing proper routing
rules, delivery policies, and assembled collectives all kind of topologies are realizable for
applications.

• Collaboration environment – by using adapters, the middleware is capable to use any col-
laboration environment that complies with the basic interaction procedure of the system.

• Communication channels – the suggested middleware supports all kind of communication
channels by implementing a specific adapter for such a channel. This allows the system
to provide extendibility and flexibility regarding future technology.

3http://www.android.com/
4https://www.dropbox.com/
5https://github.com/tuwiendsg/SmartCom/wiki
6http://www.mongodb.org
7https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
8http://activemq.apache.org
9http://maven.apache.org/

62

http://www.android.com/
https://www.dropbox.com/
https://github.com/tuwiendsg/SmartCom/wiki
http://www.mongodb.org
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
http://activemq.apache.org
http://maven.apache.org/

• Security and privacy policies – Security functionality is provided by the Authentication
Manager (see Section 4.1.2) and privacy policies (also in Section 4.1.2) are executed per
service unit when messages are sent.

• Delivery policies – Delivery policies have been introduced in Section 4.1.2 and can be
specified on the message, peer and collective level to provide the required flexibility.

The following presents how the requirements of HDA-CASs that were formulated in Sec-
tion 1.1 are fulfilled by the suggested solution:

1. Virtualization— is achieved by introducing a layer of abstraction (i.e., the whole middle-
ware) around the actual communication . Using an identifier for a service unit (regardless
whether it is a human-based or machine-based service unit) is sufficient to send a message
from the platform to a single service unit or a collective.

2. Heterogeneity— since the communication with service units is virtualized and service
unit specific communication is handled solely within the middleware, heterogeneity is
provided to the system. By adding corresponding adapters, the system is able to commu-
nicate with any kind of service unit.

3. Communication— the actual communication of the middleware with service units is han-
dled by adapters.

4. Persistence— each message is persisted to a database by the Message Logging Service
and exposed by the Message Query Service.

5. Scalability— to support scalability, the whole system uses message queues wherever pos-
sible and required. Scalability is achieved by scaling out of adapters to handle big work-
load and to scale in again if the workload is reduced to save resources. The same procedure
is used by internal components that are listening on message queues. The architecture also
supports that middleware components are distributed over multiple machines by utilizing
the Message Broker to distribute the workload.

5.1.2 Extending the System with Adapters

This section describes how to extend the system by adding new adapters. First, we examine how
to implement and register Output Adapters and afterwards how to add Input Adapters. Further
information on adapters can be found in Section 4.1.1

Output Adapters

In order to create an Output Adapter that can send messages to the peers, the adapter has to
implement the OutputAdapter interface. For the purpose of demonstration the following
description focuses on a communication using SMS, any other form of communication (e.g., a
dedicated mobile application, email, instant messaging) can be implemented in a similar way.
The SMS adapter has to contact a SMS provider to send messages to the mobile phone number
of peers.

63

Note that the name of the adapter has to be unique in order to be able to resolve the address of
peers and the preferred communication adapter. Stateful adapters are created per peer, meaning
that every peer is associated with a separate adapter instance. Both parameters have to be added
using the @Adapter annotation, which is required for every Output Adapter.

@Adapter(name="SMS", stateful = false)
public class SMSAdapter implements OutputAdapter {

public SMSAdapter() {
//initialize the adapter for a (multiple) given provider

}

@Override
public void push(Message message, PeerAddress address) {
//send message to address

}
}

Listing 5.1: Implementation of a Output Adapter

Input Adapters

As already discussed, there are two different types of Input Adapters available. Pull adapters
actively issue a pull in a certain time interval (see Listing 5.2), whereas push adapters wait for
push notifications over communication channels (see Listing 5.3).

Note that both adapters have to be provided with the concrete parameters (e.g.., the url of
the FTP server and credentials). This information can either be hard-coded or provided during
the creation of the adapter by an application.

private class FTPAdapter implements InputPullAdapter {

private FTPAdapter(String pullAddress, String credentials) {
//initialize adapter

}

@Override
public Message pull() {
//perform pull and transform to message
return msg;

}
}

Listing 5.2: Implementation of an Input Pull Adapter

64

private class MailinglistAdapter extends InputPushAdapterImpl {

private MailinglistAdapter(...) {
//initialize adapter

}

@Override
public void init() {
//initialize some handler

//alternatively do the following:
schedule(new PushTask() {

@Override
public void run() {

//wait for message and transform to internal message
publishMessage(msg);

}
});

}

@Override
public void cleanUp() {
//destroy resources

}
}

Listing 5.3: Implementation of an Input Push Adapter

5.1.3 Interacting with the System

This section takes a brief look at how to use the implementation of the middleware in a program
in the traditional sense of a ’Hello World’ program.

public class HelloWorld implements NotificationCallback {

public void helloWorld() throws Exception {
//initialize peerAuthenticationCallback
//initialize peerInfoCallback
//initialize collectiveInfoCallback

//add a peer with id ’peer1’ that can receive emails

//initialize smartcom:
SmartCom smartCom = new SmartComBuilder(

65

peerAuthenticationCallback,
peerInfoCallback,
collectiveInfoCallback)
.create();

//get communication API
Communication communication = smartCom

.getCommunication();

//register the notification callback API
communication.registerNotificationCallback(this);

//register the input handler (pulls every second)
communication.addPullAdapter(

new EmailInputAdapter(),
1000);

//create message
Message.MessageBuilder builder =

new Message.MessageBuilder()
.setType("TASK")
.setSubtype("REQUEST")
.setReceiverId(Identifier.peer("peer1")
.setSenderId(Identifier.component("DEMO"))
.setContent("Hello World!");

Message msg = builder.create();

//send the message
communication.send(msg);

}

public void notify(Message message) {
System.out.println(

"Received:"+
message.toString();

}
}

Listing 5.4: Hello World using email

Listing 5.4 outlines a program that sends a ’hello world’ message to a peer by email. Email
is used for the communication because an external peer is registered in the system that provides
an email address in his peer profile, which can be accessed by the peerInfoCallback (external to
the middleware). Additionally an Input Adapter for email is registered, that listens for incom-
ing emails on a specific account. When the peer receives the ’hello world’ email, it can send
a response to the email account monitored by the Input Adapter. Since the Input Adapter is

66

SmartSociety
Application

COL1

Experts

Dropbox

repository

Oa

Oa

Ia

contact
1° event

5° analysis result

2° log

Sensors

CEP

Business
Logic

COL2

Oa

Ia

3° data

4° analysis result

manufacturer

Figure 5.1: Supporting predictive maintenance use-case. Collectives of human expert and soft-
ware service units participate in a joint collaboration to identify the cause of a detected malfunc-
tion event.

executed every second, it detects at some point, that a new email arrived, which is consequently
transformed to a message and forwarded to the middleware. Finally, this response message is
sent by the middleware to the Notification Callback API, which is implemented by the Hel-
loWorld class. The complete ’hello world’ code is available on GitHub10.

5.2 Requirement and Design Evaluation

The following section formulates a concrete use-case to validate the presented design and its
fulfilment of the stated requirements based on the second motivating scenario that has been
presented in Section 1.2.

A predictive maintenance SmartSociety application receives sensor readings from a smart
building and performs Complex Event Processing (CEP) on them. If an indication of a poten-
tial malfunction is detected, further investigation is required. A collective (COL1) of available
human experts is formed11 and a collaborative pattern imposed. The application appoints an
expert to lead the peer collaboration within the collective and sets up a Dropbox repository for
sharing the findings and equipment logs between the SmartSociety application and the collec-
tive. Additionally, it provides to the COL1 manager the contact details of the manufacturer of the
malfunctioning equipments in case additional consultations are required. Finally, middleware
also provides COL1 peers with mediated access to a data analysis tool (e.g., Splunk12).

Figure 5.1 shows the two collectives participating in this scenario. COL1 containing human
expert service units (SUs) and a single software SU — the Dropbox service. Furthermore, each

10https://github.com/tuwiendsg/SmartCom
11Selection of collective peers is out of scope of this thesis.
12www.splunk.com

67

https://github.com/tuwiendsg/SmartCom
www.splunk.com

human SU is assigned a dedicated peer adapter (Oa) instance, while for the Dropbox service,
both a Oa and a feedback adapter (Ia) instance are executed, in order to support two-way com-
munication with the SmartSociety platform. COL2 contains a single SU that does data analysis.
To support two-way communication we introduce again a Oa and a Ia.

The use-case starts by SmartSociety application notifying peers that their participation is
needed (Fig. 5.1, 1◦) by sending a message to MessagingAndRoutingManager which
will initialize the routing. Some peers expressed in their profiles the preference for being no-
tified by SMS, others by email. To send an SMS, the MessagingAndRoutingManager
reads the phone number of a peer from its profile and hands it to AdapterManager which
instantiates and executes the SMS adapter. The PeerAdapter sends the message by using the
most cost-efficient mobile operator. Peers that prefer to be contacted through email will be sent
an email using a stateless email adapter through an external mail service. If a peer wants to be
contacted by email and SMS, it can set this preference by using the DeliveryPolicy. The
content of the message is provided by the SmartSociety application. In this case, the message
contains the URL pointing to the description of the detected event, Dropbox repository URL
and access tokens for sharing the results, the name and contact details of the selected collec-
tive manager as well as a natural language description of the required activities and contractual
terms. Furthermore, the manager is sent the contact details of the equipment manufacturer’s
customer service, and the address of another collective – COL2, which in practice contains a
single software peer, the Splunk service.

For the sake of simplicity, we assume that expert peers do accept the terms and participate in
COL1. The manager freely organizes the collaboration in COL1. At a certain point, human peers
need to run an additional data analysis on the log. The collaboration pattern foresees that if a file
with predefined filename is deposited in the shared Dropbox repository, the dedicated feedback
adapter would pick up that file (2◦) and forward it to the COL2 for analysis. The middleware en-
sures that FeedbackPullAdapter for Dropbox (DropboxFeedbackAdapter) regu-
larly checks if there are new files available (e.g., once a minute). The system will then create and
send a message to the Splunk Peer Adapter which contains the location of the file and further in-
formation on the analysis (3◦). Once Splunk has finished analyzing the data, Splunk will deposit
the results file back to the Dropbox repository (4◦ + 5◦) and its FeedbackPushAdapterwill
push a multicast notification message to the COL1 members (1◦ again). The COL1 can then
continue their work.

5.3 Functional Evaluation

A video that demonstrates the functionality of sending messages to and receiving messages from
single service units, homogeneous and heterogeneous collectives can be observed on GitHub13.
This demo presents the use cases of sending a message to a software peer, to a human peer,
to a homogeneous collective (only software peers) and to a heterogeneous collective (software
and human peers). The demo setup is the following: two software peers which are available
via REST and which upload files to the Dropbox, and two human peers which can be contacted

13https://raw.githubusercontent.com/wiki/tuwiendsg/SmartCom/demo.avi

68

https://raw.githubusercontent.com/wiki/tuwiendsg/SmartCom/demo.avi

Figure 5.2: Four screenshots of the demonstration video. Top-left: software peer added a file to
a dropbox folder which is detected by the Dropbox input adapter of the middleware. Top-right:
human peer receives email by Email output adapter. Bottom-left: collective of software peers
receives a message. Bottom-right: Several respond messages sent by the middleware using the
Notification Callback API.

by email14 and which respond by email. First, a message is sent to one of the software peers
which immediately uploads a file. This is detected by the middleware and displayed in the log.
Afterwards, a message is sent to a human peer which receives the message in his email client
and immediately responds via email. This is also detected and displayed by the middleware. In
the rest of the demonstration, collective capabilities are demonstrated. First, a collective of both
software peers is formed and a REST call is made to both peers, which immediately respond.
Afterwards, a collective of all available peers (two software peers and two human peers) is
formed and they all receive the same message via REST or email. Figure 5.2 presents four
screenshots of the demo video.

Furthermore, the functionality of the proposed system has been evaluated by integrating

14Used email provider: 10 Minute Mail (http://10minutemail.com/)

69

http://10minutemail.com/

it with a CAS Provisioning Service called SALAM15 (SociAL compute unit (SCU) runtime
frAmework and siMulation). In the integration demo, the purpose of SALAM is to create col-
lectives of peers based on tasks and task requirements, and to initiate the sending of messages
to the peers which describe the task. Peers are maintained by SALAM and the provisioning is
based on the profiles of these peers. The code used for the integration can be found on GitHub16.

Finally the approach has also been evaluated in terms of the SmartSociety project. It has been
integrated with a Peer Manager that provides the data for the Peer Info Callback API, Collective
Info Callback API, and Peer Authentication Callback API (see Section 4.3.3). Furthermore, the
middleware is used by the application ’Ask SmartSociety!’, which allows users to ask questions
which will be solved by peers. The application has been created to demonstrate the integration
of various components of the SmartSociety platform.

5.4 Performance Evaluation

The following performance evaluations of the presented prototype have been made on a machine
with the following specifications: Windows 7 64-bit, Intel Core2 Duo with 2x 2.53 GHz, 4.00
GB DDR2-RAM. The configuration of the performance evaluation environment is the following:

• One implementation of a Stateless Output Adapter (one instance shared by all peers).

• Ten Input Push Adapter that receive input from peers.

• Output and Input Adapters communicate directly using a in-memory queue to simulate a
peer with a response time of zero.

• Workers simulate the number of applications/users that send messages to the system.

• One million messages are sent for each evaluation test run to get meaningful data of sen-
t/received messages.

• Only sent and received messages are considered as ’handled’, no internal messages.

Figure 5.3 depicts the setup for the performance evaluation as described above.
The performance has been evaluated for every combination of 1, 5, 10, 20, 50, 100, and

1000 Workers sending messages concurrently, as well as 1, 10, 100, and 1000 registered peers.
Each test run has been executed 10 times to get a meaningful number of possible throughput.
Figure 5.4 presents the results of the test runs, the data can be found on GitHub17.

As one can see, the initial throughput is around 5.000 messages per second for a lower
number of peers. The limiting factor here is the used message broker which only allows approx-
imately 22.000 messages per second 18 on a machine with the previously mentioned specifica-
tions. The system has an upper bound of approximately 5.000 messages per second since each
message sent by a worker is handled multiple times by the message broker and the middleware.

15https://github.com/tuwiendsg/SALAM
16https://github.com/tuwiendsg/SALAM/tree/master/smartcom-salam
17https://github.com/tuwiendsg/SmartCom/tree/master/performance
18http://activemq.apache.org/performance.html

70

https://github.com/tuwiendsg/SALAM
https://github.com/tuwiendsg/SALAM/tree/master/smartcom-salam
https://github.com/tuwiendsg/SmartCom/tree/master/performance
http://activemq.apache.org/performance.html

Workers
Communication

Middleware
Peers

Worker

Stateless
Output
Adapter

Input
Adapter

WorkerWorker

simulated

10 instances

1 instance
(scales)

1 mio messages

Figure 5.3: Setup for the performance evaluations.

The performance decrease with higher amounts of peers is a result of the increased memory
requirements rather than computational complexity. Note that the system has been designed to
be able to be distributed on various machines, which can eliminate the problem of not having
enough memory on a single machine.

By looking at the data, one can observe, that the throughput is initially quite low but increases
significantly during the execution. This is the result of the chosen scaling-out strategy of the
Stateless Output Adapter.

Note that performance is not a primary concern of the middleware since the response times
of humans are usually much larger compared to the response times of machines. Nevertheless,
the performance of the system is an important aspect considering the usability and success of
the middleware.

71

Figure 5.4: Performance Evaluation of the Middleware on: Windows 7 64-bit, Intel Core2 Duo
with 2x 2.53 GHz, 4.00 GB DDR2-RAM.

72

CHAPTER 6
Conclusions and Future Work

6.1 Summary

This thesis presented the concepts for virtualization of communication in Hybrid and Diversity-
Aware Collective Adaptive System (HDA-CAS) platforms – platforms with the fundamental
properties of Collectiveness, Adaptiveness and Hybridity (i.e., humans, machines, and things
communicate with each other). Furthermore, it introduces the architecture and design of a com-
munication middleware for HDA-CASs which is based on the concepts presented in this thesis.
The solution aims to tackle hybridity in such platforms by virtualizing the communication with
human-based and machine-based service units by creating a transparent way of addressing of
service units and providing technology-independent communication with them for the platform.
The middleware considers a variety of aspects, including different kinds of supported service
units (human- vs. machine-based service units), different channels of communication (e.g.,
email, SMS, and FTP), and loose-coupling to promote the usage of familiar third-party services.
This is of high importance in order to create a platform which is able to scale to a potentially
high number of diverse service units organized in multiple dynamic collectives without restrict-
ing self-organization and interaction of service units.

To support collectiveness, the middleware allows addressing collectives of service units
transparently to the HDA-CAS, relieving the HDA-CAS programmer the duty to keep track
of current members of a collective, allowing the collective to scale up and down when needed
seamlessly. The described system was validated through a prototype implementation provided
as open-source.

6.2 Future Work

The focus of future work is to improve the presented prototype and integrate it into the Smart-
Society platform. Especially, the improvement of the scalability and the overall performance of
the middleware will be important for the success of the platform adoptions. The performance

73

analysis in Section 5.4 discusses the problems of the current solution. Furthermore, the middle-
ware has to be extended to provide more flexibility, and easier and more advanced configuration
possibilities (e.g., configuration of thread pools for the various components).

An important aspect will also be the improvement of the Message Info Service to provide
machine- and human-readable descriptions. Providing the scientific fundamentals and the im-
plementation of such a system is, due to the complexity, out of context of this thesis. Adding a
translation service for human-readable messages to machine-readable messages would also be
possible and might further improve the applicability of the middleware.

The focus of further research will be on modeling the primitives for integrated monitoring
and execution of elasticity actions, such as imposing of optimal topologies, dynamical adjust-
ment of collective members, and support for incentive application. Currently, these actions have
to be fully specified on the HDA-CAS application level, presenting an unnecessary burden for
the developers.

74

List of Terms and Acronyms

adapter

An adapter is used by the middleware to abstract the communication with peers and to
handle the communication technology independently within the system. Adapters are
described in detail in Section4.1.1 and Section 3.2.2

API

application programming interface

application

An application that runs on the HDA-CAS and uses the middleware to communicate with
peers.

CAS

Collective Adaptive System

collective

A collective is a group of peers that have been assembled to provide a common service
(e.g., data analysis). This groups consist of at least one peers and can change at any time.

communication channel

A communication channel indicates a type of technology related communication with a
peer. For example an email or a REST call. Each adapter handles the communication over
a specific communication channel.

HDA-CAS

Hybrid and Diversity-Aware Collective Adaptive System

peer

A peer is either a human or a machine and provides a service.

platform

HDCAS platform that uses the middleware

75

platform component

Component of the HDA-CAS that interacts with the middleware.

service unit

Entity that consists of a peer (human, machine, or things) and a context (the concept
of service units will be described in detail in Section 3.2.1). Can be human-based or
machine-based service unit.

tool

External tools that are used by peers to finish tasks (e.g., by putting a file on a file server)
or interact with the system.

76

Bibliography

[1] Amazon Mechanical Turk. http://www.mturk.com. Accessed: 2014-11-30.

[2] Applications of the SmartSociety project. http://www.smart-society-
project.eu/applications/. Accessed: 2014-11-30.

[3] The Foundation for Intelligent Physical Agents. http://fipa.org/. Accessed: 2014-
11-20.

[4] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application. In
Erol Şahin and WilliamM. Spears, editors, Swarm Robotics, volume 3342 of Lecture Notes
in Computer Science, pages 10–20. Springer Berlin Heidelberg, 2005.

[5] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The jabberwocky
programming environment for structured social computing. In Proceedings of the 24th
annual ACM symposium on User interface software and technology, pages 53–64. ACM,
2011.

[6] Vasilios Andrikopoulos, Antonio Bucchiarone, Santiago Gómez Sáez, Dimka Karastoy-
anova, and Claudio Antares Mezzina. Towards modeling and execution of collective
adaptive systems. In Service-Oriented Computing–ICSOC 2013 Workshops, pages 69–81.
Springer, 2014.

[7] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade–a fipa-compliant agent
framework. In Proceedings of PAAM, volume 99, page 33. London, 1999.

[8] Antonio Bucchiarone, Alberto Lluch Lafuente, Annapaola Marconi, and Marco Pistore. A
formalisation of adaptable pervasive flows. In Proceedings of the 6th International Confer-
ence on Web Services and Formal Methods, WS-FM’09, pages 61–75, Berlin, Heidelberg,
2010. Springer-Verlag.

[9] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and where: A characteri-
zation of data provenance. In Database Theory—ICDT 2001, pages 316–330. Springer,
2001.

[10] Giacomo Cabri, Elton Domnori, and Davide Orlandini. Implementing agent interoperabil-
ity between language-heterogeneous platforms. In Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2011 20th IEEE International Workshops on,
pages 29–34. IEEE, 2011.

77

http://www.mturk.com
http://www.smart-society-project.eu/applications/
http://www.smart-society-project.eu/applications/
http://fipa.org/

[11] Nicola Capodieci and Giacomo Cabri. Collaboration in swarm robotics: A visual commu-
nication approach. In Collaboration Technologies and Systems (CTS), 2013 International
Conference on, pages 195–202. IEEE, 2013.

[12] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Rowstron. Scribe: A
large-scale and decentralized application-level multicast infrastructure. Selected Areas in
Communications, IEEE Journal on, 20(8):1489–1499, 2002.

[13] Tiziana Catarci, Massimiliano de Leoni, Andrea Marrella, Massimo Mecella, Berardino
Salvatore, Guido Vetere, Schahram Dustdar, Lukasz Juszczyk, Atif Manzoor, and Hong-
Linh Truong. Pervasive software environments for supporting disaster responses. Internet
Computing, IEEE, 12(1):26–37, 2008.

[14] Brahim Chaib-draa and Frank Dignum. Trends in agent communication language. Com-
putational intelligence, 18(2):89–101, 2002.

[15] David Chappell. Enterprise service bus. O’Reilly Media, Inc., 2004.

[16] 4CaaSt consortium. Immigrant paas technologies: Scientific and technical report.
http://4caast.morfeo-project.org/wp-content/uploads/2011/
02/D7.1.1-M14-PU-Immigrant-PaaS-technologies-Scientific-
and-technical-report.pdf, 2011.

[17] Massimiliano de Leoni, Fabio De Rosa, Andrea Marrella, Massimo Mecella, Antonella
Poggi, Alenka Krek, and Francesco Manti. Emergency management: from user require-
ments to a flexible p2p architecture. In Proc. 4th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2007), 2007.

[18] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. Bpel4chor: Extending
bpel for modeling choreographies. In Web Services, 2007. ICWS 2007. IEEE International
Conference on, pages 296–303. IEEE, 2007.

[19] Anind K Dey, Gregory D Abowd, and Daniel Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-computer in-
teraction, 16(2):97–166, 2001.

[20] S. Anderson et al. FoCAS Book: Adaptive Collective Systems – Herding Black Sheep. Open
publication, 2013.

[21] Tim Finin, Jay Weber, Gio Wiederhold, Mike Genesereth, Rich Fritzson, Don McKay,
Stu Shapiro, Jim McGuire, Richard Pelavin, and Chris Beck. Specification of the kqml
agent-communication language. 1994.

[22] FIPA. Fipa’97 specification part 2: Acl. 1997.

[23] ACL Fipa. Fipa acl message structure specification. Foundation for Intelligent Physical
Agents, http://www. fipa. org/specs/fipa00061/SC00061G. html (30.6. 2004), 2002.

78

http://4caast.morfeo-project.org/wp-content/uploads/2011/02/D7.1.1-M14-PU-Immigrant-PaaS-technologies-Scientific-and-technical-report.pdf
http://4caast.morfeo-project.org/wp-content/uploads/2011/02/D7.1.1-M14-PU-Immigrant-PaaS-technologies-Scientific-and-technical-report.pdf
http://4caast.morfeo-project.org/wp-content/uploads/2011/02/D7.1.1-M14-PU-Immigrant-PaaS-technologies-Scientific-and-technical-report.pdf

[24] Apache Software foundation. Apache ServiceMix. http://servicemix.apache.
org/. [Online; accessed September 2014].

[25] Fausto Giunchiglia, Vincenzo Maltese, Stuart Anderson, and Daniele Miorandi. Towards
hybrid and diversity-aware collective adaptive systems. 2013.

[26] Maria Golemati, Akrivi Katifori, Costas Vassilakis, George Lepouras, and Constantin Ha-
latsis. Creating an ontology for the user profile: Method and applications. In Proceedings
of the First RCIS Conference, pages 407–412, 2007.

[27] Object Management Group. Common Object Request Broker Architecture (CORBA)
Specification Version 3.3, 2012.

[28] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan Balasubramaniam.
Middleware for distributed context-aware systems. In On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, pages 846–863. Springer, 2005.

[29] WSO2 Inc. WSO2 Enterprise Service Bus. http://wso2.com/products/
enterprise-service-bus/. [Online; accessed September 2014].

[30] Red Hat JBoss. JBoss ESB. http://jbossesb.jboss.org/. [Online; accessed
September 2014].

[31] Daniela Kengyel, Ronald Thenius, Karl Crailsheim, and Thomas Schmickl. Influence of a
social gradient on a swarm of agents controlled by the beeclust algorithm. In Advances in
Artificial Life, ECAL, volume 12, pages 1041–1048, 2013.

[32] Serge Kernbach, Thomas Schmickl, and Jon Timmis. Collective adaptive systems: Chal-
lenges beyond evolvability. arXiv preprint arXiv:1108.5643, 2011.

[33] Yannis Labrou, Tim Finin, and Yun Peng. The current landscape of agent communication
languages. IEEE Intelligent systems, 14(2):45–52, 1999.

[34] Jean-Jacques Laffont and David Martimort. The theory of incentives: the principal-agent
model. Princeton University Press, 2009.

[35] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit: tools for itera-
tive tasks on mechanical turk. In Proceedings of the ACM SIGKDD workshop on human
computation, pages 29–30. ACM, 2009.

[36] Philip Mayer, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani, Francesco Tiezzi,
Rosario Pugliese, Jaroslav Keznikl, and Toma Bure. The autonomic cloud: a vision of
voluntary, peer-2-peer cloud computing. In Self-Adaptation and Self-Organizing Systems
Workshops (SASOW), 2013 IEEE 7th International Conference on, pages 89–94. IEEE,
2013.

[37] Patrick Minder and Abraham Bernstein. CrowdLang: programming human computation
systems. Technical report, University of Zurich, 2012.

79

http://servicemix.apache.org/
http://servicemix.apache.org/
http://wso2.com/products/enterprise-service-bus/
http://wso2.com/products/enterprise-service-bus/
http://jbossesb.jboss.org/

[38] D Miorandi, V Maltese, M Rovatsos, A Nijholt, and J Stewart. Social collective intelli-
gence: Combining the powers of humans and machines to build a smarter society, 2014.

[39] MuleSoft. Mule ESB. http://www.mulesoft.com/platform/soa/mule-
esb-open-source-esb. [Online; accessed September 2014].

[40] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H Camp-
bell, and Klara Nahrstedt. A middleware infrastructure for active spaces. IEEE pervasive
computing, 1(4):74–83, 2002.

[41] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware 2001, pages 329–350.
Springer, 2001.

[42] OASIS Committee Specification. Ws-bpel extension for people (bpel4people) specification
version 1.1. http://docs.oasis-open.org/bpel4people/bpel4people-
1.1.html, 2010.

[43] Hong-Linh Truong, Schahram Dustdar, and Kamal Bhattacharya. Conceptualizing and
programming hybrid services in the cloud. International Journal of Cooperative Informa-
tion Systems, 22(04), 2013.

[44] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

[45] Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mariachiara
Puviani. On self-adaptation, self-expression, and self-awareness in autonomic service com-
ponent ensembles. In Self-Adaptive and Self-Organizing Systems Workshops (SASOW),
2011 Fifth IEEE Conference on, pages 108–113. IEEE, 2011.

[46] Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mariachiara
Puviani. On Self-adaptation, Self-expression, and Self-awareness in Autonomic Service
Component Ensembles. In 2011 International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, Ann Arbor (MC), October 2011. IEEE CS Press.

[47] Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Virtual-
izing communication for hybrid and diversity-aware collective adaptive systems. In Pro-
ceedings of the 10th International Workshop on Engineering Service-Oriented Applica-
tions (WESOA’14), 12th International Conference on Service Oriented Computing, Paris,
France, November 2014.

80

http://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
http://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html

	Introduction
	Problem Statement
	Motivating Scenarios
	Results
	Structure of the Thesis

	State of the Art
	Multi-agent Systems
	Swarm Robotics
	Service-based Systems
	Crowdsourcing Platforms
	Enterprise Service Busses (ESBs)

	Virtualizing Communication
	Requirements for Communication
	Key Concepts

	Communication Middleware Design
	Architecture
	Messages
	Application Programming Interfaces (APIs)
	Algorithms

	Implementation and Evaluation
	Implementation
	Requirement and Design Evaluation
	Functional Evaluation
	Performance Evaluation

	Conclusions and Future Work
	Summary
	Future Work

	List of Terms and Acronyms
	Bibliography

