
Programming Hybrid Services in the Cloud

Hong-Linh Truong1, Schahram Dustdar1, and Kamal Bhattacharya2

1 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

2 IBM Research - India
kambhatt@in.ibm.com

Abstract. For solving complex problems, we advocate constructing “social com-
puters” which combine software and human services. However, to date, human
capabilities cannot be easily programmed into applications in a similar way
like software capabilities. Existing approaches exploiting human capabilities via
crowds do not support well on-demand, proactive, team-based human computa-
tion. In this paper, we explore a new way to virtualize, provision and program
human capabilities using cloud computing concepts and service delivery mod-
els. We propose novel methods for modeling clouds of human-based services and
combine human-based services with software-based services to establish clouds
of hybrid services. In our model, we present common APIs, similar to APIs for
software services, to access individual and team-based compute units in clouds of
human-based services. Based on that, we propose frameworks and programming
primitives for hybrid services. We illustrate our concepts via some examples of
using our cloud APIs and existing cloud APIs for software.

1 Introduction

Recently the concept of building social computers has emerged, in which the main
principle is to combine human capabilities and software capabilities into composite ap-
plications solving complex problems [1, 2]. Furthermore, concrete technologies have
been employed to provide human capabilities via standard, easy-to-use interface, such
as Web services and Web platforms [3–5] and some efforts have been devoted for mod-
eling and coordinating flows of human works in the process level [6, 7]. In all these
works, a fundamental issue is how to program human capabilities. We observed two
main approaches in utilizing human capabilities: (i) passively proposing tasks and wait-
ing for human input, such as in crowd platforms [5], and (ii) actively finding and bind-
ing human capabilities into applications. While the first one is quite popular and has
many successful applications [8–10, 5, 11], it mainly exploits individual capabilities
and is platform-specific. In the second approach, it is difficult to proactively invoke hu-
man capabilities in Internet-scale due to the lack of techniques and systems supporting
proactive utilization of human capabilities [2].

In this paper, we conceptualize human capabilities under the service model and com-
bine them with software establishing clouds of hybrid services. In our approach, we
explore novel ways to actively program and utilize human capabilities in a similar way
to software services. Our research question is how to provision and program human
capabilities using cloud service and deployment models for high level frameworks and
programming languages to build “social computers”.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 96–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Programming Hybrid Services in the Cloud 97

1.1 Motivation

Hybrid services, in our notion, include software-based services (SBS) and human-based
services (HBS). We argue that we could provide a cloud of HBS working in a similar
manner to contemporary clouds of SBS (such as Amazon services and Microsoft Azure
services) so that HBS can be invoked and utilized in a proactive manner, rather than in
a passive way like in crowdsourcing platforms. Furthermore, HBS can be programmed
together with SBS in a composite application, instead of being used separately from
SBS as in contemporary crowdsourcing platforms.

Our goal is to program HBS and SBS together in an easier way because several com-
plex applications need to utilize SBS and HBS in a similar way. For example, several
Information Technology (IT) problems, such as in incident management for IT systems,
software component development, and collaborative data analytics, can be described as
a dependency graph of tasks in which a task represents a unit of work that should be
solved by a human or a software. Solving a task may need to concurrently consider
other relevant tasks in the same graph as well as introduce new tasks (this in turns ex-
pands the task graph). Utilizing team and hybrid services is important here as tasks are
interdependent, but unlike crowdsourcing scenarios in which different humans solving
different tasks without the context of teamwork and without the connectedness to SBS.
Teamwork is crucial as it allows team members to delegate tasks when they cannot
deal with the task as well as newly tasks can be identified and created that need to be
solved. SBS for teamwork is crucial for team working platforms in terms of communi-
cation, coordination, and analytics. Therefore, it is crucial to have solutions to provision
individual- and team-based human capabilities under clouds of human capabilities, in
parallel with the provisioning of SBS.

These clouds require novel service models and infrastructures to provide and support
on-demand and elastic HBS provisioning. We need solutions allowing us to buy and
provision human capabilities via simple interfaces in a similar way to buying and pro-
visioning virtual machines in contemporary clouds of Infrastructure-as-a-Service (IaaS)
and Software-as-a-Service (SaaS). However, so far, to our best knowledge, there is no
proposed solution towards a cloud model for human capabilities that enables to acquire,
program, and utilize HBS in a similar way to that of IaaS, Platform-as-a-Service (PaaS)
and SaaS.

1.2 Contributions and Paper Structure

We concentrate on conceptualizing the cloud of HBS and how clouds of HBS and SBS
can be programmed for solving complex problems. Our main contributions are:

– a novel model for clouds of HBS and hybrid services provisioning
– a framework for solving complex problems using clouds of hybrid services
– programming primitives for hybrid services

The rest of this paper is organized as follows. Section 2 discusses our model of clouds
of hybrid services. Section 3 describes a generic framework for using hybrid services.
Section 4 describes programming primitives and examples utilizing clouds of hybrid
services. We discuss related work in Section 5. Section 6 concludes the paper and out-
lines our future work.

98 H.-L. Truong, S. Dustdar, and K. Bhattacharya

2 Models for Clouds of Hybrid Services

In our work, we consider two types of computing elements: software-based comput-
ing elements and human-based computing elements. In software-based computing ele-
ments, different types of services can be provided to exploit machine capabilities and
we consider these types of services under Software-based Service (SBS) category. Sim-
ilarly, human-based computing elements can also offer different types of services under
the HBS category. We consider a cloud of hybrid services as follows:

Definition 1 (Cloud of hybrid services). A cloud of hybrid services includes SBS and
HBS that can be provisioned, deployed and utilized on-demand based on different pric-
ing models.

In principle, a cloud of hybrid services can also be built atop clouds of SBS and clouds
of HBS. As SBS and clouds of SBS are well-researched, in the following we will discuss
models for clouds of HBS and of hybrid services.

2.1 Models for HBS

In principle, human capabilities can be provisioned under the service model, e.g., our
previous work introduced a technology to offer individual human capabilities under
Web services [3]. However, at the moment, there exists no cloud system that the con-
sumer can program HBS in a similar way like IaaS (e.g., Amazon EC) or data (e.g.,
Microsoft Azure Data Marketplace). Before discussing how clouds of hybrid services
can be used, we propose a conceptual model for clouds of HBS.

HBS Communication Interface. Humans have different ways to interact with other
humans and ICT systems. Conceptually, we can assume that HBS (and corresponding
HBS clouds) abstracting human capabilities can provide different communication in-
terfaces to handle tasks based on a request and response model. Requests can be used
to describe tasks/messages that an HBS should perform or receive. In SBS, specific
request representations (e.g., based on XML) are designed for specific software layers
(e.g., application layer, middleware layer, or hardware layer). In HBS we can assume
that a single representation can be used, as HBS does not have similar layer structures
seen in SBS. Requests in HBS can, therefore, be composed and decomposed into differ-
ent (sub)requests. The use of the request/response model will facilitate the integration
between SBS and HBS as via similar service APIs.

Unlike SBS in which communication can be synchronous or asynchronous, in HBS
all communication is asynchronous. In general, the upper bound of the communication
delay in and the internal request processing mechanism in HBS are unknown. However,
HBS intercommunication can be modeled using:

– message-passing in which two HBS can directly exchange requests: hbsi →
request

hbsj . One example is that hbsi sends a request via SMS to hbsj . Similarly, an SBS
can also send a request directly to an HBS.

– shared-memory in which two HBS can exchange requests via a SBS. For exam-
ple, hbsi stores a request into a Dropbox1 directory and hbsj obtains the request

1 www.dropbox.com

www.dropbox.com

Programming Hybrid Services in the Cloud 99

from the Dropbox directory. Similarly, an SBS and HBS can also exchange re-
quests/responses via an SBS or an HBS (e.g., a software can be built atop Dropbox
to trigger actions when a file is stored into a Dropbox directory (see http://
www.wappwolf.com)).

Similarly to machine instances which offer facilities for remote job deployment and
execution, an HBS communication interface can be used to run requests/jobs on HBS.

Human Power Unit (HPU). The first issue is to define a basic model for describing the
notion of “computing power” of HBS. Usually, the computing capability of a human-
based computing element is described via human skills and skill levels. Although there
is no standard way to compare skills and skill levels described and/or verified by dif-
ferent people and organizations, we think that it is feasible to establish a common,
comparative skills for a particular cloud of HBS.

– the cloud can enforce different evaluation techniques to ensure that any HBS in
its system will declare skills and skill levels in a cloud-wide consistency. This is,
for example, similar to some crowdsourcing systems which have rigorous tests to
verify claimed skills.

– the cloud can use different benchmarks to test humans to validate skills and skill
levels. Each benchmark can be used to test a skill and skill level. This is, for exam-
ple, similar to Amazon which uses benchmarks to define its elastic compute unit.

– the cloud can map different skills from different sources into a common view which
is consistent in the whole cloud.

We define HPU for an HBS as follows:

Definition 2 (Human Power Unit). HPU is a value describing the computing power
of an HBS measured in an abstract unit. A cloud of HBS has a pre-defined basic power
unit, hpuθ, corresponding to the baseline skill bsθ of the cloud.

Without the loss of generality, we assume hpuθ = f(bsθ). A cloud C provisioning HBS
can support a set of n skills SK = {sk1, · · · , skn} and a set of m cloud skill levels
SL = {1, · · · ,m}. C can define the human power unit wrt ski for slj as follows:

hpu(ski, slj) = hpuθ × f(ski)

f(bsθ)
× slj (1)

For the cloud C, f(ski)
f(bsθ)

is known (based on the definition of SK). Given the capability
of an hbs – CS(hbs) = {(sk1, sl1), · · · , (sku, slu)} – the corresponding hpu can be
calculated as follows:

hpu(CS(hbs)) =

u∑

i=1

hpu(ski, sli) (2)

Note that two HBS can have the same hpu value, even their skills are different. To dis-
tinguish them, we propose to use a set of “architecture” types (e.g., similar to different
types of instruction set architectures such as x86, SPARC, and ARM), and the cloud

http://www.wappwolf.com
http://www.wappwolf.com

100 H.-L. Truong, S. Dustdar, and K. Bhattacharya

provider can map an HBS into an architecture type by using its skills and skill levels.
Given a human offering her capabilities to C, she can be used exclusively or shared
among different consumers. In case an hbs is provisioned exclusively for a particular
consumer, the hbs can be associated with a theoretical utilization u – describing the uti-
lization of a human – and CS(hbs); its theoretical HPU would be u× hpu(CS(hbs)).
In case a hbs is provisioned for multiple consumers, the hbs can be described as a
set of multiple instances, each has a theoretical power as ui × hpu(CSi(hbs)) where
u =

∑
(ui) ≤ 1 and CS(hbs) = CS1(hbs) ∪CS2(hbs) ∪ · · · ∪ CSq(hbs) .

Using this model, we can determine theoretical power for individual HBS as well as
for a set of individual HBS. Note that the power of a set of HBS may be more than the
sum of power units of its individual HBS, due to teamwork. However, we can assume
that, similar to individual and cluster of machines, theoretical power units are different
from the real one and are mainly useful for selecting HBS and defining prices.

2.2 HBS Instances Provisioning

Types of HBS Instances For HBS we will consider two types of instances:

Definition 3 (Individual Compute Unit instances (iICU)). iICU describe instances
of HBS built atop capabilities of individuals. An individual can provide different iICU.
Analogous to SBS, an iICU is similar to an instance of a virtual machine or a software.

Definition 4 (Social Compute Unit instances (iSCU)). iSCU describe instances of
HBS built atop capabilities of multiple individuals and SBS. Analogous to SBS, an iSCU
is similar to a virtual cluster of machines or a complex set of software services.

In our approach, iICU is built based on the concept that an individual can offer her
capabilities via services [3] and iSCU is built based on the concept of Social Compute
Units [12]) which represents a team of individuals.

HBS Instance Description. Let C be a cloud of hybrid services. All services in C can
be described as follows: C = HBS ∪ SBS where HBS is the set of HBS instances
and SBS is the set of SBS instances. The model for SBS is well-known in contem-
porary clouds and can be characterized as SBS(capability, price). The provisioning
description models for HBS instances are proposed as follows:

– For an iICU its provisioning description includes (CS, HPU , price, utilization,
location, APIs).

– For an iSCU its provisioning description includes (CS, HPU , price, utilization,
connectedness, location, APIs).

From the consumer perspective, iSCU can be offered by the cloud provider or the con-
sumer can build its own iSCU . In principle, in order to build an SCU, the provider or
the consumer can follow the following steps: first, selecting suitable iICU for an iSCU
and, second, combining and configuring SBS to have a working platform for iSCU .
The connectedness reflects the intercommunication topology connecting members of
iSCU , such as ring, star, and master-slave, typically configured via SBS. APIs de-
scribe how to communicate to and execute requests on HBS. Moreover, similar to SBS,
HBS can also be linked to user rating information, often managed by third-parties.

Programming Hybrid Services in the Cloud 101

Pricing Factors. Similar to existing SBS clouds, we propose clouds of HBS to define
different pricing models for different types of HBS instances. The baseline for the prices
can be based on hpuθ. We propose to consider the following specific pricing factors:

– utilization: unlike individual machines whose theoretical utilization when selling
is 100%, ICU has much lower theoretical utilization, e.g., normal full time people
have a utilization of 33.33% (8 hours per day). However, an SCU can theoretically
have 100% utilization. The real utilization of an HBS is controlled by the HBS
rather than by the consumer as in machine/software instances.

– offering communication APIs: it is important that different communication capa-
bilities will foster the utilization of HBS. Therefore, the provider can also bill con-
sumers based on communication APIs (e.g., charge more when SMS is enabled).

– connectedness: similar to capabilities of (virtual) networks between machines in
a (virtual) cluster, the connectedness of an iSCU will have a strong impact on
the performance of iSCU . Similar to pricing models in existing collaboration ser-
vices2, the pricing factor for connectedness can be built based on which SBS and
collaboration features are used for iSCU.

Furthermore, other conventional factors used in SBS such as usage duration and loca-
tion are considered.

2.3 Cloud APIs for Provisioning Hybrid Services

Services in a cloud of hybrid services can be requested and provisioned on-demand. As
APIs for provisioning SBS are well developed, we will focus on APIs for provisioning
HBS. Table 1 describes some APIs that we develop for hybrid services in our VieCOM
(Vienna Elastic Computing Model). These APIs are designed in a similar manner to
common APIs for SBS.

Figure 1 shows main Java-based classes representing HPU, HBS and its subclasses
(ICU and SCU), requests and messages for HBS (HBSRequest and HBSMessage),
and skills (CloudSkill, Skill, and SkillLevel). Currently, we simulate our
cloud of HBS. For SBS, we use existing APIs provided by cloud providers and common
client APIs libraries, such as JClouds (www.jclouds.org) and boto (http://
docs.pythonboto.org/en/latest/index.html).

3 Framework for Utilizing Hybrid Services

By utilizing hybrid services in clouds, we could potentially solve several complex prob-
lems that need both SBS and HBS. In our work, we consider complex problems that
can be described under dependency graphs. Let DG be dependency graph of tasks to be
solved;DG can be provided or extracted automatically. In order to solve a task t ∈ DG,
we need to determine whether t will be solved by SBS, HBS or their combination. For
example, let t be a virtual machine failure and the virtual machine is provisioned by

2 Such as in Google Apps for Business (http://www.google.com/enterprise/apps/
business/pricing.html)

www.jclouds.org
http://docs.pythonboto.org/en/latest/index.html
http://docs.pythonboto.org/en/latest/index.html
http://www.google.com/enterprise/apps/business/pricing.html
http://www.google.com/enterprise/apps/business/pricing.html

102 H.-L. Truong, S. Dustdar, and K. Bhattacharya

Table 1. Main APIs for provisioning HBS

APIs Description

APIs for service information and management
listSkills ();listSkillLevels() list all pre-defined skills and skill levels of clouds
listICU();listSCU() list all iICU and iSCU instances that can be used. Different filters

can be applied to the listing
negotiateHBS() negotiate service contract with an iICU or an iSCU . In many

cases, the cloud can just give the service contract and the consumer
has to accept it (e.g., similar to SBS clouds)

startHBS() start an iICU or an iSCU . By starting, the HBS is being used.
Depending on the provisioning contract, the usage can be time-
based (subscription model) or task-based (pay-per-use model)

suspendHBS () suspend the operation of an iICU or iSCU . Note that in suspend-
ing mode, the HBS is not released yet for other consumers yet.

resumeHBS () resume the work of an iICU or iSCU

stopHBS() stop the operation of an iICU or iSCU . By stopping the HBS is
no longer available for the consumer

reduceHBS() reduce the capabilities of iICU or iSCU

expandHBS() expand the capabilities of iICU or iSCU

APIs for service execution and communication
runRequestOnHBS() execute a request on an iICU or iSCU . By execution, the HBS

will receive the request and perform it.
receiveResultFromHBS() receive the result from an iICU or iSCU

sendMessageToHBS() send (support) messages to HBS
receiveMessageFromHBS() receive messages from HBS

Fig. 1. Example of some Java-based APIs for clouds of HBS

Programming Hybrid Services in the Cloud 103

Amazon EC2. Two possibilities can be performed: (i) request a new virtual machine
from Amazon EC and configure the new virtual machine suitable for the work or (ii)
request an HBS to fix the virtual machine. In case (i) SBS can be invoked, while for
case (ii) we need to invoke an HBS which might need to be provisioned with extra SBS
for supporting the failure analysis.

Our approach for utilizing hybrid services includes the following points:

– link tasks with their required human power units via skills and skill levels, before
programming how to utilize HBS and SBS.

– form or select suitable iSCU or iICU for solving tasks. Different strategies will
be developed for forming or selecting suitable iSCU or iICU , such as utilizing
different ways to traverse the dependency graph and to optimize the formation ob-
jective.

– program different strategies of utilizing iSCU and iICU , such as considering the
elasticity of HBS due to changes of tasks and HBS. This is achieved by using
programming primitives and constructs atop APIs for hybrid services.

HBS
Formation

description

HBS Change
 Management

Task Change
Management

solve tasks

Change
Adaptation

change detection

changerequest HBS

create/modify

iICU|iSCU
change detection

change

algo

algo

algo

human power
unithuman power

unit

SBS
Adaptation

cloud of hybrid services

description

task dependency

Fig. 2. Conceptual architecture

Figure 2 describes the conceptual architecture of our framework for solving com-
plex problems. Given a task dependency graph, we can detect changes in required hu-
man computing power by using Task Change Management. Detected required power
changes will be sent to Change Adaptation, which in turns triggers different operations
on HBS usage, such as creating new HBS or adapting an existing HBS. The opera-
tions on HBS are provided via different algorithms, each suitable for specific situations.

104 H.-L. Truong, S. Dustdar, and K. Bhattacharya

When an HBS deals with a task graph, the HBS can change the task graph and its
required human power units (this will trigger HBS operations again). During the solving
process, HBS can change and this can be detected by HBS Change Management. The
HBS change will be sent to Change Adaptation.

4 Programming Hybrid Services

In this section, we discuss some programming primitives for hybrid services that can be
applied to complex application framework that we mentioned before. Such a primitives
can be used in different components, such as HBSFormation and ChangeAdaptation, in
our framework described in Figure 2. In illustrating programming examples, we con-
sider a virtualized cloud of hybrid services that are built atop our cloud of HBS and
real-world clouds of SBS. Consequently, we will combine our APIs, described in Sec-
tion 2.3, with existing client cloud API libraries.

4.1 Modeling HPU-Aware Task Dependency Graphs

Our main idea in modeling HPU-aware task dependencies is to link tasks to required
management skills and compliance constraints:

– human resource skills: represent skill sets that are required for dealing with prob-
lems/management activities.

– constraints: represent constraints, such as resource locations, governance compli-
ance, time, cost, etc., that are associated with management activities and humans
dealing with these activities.

Given a dependency graph of tasks, these types of information can be provided man-
ually or automatically (e.g., using knowledge extraction). Generally, we model depen-
dencies among tasks and required skills and compliance constraints as a directed graph
G(N,E) where N is a set of nodes and E is a set of edges. A node n ∈ N represents
a task or required skills/compliance constraints, whereas an edge e(ni, nj) ∈ E means
that nj is dependent on ni (ni can cause some effect on nj or ni can manage nj). Edges
may be associated with weighted factors to indicate the importance of edges. The re-
quired skills, compliance constraints and weighted factors will be used to determine the
required human power unit (HPU) for a task, to select iICU and members for iSCU ,
and to build the connectedness for SCUs.

Examples and Implementation. Figure 3 presents an example of a dependency graph
of an IT system linked to management skills. In our implementation of dependency
graph, we use JGraphT (http://jgrapht.org/). We define two main types of
Node – ITProblem and Management. All relationships are dependency. It is also pos-
sible to use TOSCA [13] to link people skills and map TOSCA-based description to
JGraphT.

4.2 Combining HBS and SBS

Combining HBS and SBS is a common need in solving complex problems (e.g., in
evaluating quality of data in simulation workflows). In our framework, this feature can

http://jgrapht.org/

Programming Hybrid Services in the Cloud 105

lotusdomino

w a s

isDeployedOn

BusinessApplicationsServices

supportedBy EmailandCollaborationServices

supportedBy

aix

isDeployedOn

db2

dependsOn supportedBy

WebMiddleware

supportedBy

emcbackup

dependsOn

PlatformSupportUnix

supportedBy

nasbox

dependsOn

n e t w o r k

dependsOn

DatabaseManagemen t

supportedBy

StorageDASDBackupRestore

supportedBydependsOn supportedBysupportedBy

NetworkService

supportedBy

Fig. 3. An example of HPU-aware dependency graph. A component box describes a software and
its problems (ITProblem node). An eclipse describes management skills (Management node).

be used for preparing inputs managed by SBS for an HBS work or managing outputs
from HBS work. Furthermore, it can be used to provision SBS as utilities for HBS work
(e.g., requiring HBS to utilize specific SBS in order to produce the result where SBS is
provisioned by the consumer).

Examples. Listing 1.1 shows an example of programming a combination of HBS and
SBS for a task using our cloud APIs and JClouds. In this example, we want to invoke
Amazon S3 to store a log file of a Web application sever and invoke an HBS to find
problems. Using this way, we can also combine HBS with HBS and of course SBS with
SBS from different clouds.

/ / u s i n g JClouds APIs t o s t o r e l o g f i l e o f web a p p l i c a t i o n s e r v e r
B l o b S t o r e C o n t e x t c o n t e x t =

new B l o b S t o r e C o n t e x t F a c t o r y () . c r e a t e C o n t e x t ("aws-s3" ,"REMOVED
" ,"REMOVED") ;

B l o b S t o r e b l o b S t o r e = c o n t e x t . g e t B l o b S t o r e () ;
/ / and add f i l e i n t o Amazon S3
Blob blob = b l o b S t o r e . b l o b B u i l d e r ("hbstest") . b u i l d () ;
b lob . s e t P a y l o a d (new F i l e ("was.log")) ;
b l o b S t o r e . pu tB lob ("hbstest" , b lob) ;
S t r i n g u r i = b lob . g e t M e t a d a t a () . g e t P u b l i c U r i () . t o S t r i n g () ;
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
/ / assume t h a t WM6 i s t h e HBS t h a t can a n a l y z e t h e Web Middleware

problem
vieCOMHBS . s t a r tHBS ("WM6") ;
HBSRequest r e q u e s t = new HBSRequest () ;
r e q u e s t . s e t D e s c r i p t i o n ("Find possible problems from " + u r i) ;
vieCOMHBS . runRequestOnHBS ("WM6" , r e q u e s t) ;

Listing 1.1. Example of HBS combined with SBS

106 H.-L. Truong, S. Dustdar, and K. Bhattacharya

4.3 Forming and Configuring iSCUs

A cloud provider can form an iSCU and provide it to the consumer as well as a con-
sumer can select iICU and SBS to form an iSCU . An iSCU not only includes HBS
(iICU or other sub iSCU) but also consists of possible SBS for ensuring the connect-
edness within iSCU and for supporting the work. There are different ways to form
SCUs. In the following, we will describe some approaches for forming SCUs to solve
a dependency graph of tasks.

Selecting Resources for iSCU. Given a task t ∈ DG, our approach in dealing with
t is that we do not just simply take required management resources suitable for t but
we need to consider possible impacts of other tasks when solving t and the chain of
dependencies. To this end, we utilize DG to determine a set of suitable human resources
to deal with t and t’s possible impact. Such human resources establish HBS capabilities
in an iSCU . Overall, the following steps are carried out to determine required SCU:

– Step 1: determine DGBAU ⊆ DG where DGBAU includes all tj ∃ a walk (tj , t),
tj is the task that must be dealt together with t in typical Business-As-Usual cases.

– Step 2: determine DGCA ⊆ DG that includes tasks that should be taken into
account under corrective action (CA) cases. DGCA = {tr} ∃ a walk(tr, tj) with
tj ∈ DGBAU .

– Step 3: merge DGSCU = DGBAU ∪DGCA by (re)assigning weighted factors to
links between (tk, tl) ∈ DGSCU based on whether (i) tk and tl belong to DGBAU

or DGCA, (ii) reaction chain from t to tk or to tl, and (iii) the original weighted
factor of links consisting of tk or tl.

– Step 4: traverse DGSCU , ∀ti ∈ DGSCU , consider all (ti, ri) where ri is manage-
ment resource node linking to ti in order to determine human resources.

Based on the above-mentioned description different SCU formation strategies can be
developed. Note that our principles mentioned above aim at forming iSCU enough

Table 2. Examples of SCU formation strategies

Algorithms Description
SkillWithNPath Select iICU for iSCU based on only skills with a pre-defined network path

length starting from the task to be solved.
SkillMinCostWith
NPath

Select iICU for iSCU based on only skills with minimum cost, considering
a pre-defined network path length starting from the task to be solved.

SkillMinCostMax
LevelWithNPath

Select iICU for iSCU based on skills with minimum cost and maximum
skill levels, considering a pre-defined network path length starting from the
task to be solved.

SkillWithNPathUn
Directed

Similar to SkillW ithNPath but considering undirected dependency

MinCostWithNPath
UnDirected

Similar to MinCostWithNPath but considering undirected dependency

MinCostWithAvail
NPathUnDirected

Select Select iICU for iSCU based on skills with minimum cost, consider-
ing availability and a pre-defined network path length starting from the task
to be solved. Undirected dependencies are considered.

Programming Hybrid Services in the Cloud 107

D e f a u l t D i r e c t e d G r a p h <Node , R e l a t i o n s h i p > dg ; / / graph o f prob l ems
/ / . . .
double hpu = HPU. hpu (dg) ; / / d e t e r m i n e
SCUFormation app = new SCUFormation (dg) ;
ManagementRequest r e q u e s t = new ManagementReques t () ;
/ / d e f i n e r e q u e s t s p e c i f y i n g o n l y main prob lems t o be s o l v e d
/ /
/ / c a l l a l g o r i t h m s t o f i n d s u i t a b l e HBS . Path l e n g t h =2 and

a v a i l a b i l i t y f rom 4am t o 19pm i n GMT zone
ResourceP oo l scu = app .

M i n C o s t W i t h A v a i l a b i l i t y N P a t h U n D i r e c t e d F o r m a t i o n (r e q u e s t , 2 ,
4 , 19) ;

i f (scu == n u l l) { re tu rn ; }
A r r a y L i s t <HumanResource> scuMembers = scu . g e t R e s o u r c e s () ;
SCU iSCU = new SCU () ;
iSCU . setScuMembers (scuMembers) ;
/ / s e t t i n g up SBS f o r scuMember . . .

Listing 1.2. Example of forming iSCU by minimizing cost and considering no direction

for solving main tasks and let iSCU evolve during its runtime. There could be several
possible ways to obtain DGBAU and DGCA, dependent on specific configurations and
graphs for specific problems. Therefore, potentially the cloud of HBS can provide sev-
eral algorithms for selecting HBS to form SCUs. As we aim at presenting a generic
framework, we do not describe here specific algorithms, however, Table 2 describes
some selection strategies that we implement in our framework. Listing 1.2 describes an
example of forming an SCU.

Setting up iSCU connectedness. After selecting members of iSCU , we can also pro-
gram SBS and HBS for the iSCU to have a complete working environment. iSCU can
have different connectedness configurations, such as

– ring-based iSCU : the topology of iSCU is based on a ring. In this case for each
(hbsi, hbsj) ∈ iSCU then we program hbsi →

request
hbsj based on message-

passing or shared memory models. For example a common Dropbox directory can
be created for hbsi and hbsj to exchange requests/responses.

– star-based iSCU : a common SBS can be programmed as a shared memory for
iSCU . Let sbs be SBS for iSCU then ∀hbsi ∈ iSCU give hbsi access to sbs. For
example, a common Dropbox directory can be created and shared for all hbsi ∈
iSCU .

– master-slave iSCU : an hbs ∈ iSCU can play the role of a shared memory and
scheduler for all other hbsi ∈ iSCU .

Listing 1.3 presents an example of establishing the connectedness for an iSCU us-
ing Dropbox. Note that finding suitable configurations by using HBS information and
compliance constraints is a complex problem that is out of the scope of this paper.

108 H.-L. Truong, S. Dustdar, and K. Bhattacharya

SCU iSCU ;
/ / . . . f i n d members f o r SCU
DropboxAPI<WebAuthSession> scuDropbox ; / / u s i n g dropbox a p i s
/ / . . .
AppKeyPair appKeys = new AppKeyPair (APP KEY , APP SECRET) ;
WebAuthSession s e s s i o n =

new WebAuthSession (appKeys , WebAuthSession . AccessType .
DROPBOX) ;

/ / . . .
s e s s i o n . s e t A c c e s s T o k e n P a i r (acce s sToken) ;
scuDropbox = new DropboxAPI<WebAuthSession >(s e s s i o n) ;
/ / s h a r i n g t h e dropbox d i r e c t o r y t o a l l scu members
/ / f i r s t c r e a t e a s h a r e
DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;
/ / t h e n send t h e l i n k t o a l l members
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
f o r (HBS hbs : iSCU . getScuMembers ()) {

vieCOMHBS . s t a r t HB S (i c u) ;
HBSMessage msg = new HBSMessage () ;
msg . setMsg ("pls. use shared Dropbox for communication " +

l i n k . u r l) ;
vieCOMHBS . sendMessageToHBS (hbs , msg) ;

/ / . . .
}

Listing 1. 3. Example of star-based iSCU using Dropbox as a communication hub

SCU iSCU ;
/ / . . .
iSCU . setScuMembers (scuMembers) ;
/ / s e t t i n g up SBS f o r scuMember
/ / . . .
double hpu = HPU . hpu (dg) ; / / d e t e r m i n e c u r r e n t hpu
/ / SCU s o l v e s / adds t a s k s i n DG
/ /
/ / graph change − e l a s t i c i t y based on human power u n i t
double dHPU = HPU. d e l t a (dg , hpu) ;
D e f a u l t D i r e c t e d G r a p h<Node , R e l a t i o n s h i p > changeg raph ;
/ / o b t a i n changes
Set<C l o u d S k i l l> changeCS = HPU. d e t e r m i n e C l o u d S k i l l (changeg raph) ;
i f (dHPU > SCALEOUT LIMIT) {

iSCU . s c a l e o u t (changeCS) ; / / expand iSCU
}

e l s e i f (dHPU < SCALEIN LIMIT) {
iSCU . s c a l e i n (changeCS) ; / / r e d u c e iSCU

/ / . . .
}

Listing 1. 4. Example of elasticity for SCU based on task graph change

Programming Hybrid Services in the Cloud 109

4.4 Change Model for Task Graph’s Human Power Unit

When a member in an iSCU receives a task, she might revise the task into a set of sub-
tasks. Then she might specify human compute units required for sub tasks and revise
the task graph by adding these sub-tasks. As the task graph will change, its required
human power unit is changed. By capturing the change of the task graph, we can decide
to scale in/out the iSCU . Listing 1.4 describes some primitives for scaling in/out iSCU
based on the change of HPU.

5 Related Work

Most clouds of SBS offering different possibilities to acquire SBS on-demand. How-
ever, similar efforts for HBS are missing today. Although both, humans and software,
can perform similar work and several complex problems need both of them in the same
system, currently there is a lack of programming models and languages for hybrid ser-
vices of SBS and HBS. Most clouds of SBS offering different possibilities to acquire
SBS on-demand, however, similar efforts for HBS are missing today.

Existing systems for utilizing crowds for solving complex problems [14, 5] do not
consider how to integrate and virtualize software in a similar manner to that for hu-
mans. As we have analyzed, current support can be divided in three approaches [2]:
(i) using plug-ins to interface to human, such as BPEL4People[4] or tasks integrated
into SQL processing systems[11], (ii) using separate crowdsourcing platforms, such as
MTurk[15], and (iii) using workflows, such as Turkomatic [8]. A drawback is that all of
them consider humans individually and human capabilities have not been provisioned
in a similar manner like software capabilities. As a result, an application must split tasks
into sub-tasks that are suitable for individual humans, which do not collaborate to each
other, before the application can invoke humans to solve these sub-tasks. Furthermore,
the application must join the results from several sub-tasks and it is difficult to integrate
work performed by software with work performed by humans. This is not trivial for the
application when dealing with complex problems required human capabilities. In terms
of communication models and coordination models, existing models such as in MTurk
and HPS are based on push/pull/mediator but they are platforms/middleware built-in
rather than reusable programming primitives of programming models.

In our work, we develop models for clouds of HBS. Our techniques for virtualizing
HBS and programming HBS in a similar way to SBS are different from related work.
Such techniques can be used by high-level programming primitives and languages for
social computers.

6 Conclusions and Future Work

In this paper, we have proposed novel methods for modeling clouds of HBS and de-
scribe how we can combine them with clouds of SBS to create hybrid services. We
believe that clouds of hybrid services are crucial for complex applications which need
to proactively invoke SBS and HBS in similar ways. We describe general frameworks
and programming APIs where and how hybrid services can be programmed.

110 H.-L. Truong, S. Dustdar, and K. Bhattacharya

In this paper, we focus on designing models, frameworks and APIs and illustrating
programming examples. Further real-world experiments should be conducted in the fu-
ture. Furthermore, we are also working on the integration with programming languages
for social collaboration processes [7] using hybrid services. Other related aspects, such
as pricing models and contract negotiation protocols, will be also investigated.

References

1. The Social Computer - Internet-Scale Human Problem Solving (socialcomputer.eu) (last ac-
cess: May 3, 2012)

2. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes in mul-
tiple clouds – a service management perspective. International Journal of Next-Generation
Computing 3(2) (2012)

3. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-scale
collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

4. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (2009),
http://docs.oasis-open.org/bpel4people/
bpel4people-1.1-spec-cd-06.pdf

5. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
Commun. ACM 54(4), 86–96 (2011)

6. Oppenheim, D.V., Varshney, L.R., Chee, Y.-M.: Work as a Service. In: Kappel, G., Maamar,
Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 669–678. Springer,
Heidelberg (2011)

7. Liptchinsky, V., Khazankin, R., Truong, H.-L., Dustdar, S.: Statelets: Coordination of Social
Collaboration Processes. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp.
1–16. Springer, Heidelberg (2012)

8. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: Proceedings of the 2011 Annual Conference Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA 2011, pp. 2053–2058. ACM, New
York (2011)

9. Barowy, D.W., Berger, E.D., McGregor, A.: Automan: A platform for integrating human-
based and digital computation. Technical Report UMass CS TR 2011-44, University of Mas-
sachusetts, Amherst (2011), http://www.cs.umass.edu/˜emery/pubs/
AutoMan-UMass-CS-TR2011-44.pdf

10. Baird, H.S., Popat, K.: Human Interactive Proofs and Document Image Analysis. In: Lo-
presti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 507–518. Springer,
Heidelberg (2002)

11. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.
Proc. VLDB Endow. 5, 13–24 (2011)

12. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Computing 15(3),
64–69 (2011)

13. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable cloud services using tosca. IEEE
Internet Computing 16(3), 80–85 (2012)

14. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to track
sentiment in online media. In: Proceeding of the 2010 Conference on ECAI 2010: 19th Eu-
ropean Conference on Artificial Intelligence, pp. 145–150. IOS Press, Amsterdam (2010)

15. Amazon mechanical turk (2011) (last access: November 27, 2011)

http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://www.cs.umass.edu/~emery/pubs/AutoMan-UMass-CS-TR2011-44.pdf
http://www.cs.umass.edu/~emery/pubs/AutoMan-UMass-CS-TR2011-44.pdf

	Programming Hybrid Services in the Cloud
	Introduction
	Motivation
	Contributions and Paper Structure

	Models for Clouds of Hybrid Services
	Models for HBS
	HBS Instances Provisioning
	Cloud APIs for Provisioning Hybrid Services

	Framework for Utilizing Hybrid Services
	Programming Hybrid Services
	Modeling HPU-Aware Task Dependency Graphs
	Combining HBS and SBS
	Forming and Configuring iSCUs
	Change Model for Task Graph's Human Power Unit

	Related Work
	Conclusions and Future Work
	References

