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Abstract

Novel types of crowdsourcing systems require a wider spectrum of incentives for efficient motivation and management
of human workers taking part in complex collaborations. Incentive management techniques used in conventional crowd-
sourcing platforms are not suitable for more intellectually-challenging tasks. Currently, incentives are custom-developed
and managed by each particular platform. This prevents incentive portability and cross-platform comparison. In this
paper we present PRINGL – a domain-specific language for programming and managing complex incentive strategies
for socio-technical platforms in general. It promotes re-use of proven incentive logic and simplifies modeling, adjustment
and enactment of complex incentives for socio-technical systems. We demonstrate its applicability and expressiveness
on a set of realistic use-cases and discuss its properties.
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1. Introduction

Ever since the introduction of the term crowdsourcing in
2006 there has been a debate as to what exactly it should
comprise (see [2]). When most of the community tacitly
started applying the term to a family of micro-task plat-
forms offered through an ‘open-call’ to anonymous crowds
[3, 4] a range of novel systems emerged attempting to
leverage expert humans for more intellectually challenging
tasks [5, 6, 7, 8], by actively targeting preferred workers.
These novel systems involve longer lasting worker engage-
ment and complex collaboration workflows, often integrat-
ing the notion of team programmability. To highlight this
distinction, some authors started naming these systems
socio-technical or social computing. However, the princi-
pal trait of all these systems is that they need to manage
interactions with and among human elements, referred to
as workers, agents, human services or peers, performing
different tasks (jobs) or collaborative workflows thereof.

While incentives were identified as one of the fundamen-
tal characteristics of conventional crowdsourcing systems
[2], supporting more complex work patterns introduces
novel challenges, with respect to finding, motivating and
assessing (expert) workers executing them. Furthermore,
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in order to retain such workers the virtual labor market
must be made more competitive and attractive [9]. In [9]
the authors discuss the recent developments in the area
and highlight a number of important research directions
that need to be investigated in order to build such systems.
Incentive management was identified as one of them. How-
ever, contemporary approaches to incentive management
usually imply hard-coded, system-specific solutions (see
Section 7). Such approaches are not portable, and pre-
vent reuse of common incentive logic. That hinders cross-
platform application of incentives and reputation transfer.

Our ultimate goal is to develop a general framework for
automated incentive management for the emerging crowd-
sourcing systems. Such an incentive management frame-
work could be coupled with different workflow or crowd-
sourcing systems, and, based on monitoring data they
provide, would perform incentivizing measures and team
adaptations. In this way, incentive management could be
externalized and offered as a service. Figure 1 visualizes
the context in which an incentive management framework
is supposed to operate: A complex business process is be-
ing executed by employing crowdsourced team(s) of human
experts to execute various workflow activities. The teams
are provisioned by a dedicated service (e.g., Social Com-
pute Unit – SCU [10, 11]) that assembles teams of crowd
workers based on required elasticity parameters, such as:
skills, price, speed or reputation. However, choosing ap-
propriate workers alone does not guarantee the quality
of subsequent team’s performance. In order to monitor
and influence the behavior of workers during and across
activity executions an incentive scheme needs to be en-
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Figure 1: Application context of incentive management systems.

acted. This is the task of incentive management frame-
works. They enact the incentive scheme by applying re-
wards or penalties in a timely manner to induce a wanted
worker behavior, thus effectively performing runtime team
adaptations (e.g., Fig. 1: A′ → A′′).

Designing an incentive scheme is itself a challenging task
performed by domain experts for a particular work pat-
tern or company. As shown in [12, 4] most real-world in-
centive strategies used in crowdsourcing environments can
be composed of modelable and reusable bits of incentive
logic. However, in Section 7 we also show that the efficacy
of incentives can depend on multiple other factors, such
as team size, cultural background, or knowledge of other
participants. Therefore, the challenge is to design an in-
centive management framework capable of reusing exist-
ing and proven incentive mechanisms, but also allowing for
easy tweaking to particular application contexts.

1.1. Contribution

The cornerstone of the previously described incentive
management frameworks is the incentive programming
model , consisting of the two conceptual units:

i) Incentive Model—supporting expression of a wide
spectrum of incentive mechanisms suitable for crowd-
sourcing environments;

ii) Execution Model—supporting enactment of the in-
centive mechanisms from i) onto crowd workers.

In this paper we present the programming model of
pringl4 – a novel domain-specific language (DSL) for
modeling incentives for socio-technical and crowdsourcing
systems. We describe pringl’s modeling paradigm, and
demonstrate its expressiveness by modeling a set of realis-
tic incentive mechanisms. We then show how the modeled
incentives can be enacted on a social-computing platform.

This paper substantially extends and refines our work
presented in [1]. While the initial paper briefly presented

4PRogrammable INcentive Graphical Language

the principal incentive elements, the extended version de-
scribes the entire incentive model, including a description
of primitive elements and incentive operators (Sec. 4.1)
and a significantly extended section on complex incen-
tive elements (Sec. 4.3). Furthermore, we describe the
allowed operations on the introduced incentive elements
(Sec. 4.2.1), as well as the execution model (Sec. 4.4). In
order to address the concerns of groundedness and ap-
plicability of our contribution, we present a substantial
evaluation in Sec. 5, covering a set of realistic examples.
The evaluation is based on the methodological approach
outlined in the newly-added Sec. 2. Finally, the opera-
tional context and connectedness to our previous work are
better explained (Sec.3.2), and the Related Work (Sec. 7)
extended.

The paper is organized as follows: Section 2 presents
the research methodology. Section 3 gives an overview
of pringl’s architecture and intended use. In Section 4
the principal elements of pringl’s incentive and execution
model are presented. Section 5 shows how to model a set
of realistic incentive schemes with pringl. Section 6 de-
scribes the implemented modeling tools. Section 7 presents
the related work. Section 8 concludes the paper.

2. Methodology & Background Work

Our work is motivated by the lack of general and con-
figurable incentive management solutions for (novel) types
of crowdsourcing systems [9]. The purpose of any DSL is
to allow the user to solve quickly and more easily some
clearly identifiable problems in a domain, sacrificing in ex-
change the generality offered by a general-purpose pro-
gramming language. In this case, the problem is to allow
quick and uniform/portable modeling of commonly used
incentive patterns identified in [12]. In order to design a
useful DSL, we followed the general guidelines described in
[13] to formulate design requirements, based on which we
implemented and evaluated pringl’s programming model.

As is common practice during the prototyping phase of
DSL development, we evaluate the programming model
qualitatively [13, 14] – by establishing whether it is ca-
pable of meeting the formulated design requirements.
Concretely, to establish that the offered functionality is
grounded in reality, i.e., able to model a wide spectrum
of real-world incentives, we show how pringl can be used
to encode a number of example incentive schemes, cho-
sen to cover most of the incentive patterns from [12] (Ta-
ble 4). By describing and discussing the flexibility of-
fered by pringl when modeling incentives in this example
suite we argue for the usability aspect of pringl as well.
Unfortunately, a fully rigorous usability claim could only
be made after an extensive satisfaction survey of actual
pringl users in real conditions, which is currently infea-
sible due to a lack of commercially exploitable end-to-end
systems with incentive management capabilities. Finally,
in Section 6 we present a prototype implementation of
pringl’s programming model, and use the implemented
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prototype to fully encode a complex incentive scheme from
the example suite (Ex. 5), thus demonstrating the com-
pleteness of the proposed model and practically validating
our implementation.

As shown in Section 7, previous research on incen-
tives in crowdsourcing was mostly focused on concrete,
application-specific incentive design and validation. To
the best of our knowledge, there have been no previ-
ous attempts of formalizing a general and comprehensive
approach to incentive management for crowdsourcing or
socio-technical systems. A comparative evaluation of our
research is therefore not possible. As the topic of this pa-
per is not design or evaluation of particular incentive mech-
anisms on concrete crowdsourcing platforms, our evalua-
tion does not include experimental or simulation testing of
incentive application.

The basic incentive modeling concepts that were used
to design pringl were inspired by, or based upon con-
cepts previously introduced in the set of our background
papers: in [15] we presented a possible model of the ab-
straction interlayer (Sec. 3.2); the basic functionality of the
interlayer’s incentive modeling capabilities were simulated
and tested in [16]; and finally, in [10, 17] we present com-
ponents of a framework that allows provisioning and com-
munication with collectives of human workers. We are cur-
rently working on integrating pringl and the aforemen-
tioned components into a single end-to-end socio-technical
system with incentive management capabilities.

3. PRINGL Overview

3.1. Users

pringl is a domain-specific language intended to be
used by two types of users (Figure 2): a) incentive design-
ers – domain experts that design and implement incentive
scheme for an organization; and b) incentive operators –
organization members responsible for managing the every-
day running and adaptation of the scheme.

An incentive designer (the Designer) is a multidisci-
plinary domain expert in the areas spanning management,
economy, game theory and psychology. The Designer is
hired by the crowdsourcing platform to design a set of
appropriate incentive mechanisms for the given business
model of the platform, taking into consideration context-
specific properties pertinent to the targeted population of
workers. An example of how this process is performed
for two different experimental platforms can be found in
[18, 19]. The role of an incentive operator (the Opera-
tor) has not been defined in the existing literature, as its
existence is subject to the existence of the novel type of
incentive management platforms that we describe in this
paper. While a Designer can be a person external to the
socio-technical platform, the Operator is a member of the
management of the socio-technical platform in charge of
monitoring the application of incentives and taking oper-
ative decisions on adaptations of various incentive param-
eters.

While Designers may need to concern themselves with
implementation details of the underlying system in order
to adapt general incentive mechanisms for it, Operators
want to manage the incentive scheme by using a simple
and intuitive user interface without knowing implementa-
tion internals. In Example 3 we showcase the parame-
ters that are under Operator’s control, while the whole of
mechanism and the choice of which parameters are tweak-
able were defined by the Designer.

3.2. Operational Environment

In order to enact a pringl-encoded incentive on a socio-
technical platform (i.e., apply the incentives on real crowd
workers), we need a simplified and uniform model of plat-
form’s workers, and the metrics and relationships that de-
scribe them. We call such a model together with the frame-
work that manages it an abstraction interlayer (Fig. 2).
More precisely, we use the term abstraction interlayer to
denote any middleware sitting on top of a socio-technical
system, exposing to external users a simplified model of
its employed workforce and allowing monitoring of the
workers’ performance metrics. The existence of an ab-
straction interlayer allows the incentive designer to write
fully-portable incentives.

In [15] we presented a framework for low-level incentive
management – princ. Although princ allowed monitor-
ing of metrics and application of basic incentive mecha-
nisms for socio-technical systems in general, it lacked a
comprehensive, human-readable way of encoding incen-
tive strategies, motivating us to design pringl. However,
princ possesses all the characteristics of an abstraction
interlayer. It features an abstract model (RMod) for rep-
resenting the state of a socio-technical system, reflecting
its quantitative, temporal and structural aspects. princ’s
mapping model (MMod) defines the mappings needed to
properly express the platform-specific versions of metrics,
actions, artifacts and attributes into their RMod cog-
nates. Finally, princ takes care of exchanging messages
with, and receiving update events from the underlying
socio-technical platform, thus enabling the RMod abstract
model to mirror the state of the underlying system. This
in turn allows us to express incentive mechanisms decou-
pled from the underlying platform: to apply an incentive
it suffices to alter the RMod state, while the task of mir-
roring this change onto the actual socio-technical platform
is delegated to princ.

In this paper we assume the existence of princ as ab-
straction interlayer. The business logic code provided in
the examples in Sec. 5 is C# code executable on princ. In
theory, pringl can work without an abstraction interlayer.
However, this would imply that all message handling with
the underlying crowdsourcing system and complex mon-
itoring logic would have to be written from scratch and
placed into the incentive logic elements (Sec. 4.3). This
contradicts one of the principal motives for introduction
of pringl, and is more disadvantageous than building a
completely system-specific incentive management solution.
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Figure 2: A joint overview of pringl’s programing model elements, architecture, users, operative environment and implementation. Imple-
mented elements (Sec. 6) are marked in blue (lighter shaded).

3.3. Architecture

Figure 2 shows an overview of pringl’s architecture and
usage. An incentive designer models an incentive scheme
provided by a domain expert as a pringl program us-
ing pringl’s visuo-textual syntax. The visually-expressed
part of the syntax is completely system-independent, while
system-specific business logic can be expressed as source
code in an arbitrary programming language supported by
the abstraction interlayer (see Sec. 4.3, Incentive Logic).

Starting from a pringl program the pringl code gen-
erator produces the following artifacts, encoded in a con-
ventional programming language:

◦ An incentive model expressed in terms of incentive ele-
ments, basic pringl types and operators. This model
also integrates the business logic code provided by the
incentive designer. The incentive element definitions
from this model can optionally be compiled into libraries
for later reuse.

◦ Code for communication with the abstraction interlayer
and application of the incentives.

◦ Code for manipulation of the incentive model.

These artifacts can be used to quickly build applications
offering incentive management capabilities, e.g., a GUI-
based application offering an incentive operator the pos-
sibility to change the runtime parameters. As previously
explained, the abstraction interlayer takes care to commu-
nicate with the concrete socio-technical system, forward
the rewarding actions and receive the updates.

3.4. Requirements

As pringl is a domain-specific language, the focus of
the design requirements lies primarily on usability for its
intended users (Section 3.1). In order to design an attrac-
tive language for the targeted users, the process was guided
by the following requirements, formulated according to the
guidelines outlined in [13]:

a) Usability – provide an intuitive, user-friendly modeling
DSL for incentive operators.

b) Expressiveness – provide an expressive environment for
programming complex real-world incentive strategies
for incentive designers.

c) Groundedness – allow the use of de facto established
terminology, components and methods for setting up
incentive strategies.

d) Reusability – support and promote reuse of existing
incentive business logic.

e) Portability – support system-independent incentive
mechanisms, agnostic of type of labor or workers, and
of underlying systems.

4. Programming Model

To meet the specified requirements pringl was con-
ceived as a hybrid visual/textual programming language,
where incentive designers can encode core incentive el-
ements, while incentive operators can provide concrete
runtime parameters to adapt them to a particular situ-
ation. The language supports programming of the real-
world incentive elements described in [12, 4] and allows
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composing complex incentive schemes out of simpler el-
ements. Such a modular design also promotes reusability
since the same incentive elements with different parame-
ters can be used for a class of similar problems, stored in
libraries and shared across platforms.

pringl allows incentive designers to model realistic
incentive schemes (i.e., business logic) into a platform-
independent specification through a number of incentive
elements represented by a visual syntax (graphical ele-
ments with code snippets). The incentive scheme rep-
resents the whole of business logic needed for managing
incentives in an organization. The scheme is expressed
in pringl as a number of prioritized incentive mecha-
nisms representing a pringl program. Each mechanism
can them be further decomposed into a number of con-
stituent incentive elements described in the following sub-
sections. The designer programs new incentive elements or
reuses existing ones from an incentive library to compose
new, more complex ones. The following sections describe
the incentive elements and operations on them. Due to
spatial and readability constraints, the elements are not
always fully described. For the same reason, the explana-
tion of the code generation process is out of the scope of
this paper. For more information the reader is referred to
the supplement materials5.

4.1. Primitive Incentive Elements & Operators

From business logic perspective, primitive incentive el-
ements represent the basic entities (workers, relationships
and time units) that we use when composing incentive
rules. From programming language perspective, they can
be considered as atomic types that are used in user-
provided or library code that specifies business logic. We
use the two term: ‘type’ and ‘incentive element’ inter-
changeably. Apart from the four conventional primitive
types: string, bool, int and double, pringl defines the
types shown in Table 1. They do not have a direct vi-
sual representation. Only primitive elements can be used
as inputs and outputs of complex incentive elements (Sec-
tion 4.2). pringl provides a number of a useful operators
for manipulating these types (Table 2)5.

4.2. Complex Incentive Elements

Complex types enable pringl’s core functionality and
are represented by corresponding graphical elements.
Their key property is that more complex types can be ob-
tained by visually combining simpler ones. Visual, rather
than purely textual representation was chosen to allow
users to build up complex incentive schemes by visually
suggesting and restricting the choice of the possible com-
ponents, thus facilitating the process of construction of in-
centive mechanisms. Complex incentive elements are man-
aged through the following operations:

5Extended descriptions are provided as supplement materials at
http://dsg.tuwien.ac.at/research/viecom/PRINGL/

4.2.1. Operations on Complex Incentive Elements

Definition – Complex types are defined by inheriting
the following abstract metatypes: IncentiveLogic, Work-
erFilter, RewardingAction and IncentiveMechanism

(Fig 3). A new complex type inherits the predefined, ad-
dressable fields from the metatype it redefines. In order
for a type definition to be complete, the fields must be
filled out with appropriate values. Some fields are filled
out automatically by pringl depending on the context
where they are used (auto parameters); others must be
filled out by the user (user-fields). The user-fields are: a)
name, which specifies the name of the new complex type;
b) arbitrary number of primitive-type input parameters
(params) that can be used in evaluations and passed to
other incentive elements; c) type-specific fields5, specifying
how a particular functionality of the newly defined com-
plex type is going to be executed – by indicating another
incentive element to invoke, or by providing an executable
code snippet. Definition is performed through appropriate
graphical constructs being placed onto the working area.
A new type definition retains its parent-metatype’s graph-
ical representation. For the non-auto input params (b),
pringl visually exposes appropriate number of GUI form
fields accepting the inputs that are to be filled out manu-
ally by the user. The input can contain expressions with
primitive types and/or references to other accessible fields.
To fill out type-specific fields (c), the user is expected to
visually link the appropriate incentive element type, thus
effectively declaring/instantiating it (see below).

Declaration/Instantiation – When defining new complex
types, the user indicates (declares) which field/subcom-
ponent instances will be required for pringl runtime to
instantiate the newly defined object by placing the cor-
responding graphical (color-filled) element in the appro-
priate context within the working area, connecting it with
appropriate connector from the parent type definition, and
overriding parameter values from the parent type defini-
tion, if needed. The auto parameters are loaded at in-
stantiation by pringl transparently to the user. Type
instances are addressable objects that can be referenced
(e.g., to read a field value) or invoked (see below) from
other elements.

Indirect invocation – The IncentiveLogic, WorkerFil-
ter and RewardingAction instances can also be ‘invoked’
just by being referenced from expressions in user-code.
When the pringl code generator encounters an instance
reference in an expression it transparently replaces it with
an invocation of the default method for that type. De-
fault methods for filters and rewarding actions return the
resulting Collection<Worker>. The default method of a
IncentiveLogic type is a function having input and out-
put parameters as specified in its definition, and the user-
provided code as the function body. The input parameters
are provided by pringl runtime, so there is no need to
pass any non-user parameters from the user code. Expres-
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Type Description

Worker Represents an individual worker and his/her performance metrics.

PoiT Represents a point in time. It can be instantiated by providing a fixed datetime or obtained as result of application of time operators.

Interval Represents a named, addressable time interval. An interval can be: a) fixed; and b) adjustable. Fixed intervals have predefined
starting and ending times, provided by two PoiTs, that cannot subsequently be altered. Adjustable intervals reflect the external
system’s changes intervals, e.g., deadline extensions (cf. iterations [15]). Changes are allowed to affect only points in future.

Collection<T> An iterable collection of a primitive type T is also considered a primitive type.

Table 1: Primitive types.
Operators Description

Set
operators

Union, intersection and complement on Collection<T>.

Time
operators

Return Collection<PoiT> specifying times in which an action is expected. When working with adjustable intervals, their use
guarantees that external changes will be observed. Commonly used with temporal specifiers.

Temporal
specifiers

Instruct execution environment when to perform certain actions or evaluate predicates. As such, they cannot be directly used in
user-provided programming code, but are rather offered as a choice through a visual GUI element (drop-down box), where needed.
Internally, they are represented as built-in functions that operate on a collection of PoiTs provided by the environment at runtime.

Structural
operators

Perform structural queries/modifications by examining/re-chaining relationships between worker nodes in the abstraction interlayer’s
(graph) model by using graph transformations [20].

Aggregation
operators

Perform calculations on performance metrics or events over a Collection<PoiT>s in a fashion similar to SQL aggregate functions.
The collection of time points over which they calculate is provided by the runtime environment at each invocation. A number of
context-dependent restrictions apply on where they can be used.

Table 2: Built-in operators.

ComplexType

name
params
output

WorkerFilterIncentiveLogic
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Logic
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Figure 3: Complex incentive elements class hierarchy.

sions containing indirect invocations can be used as field
values (see Ex. 2, Fig. 11) or arbitrarily within the user-
provided business-logic code in IncentiveLogic elements
(see Ex. 3, Fig. 12, ¬). Indirect invocation feature allows
the user to pass instance references instead of output types
of their default methods; for example, we can pass a filter
instance to an IncentiveLogic element expecting a single
input parameter of type Collection<Worker>. As these
are common situations, indirect invocation helps cut down
on verbosity of user code.

Static invocation – In addition to indirect invocation,
IncentiveLogic elements can be invoked statically with
arbitrary input parameters from the user code. In order
to make the static invocation, the IncentiveLogic type
name is appended with .invokeWith([<param-list> ]);
see Ex. 3, Fig. 12, ¬.

4.3. Defining Complex Incentive Elements

Incentive Logic

These constructs encapsulate different aspects of busi-
ness logic related to incentives in reusable bits (e.g., de-
termine whether a condition holds, read a metric value, or
perform a simple action). They can be thought of as func-
tions/delegates with predefined signatures allowing only
certain input and output parameters. They are invoked
from other pringl constructs, including other Incentive-
Logic elements. Implementation is dependent on the ab-
straction interlayer, but not necessarily on the underlying
socio-technical platform, meaning that many libraries can
be shared across different platforms, promoting reusability
of proven incentives, uniformity and reputation transfer.
The Designer is encouraged to implement incentive logic
elements as small code snippets with intuitive and reusable
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functionality. Depending on the intended usage, incentive
logic elements have different subtypes: Action, Structural,
Temporal, Predicate, Filter. Subtypes are needed to im-
pose necessary semantic restrictions, e.g., the subtype pre-
scribes different input parameters and allows pringl to
populate some of them automatically6. Similarly, differ-
ent subtypes dictate different return value types. These
features encourage high modularization and uniformity of
incentive logic elements. Incentive logic element defini-
tion is expressed in pringl with the visual syntax element
shown in a Fig. 4, with appropriate subtype symbol shown
in the upper left corner. As is the case with other incen-
tive element definitions (presented in subsequent sections),
the incentive logic element incorporates the distinguishing
geometrical shape (diamond in this case), as well as auto-
populated and user-defined parameters. Differently than
other elements, it contains a field into which the Designer
inputs executable code in a conventional programming lan-
guage. The code captures the business logic specific to the
incentive that is being modeled, but must conform to the
rules imposed by the incentive logic subtype. As a short-
hand, textual, inline notation for incentive logic elements
we use a diamond shape surrounding the letter indicating
the subtype, e.g., T for temporal logic.

P

  // Business logic expressed in 
  // interlayer-executable programming code

name:   IncentiveLogic
params: Type1 _param1 (auto),

Type2 param2 
output: OutputType 

Figure 4: Visual element representing an IncentiveLogic definition.

Worker Filter

The function of a WorkerFilter element is to iden-
tify, evaluate and return matching workers for subsequent
processing based on user-specified criteria. The criteria
are most commonly related (but not limited) to worker’s
past performance and team structure. The workers are
matched across different time points from the input collec-
tion of Workers that is provided by the pringl environ-
ment at runtime. By default, all the workers in the sys-
tem are considered. The output is a collection of workers
satisfying the filter’s predicate. Therefore, the function-
ality of a filter is to return a subset of workers from the
input set, i.e., to perform a set restriction. Both Simple-

WorkerFilter and CompositeWorkerFilter are subtypes
of the abstract WorkerFilter metatype (Fig. 3), and can
be used interchangeably where a worker filter is needed.
A SimpleWorkerFilter element definition is expressed in
pringl with the visual syntax element shown in a Fig. 5,
while a right-pointed shape F is used as the inline, short-
hand, textual denotation. Filter’s type-specific fields are

6Marked with auto in figures

filled out visually by the user, by connecting them with ap-
propriate incentive elements. The fields specify the time
ranges over which to evaluate a worker (temp spec and
time rest fields) and the predicate(s) (predicate and
auxiliary fields) over metrics that need to hold.

P

T

PredicateLogic

TempLogic SimpleFilter

time_rest: TempLogic

temp_spec: null

auxiliary: null

predicate: PredicateLogic

params:    
-    Type1 param1
-    Type2 param2

Figure 5: Visual element used for SimpleWorkerFilter definition.

In Figure 6 we illustrate how a composite filter can be
defined in pringl. It consists of graphical elements repre-
senting instances of previously defined, or library-provided
WorkerFilters. The elements are connected with directed
edges denoting the flow of Workers. There must be exactly
one filter element without input edges representing the ini-
tial filter, and exactly one filter element without output
edges representing the final filter in a composite filter def-
inition. When a CompositeWorkerFilter is instantiated
and executed, pringl provides the input for the initial fil-
ter, and returns the output of the final filter as the overall
output of the composite filter. As any other pringl com-
posite type, a composite filter can also expose propagated
or user-defined parameters.

MyCompositeFilter

A:FType1 B:FType2

C:FType3

D:FType4

<<initial>>

<<final>>

∩
intersection
(restriction)

union  ∪

\
complement

MyCompositeAction

B:T2a:A1

<<initial>>

A:T1

<<initial>>

C:T3

<<final>>

D:T4

<<final>>

3 5

0

Figure 6: An example CompositeWorkerFilter definition.

A directed edge A −→ C implies that C takes as input
A ’s output (the workers matching the criteria of A ). The
output of C is a set containing workers fulfilling both
filters’ conditions, thus effectively representing A ∩ C

operation. If an edge is marked as negating (9), then A

9 returns the set complement of A ’s input, i.e., input(A)
\ A . When multiple edges enter a single filter element,
then the union (∪) of workers coming over the edges is
used as the input for the filter element. When multiple
edges go out of a single element, then the same output set
of workers is passed to each receiving end. Sometimes, we
need a filter to forward a same set of workers to multiple
filters or to collect workers from multiple filters without
performing additional restrictions; the pass-through filter
(predefined PassThru type) contains no logic, except for
a predicate always returning true.
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Rewarding Action

Its function is to notify the abstraction interlayer (and
consequently the crowdsourcing platform) that a concrete
action should be taken against specific workers at a given
time, or that certain specific actions should be forbidden
to some workers during a certain time interval. The re-
warding actions can include, but are not limited to, the
following: adjust reward rates (e.g., salary, bonus), as-
sign digital rewards (e.g., points, badges, stars), suggest
promotion/demotion or team restructuring, display a se-
lected view of rankings to selected workers. The choice of
the available actions is dependent of the set supported by
the interlayer and the actual crowdsourcing platform. The
abstraction interlayer is responsible for translating the ac-
tion into a system-specific message and delivering it to the
underlying crowdsourcing platform. pringl expects the
underlying system to acknowledge via abstraction inter-
layer that the suggested action was accepted and applied
to a worker, because its outcome may affect other incentive
mechanisms. We use a trapezoid shape shown in Fig. 7 to
denote the definition of a SimpleRewardingAction. For
the shorthand notation, we use A , both for simple and
composite rewarding action elements.

T

TemporalLogic

A

ActionLogic

SimpleAction

    filter:       null

    exec_cond:    null

    exec_times:   TemporalLogic

    temp_spec:    null

params:       
+ Type1 param1
- Type2 param2

    delay:        (auto)

    action_logic: ActionLogic

Figure 7: Visual element used for SimpleRewardingAction definition.

In pringl’s programming model the output of a Re-

wardingAction is a Collection<Worker> containing af-
fected workers, i.e., those to which the action was success-
fully applied. Informing the abstraction layer is performed
a side-effect of executing the rewarding action. In order
to perform the action, the runtime environment needs to
know to which workers the action applies, so a worker fil-
ter needs to be used (filter field). In some cases, the
workers that are rewarded/punished may be the same as
initially evaluated ones. In that case we can reuse the orig-
inal filter used for evaluation. In other cases, workers may
be rewarded based on the outcome of evaluation of other
workers (e.g., team managers for the performance of team
members). pringl’s runtime also needs to determine the
timing for action application (temp spec and exec times

fields). We use temporal specifiers (see Sec. 4.1) to deter-
mine the exact time moment(s) of the time series. For
defining incentives involving deferred compensation [12]
we also need to specify an additional predicate that will
be evaluated at the execution time establishing whether a
worker fulfilled the reward criteria during the period from

MyCompositeAction

B:T2a:A1

<<initial>>

A:T1 C:T3

<<final>>

D:T4
<<final>>

3 5

0

Figure 8: An example CompositeRewardingAction definition with
branch delays shown.

when the incentive was scheduled until the execution point
(exec cond field). The actual action to execute is deter-
mined by the action logic field, pointing to a concrete
A element.
Similarly to composite filters, a CompositeRewarding-

Action definition consists of graphical elements repre-
senting instances of previously defined RewardingAc-

tions (Fig. 8). Both SimpleRewardingAction and Com-

positeRewardingAction are subtypes of the abstract Re-
wardingAction metatype (Fig. 3), and can be used in-
terchangeably where a rewarding action is needed. The
sub-elements are connected with directed edges denoting
at the same time: a) worker flow ; and b) time delay.

A RewardingAction returns affected workers and
passes them over outgoing edges if it is member of a
composite action. Affected workers are those workers
on which the action was successfully applied by the
underlying crowdsourcing system. The passing of workers
is similar to that of composite filters. The differences
are explained in the supplement materials. Each edge
can optionally specify a time delay as a non-negative
integer without the unit. If omitted, zero is assumed. The
actual unit is determined transparently to the user as the
basic time unit of the abstraction interlayer. pringl for-
wards the delay value to the action that the edge points to.

Incentive Mechanism

IncentiveMechanism is the main structural and func-
tional incentive element. It uses the previously defined
complex types to select, evaluate and reward workers of the
crowdsourcing platform. A complete incentive scheme can
be specified by putting together multiple incentive mech-
anisms, prioritizing them, and turning them on/off when
needed. As other complex types, incentive mechanism also
has dedicated GUI elements for definition and instantia-
tion (Fig. 9), as well as a shorthand notation used in this
paper – IM. Table 3 defines the functionality of IM’s fields.
We show examples of the usage of IMs and other incentive
elements in the following section.

4.4. Execution Model

The execution of a pringl program (incentive scheme)
is performed in cycles, as follows:

All IMs are triggered for execution whenever a triggering
signal from the abstraction interlayer is received. It is the
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Field Description

exec cond An optional P element used as execution condition for the entire mechanism. Used to check global and time constraints. The
condition is commonly used to prevent unwanted multiple executions of the same mechanism. Defaults to true if omitted.

appl restr Specifies how often a mechanism can be executed in a given interval. The runtime environment then alters the exec cond accordingly,
transparently to the user. This field can be used to turn mechanisms on or off to obtain different incentive scheme configurations.

filter An optional F specifying the default target Workers for the A specified in field rew action. If not provided, if defaults to the
collection of all the workers in the system. The filter is used to evaluate workers’ past or current performance.

inc cond An optional P used to interpret the workers returned by the filter and decide whether to proceed with the rewarding. This condition
is meant to be used when the evaluated and targeted worker groups are not the same. In that case, we need to decide whether the
results of the evaluation performed through the filter should cause the invocation of the action(s). Returns true if omitted.

rew action A mandatory A assigning the reward or penalty.

priority An optional int indicating the priority of mechanism’s execution. Zero by default.

Table 3: Description of IncentiveMechanism fields.

WorkerFilter

RewardingAction

IncentiveElement

    filter:   WorkerFilter

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RewardingAction

    priority:   0

params:
+ Type1 param1
+ Type2 param2

Figure 9: An example IncentiveMechanism definition.

responsibility of the Designer to ensure through priorities
and execution conditions that a specific order of execution
of IMs is achieved. The order of execution of IMs with the
same priority is not predetermined. Execution conditions
of the IMs with higher priorities are evaluated first. Only
after the higher-priority IMs have executed are the con-
ditions of lower-priority ones evaluated. This allows the
higher priority mechanisms to preemptively control the ex-
ecution of lower-priority ones by changing condition vari-
ables through side effects. The execution time of any single
IM is limited by design to the time needed to pass the mes-
sage to the underlying crowdsourcing platform. The exe-
cution of an IM begins by evaluating exec cond. If true,
the associated filter is passed the collection of all the
workers in the system and invoked. The resulting workers
are then passed to the incentive cond to decide whether
the execution should proceed with rewarding. If it re-
turns true, rew action is invoked. If the action does not
override its filter field pringl passes the collection of
workers returned by the IM’s filter field.

A F executes by checking for each worker from the input
collection whether it fulfills the provided predicate. This
is done for each PoiT returned by time restr ( T ). The
results are then interpreted in accordance with the pro-
vided temp spec. For example, if the specifier is Once()

then it suffices that the worker fulfilled the predicate in at
least one of the PoiTs in order to be placed in the result-
ing collection. In case of composite filters the constituent
sub-filters are executed in the defined order. The initial
filter receives the initial collection of workers from the en-
vironment, which is then passed on to subsequent filters.

The resulting collection of workers from the final filter is
returned as the overall result.

A simple A is executed if the exec cond ( P ) returns
true. In this case, the execution PoiTs for the action are
obtained from exec times ( T ) and then interpreted in
accordance with the temp spec. Once the times are de-
termined, the environment schedules the action in the ab-
straction interlayer (in our case princ’s Timeline) and
provides the actual code that performs the action from the
action logic ( A ). However, during the entire runtime
pringl keeps track of the scheduled action, in order to
honor temporal specifications and to detect re-scheduling
due to Interval redefinitions. The workers to which the
action applies are taken from the associated filter. As
explained, if the local filter is omitted, pringl assumes
the workers from the parent IM ’s filter.

The execution of a composite action starts by first break-
ing it into linear execution paths containing constituent
simple actions. For each execution path pringl takes into
account specified delays and adjusts the T elements in
constituent actions to account for provided delays, which
are then (re-)scheduled with the abstraction interlayer.
However, as in this case we need to pass worker sets be-
tween actions happening at different times pringl stores
the intermediate results (worker sets) that actions sched-
uled for a future moment will collect when executed (mem-
oization). In case more than one action is scheduled for
execution at the same time, the order is unspecified.

Executing incentive logic elements L equals to invok-
ing the instance similarly to a conventional function. The
environment passes both the auto parameters and any
user-defined ones. If user-defined parameters are omitted
when a L is invoked from the code by indirect invocation
the parameters are obtained from the visually exposed pa-
rameter fields. However, when supplied, the arguments
provided in the code override those provided in the fields.
If the parameter value cannot be resolved in either way,
the invocation fails.

Overall, pringl’s execution is ‘best effort’. This means
that pringl expects the interlayer to pass to the under-
lying socio-technical system the rewarding actions to be
taken, but will not expect them to be necessarily observed.
Acknowledgments are used to keep track of successfully ap-
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plied rewarding actions. If any error is encountered dur-
ing the execution, the currently invoking incentive mech-
anism fails gracefully, but the execution of other mecha-
nisms continues. The incentive scheme’s execution needs
to be stopped explicitly.

5. Evaluation

A domain-specific language (DSL) can be evaluated
both quantitatively and qualitatively. Qualitative analysis
of the language is usually performed once the language is
considered mature [13], since this type of evaluation in-
cludes measuring characteristics such as productivity and
subjective satisfaction, that require an established com-
munity of regular users [14].

During the initial development and prototyping phase,
we use the qualitative evaluation [13], which, in general,
can include: comparative case studies, analysis of language
characteristics and monitoring/interviewing users. Analy-
sis of language characteristics was chosen as the preferred
method in our case, since it was possible to perform it on
the basis of the findings gathered through analysis of nu-
merous existing incentive models [12]. Due to difficulties
in engaging a relevant number of domain experts willing
to take part in monitoring we were unable to perform this
type of user-based evaluation at this point. Comparative
analysis was not applicable in this case, due to nonexis-
tence of similar languages.

In order to qualitatively evaluate characteristics of
pringl in Section 5.2 we constructed an example suite cov-
ering realistic incentive elements identified in [12]. By im-
plementing the suite examples we showcase the various lan-
guage characteristics necessary for a comprehensive cover-
age of the domain, thus demonstrating pringl’s ground-
edness and expressiveness. Through discussion of par-
ticular implementation details, we demonstrate pringl’s
reusability and portability. While lacking the necessary
conditions and metrics to conclusively show the usability
of the language, the implemented set of examples allows us
to argue for certain aspects of usability, such as ‘usefulness’
and ‘portability’ (from [14]).

5.1. Modeling Real-world Incentive Elements

Paper [12] presents a review of literature on incen-
tives and surveys existing incentive practices of 140 cro-
wdsourcing companies and organizations. Based on the
outcomes of this survey, the paper identifies the basic cat-
egories of incentives, and their key building elements –
evaluation methods and rewarding actions. A short de-
scription is provided below:

Incentive Categories

◦ Pay per performance (PPP) – workers are rewarded pro-
portionally to the contribution. The contribution is cal-
culated through context-specific metrics.

◦ Quota system/Discretionary bonus – the contribution is
assessed at known time points or over predefined inter-
vals. If the level of contribution exceeds a threshold for
the monitored time frame, the worker is rewarded.

◦ Deferred compensation – a worker is promised a reward
for current effort, but the actual rewarding action is ap-
plied after some time, and only if a condition is satisfied
at that specified moment in future.

◦ Relative evaluation – a worker/artifact is evaluated with
respect to other workers/artifacts within a specific group
and rewarded according to the relative score.

◦ Promotion – a limited number of better positions are
available for a group of workers to compete for (tour-
nament theory). Involves a structural change reflecting
the change in position and managerial relations.

◦ Team-based compensation – when individual contribu-
tions are not easily distinguishable, team members are
equally compensated according to the overall, measur-
able success of the team as a whole.

◦ Psychological incentives – designed to act on human
feelings. They usually provoke competitive reaction,
but other consequences are possible as well, such as re-
spect from colleagues, professional satisfaction, fear of
dismissal. Psychological incentives need to be carefully
tailored to suit the targeted social milieu.

Each of these incentive categories can be generalized and
implemented to use different evaluation methods and/or
rewarding actions. Sometimes, they can be interchange-
able; in other cases, the context narrows down the choice.
For example, if a crowdsourced worker is participating in
a text-translation task, then the metric based on which
the worker is evaluated in a PPP type of incentive can be
obtained by monitoring the amount of translated text, or
alternatively other translators can be asked to provide a
vote on the quality of the translated text. As long at the
evaluation can be quantified, the actual way how a par-
ticular evaluation is obtained remains transparent to the
rest of the incentive. In the design-contests, on the other
hand, the quantity of produced designs is largely irrele-
vant. The quality of artistic contribution can be evaluated
only through human-based peer evaluation. The reward-
ing actions and evaluation methods encountered in prac-
tice and literature can be classified as follows ([12]):

Rewarding Actions

◦ Quantitative reward– a quantitative change of the pa-
rameters targeting directly/indirectly worker’s perfor-
mance (e.g., salary increase, bonus, free days).

◦ Structural change – restructuring of collaboration,
communication or management relationships in which
worker takes part (e.g., change of collaborators/teams,
delegation patters, promotion).

◦ Psychological action – indirect motivation of workers by
exposing them to information designed to increase com-
petitiveness, collaboration, compassion, sense of belong-
ing. Examples include: displaying rankings of similar/-
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competing workers and digital badges.

Evaluation Methods

◦ Quantitative evaluation – rating of individuals based
on objective, measurable properties of their contribu-
tion. Does not require human participation. Fully im-
plementable in software only.

◦ Indirect evaluation – rating of individuals calculated
based on objective, relative evaluation of artifacts they
produce with respect to artifacts produced by other par-
ticipating individuals, under a closed-world assumption.
Fully implementable in software only.

◦ Subjective evaluation – based on subjective opinion of
a single peer-worker (e.g., manager, team leader), or
statistically insignificant number of peers.

◦ Peer voting – based on aggregated votes of a statistically
significant number of peer workers.

5.2. Examples

In this section, we present an example suite designed to
cover most of the presented real-world incentive categories
and their constituent parts (see Table 4)7. Due to spacing
constraints, some examples are presented partially.

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5

Incentive Category

PPP X
Quota/Discretionary X
Deferred Compensation X
Relative Evaluation X
Promotion X
Team-based Compensation X
Psychological X X

Rewarding Action

Quantitative X X
Structural X
Psychological X X

Evaluation Method

Quantitative X X X
Peer Voting X

Table 4: Coverage of incentive categories, rewarding actions
and evaluation methods by the provided examples.

5.2.1. Example 1 – Employee Referral

A company introduces employee referral process8 in
which an existing employee can recommend new candidates
and get rewarded if the new employee spends a year in the
company having exhibited satisfactory performance.

Solution: In order to pay the referral bonuses (de-
ferred compensation) the company needs to: a) identify

7 Note that the Indirect and Subjective evaluation methods have
been omitted from Table 4. Former, because it implies use of so-
phisticated evaluation algorithms, but implementation-wise would
not differ from the Quantitative evaluation. Latter, because is not
easy to uniformly model in software, as it implies subjective human
opinions that are unknown at design-time.

8http://en.wikipedia.org/wiki/Employee_referral

the newly employed workers; and b) assess their subse-
quent performance. Let us assume that the company al-
ready has the business logic for assessing the workers im-
plemented, and that this logic is available as the library
filter GoodWorkers. In this case, we need to define one ad-
ditional simple filter NewlyEmployed, and combine it with
the existing GoodWorkers filter. In Figure 10 we show how
the new composite ReferralFilter is constructed. The
F instance n:NewlyEmployed makes use of: a) T Past-

Months returning PoiTs representing end-of-month time
points for the given number of months (12 in this particular
case); and b) predicate P Pred2 checking if the employee
got hired 12 months ago. Pred2’s general functionality is
to check whether the abstraction interlayer (RMod) regis-
tered an event of the given name at the specified time.

Discussion: The shown implementation fragment il-
lustrates how easy it is to expand on top of the existing
functionality. Under the assumption that there exists a
metric for assessing the workers’ performance, and that it
can be queried for past values (cf. princ’s Timeline), in-
troducing the ‘employee referral’ mechanism is a matter of
adding a handful of new incentive elements.

ReferralFilter

n:NewlyEmployed

g:GoodWorkers

<<initial>>

<<final>>

  // return k (k=months) PoiTs 
representing last days of k past months. 

T
name:   PastMonths
params: int months 
output: Collection<PoiT>  P

 return RMod.getEvent(evtName,_w,_time) != null; 

name:   Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName 

output: bool 

P

T

Pred2

PastMonths

NewlyEmployed

time_rest: PastMonths

temp_spec:     FIRST

auxiliary: null

predicate: Pred2

params:    
-    int time_rest.months
-    string predicate.evtName

 12

 "EMPLD"

Figure 10: A CompositeWorkerFilter for referral bonuses.

5.2.2. Example 2 – Peer Voting

Equally reward each team member if both of the follow-
ing conditions hold: a) each team member’s current effort
metric is over a specific threshold; and b) the average vote
of the team manager, obtained through anonymous voting
of its subordinates, is higher than 0.5 [0–1].

Solution: As shown in Fig. 11 we compose the in-
centive scheme consisting of two IMs – i1:PeerAssessIM,
in charge of peer voting; and i2:RewardTeamIM in charge
of performing team-based compensation. IM i1 will ex-
ecute first due to the higher priority, and set the global
variable done, through which the execution of i2 can be
controlled ( P PeerVoteDone). IM PeerAssessIM uses
the F TeamMembers to exclude the manager from the rest
of team members. The TeamMembers is a composite fil-
ter composed of two subfilters F GetManager F Get-

Team, borrowed from Ex.5, Fig. 15. The resulting workers
are passed to A DoPeerVote which performs the actual
functionality of peer voting. The referenced rewarding ac-
tion is simple; it just passes to A PeerVote the workers

11

http://en.wikipedia.org/wiki/Employee_referral


----
----

----
 pre

prin
t -

----
----

---

RewardTeamIM

    filter:   GetTeam

    exec_cond:   PeerVoteDone

    appl_restr:         default

    inc_cond:   WrkMetricOK && MgrMarkOK

    rew_action:   DoRewardTeam

    priority:   0

params:
+ int teamID
- int filter.teamID
- double rew_action.rew 

teamID

PeerAssessIM

    filter:   TeamMembers

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   DoPeerVote

    priority:   1

params:
+ int teamID
- int filter.teamID
- Worker rew_action.mgr 

teamID

DoPeerVote

TeamMembers

filter.mgr.First()

A

  foreach (Worker w in _ws) 
    RMod.Notify(w, MSG_VOTE, mgr); //vote on the manager
 int fdbck; double vote; int cnt = _ws.Count();
 while(cnt-- > 0) {   //assume everyone votes
    RMod.Receive(MSG_FEEDBACK, out fdbck); //blocking
    vote += fdbck;        
 }
 vote /= _ws.Count(); //assume != 0 
 _global.mark = vote; //the avg. rating of the manager
 _global.done = true; 
 return _ws; 

name:   PeerVote
params: Collection<Worker> _ws (auto)

Worker mgr
output: Collection<Worker> 

Priority 1

i1:PeerAssessIM
_global.teamIDteamID

Priority 0

i2:RewardTeamIM
_global.teamIDteamID

global:
int  teamID      4572
bool   done     false
double mark       0.0

PeerVotingIncentiveScheme

P

 return _global.mark > 0.5;

name:   MgrMarkOK
params: Collection<Worker> 
        _ws (auto)
output: bool 

10000.0

DoRewardTeam

    filter:       null

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ double rew
- double action_logic.rewardEUR

    delay:        (auto)

    action_logic: RewardTeam

A

RewardTeam

rew

name:   RewardTeam
params: Collection<Worker> 
        _ws (auto)

double rewardEUR
output: Collection<Worker> 

A

 double r = rewardEUR / _ws.Count();  
 foreach (Worker w in _ws) 
    RMod.Notify(w, MSG_BONUS, r);
 _global.done = false; return _ws; 

name:   WrkMetricOK
params: Collection<Worker> 
        _ws (auto)
output: bool 

P

foreach (Worker w in _ws) {
  if ((double) 
    RMod.getWorkerMetric(w,"effort") 
    > 0.5) return false;  } 
return true;

DoRewardTeam

P

MgrMarkOK

P

WrkMetricOK

P

PeerVoteDone

GetTeam

mgr:GetManager

t:GetTeam

<<initial>>

<<final>>

TeamMembers

params:        
- int  mgr.teamID
- int  t.teamID
+ int  teamID

teamID
teamID

P

 return _global.done;

name:   PeerVoteDone
params: Collection<Worker> 
        _ws (auto)
output: bool 

DoPeerVote

    filter:       null

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ Worker mgr
- Worker action_logic.mgr

    delay:        (auto)

    action_logic: PeerVote

A

PeerVote

mgr

Figure 11: An incentive scheme example combining peer voting and team-based compensation.

that need to participate. The A PeerVote is performed
by dispatching messages to the workers and receiving and
aggregating their feedback through the abstraction inter-
layer. Once the peer voting has been performed, the man-
ager’s assessment is stored in global.mark, and the flag
global.done is set to allow execution of IM i2. Once

set to execute, the IM i2 first reads all the team mem-
bers via F GetTeam. Whether they ultimately receive the
reward depends on the evaluation of the inc cond field.
The field contains a conjunction of two indirectly invoked
P elements (Sec. 4.2.1). The condition expresses the two

constraints from the incentive formulated in natural lan-
guage. If it resolves to ‘true’, the A DoRewardTeam applies
a predefined monetary reward, sharing it equally among all
team members (via A RewardTeam).

Discussion: The key question here is how to support
incentives requiring direct human feedback, such as peer
voting. Such interactions require support from the ab-
straction interlayer. To support this functionality, the
abstraction interlayer can either rely on the functional-
ity offered by the underlying crowdsourcing platform, or
provide this functionality independently to safeguard the
voting privacy and incite expression of honest opinions. In
[17] we presented SmartCOM – a framework for virtual-
ization and communication with human agents. In this
example we model the latter option in pringl, assuming
the use of princ with SmartCOM for interaction with
workers.

5.2.3. Example 3 – Bonus

Award a 10% bonus to each worker W that sometimes
in the past 12 months had higher value of metric ‘effort’
than the average of workers related to W via relationship
of type ‘collab’, and not rewarded in the meantime.

Solution: Figure 12 shows the bottom-up implemen-
tation of this incentive (¬-°). First, at level ¬ we de-
fine novel or context-specific business logic fragments as
IncentiveLogic L elements. This level relies on the

abstraction interlayer to read the updated worker met-
rics, obtain data about recorded events, or send system
messages. At  we define new F and A types. Sim-
ilarly, F and A definitions are further used for defin-
ing new composite filters and actions (®) and Incentive-

Mechanisms (¯). By setting the parameter fields the de-
signer specifies the necessary runtime parameters for dif-
ferent instances. Apart from constants, a field can contain
references to other fields ‘visible’ from that element. The
environment collects the field values (parameters) from all
the constituent sub-components and propagates them up-
wards, possibly until the top-most component’s GUI form.
Through the +/- symbols the designer controls whether to
propagate a parameter and, thus, delegate the responsibil-
ity for filling it out to the upper level, or provide a value
at the current level and hide it from upper levels. Pa-
rameter propagation is one of pringl’s usability features.
In Fig. 12 we show an example of parameter propagation
(marked in orange/light shade). Element T PastPro-

jects (¬) exposes the parameter months. The same pa-
rameter is then re-exposed by F BetterThanAvg () that
uses PastProjects as its time restriction. The parameter
is further propagated up through F MyExampleFilter un-
til it finally gets assigned the value in IM EndProjectBonus

(¯).
Discussion: This incentive mechanism was chosen to

highlight a number of important concepts. Every under-
lined term in the natural language formulation of this in-
centive mechanism is a specific value of a different param-
eter that can be changed at will. In pringl terms, this
means that incentive operator can easily switch between
different (library) incentive elements of the same type/sig-
nature and tweak the parameters to obtain different incen-
tive mechanism instances. In this way, incentive design-
ers or operators can adapt generic mechanisms to fit their
needs. If we analyze the generic version of this incentive
mechanism, we can see that it embodies the principles of
pay-per-performance incentives, based on the value of a
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ProjectEnd

A

AwardBonus

RewardAtEndProject

    filter:       null

    exec_cond:    null

    exec_times:   ProjectEnd

    temp_spec:    null

params:       
+ string project

+ double action_logic.amount
- string exec_times.projName

    delay:        (auto)

    action_logic: AwardBonus

this.project   

"MyProject"

incentive 
operator

other:OtherType

p1
p2
p3

bonusMech:EndProjectBonus

projectName
metricName

bonusAmount
months

0.1

12   

"effort"

"MyProject"

Priority 0

mech_k0

Priority k

mech_kn

P

T

F

Pred1

TeamAvg

PastProjects BetterThanAvg

time_rest: PastProjects

temp_spec:     SOMETIMES

auxiliary: TeamAvg

predicate: Pred1

params:    
+    int time_rest.months
+ string predicate.metricName

T

PastProjects

P

Pred2

CheckAlreadyRewarded

time_rest: PastProjects

temp_spec: NEVER

auxiliary: null

predicate: Pred2

params:    
+    int time_rest.months
+ string predicate.bonusEvt

P

   return RMod.getWorkerMetric(_w, metricName) > 
          TeamAvg.invokeWith(); //static inv.  

name:   Pred1
params: Worker _w (auto),

int months,
string metricName 

output: bool 

   return RMod.getWorkerMetric(_w, metricName) > 
          _parent.auxiliary;  //indirect inv.

OR

   return RMod.getIterations(months,…)
          .ForEach(x => EndOf(x));

T
name:   PastProjects
params: int months 
output: Collection<PoiT>  

  return (new List<PoiT>()).Add( 
EndOf(RMod.getIteration (projName,…)));

T
name:   ProjectEnd
params: string projName 
output: Collection<PoiT>  

P

 return RMod.getEvent(evtName,_w,_time) != null; 

name:   Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName 

output: bool 

… Collection<Worker> result … 
if (RMod.Notify(_w., MSG_BONUS, amount)) 
{
     result.Add(_w); //affected workers
}
return result;

A
name:  AwardBonus
params: Worker _w (auto),

double amount 
output: Collection<Worker>  

  return Collabs.invokeWith().Average();

F
name:   TeamAvg
params: Worker _w (auto) 
output: double  

  return neighborsOf(_w, "collab", 1);

F
name:   Collabs
params: Worker _w (auto) 
output: Collection<Worker> 

1

2

3

4

5

incentive 
designer Incentive Logic

Filters & Actions

Composite Filters & Actions

Inc. Mechanisms

Inc. Scheme

MyExampleFilter

RewardAtEndProject

EndProjectBonus

    filter:   MyExampleFilter

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RewardAtEndProject

    priority:   0

this.projectName   

this.bonusAmount   

this.metricName   

this.months   

params:
+ string projectName
+ string metricName
+ double bonusAmount
+    int months
       
-    int filter.bta.time_rest.months
- string filter.bta.predicate.metricName
- string rew_action.project
- double rew_action.action_logic.amount

LEGEND:

+ -

italic

itblue

n

C#

- Declaration/Instantiation

- Definition simple/composite

- Instantiation

- Priority setting

- Composition

- Parameter propagation

- PRINGL-imposed

- PRINGL-provided

- Parameter input box

- Abstraction level

- Programming code

- User(s)

- Parameter propagation

bta:BetterThanAvg

<<initial>>

MyExampleFilter

car:CheckAlreadyRewarded

<<final>>

this.bta.time_rest.months   

"EVT_BONUS"

params:        
+    int bta.time_rest.months
+ string bta.predicate.metricName
-    int car.time_rest.mths
- string car.predicate.bonusEvt

Figure 12: Incentive scheme from Example 3, illustrating the decreasing of complexity going from modeling of (low-level) incentive elements
by incentive designers to adjusting existing incentive schemes by incentive operators.
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quantifiable metric, but coupled with the additional con-
dition that is evaluated relatively to co-workers. In addi-
tion, the mechanism contains two temporal clauses (’in
past 12 months’ and ‘in the meantime’), making it also a
representative of a quota-system type of incentive.

The example also demonstrates reusability – the L

PastProjects is reused twice in two different F s. Also,
steps Fig 12: ¬–¯ can be skipped altogether if the nec-
essary type definitions are already available from the in-
centive library. As we can see, at levels –° only visual
programming is required. This means that there is no need
to know any interlayer internals, apart from understand-
ing the meaning of propagated parameters. So, if different
platforms offer standardized implementations of the com-
monly used incentive logic, the incentive elements become
completely portable.

5.2.4. Example 4 – Rankings

Let us assume that the imaginary platform from Exam-
ple 3 wants to extend the existing incentive scheme with
an additional incentive mechanism in an (admittedly over-
simplified) attempt to raise competitiveness of underper-
forming workers: Show the list of the awarded employees
and their performance (rankings) to those workers that did
not get the reward through application of IM EndProject-

Bonus in Ex. 3 (Fig. 12).
Solution: Figure 13 shows the additional elements

needed to support the new mechanism. The composite
F NonRewardedOnes reuses the existing F MyExample-

Filter from Ex. 3 as initial subfilter, and returns the
set complement, i.e., the non-rewarded workers to which
the rankings need to be shown. In order to display the
rankings, we copy-paste the existing A RewardAtEnd-

Project from Ex. 3 and change only the value of the
field action logic to point to the the newly defined A

ShowRankings, also shown in Fig. 13. Let us name the
newly obtained A RankingsAtEndProject. In the same
fashion, we copy-paste the existing IM EndProjectBonus

from Ex. 3, make its filter and rew action fields point
to the newly defined F NonRewardedOnes and A Rank-

ingsAtEndProject, respectively. The obtained IM per-
forms the requested functionality.

Discussion: This example shows a common, realistic
scenario, where additional incentive mechanisms need to
be added to complement the existing ones. In this case,
the added mechanism acts on the underpeforming workers
psychologically by showing them how they fare in com-
parison to the rewarded workers. Such mechanisms can
be used to motivate better-performing underperformers
(‘lucky losers’), while having a de-motivating effect on the
worst performing ones. As we have shown, such a mecha-
nism can be easily and quickly constructed in pringl with
a minimal effort.

5.2.5. Example 5 – Rotating Presidency

Teams of crowd workers perform work in iterations. In
each iteration one of the workers acts as the manager of

the whole team. This scheme motivates the best workers
competitively by offering them a more prestigious position
in the hierarchy. However, in order to keep team connect-
edness in a longer run, foster equality and fresh leadership
ideas, a single person is prevented from staying too long
in the managerial position. Therefore, in the upcoming
iteration the team becomes managed by the currently best-
performing team member, unless that team member was
already presiding over the team in the past k iterations.9

Solution: For demonstration purposes, we are going to
model on-the-spot all the type definitions necessary for
implementing the rotating presidency incentive scheme.
However, in practice it is reasonable to expect that a signif-
icant number of commonly-used type definitions would be
available from a library, cutting down the incentive mod-
eling time.

Contrary to Example 3, this time we adopt a top-down
approach in modeling. In order to express the high-level
functionality of the rotating presidency scheme the De-
signer uses pringl’s visual syntax to define an incentive
scheme named RotatingPresidency (Fig 14, top) con-
taining (referencing) two IM instances – i1 and i2, with
the same priority (0). The RotatingPresidency scheme
definition also contains a set of global parameters that are
used for configuring the execution of the scheme: teamID

uniquely defines the team that we want the scheme ap-
plied to, while iters specifies the maximum number of
consecutive iterations a team member is allowed to spend
as a manager. By choosing different parameter values an
incentive operator (Operator) can later adjust the scheme
for use in an array of similar situations in different orga-
nizations.

The two incentive mechanisms that the scheme refer-
ences – i1 and i2, are instances of the IM types Re-

wardBest and PreventTooLong, respectively (Fig 14, bot-
tom). The IM RewardBest installs the best worker as the
new manager if (s)he is not the manager already. The
IM PreventTooLong will replace the current manager if
the worker stayed too long in the position, even if the man-
ager resulted again as the best performing team member.
‘Installing’ or ‘replacing’ a manager is actually performed
by re-chaining of management relations in the structural
model of the team by applying appropriate graph trans-
formations [21] through the abstraction interlayer.

When the incentive condition (inc cond field) of
IM PreventTooLong evaluates to true, this means that
the actual manager occupied the position for too long, and
that it should be now replaced by the second-best worker.
pringl does this by invoking the specified A RewSec-

ondBest and passing it the collection of workers returned
by the F Candidates. The F Candidates returns po-
tential candidates for the manager position – the best per-
forming Worker and the current manager. The same filter
is referenced from both IMs.

9An iteration can represent a project phase, a workflow activity
or a time period.
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 foreach (Worker w in _ws) {
   w.send(ShowRankings(_parent._parent.filter.bto));   
 }
 return _ws;

A
name:  ShowRankings
params: Collection<Worker> _ws (auto)

output: Collection<Worker>  

T

ProjectEnd

A

ShowRankings

RankingsAtEndProject

    filter:       null

    exec_cond:    null

    exec_times:   ProjectEnd

    temp_spec:    null

params:       
+ string project

+ double action_logic.amount
- string exec_times.projName

    delay:        (auto)

    action_logic: ShowRankings

this.project   

"MyProject"

bto:MyExampleFilter

<<initial>>

NonRewardedOnes

:PassThru

<<final>>

params:        
+    int bto.time_rest.months
+ string bto.predicate.metricName

    filter:   NonRewardedOnes

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RankingsAtEndProject

    priority:   0

this.metricName   

this.months   

params:
+ string metricName
+    int months
       
-    int filter.bto.time_rest.months
- string filter.bto.predicate.metricName

RankingsAtEndProject

NonRewardedOnes
EndProjectRankings

Figure 13: Additional incentives elements needed to augment the incentive scheme from Example 3 (Fig. 12) in order to display motivational
rankings to the non-rewarded workers from Example 3.

RewSecondBest

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ int teamID
- int filter.teamID
- int action_logic.teamID

    delay:        (auto)

    action_logic: SetManager

SecondBestTeamWrk

teamID

teamID

SetManager

A

    filter:       SecondBestTeamWrk

RewBest

    filter:       BestTeamWrk

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ int teamID
- int filter.teamID
- int action_logic.teamID

    delay:        (auto)

    action_logic: SetManager

A

SetManager

BestTeamWrk

teamID

teamID

Priority 0

RotatingPresidency

i2:PreventTooLong

filter.teamID
inc_cond.iters _global.iters

_global.teamID

i1:RewardBest

_global.teamIDfilter.teamID
inc_cond.iters _global.iters

global:
int  teamID      4572
int  iters          2

Candidates

RewSecondBest

PreventTooLong

    filter:   Candidates

    exec_cond:   null

    appl_restr:         default

    inc_cond:   !NotSame && WasTooLong

    rew_action:   RewSecondBest

    priority:   0

params:
+ int filter.teamID
- int rew_action.teamID 
- int inc_cond["WasTooLong"].iters
+ int iters

P

NotSame

filter.teamID

P

WasTooLong

iters

Candidates

RewBest

RewardBest

    filter:   Candidates

    exec_cond:   null

    appl_restr:         default

    inc_cond:   NotSame

    rew_action:   RewBest

    priority:   0

params:
+ int filter.teamID
- int rew_action.teamID 
+ int inc_cond.iters

P

NotSame

filter.teamID

Figure 14: Modeling the rotating presidency incentive scheme in pringl. Segment showing the incentive scheme (top right), rewarding actions
(top center and left), and incentive mechanisms (bottom).

Two rewarding actions are instantiated and invoked
from the IMs. The A RewBest monitors the ‘effort’ met-
ric and rewards the best worker in the current iteration.
The A RewSecondBest replaces the current team man-
ager with the second-best performing worker when needed.
The IM inc cond fields make sure that the two actions do
not get executed in the same iteration.

We now show how the previously referenced filters are
defined. We will first describe the definitions of the three
simple filters (Fig 15, right) and then use them to visually
assemble the definitions for another four composite filters
(Fig 15, left).

◦ GetTeam: Returns all the workers belonging to the team
with the specified teamID.

◦ GetBest: Returns the worker having achieved the high-
est value of the ‘effort’ metric by invoking the F

GetWrkBestMetric and then just formally matching it
with the IsBest predicate. In this example we use the
‘effort’ metric [11], but any other compatible perfor-
mance metric could have been used and exposed as a
global parameter. This filter does not care to which
team the evaluated worker belongs – if used indepen-
dently, it would evaluate all the workers in the system.
This is why we always use it in composite filters, where
we initially restrict its input set with another filter.

◦ GetManager: Invokes a F GetMgrByRelations that
performs a graph query [21] on the team model through
the abstraction interlayer to determine the manager
within the provided input set of workers.

Composite filter type definitions are constructed visu-
ally. The following composite filters are defined:

◦ CurrentMgr: Returns the current team manager. The
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Candidates

:Passthru

<<initial>>

<<final>>

:Passthru

b:BestTeamWrk

a:CurrentMgr

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

 

a:BestTeamWrk

b:GetBest

<<initial>>

<<final>>

SecondBestTeamWrk

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

BestTeamWrk

a:GetTeam

b:GetBest

<<initial>>

<<final>>

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

CurrentMgr

a:GetTeam

b:GetManager

<<initial>>

<<final>>

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

GetTeam

time_rest: null

temp_spec:       default

auxiliary: null

predicate: IsTeamMember

params:    
+    int teamID
-    int predicate.teamID teamID

IsTeamMember
P

P

IsBest

GetBest

time_rest: null

temp_spec:       default

auxiliary: GetWrkBestMetric

predicate: IsBest

params:    
- string 
auxiliary.metricName "effort"

GetWrkBestMetric

F

GetManager

time_rest: null

temp_spec:      default

auxiliary: GetMgrByRelations

predicate: IsManager

params:    
- int auxiliary.teamID
+ int teamID
- int mgrID

teamID

0

GetMgrByRelations

F

IsManager

P

Figure 15: Modeling the rotating presidency example: Segment showing simple filters (right) and composite ones (left).

subfilter a returns all the workers belonging to the team
with the given teamID, while the subfilter b uses man-
agerial relationships to determine the manager among
those workers.

◦ BestTeamWrk: Returns the best individual from a pre-
viously identified collection of team members.

◦ SecondBestTeamWrk: Returns the second best worker
in the team. The subfilter a returns the best worker
of the team and passes it forward to the subfilter b via
a negated edge (9). This means that b now receives
as input: input(a) \ a, i.e., in this particular case the
collection of all workers belonging to the team minus
the best worker. Subfilter b returns the best worker
from this collection, and thus effectively the second best
worker of the team.

◦ Candidates: This filter simply uses the previously de-
fined filters CurrentMgr and BestTeamWrk and returns
the set union of their results.

Incentive logic elements, shown in Figure 16, contain
the low-level business logic and code10 that communicates
with the abstraction interlayer. Designer takes care to im-
plement incentive logic elements as small code snippets
with intuitive and reusable functionality. A short descrip-
tion of the functionality of the employed elements is pro-
vided in Table 5.

Discussion: This example combines the promotion
and psychological incentives. The promotion is performed
through a structural rewarding action, and is designed
to foster competitiveness and self-prestige. At the same
time, team spirit and good working environment are be-
ing promoted by limiting the number of consecutive terms,
thus giving a chance to other team members. This exam-
ple shows a fully implemented and executable incentive

10In this paper we use C# in all but S elements, which are
shown in the original GrGen.NET rule language: http://www.info.

uni-karlsruhe.de/software/grgen/

scheme. Although the model may seem complex at the
first glance, it is worth noting that the type definitions of
the two actions (Fig 14, top) are almost identical, differing
only in the filter they use – with former using the F Best-

TeamWrk and the latter the F SecondBestTeamWrk. This
means that once the Designer has modeled one of them, the
other one can be created by copy-pasting and referencing a
different filter. Similarly, if at a later time the underlying
crowdsourcing platform decided to use a different A to
reward the best workers (e.g., to pay out money instead
of rotating team managers) the Designer would only need
to partially adapt the scheme by referencing a different
A from the A ’s action logic fields. Such adaptations

can also be performed by incentive operators with minimal
understanding of the underlying code.

Filters like GetTeam, GetBest and GetManager perform
very common incentive functionality. In practice, this
means that such components could be readily available as
library elements. Of course, if we need to use a company-
specific flavor, we can easily replace the default one with a
proprietary element. For example, a F GetManager may
be available with a default auxiliary field F that looks
for a manager in the team model by inspecting the node
tags for a given manager tag. In that case, to adapt such
a filter for our rotating presidency example the Designer
would need to exchange the default, tag-based F with a
structural one, such as GetMgrByRelations.

6. Implementation

This section describes the prototype implementation of
two entities: a) Implementation of the pringl metamodel
and the derived Microsoft Visual Studio pringl IDE; and
b) Implementation of Example 5 (Rotating Presidency)
from Section 5.2.5 by using the tools from a). The im-
plementation of the rotating presidency example serves to
evaluate: i) Feasibility of implementation of a); and ii)
Fulfillment of the stated requirements from Section 3.4.
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  static Dictionary<Worker, int> leaderHistory;
...  
  if (_ws.Count() == 2) {

if (leaderHistory.ContainsKey(_ws.First())){
  leaderHistory.Clear();
  leaderHistory[_ws.Last()] = 1;

  }else{
  leaderHistory.Clear();
  leaderHistory[_ws.First()] = 1;
}  

}else   //current manager was also the best
if (leaderHistory[_ws.First()]) < iters) {
  leaderHistory[_ws.First()]++;
  return false;
}

return true;

name:   WasTooLong
params: Collection<Worker> _ws (auto)

int iters
output: bool 

S

// Non-compiled GrGen.NET rule:
rule SET_MANAGER(var teamID:int, var newMgrID:int){
  newMgr:Worker;
  if {newMgr.marked == teamID && newMgr.id == newMgrID;}
  notNewMgr:Worker;
  if {notNewMgr.marked == teamID && 
      notNewMgr.id != newMgrID;}

<-oldRelation:ManagedBy-> notNewMgr;

  negative {notNewMgr-:ManagedBy->newMgr;}

  modify { notNewMgr -:ManagedBy-> newMgr;
delete(oldRelation);

  }
}

name:   SET_MANAGER
params: int teamID,
        int newMgrID
output: void 

sm

P

  var teams = (DICT)_w.GetData("teams", COMPOSITE);
  return teams.ContainsKey(teamID.ToString());

name:   IsTeamMember
params: Worker _w (auto)

int teamID
output: bool 

A

Collection<Worker> affected = sm(teamID,_ws.First().ID);
return affected;

name:   SetManager
params: Collection<Worker> _ws (auto)

int teamID
output: Collection<Worker> 

gm

P

  return ((int)_parent.getParam("mgrID") == _w.ID);

name:   IsManager
params: Worker _w (auto)

int teamID
output: bool 

  if ((int)_parent.getParam("mgrID") != 0) return; 
 foreach (Worker w in _ws) {w.mark(teamID);} 

 _parent.setParam("mgrID", gm(teamID));

F
name:   GetMgrByRelations
params: Collection<Worker> _ws (auto)

int teamID
output: void  

P

  return (_w == GetWrkBestMetric.theBest);

name:   IsBest
params: Worker _w (auto)
output: bool 

S

// Non-compiled GrGen.NET rule:
rule MANAGER(var teamID:int):(Node){

manager:Worker;
if { manager.marked==teamID; }
worker:Worker;
if { worker.marked==teamID; }
worker -:ManagedBy-> manager;
negative {

otherManager:Worker;
if { otherManager.marked==teamID;}
manager -:ManagedBy-> otherManager; 

}
modify {

return (manager.id);
}

}

name:   GET_MANAGER
params: int teamID
output: int 

F
name:   GetWrkBestMetric
params: Collection<Worker> _ws (auto)

string metricName
output: void 

 static Worker theBest;
 ...
 double bestResult = 
 _ws.Max(x => (double)x.GetData(metricName, DOUBLE));
 theBest = _ws.First (x => (double)x.GetData(metricName, 
DOUBLE) == bestResult);

  if (_ws.Count() > 1) 
return true; 

  else
return false;

P
name:  NotSame
params: Collection<Worker> _ws (auto)
output: bool  

Figure 16: Modeling the rotating presidency example: Segment showing the incentive logic elements.

6.1. Metamodel Implementation

Figure 2 in Sec. 3 shows the overview of implemented
components. pringl’s language metamodel was imple-
mented11 in Microsoft’s Modeling SDK for Visual Studio
2013 (MSDK) – Fig. 17. MSDK allows defining visual
DSLs and translating them to an arbitrary textual rep-
resentation. Using MSDK we generated a Visual Studio
plug-in providing a complete IDE for developing pringl
projects. In it, an incentive designer can create a dedi-
cated Visual Studio pringl project and implement/model
real-world strategies using the visuo-textual elements in-
troduced in this paper (Figure 18). The graphical elements
provided in the implemented Visual Studio pringl envi-
ronment, although not as visually appealing as those pre-
sented in this paper, functionally and structurally match
them fully. pringl models are stored in .pringl files that
get automatically transformed to the corresponding C#
(.cs) equivalents. The generated code can then be used in
the rest of the project as regular C# code or compiled in
.NET assemblies (e.g., libraries or executables).

6.2. Rotating Presidency Example Implementation

Figure 18 shows a screenshot of the implementation11 of
the rotating presidency example using the VS pringl IDE.
The implemented incentive elements correspond to the in-
dividual element descriptions presented in Section 5.2.5

11 Source code, screenshots and additional info available at:
http://dsg.tuwien.ac.at/research/viecom/PRINGL/

(Ex. 5). The entire scheme was modeled using the gener-
ated pringl tools, demonstrating the feasibility of the pro-
posed architectural design. The C# code obtained from
the implemented model can be used to produce a custom-
made incentive management application using princ as
the acting interlayer, as shown in Section 3.3.

The implemented example supports an arbitrary num-
ber and structure of Workers (represented as graph nodes)
and their ‘effort’ metrics. Worker nodes are inter-
connected with arbitrary-typed graph edges representing
different relations. Our pringl-encoded incentive scheme
will only consider the workers belonging to the team de-
noted by the teamID identifier, and only the managerial re-
lations represented by ManagedBy-typed edges. Events no-
tify princ when iterations end and ‘effort’ metrics change.
The code generated from the implemented example mon-
itors these events and executes the incentive mechanisms
that make sure the best-performing worker is installed as
the manager, but for not more than two consecutive iter-
ations, subject to being replaced by the runner up in such
a situation.

7. Related Work

Previous research on incentives for socio-technical sys-
tems is dispersed and problem-specific, often spanning
or originating from different areas, such as Management,
Game Theory, Computer-Supported Collaborative Work,
Human-Computer Interaction, Multiagent Systems. Due
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Element Symbol Description

IsTeamMember P Determines whether a worker belongs to a team.

IsManager P Checks if the currently evaluated worker has the ID previously determined to belong to the team manager by F
GetMgrByRelations.

IsBest P Checks if the currently evaluated worker is the same as the one identified by the GetWrkBestMetric.

NotSame P Determines if the input contains two manager candidates.

WasTooLong P Keeps track of how many times a worker was in the manager position, and returns true if the worker is not supposed
to become manager in the upcoming iteration.

GetWrkBestMetric F Reads the value of the ‘effort’ metric for each of the passed workers in ws and updates the best worker.

GetMgrByRelations F Invokes the read-only structural query S GET MANAGER.

SetManager A Invokes the modifying structural query S SET MANAGER.

GET MANAGER S Contains a compiled non-modifying GrGen.NET graph query, here expressed in GrGen rule language. Matches and
returns a node that other nodes point to via ManagedBy relations, but itself is not managed by another team member.

SET MANAGER S Contains a compiled modifying GrGen.NET graph query matching the old and the new manager, and re-chaining the
ManagedBy relations to point to the new manager node.

Table 5: Incentive logic elements used in the rotating presidency example.

Figure 17: Partial screenshot of the implemented pringl DSL meta-
model.

to this variety, the selection we present here is meant to
give the reader an overview, rather than an in-depth cov-
erage of the area. For further information, the reader is
referred to [22, 23, 12, 4].

The approaches in researching incentives in socio-
technical systems can be roughly categorized in two
groups. One group seeks to find optimal/appropriate in-
centives in formally defined environments through math-
ematical models and game-theoretical approaches [22, 24,
23]. The incentive is modeled as a monetary or quantifiable
compensation to workers/agents to disclose their private
information, and the proposed models are often simulated
(e.g., [25]). Although successfully used in microeconomic
models, these incentive models do not fully capture the
diversity and unpredictability of human behavior that be-
come accentuated in socio-technical systems [18]. In such

cases the incentives predominantly help by identifying bet-
ter workers, rather than increasing effort of the worse ones.

The other group examines the effects of existing or new
incentives empirically, by running experiments or observ-
ing data from existing crowdsourcing platforms or social
networks involving real human subjects. The number of
topics here is more varied. In [26, 27] the authors examine
the effects of incentives by running experiments on existing
crowdsourcing platforms and rewarding real human sub-
jects with actual monetary rewards. In [28] the authors
compare the effects of lottery incentive and competitive
rankings in a collaborative mapping environment. In [29]
the authors analyze two commonly used approaches to de-
tect cheating and properly validate crowdsourced tasks. In
[6] the focus is on pricing policies that should elicit timely
and correct answers from crowd workers. Paper [30] exam-
ines which psychological and monetary incentives are used
to lure social network users to click on malicious links.
In [31] the authors analyze how incentive schemes rely-
ing on peer voting can influence the decisions of workers
from a crowdsourcing platform. The major limitation of
this research approach [32] is that the findings are appli-
cable only for a limited range of activities, considered as
conventional crowdsourcing tasks, such as image tagging,
multiple-choice question answering, text translation, or de-
sign contests. Furthermore, cultural background [33] can
also skew the findings.

None of the two research approaches is suitable for eval-
uating pringl as we do not design nor evaluate particular
incentive mechanisms. However, both approaches provide
useful, generalizable findings that need to be taken into
account when designing an incentive management system.
For example, the finding that the transparency of actors
and processes in a socio-technical system will likely im-
prove the overall performance [34] for pringl translates
to the requirement of portability and transparency of in-
centives. The findings of [35] indicate that for performing
more intellectually challenging tasks smaller groups of ex-
pert workers may be more effective than web-scale crowd
collectives. Again, this is in line with pringl’s motiva-
tion of supporting novel socio-technical systems employ-
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Figure 18: Implementing the rotating presidency incentive scheme (Example 5) using generated pringl Visual Studio environment.

ing smaller teams of experts rather than large anonymous
crowds only. Similarly, the aforementioned difference of
effectiveness in different cultural backgrounds maps to the
requirements of usability and expressivenes, to offer to in-
centive designers a tool for quick adaptations of general in-
centive mechanisms into the locally-effective versions. At
the moment of writing, we are unaware of any similar lan-
guages or frameworks offering general incentive manage-
ment functionality for socio-technical systems.

8. Conclusions and Future Work

In this paper we presented the programming model
of pringl – a domain-specific language for program-
ming incentives for socio-technical/crowdsourcing sys-
tems. pringl allows the incentives to stay decoupled
of the underlying systems. It fosters a modular ap-
proach in composing incentive strategies that promotes
code reusability and uniformity of incentives, while leaving
the freedom to incentive operators to adjust the strategies
to their particular needs helping cut down development
and adjustment time and creating a basis for development
of standardized, but tweakable, incentives. This in turn
leads to more transparency for workers and creates a basis
for an incentive uniformity across companies; a necessary
precondition for worker reputation transfer [9].

Design of the language and its programming model was
guided by the requirements obtained through an exten-
sive survey of crowdsourcing techniques used in commer-
cial environments. The model was evaluated qualitatively

by modeling a suite of demonstrative examples selected to
cover many realistic incentive categories. We implemented
tools based on this model, supporting the creation of ex-
ecutable incentive schemes in pringl and evaluated them
functionally on a realistic use case.

At this stage pringl is in an active state of develop-
ment. Currently, pringl’s default abstraction interlayer
princ is undergoing a restructuring and integration with
the human worker provisioning engine [10], worker orches-
tration components [36] and the virtualization and com-
munication middleware SmartCOM [17] in the context of
the SmartSociety12 socio-technical platform. The integra-
tion will allow building an end-to-end framework for ap-
plying pringl-modeled incentives on human crowd work-
ers engaged in realistic execution scenarios. This is also
a necessary precondition for running further quantitative
evaluation of the usability of the language. Future work
will see the integration of pringl’s programming model
into the general programming model of the SmartSociety
platform.
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