
Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@dsg.tuwien.ac.at

72 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

P rogramming directives are popular in
parallel programming languages and
frameworks such as Open Multiprocess-

ing (OpenMP)1 and High Performance Fortran
(HPF),2 where they let developers exploit and
control the parallelism separating programming
logic and computational behavior. Existing pro-
gramming directives mainly control the number
of processors used for a particular code region
and the data distribution among them. Some
directives also steer application deployment and
execution using “program annotations” intro-
duced in general-purpose programming lan-
guages (for example, Java Annotations, Python
Decorators, and CLI attributes). However, such
annotations are mainly for documentation,
interface modification, and class overriding.
Annotations for configuration, such as in the
Spring framework (http://static.springsource.org/
spring/docs/3.0.0.M3/reference/html/ch04s11
.html) usually only allow for selecting suitable
components and performing simple (auxil-
iary) configuration tasks.

Elast icity in computing isn’t l imited to
resources;3 cost and quality are also important
dimensions we should consider. No existing pro-
gramming directives address these criteria, which
are important in cloud computing environments.

While tools and domain-specific languages exist
for deploying and configuring cloud applica-
tions,4 they’re designed for application submis-
sion and deployment with precise configuration
and execution targets. They don’t include elas-
ticity constraints.

To address these issues, we can apply pro-
gramming directive principles to managing the
intrinsic elasticity of cloud computing scenar-
ios in which it’s essential to control resources,
cost, and quality constraints. Our approach lets
developers separate program logic from control
of computing environments. Directive para-
digms for elasticity have several key principles,
and we can apply a set of basic primitive con-
structs to any elastic computing environment,
such as clouds. We designed our primitives
such that developers can incorporate them into
mainstream programming languages, letting
them control application elasticity. Our direc-
tives leverage runtime systems’ ability to reduce
complex management tasks that developers
must deal with in the code, helping to optimize
resource use under cost constraints while still
achieving the desired quality. Furthermore,
developers can change elasticity behavior after
software development without touching the
actual source code.

Programming Directives
for Elastic Computing
Schahram Dustdar • Vienna University of Technology

Yike Guo and Rui Han • Imperial College London

Benjamin Satzger and Hong-Linh Truong • Vienna University of Technology

Enabling and controlling the elasticity of cloud computing applications is chal-

lenging. The developer must deal with daunting tasks using low-level code to

implement strategies trading off costs versus quality of service. Programming

directives can substantially reduce this overhead by delegating control of elas-

ticity to middleware systems while allowing developers to focus on defining

suitable strategies.

IC-16-06-WSWF.indd 72 10/13/12 2:35 PM

Programming Directives for Elastic Computing

NOVEMBER/DECEMBER 2012 73

Programming Directives
for Elasticity
Programming directives for elastic-
ity must let developers specify run-
time properties related to resources,
cost, and quality:

•	 Monitoring checks a computa-
tion’s current status, determining
the resources used, costs accrued,
and the qua l it y being main-
tained. This property should also
check the computing environ-
ment’s system status, including
to monitor spot prices and overall
resource provisioning costs.

•	 Constraints specify required condi-
tions on resources, cost, and qual-
ity. They enable trade-offs between
quality and cost associated with
resources used in programs.

•	 Strategies let developers express
possible actions that can con-
trol program behaviors based on
monitored data and constraints.

We categorize programming direc-
t ives into three c lasses based
on the aforementioned properties —
that is, MONITORING, CONSTRAINT,
and STRATEGY. Within each class,
developers can monitor and specify
properties using predefined direc-
tives and runtime functions, as well
as user-defined functions. Figure 1
describes subclasses of elasticity
primitives. The hierarchical view
of primitive classes covers possible
monitoring information relevant for

elasticity, constraints, and strate-
gies for diverse resources, quality
aspects including performance, and
the quality of data and cost.

Monitoring primitives let us gather
information related to resources (com-
pute, storage, network, and human),
quality, and cost. Elasticity in compute
and storage resources is examined
elsewhere, but few have addressed
related principles for people or net-
works; exceptions include the concept
of humans as programmable units5 or
software-defined networks (SDNs).6
Developers and consumers must
monitor several dimensions of qual-
ity as regards these resources, such as
performance and data quality, as well
as the costs for using resources under
different expected and delivered qual-
ity levels.

Constraint directives let develop-
ers define conditions or states that the
program must maintain. They fur-
ther let developers specify trade-offs
between opposing cost and quality
attributes. These directives often trig-
ger strategies to execute. Determining
whether a program can meet defined
conditions usually depends on data
from the monitoring directives.

Strategy directives let developers
influence the computing environment
and execute applications. They execute
logic that results in modified elasticity
properties. A strategy manager (either
the program itself or an external pro-
gram execution management system)
can carry out strategies explicitly or

as a response to a change in a con-
straint’s value. Exemplary strategies
can influence the environment (for
example, Scale in/out, Configure)
or the application’s execution (such as
Stop, Wait, or Notify).

Based on these ideas, we’re devel-
oping the Simple-Yet-Beaut i fu l
Language (SYBL), which specif ies
possible direct ives and runtime
functions for managing elasticity in
cloud-based applications. Describing
SYBL in detail is beyond this article’s
scope, but we explain basic principles
regarding its syntax and semantics.

Runtime and
User-Defined Functions
As with ex ist ing programming
directive systems, SYBL defines a set
of runtime functions that can obtain
and control the properties of comput-
ing environments in which develop-
ers deploy and execute applications:

•	 balance([time]) checks a pro-
gram’s cost balance at a given
time. For example, we can deter-
mine the cost per time interval as
cost=balance(now–interval) –
balance(now).

•	 set/get_env([property_name])
sets or obtains application and
execution environment proper-
ties, such as the bid price defined
for compute resources or the loca-
tion where the application exe-
cutes. As an example, we would
obtain the default bid for a compute

Figure 1. Classes of directive primitives.

Elasticity directive
primitives

Monitoring

Resource

Compute People Storage Network

Quality

Performance
Data

quality

Cost

Constraint

Resource/
quality/cost

Strategy

Scale
in/out

Stop/wait
/notify

Con�gure Access

IC-16-06-WSWF.indd 73 10/13/12 2:35 PM

Web-Scale Workflow

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

resource as "resourcebid=get_
env("COMPUTE_BID").

•	 runscript([file]) executes exter-
nal scripts that can, for instance,
implement user-defined functions.

Runtime functions are implemented
and provided by SYBL runtime systems
(as we describe later) and are used in
the program directives we discuss next.

Directives
SYBL’s core is a set of directives
(see Figure 1) that developers can
use separately or in combination.
Abstractly, SYBL directives begin
with #SYBL, followed by directive
class names (that is, MONITORING,
CONSTRAINT, and STRATEGY) and dif-
ferent directive clauses. These clauses
let us use runtime and user-defined
functions together with other vari-
ables, functions, and clauses. Table A
in the Web appendix at http://doi
.ieeecomputersociety.org/10.1109/
MIC.2012.99 shows some examples
of directives. To support directives,
we can use source code preprocessing

techniques or interpreter/compiler
techniques together with SYBL run-
time libraries.

Development and
Runtime Systems
Generally, we can apply primitives
that define elasticity to both general-
purpose programming languages and
system-configuration ones. Devel-
opers insert elasticity directives
into programs to control how they
use computational and f inancial
resources and achieve desired qual-
ity. For system configuration, we can
use elasticity directives to specify
how to configure systems in an elas-
tic environment.

For general-purpose program-
ming languages such as Java,
SCALA, C++, C#, and Python, we can
implement SYBL directives using
language-specific annotation sup-
port (for example, Java Annotation,
C# Attribute Declaration, or Python
Decorators). SYBL runtime systems
can use existing cloud frameworks
and APIs — such as CloudFoundry

(www.cloudfoundry.com), JClouds
(www.jclouds.org), Boto (http://docs
.pythonboto.org), and OpenStack
(www.openstack.org) — to implement
provider-independent monitoring
and adaptation features.

To control system elasticity dur-
ing configuration and deployment
activities, developers can use SYBL to
generate different configuration strat-
egies based on their specifications.
For example, given a deployment
configuration specified in the Topol-
ogy and Orchestration Specification
for Cloud Applications (TOSCA),7 the
developer can specify elasticity con-
ditions that enrich the TOSCA-based
configuration with new configuration
plans.

For directives that are specified
in programming and conf igura-
tion languages, we need tools that
can transform them into a set of
system-specific runtime APIs. Such
APIs will depend on the program-
ming languages in which the direc-
tives are embedded. In this sense,
runtime APIs can come from com-
piler runtime systems, OSs, and
middleware. Figure 2 describes rela-
tionships between SYBL runtime
systems, cloud APIs, SYBL-enriched
programs, and programming tasks.
By (pre)processing SYBL directives
in programs, SYBL tools will enrich
programs with SYBL runtime APIs
and (specific) cloud APIs. When a
SYBL-enriched program is executed,
SYBL runtime functions and cloud
APIs are invoked to monitor and
manage the resources, cost, and
quality associated with the program.

Illustrative Examples
Let’s look at two examples that illus-
trate how developers can use SYBL to
control the elasticity of cloud-based
applications.

High-Level Elasticity Control:
SYBL Combined with JClouds
The source code snippet in Figure 3
demonstrates how we can use JClouds

Figure 2. Development and runtime for SYBL.

Program

Programming

SYBL-enriched
program

Preprocessing

SYBL
runtime APIs
and systemsCompiling/interpreting

Executable
code

Executing

SYBL and its runtime
systems and tools

SYBL

Cloud monitoring
APIs

Cloud resource
information APIs

Cloud resource
execution and

management APIs

Cloud APIs

Development and execution
activities

IC-16-06-WSWF.indd 74 10/13/12 2:35 PM

Programming Directives for Elastic Computing

NOVEMBER/DECEMBER 2012 75

(without SYBL) to access two com-
puting resources — that is, two vir-
tual machine (VM) instances. The
JClouds library provides a unified
Java API for accessing different
vendors’ cloud services. Note that
APIs besides JClouds can be used for
accessing cloud services instead.

Lines 1 and 2 create a context
that defines the binding to a certain
cloud service provider (Terremark
in this example). Line 6 shows how
to create templates that define the
types of VMs we want to instantiate.
This example defines only the OS
family, but much more detailed tem-
plates specifying CPU, RAM, and so
on are possible. Line 8 starts two VM
instances according to the template
and adds them to a group.

Although JClouds is a big improve-
ment as regards vendor lock-in com-
pared to using vendor-specific APIs,
in this particular example, users
must still be concerned with which
cloud provider they employ and how
to achieve elasticity. Using SYBL in
combination with Java we can cre-
ate a set of annotations that lets users
transparently control elasticity. SYBL
can derive from directive type, vari-
able context, and variable type that
the SYBL directive refers to a strategy
for which a cloud resource should be
injected into the subsequent variable
computeService. The file template
.xml contains a template specifica-
tion for the required VM. The simple
CHEAPEST strategy advises the SYBL
reasoner to inject an object that links
to the cloud provider with the cheap-
est offer for the specified VM:

1 @SYBLLang ("STRATEGY
EXECUTE(ResourceStrategy.
CHEAPEST, \"template.xml\")")

2 ComputeService
computeService;

3
4 NodeSet nodes =
computeService.
createNodesInGroup
("groupname", 2);

The file template.xml contains infor-
mation about the resource to be
injected. SYBL defines the respective
XML schema:

1 <resource type="compute">
2 <osfamily>centos</osfamily>
3 </resource>

Another simplified example based
not only on strategy but also on
monitoring and constraint directives
is to postpone remote execution of a
computationally expensive task until
the price for spot instances is below
a certain threshold:

1 @SYBLLang ("MONITORING
SPOT_PRICE=get_env(AVG_SPOT_
PRICE)")

2 @SYBLLang ("CONSTRAINT LOW_
SPOT_PRICE =(SPOT_PRICE < 1.2)")

3 @SYBLLang ("STRAGEGY EXECUTE
(ExecutionStrategy.WAIT_
UNTIL, LOW_SPOT_PRICE)")

4 Solution s = solveOnSpot
Instance(OptimizationProblem p);

In the aforementioned examples,
the developer defines the elasticity
using SYBL directives specified in

annotations without worrying about
cloud-specific APIs.

Integration of SYBL into TOSCA
In addit ion to programming lan-
guages, we can also use SYBL with
configuration languages. Consider
TOSCA,4 an emerging framework
for specifying cloud components’
dependencies and deployment plans.
TOSCA-based conf iguration and
deployment plans are described in
XML. TOSCA lets providers specify
various resource and dependency
types. Figure 4a shows a TOSCA
server template that describes a
cloud service with four sections: a
topology template that describes the
dependency between two components,
MyApplication and MyAppServer;
these two components’ node and
relationship types; and two deploy-
ment plans, DeployNewApplication
and RemoveApplication.

However, TOSCA doesn’t specify
elasticity. More concretely, basic
TOSCA server templates contain
infrastructure information that
describes cloud applications at build-
time, but they lack information
needed for application deployment
and scaling at runtime. We can extend
standard TOSCA with elasticity-
enriched directives using SYBL and
service-level agreements (SLAs) to
guide appl icat ion e last ic it y in
clouds. With SYBL, the service pro-
vider or developer can easily specify
different elasticity strategies. For
example, a provider could define a
scaling in/out strategy using SLAs
based on performance and budgets.

1 ComputeServiceContext context =
2 new ComputeServiceContextFactory().createContext("terremark", user, password);
3
4 ComputeService computeService = context.getComputeService();
5
6 Template template = computeService.templateBuilder().osFamily(CENTOS).build();
7
8 NodeSet nodes = computeService.createNodesInGroup("group01", 2, template);

Figure 3. Using JClouds. This Java source code snippet demonstrates how we would use JClouds without the Simple-Yet-
Beautiful Language (SYBL) to access two virtual machine instances.

IC-16-06-WSWF.indd 75 10/13/12 2:35 PM

Web-Scale Workflow

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

Using SYBL-enr iched XML for
MyApplication, we can generate a new
SYBL-enriched TOSCA-based XML
that includes monitoring information
structures and new plans for scaling
in/out. Figure 4b shows an exem-
plary server template for elasticity-
enriched TOSCA that includes three
extended sections, corresponding to

three components in programming
directives for elasticity.

The monitoring section mainly
includes the monitored applica-
tion’s current status and underly-
ing infrastructures. In the example
fragment in Figure 5, this section
records the detected response time
and the application throughput, as

well as the utilization of resources in
MyApplication.

The constraints and SLA section
specifies any constraints on quality,
budget, and other aspects of the appli-
cation. In the example in Figure 6,
this section specifies the applica-
tion’s required response time and
budget.

Figure 4. Using SYBL for TOSCA. We can see (a) a server template of the basic TOSCA, (b) a server template of the
elasticity-enriched TOSCA, and (c) how we’d use a queuing network to control elasticity strategies.

Capacity planning using queueing theory

Queueing
network

Topology template

MyApplication

MyAppServer

Node types

Relationship
type

Service template

Plans

RemoveApplication

Monitoring
information

SLAandConstraints

DeployNewApplication

ScalingUpApplications

ScalingDownApplications

User requests, SLA

MyApplication

MyAppServer

Server
type

Server
type

Linking relationship

Monitored
conditions

Constraints
to be

satis�ed

Scaling up actions

Scaling down actions

Server

Capacity planning outputCapacity planning input

Server

Queue

Topology template

MyApplication

MyAppServer

Node types

Relationship type

type for

type for

Plans

Detected
response

time

Throughput

Monitoring information

Required
response

time
Budget

SLA & Constraints

Resource
utilization

RemoveApplicationDeployNewApplication

ScalingUpApplications ScalingDownApplications

Strategy

Monitoring Constraints

Topology template

MyApplication

MyAppServer

Node types

Relationship type

type for

type for

Plans

RemoveApplication

DeployNewApplication

Deploy one
MyApplication

Initial
settings

Deploy one
MyApplication

(a) (b)

(c)

IC-16-06-WSWF.indd 76 10/13/12 2:35 PM

Programming Directives for Elastic Computing

NOVEMBER/DECEMBER 2012 77

Finally, we extend the plan sec-
tion in standard TOSCA to define
more actions that handle the applica-
tion’s scaling cases. Figure 4b defines
two actions — ScalingUpApplication
and ScalingDownApplication.

Using the elast icity-enr iched
TOSCA, we can achieve capacity
planning in application deployment
and scaling. For example, Figure 4c
i llustrates how the information
stored in a server template of the
elasticity-enriched TOSCA maps to
the corresponding part of a queu-
ing network (dashed lines). After
conducting capacity planning using
queuing theory — that is, estimating
the number of MyApplication and
MyAppServer servers — we use the
result of capacity planning to update
the information in the Plans section
and control the application’s deploy-
ment and scaling actions.

P rogramming directives can be
a power fu l tool for cont rol-

ling application elasticity in cloud
environments. We’ve described our
initial steps toward developing a
full-fledged directive language spec-
ification and runtime system explic-
it ly supporting elasticity. Going
forward, we’re working on the full
SYBL specification and its runtime
components.

References
1. OpenMP Application Program Interface,

version 3.1, OpenMP Architecture Rev.

Board, July 2011, www.openmp.org/

mp-documents/OpenMP3.1.pdf.

2. K. Kennedy, C. Koelbel, and H. Zima,

“The Rise and Fall of High-Performance

Fortran: An Historical Object Lesson,”

Proc. 3rd ACM SIGPLAN Conf. History

of Programming Languages (HOPL III),

ACM, 2007, pp. 7-1–7-22; http://doi.acm

.org/10.1145/1238844.1238851.

3. S. Dustdar et al., “Principles of Elastic

Processes,” IEEE Internet Computing,

vol. 15, no. 5, 2011, pp. 66–71.

4. C. Bunch et al., “Shams: Language and

Runtime Support for Automatic Configura-

tion and Deployment of Scientific Comput-

ing Software over Cloud Fabrics,” J. Grid

Computing, vol. 10, no. 1, 2012, pp. 23–46.

5. S. Dustdar and H.-L. Truong, “Virtual-

izing Software and Humans for Elastic

Processes in Multiple Clouds — a Ser-

vice Management Perspective,” Int’l J.

Next-Generation Computing, vol. 3, July

2012; http://perpetualinnovation.net/ojs/

index.php/ijngc/article/view/148.

6. T.A. Limoncelli, “OpenFlow: A Radical

New Idea in Networking,” Queue, vol. 10,

no. 6, 2012, pp. 40–46; http://doi.acm

.org/10.1145/2246036.2305856.

7. T. Binz et al., “Portable Cloud Services

Using TOSCA,” IEEE Internet Computing,

vol. 16, no. 3, 2012, pp. 80–85.

Schahram Dustdar is a full professor of com-

puter science (informatics) with a focus

on Internet technologies and heads the

Distr ibuted Systems Group, Institute

of Information Systems, at the Vienna

University of Technology. He’s an ACM

Distinguished Scientist. Contact him at

dustdar@dsg.tuwien.ac.at; www.infosys

.tuwien.ac.at/.

Yike Guo is a computing science professor in the

Department of Computing, Imperial Col-

lege London. His research is in large-scale

scientific data analysis, data mining algo-

rithms and applications, parallel algo-

rithms, and cloud computing. Contact him

at yg@doc.ic.ac.uk; www.doc.ic.ac.uk/~yg/.

Rui Han is a researcher and PhD student in

the Discovery Science research group,

Depar tment of Computing, Imper ia l

College London. Contact him at r.han10@

imper ia l .ac .uk; w w w.doc . ic .ac .uk /

~rh1910/.

Benjamin Satzger is an assistant professor

of computer science in the Distributed

Systems Group, Institute of Informa-

tion Systems, at the Vienna University

of Technology. Contact him at satzger@

infosys.tuwien.ac.at; www.infosys.tuwien

.ac.at/staff/bsatzger/.

Hong-Linh Truong is a senior researcher in

the Distributed Systems Group, Institute

of Information Systems, at the Vienna

University of Technology. Contact him at

truong@dsg.tuwien.ac.at; www.infosys

.tuwien.ac.at/staff/truong/.

 <MonitoringInformationTemplate id="ApplicationMonitor"
 name="Application Monitor"
 InformationType="Monitor">
 <DetectedResponseTime>2.5</DetectedResponseTime>
 <Throughput>1000</Throughput>
 <ResourceUtilisation>
 <CPU>80</CPU>
 <Memory>75</Memory>
 <I/O>50</I/O>
 </ResourceUtilisation>
 </MonitoringInformationTemplate>

Figure 5. Monitoring section. This section records the detected response time
and the application throughput.

 <ConstraintsAndSLATemplate id="ApplicationSLA"
 name="Application SLA"
 InformationType="SLA">
 <RequiredResponseTime>3.0</RequiredResponseTime>
 <Budget>10EUR</Budget>
 </ConstraintsAndSLATemplate>

Figure 6. Constraints and SLA section. This section specifies the application’s
required response time and budget.

IC-16-06-WSWF.indd 77 10/13/12 2:35 PM

