
Chapter 1

Virtualizing Software and Human for
Elastic Hybrid Services

Muhammad Z.C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong, and
Schahram Dustdar

Abstract Human capabilities have been incorporated into IT systems for
solving complex problems since several years. Still, it is very challenging to
program human capabilities due to the lack of techniques and tools. In this
paper, we will discuss techniques and frameworks for conceptualizing and vir-
tualizing human capabilities under programmable units and for provisioning
them using cloud service models. We will discuss how elastic composite ap-
plications can be built by combining programmable units of software-based
and human-based services in the Vienna Elastic Computing Model.

Keywords: human-based service; elasticity; cloud computing; compute
unit;

1.1 Introduction

Utilization of human computation capabilities allows us to solve complex
computational problems. This approach has been practiced at least since the
middle of 80s, when Richard Dawkins presented an interactive evolution ap-
plication in which preferences of user were used to lead evolution process [1].
To improve the quality and throughput of such human-enriched systems, in
later approaches [2] this concept was extended by joining efforts from many
people. However, the term ”Human computation” in the modern meaning is
believed to be coined out in 2005 [3].

Recently, with the broad availability of Internet and emergence of Internet-
based technologies, techniques for human-based computation have been inves-
tigated intensively and developed rapidly. At the time of writing, a large num-
ber of people who are interested in contributing to complex problem solving

Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8/184-1,
1040 Vienna, Austria
e-mail: {m.candra,rstzab,truong,dustdar}@dsg.tuwien.ac.at

1

{m.candra,rstzab,truong,dustdar}@dsg.tuwien.ac.at


2 Authors Suppressed Due to Excessive Length

can be found almost effortlessly [4]. This leads to the ever growing existence
of the so-called collective intelligence which allows massive online human-
based problem solving, such as wiki websites [5] and reCAPTCHA [6] [7].
This online human-based problem solving approach is usually associated
with the term ”crowdsourcing” [8]. On the other hand, professionals are also
employed, as part of e-science and business workflows, for solving human-
related tasks. They are utilized together with software in several complex
workflows [9], using different technologies, such as BPEL4People [10] and
WS-HumanTask [11].

While both crowdsourcing and workflows enable us to utilize human com-
puting capabilities, they do not view human capabilities as a programmable
unit that can be acquired, utilized and released in an elastic manner. Unlike
software-based compute units (e.g., virtual machines and software services)
that can be scaled in/out easily with today’s cloud computing technologies,
human efforts cannot be easily programmed in the way that they can be
added, removed and interacted dynamically in parallel with quality and cost
and benefits control. In most cases, either workers are statically assigned to
tasks based on their roles [10] or workers bid for suitable tasks that they
can work on [12]. When workers bid on suitable tasks, elasticity of human
computation capabilities is hindered as there is an uncertainty of whether
someone will select a task or not. If the task has demanding requirements
(e.g., workers with more than 10 years of image recognition experience), ap-
propriate worker may not be available even in a large crowd of people [13].
Services where workers bid on suitable tasks make integration between hu-
mans and software in some composite applications more complicated because
sometimes it is preferable to actively select a worker or to identify that such
type of worker is not available, rather than to wait for the worker’s initiative.
To allow seamless integration of human into computation systems, it should
be possible to use humans as programmable compute units, which are simi-
lar to other types of compute units [14], that can be scaled in/out based on
quality, cost and other benefits constraints.

Our aim in this chapter is to examine current techniques in virtualizing
and programming human efforts in crowdsourcing and people-centric business
processes in order to develop a novel way to program human capabilities for
solving complex problems. In our view, human capabilities can be abstracted
into programmable units, and, then, can be provisioned under the service
model, which can be easily specified and invoked in programs. To this end,
we discuss challenges in supporting programming human capabilities and
virtualizing human capabilities under human-based services. We will also
present our approach in designing, deploying and executing human-based
services.

The rest of this paper is organized as follows. Section 1.2 gives an overview
of human computation approaches. Section 1.3 describes challenges and con-
cepts for virtualizing human capabilities under programmable units. Sec-
tion 1.4 studies existing techniques for realizing human capabilities as pro-



1 Virtualizing Software and Human for Elastic Hybrid Services 3

grammable units for elastic composite applications. Section 1.5 describes our
solutions developed in the Vienna Elastic Computing Model. We conclude
the paper and outline our future work in Section 1.6.

1.2 Overview of Human Computation Approaches

1.2.1 Crowdsourcing Platforms and Techniques

Several efforts have been done for mapping and building taxonomies from
existing public crowdsourcing market [15] [3] [16]. According to [15], existing
crowdsourcing scenarios can be categorized into three types:

• The first type is “contest crowdsourcing” where a contest is performed
to obtain the best available solution for a certain problem, such as in
99designs [17] and Threadless [18].

• The second type is “task marketplace crowdsourcing” in which typically
simple and unrelated tasks are posted by clients, while registered work-
ers will choose and solve the tasks. Amazon Mechanical Turk [19] and
CloudCrowd [20] are some examples of this type.

• Finally, the third type is “bid crowdsourcing” where complex problems
submitted by clients and the best bid from professionals will be chosen to
solve the problems. Platforms such as InnoCentive [12] and TopCoder [21]
support this model.

Several works focus on the enterprise crowdsourcing. Some elaborated lists
of research agendas for enterprise crowdsourcing are presented in [22] and [23].
The distinction between public and enterprise crowdsourcing is discussed
in [24], especially what factors affect the sustainability of the project’s com-
munity. A sample crowdsourcing scenario in software development domain
is discussed in [16]. An enterprise crowdsourcing solution is also provided
by CrowdEngineering [25]. Using a proprietary crowdsourcing tools and in-
frastructure, it provides out-of-the-box vertical applications in the domain of
customer care, sales, and survey.

Another interesting crowdsourcing approach that is actively developing
nowadays are the human-based computation games [26] that present compu-
tation challenges to humans in an entertaining way. This approach presents
great answers to human-based computation problems as game participants
are motivated and interested in the task solving process because of game’s
entertainment. Also they try to get the highest score, which commonly rep-
resents the best solution of the stated problem. Foldit [27], a set of online
challenges GWAP [28], and Phylo [29] belong to this category.



4 Authors Suppressed Due to Excessive Length

1.2.2 People-centric Business Processes

With the growing popularity of Service-Oriented Computing (SOC), building
of distributed systems by the means of service composition becomes more and
more popular. We have been seeing many efforts done to integrate humans
into business processes built atop Web services. In workflow-based systems,
the Workflow Management Systems (WfMSs) manage the assignments and
executions of tasks, which can be either software-based or human-based tasks.
In the case of human-based tasks, each instance of the task is placed in the
work-list of all eligible workers. The assignment of the task can be enforced by
the WfMS, or the workers may be allowed to voluntarily select the task from
the work-list [30]. In particular, BPEL4People [10] can be used as an exten-
sion for Web Services Business Process Execution Language (WS-BPEL) [31]
to enable human interaction in business process.

However, these human-based task modeling approaches have several lim-
itations. For seamless integration of human-based services into a Service-
Oriented Architecture, we need a way to define, discover, and invoke human-
based services in similar manner as we define, discover, and invoke Web
services. Therefore, human tasks execution is no longer limited to a single
organizational boundary.

1.2.3 Humans as Programmable Units

Conceptually, in crowdsourcing and people-centric business processes, human
efforts can be considered as program elements, e.g., objects and statements
in programs executing some instructions. However, the current way of pro-
gramming human-related tasks is very different from that for software-related
tasks. Very often, we have different design phases and techniques for specify-
ing human-related tasks, using different tools [10, 32].

Consider, for example, a Web-service-based people-centric business pro-
cess. Typically software-related tasks are programmed using a Web service
composition technique [33]. It allows service providers to define interfaces
to their services which the composed business process connects to [33]. Even
though human-related tasks are also programmed and composed using service
interfaces, the current techniques do not allow humans as service providers
to define their own services. Also, the lack of capabilities for human-based
service publication and discovery hinders some advance techniques such as
automatic and adaptive service composition. Furthermore, in the approaches
described above, humans as compute units have to adapt to the system and
actively search for the tasks to solve [19]. Little effort has been spent for
techniques to program applications to actively consider possibilities of hu-
man capabilities to decide how to use human computation.



1 Virtualizing Software and Human for Elastic Hybrid Services 5

AutoMan [34] is an example of the computation platform that allows inte-
gration of humans and software. AutoMan allows to specify a set of tasks to
the workers in the form of function calls in a platform-independent manner.
Additionally, AutoMan provides ability to specify required quality, time and
price. However, AutoMan has some limitations that can be critical for some
applications or might be limiting for others. For example, it defines only a
limited list of task types and constrains specification allows to specify only
upper limit. Also it forces application developers to specify human tasks in
common crowdsourcing models.

Another platform worth mentioning is Jabberwocky [35]. Jabberwocky
declares that humans and software have the same rights and programming
possibilities. Jabberwocky provides a high level domain-specific language for
task declaring, which is translated to the map-reduce pattern [36], what may
be limiting or redundant for some applications.

Both AutoMan and Jabberwocky focus on the customer side, e.g., defin-
ing tasks utilizing human capabilities via crowd platforms, but they do not
concentrate on developing techniques at the service provider side, e.g., devel-
oping human-based service provisioning models. Recently, techniques from
SOC and cloud computing have been investigated for abstracting and pro-
visioning human capabilities. One of the first approaches is to allow human
capabilities to be described and published via Web services [37]. Further-
more, teams of people could be also established and provisioned under the
service model, called Social Compute Unit (SCU) [38]. Overall, in this ap-
proach human capabilities can be categorized into Individual Compute Unit
(ICU) and Social Compute Unit (SCU) and realized by service technologies.
They can therefore be considered as programmable compute units [14] and
belong to the so-called Human-based Service (HBS) built atop human-based
computing elements, an analogy to software-based services (SBS), which is
built atop machine-based computing elements [39]. This enables, for example,
the possibility to unify HBS and SBS with the introduction of the virtual-
ization layer [39] allows to simplify software development with HBS and SBS
integration into scalable cloud-based service-oriented computing systems [3].

1.3 Incorporating Humans into Program Paradigms

1.3.1 Challenges

Thanks to the spread of the Internet, it becomes much easier and faster to
find appropriate humans to perform the requested task. However, due to
complexity and dynamicity of human possibilities and relations, it is still
a huge challenge to proactively utilize human computation capabilities. In
contemporary crowdsourcing platforms, it is common to put the tasks in a



6 Authors Suppressed Due to Excessive Length

form of open call [8], but this approach assumes that appropriate workers will
find the task and solve it within time constrains, what might be a challenge
for a new and not popular type of tasks. Even more, people participating in
a specific project are often homogeneous and, despite the size, the required
person for a rare and unusual task might be missing. This problem can be
solved either by popularization of the project or by active searching of an
expert for a specific task, what goes beyond existing crowdsourcing models
and requires additional efforts from the project’s developers or supporters.

An active expert search approach, similar to the SBS invocation behavior,
is that the worker plays only a passive role by presenting her possibilities and
capabilities and waiting for incoming tasks. Active service search techniques
are widely used for SOA-based systems [10, 40], but for HBS selection they
have some major drawbacks that will be discussed in the following.

• First of all, this approach usually assumes that characteristics of the pro-
vided service are either static or changing only occasionally. It contradicts
with the fact that human abilities can be very dynamic and even change
during the day.

• Also, even when human worker is rated with respect to quality of the
results, usual active service selection ignores the fact that selected human
workers may consult with other experts for challenging tasks or even use
solution of others. Currently it is also complicated (if it is possible at all)
for a selected worker to redirect the task to another expert or worker who
might be more experienced or has better chances to solve the specified
task.

• Furthermore, for conceptual business tasks, problem description can be
very complicated and challenging. Worker may have difficulties under-
standing the task, require some additional clarification, or perform the
task incorrectly.

Another issue in programming human capabilities is that the task might
be given not to a single person, but to a closely-connected group or a team
of people. Such a group or team can be modeled as SCU and it cannot be
referenced in the same way for separate workers, as abilities and characteris-
tics of such a group/team are completely different from that of the separate
worker. Nowadays the target worker type is selected at the stage of task
generation, but there might be situations when it is impossible to do so. Re-
quired worker type may depend on the content of the task, quality or cost
constrains, which are known only in runtime. In such cases we must be able
to develop abstract compute units and select appropriate humans for tasks
right before task assignment.

Summarizing said above, integration of human worker into SOA-based
system faces challenges such as:

1. the dynamic nature of non-functional properties of HBS
2. the need to consult with others or to redirect tasks to expert in the field



1 Virtualizing Software and Human for Elastic Hybrid Services 7

3. the need to support clarifying the task or receiving additional information
interactively at runtime

4. the need to support different task structure depending on whether tasks
will be processed by a single person or teams

We will discuss these challenges and present our approach to handle these
challenges. We will focus on the first and the last one. Additionally, we will
provide appropriate infrastructure that will allow solving other challenges on
the level of the communication protocol.

1.3.2 Virtualizing Humans as Programmable Compute

Units

Nowadays, the SOC model has been flourishing and widely used to model
the hardware and software functionalities of machine-based computing ele-
ments (MCEs). Through standardized service interfaces, these functionalities
can be accessed and composed for solving particular problems. However, for
complex computational problems, we need to include human-based comput-
ing elements (HCEs) into the ecosystem for solving particular steps of the
complex problem. Therefore, it is of paramount importance to have concep-
tual frameworks and tools for integration of HCE into service-based systems.
If the HCE will be accessible in the same way as MCE, it will allow selecting
the actual processing unit dynamically, depending on the current preferences
in processing duration, cost or results quality. To allow this, actual workers
should be hidden behind another abstract layer, which would allow unifica-
tion of task assignment information provision about the processing unit.

One way to do this is to virtualize and unify HCE and MCE functionality
to access them through well-defined service interface just like it is tradition-
ally done in SOC. Under the service model, everything is service. Therefore,
a distributed application may invoke available distributed services regard-
less of the underlying service type (MCE or HCE). Virtualizing HCEs under
the same service model as MCEs also allows service providers (e.g. human
workers) to offer their services through a standardized/common service de-
scription. This way, HBS discovery and negotiation becomes easier. This vir-
tualization layer can also solve some of the mentioned above problems: it
will provide unified interface that allows processing units to provide feedback
to the system, calculate worker’s qualities and preferences in run-time, or
provide additional task context on request.

Furthermore, as with MCEs, application developers should be able to
compose services involving HCEs. Through this virtualized services, applica-
tion developers can compose mixed SBS and HBS either statistically during
design-time or dynamically during run-time. Figure 1.1 depicts this concept of
mixed service compositions using virtualized HBS and SBS. Since the virtu-



8 Authors Suppressed Due to Excessive Length

API

Virtualization Layer

Composite Applications

HCEs MCEs

SBS virtualizationHBS virtualization
Registry

Task 

Assignment 

Communication

Service 

Description 
Monitoring 

Virtual Service Invocation

Fig. 1.1 Virtualizing and provisioning humans using SOC

alization and provisioning of SBS are known, we discuss possible approaches
for virtualizing HBS:

• Communication: well-known techniques for communicating humans in-
put/output have been developed. Such techniques will allow highly flex-
ible and unrestricted types of communication between humans and HBS
virtualization layer. All implementation details of communication will be
hidden from applications, communication can be based on any technology,
as long as it can be represented in the form of function invocation. This
allows us to use well-known SOAP-based web-services along with REST-
ful services, FTP file transfer or e-mail/IM for task assignment to human
worker. Note that human-related challenges mentioned above (e.g., task
redirection, clarification request) can be solved in the protocol-specific
way or even with ability to employ human consultant in exceptional situ-
ations. Of course, reliability and speed of such communication techniques
are hardly comparable, therefore this also has to be taken into account
during statistics calculation and SLA enforcement algorithms. Addition-
ally, in some cases, the communication layer may require asynchronous
service invocation, what also should be stated in service description and
considered by the consumer.

• Task Assignment: as the main role of the HBS virtualization layer is
to forward invocation requests and provide responses, Task Assignment
will handle all HBS service invocations. The main role of Task Assign-
ment is to present virtualized HBS as a part of the system and allow



1 Virtualizing Software and Human for Elastic Hybrid Services 9

seamless invocations and response retrieving. When Task Assignment re-
ceives a request, it converts this request into the representation that can
be handled by the virtualized HBS. e.g., it can prepare task in a human-
understandable form (e.g., e-mail or IM message). When response arrives,
timeout occurs or call is canceled, Task Management converts available
response into system model entities and returns back to the component
that requested HBS. One important feature of Task Assignment is that it
should allow composite applications to acquire, invoke and release HBS
in an elastic manner, based on their specific constraints.

• Service Description: we need to develop models for describing HBS to
allow HBS consumers to select appropriate HBS in runtime. Service De-
scription provides existing services descriptions and functionality in uni-
fied format. This component allows getting all static service information,
which includes also invocation cost, SLA agreement and allowed input
data. All this information can be used to select the set of services that
can handle requests.

• Monitoring: as discussed, human capabilities are very dynamic and can-
not be described statically. For these needs, Monitoring is responsible
for gathering and providing such dynamic information as average invo-
cation duration, invocation jitter, communication problems and results
quality/completeness. These properties can be used to validate SLA re-
strictions, rank available alternative services or balance request load, if
one of the services is overloaded or has too long response time. Addi-
tionally, Monitoring manages list of assigned tasks and allows calculating
current service load or billing information.

• Registry: we also need the Registry for storing, searching, filtering and
providing the set of available HBS that can be searched based on the
specified restrictions. The Registry would support Service Description
models for HBS and SBS.

Finally, all features of the virtualization layer can be exposed via a set of
APIs, designed in a similar fashion to APIs for contemporary cloud systems,
to allow different applications to select and invoke HBS on-demand based on
elasticity constraints.

1.4 State of The Art

In this section we will discuss the state of the art of the technologies which
can be used to implement virtualization of SBS and HBS. To make discussion
clear, we center the discussion around an example scenario to show how a
composite application utilizes HBS and SBS. The scenario shown in Figure
1.2 represents an application system used for mitigating and handling natural
disaster. This application system mainly consists of 3 components: the data



10 Authors Suppressed Due to Excessive Length

analysis workflow, the decision support system, and the disaster response
workflow.

sensor data

Historical Data

On DaaS

Data Analysis

Workflow

Data Analysers

On PaaS

Decision Support System

Disaster Response 

Workflows

Workflow A

Workflow B

Emergency 

Response 

Team

SCU

Civil

Forces

Crowd

Photographer

ExpertsAnalysts

Fig. 1.2 Natural Disaster Management Application

The data analysis workflow received data from sensors which capture na-
ture activities such as earth vibration, rain and snow precipitation, wind
speed, and so on. Upon analyzing the data the workflow will generate sig-
nals to indicate whether certain activities may lead to a disaster and require
further investigation. This workflow utilizes a Data-as-a-Service (DaaS) for
storing and retrieving historical data through a defined SBS. A data analy-
sis algorithm software running on a PaaS also provides services for analysis
tasks. Furthermore, depending on the nature of the sensor data, the workflow
may also invoke an HBS for manual data analysis provided by professional
analysts.

Analysis results sent to the decision support system (DSS) will be used by
decision maker to decide whether a disaster warning should be declared. In
situation where further consultation is required, the DSS may invoke an HBS
to start expert’s consultation service. When a disaster warning is declared,
the disaster response workflow is initiated.

The disaster response workflow provides control over the disaster response
and recovery activities. An SCU consisting of emergency response teams auto-
matically assembled when necessary. The workflow may also invoke external
workflows which control external team such as civil forces. Furthermore, the
workflow may also initiate tasks to crowdsourcing platforms for obtaining
pictures of the disaster location.

1.4.1 Composition Techniques

1.4.1.1 Syntax and Semantic for HBS

In SOA, applications are built by the means of composition of distributed ser-
vices. Each application component is a service providing a particular set of



1 Virtualizing Software and Human for Elastic Hybrid Services 11

functionality. For example, on the aforementioned Natural Disaster Manage-
ment application, the Data Analyzers component can be realized as external
service which provides capability to analyze streams of sensor data for mon-
itoring nature activities. Furthermore, we can also wrap the functionalities
of human analysts and experts as services. Once we compose this various
services properly, we obtain a composite application for Natural Disaster
Management.

Service composition relies on the service description with respect to its
functional and non-functional properties. Functional properties of a service
describe its inputs, behavior, and outputs. These properties may be the data
manipulation processing, the calculations, or other particular functionality
which defines how the service is supposed to behave. On the other hand,
non-functional properties (NFPs) describe the quality dimensions on which
the user of the service could rely. The de-facto standards for describing
the functional capabilities of a service is Web Service Description Language
(WSDL) [41]. A WSDL description of a service provides a machine-readable
definition so that users know how the service should be called. By evaluating a
WSDL description of a service, users can decide whether the service matches
with the functional requirements of the application. The quality descriptions
of the services, also known as Quality of Services (QoS), are normally defined
in Service Level Agreement (SLA) document. SLA provides formal definition
of quality level in the form of a contract on which the user and provider of
a service agree. Several standards for defining SLA are widely used. Some of
the standards areWeb Services Agreement (WS-Agreement) [42],Web Service
Level Agreement (WSLA) [40], and Web Services Policy (WS-Policy) [43].

Syntax used in the aforementioned specification languages for defining
functional and non-functional properties of services may be applicable for
both SBS and HBS. A work was done to allow the usage of WSDL as HBS
description language [44]. This allows us to describe the interface to services
provided by human. For example, on our example scenario, the Data Analyzer
service (an SBS) and Analyst service (an HBS) may offer similar service, i.e.
analyzing sensor data. However, different interfaces can be defined for both
type of services; the Analyst HBS may have a human collaborative platform
such as Dropbox as interface.

While defining syntax for describing HBS may be straightforward, defining
semantic of HBS description can be much more challenging compared to
SBS description semantic. Human services functionality contains intangible
aspects which are hard to define formally. HBS and SBS have different NFPs
and the semantics of their similar NFPs can be different (Figure 1.3 lists some
examples of NFPs for HBS and SBS). For example, the SBS Data Analyzer
service may be described to have 99% availability. The interpretation of this
value is widely understood. However, how would we define an HBS Analysis
service that has 99% availability? What does 100% availability of human
services entitle? This aspect HBS properties interpretation currently remains
as an interesting research challenge in the service engineering area.



12 Authors Suppressed Due to Excessive Length

Metric Dimension MCEs Metrics HCEs Metrics

Resources
Number of resources, utilization, 
storage capacity, 
bandwidth capacity

Number of resources, 
utilization

Quality
Response time, throughput, 
availability

Response time, rating, 
availability, throughput, task 
acceptance rate

Cost and Benefit
Cost / API calls, 
virtual instance / hours

Task price, hourly price, 
reputation point

Fig. 1.3 Example of metrics for HBS and SBS

The SLA standards used above, for example WSLA, are designed to deal
with virtually any types of QoS metrics. Therefore, theoretically it should be
possible to use such standards to define SLA of HBS. However, there are two
most important challenges that we should deal with: the definition and the
measurement of the HBS metrics. For example, how can we model the exper-
tise metric and how do we measure it. The quality of SBS, such as computing
power, response time, and so on, can be defined and measured easier. But
that is not the case for HBS. In most cases, the definition and measurement
of HBS metrics is domain specific. Therefore, once we could address these
two important challenges, at least for a particular domain we are interested
in, we could use similar methodology for defining SLA mentioned above.

Furthermore, some works have been done for more advance composition
tools. Approaches to compose services in non-procedural ways are intro-
duced in SELF-SERV[45] and SWORD[46]. Several tools such as CPM[47],
Mentor[48], SELF-SERV[45], and OSIRIS[49] provide distributed workflow
engine which allow web services to be composed and executed in distributed
or peer-to-peer environment. To obtain an autonomic service composition,
JOpera[50] provides an advance tool for composing services and a run-time
environment with self-configuring, self-healing, and self-tuning capabilities.
MarcoFlow[51] goes beyond the orchestration of human actors into a ser-
vice composition by allowing distributed orchestration of user interfaces the
users need to participate in the process. However, mostly, these tools focus on
software-based services; and further works are required to integrate human-
based services to the systems.

1.4.1.2 Design-time and Run-time Composition

Once we have a formal description of services, the composition of those ser-
vices becomes possible. There are various service composition tools avail-
able [33]. In the business domain, some of the prominent examples are Busi-
ness Process Execution Language for Web Services (BPEL) [31] and Business



1 Virtualizing Software and Human for Elastic Hybrid Services 13

Process Modeling Notation (BPMN) [52]. Petri-Net is also a common tool
used for composing services [53]. These composition tools are used during
design-time by developers to compose workflow-based applications contain-
ing various invocations of services.

Many attempts have been undertaken to address run-time flexible com-
position issues in workflow systems and Process-Aware Information System
(PAIS) in general. Organizations may need to refine their processes to adapt
to changing environments due to new requirements, competitions, and laws.
Papers, such as [54] and [55], propose methodologies to deal with flexibility
issues in workflows, especially to manage running instances while evolving
the workflow to a new schema. Those techniques discussed above tradition-
ally deal only with SBS. There are some efforts to allow integration of human
in service composition. BPEL4People [10] and WS-HumanTask [11] are some
prominent examples. However, these approaches do not see human task in
term of human as a service provider. Hence, it cannot utilize human capa-
bilities when they are described as services such as discovering services just
like we normally do in SBS.

The aforementioned service composition techniques deal with the func-
tional requirement of the application. Other techniques are introduced to
obtain a QoS-aware service composition. Consider we have a workflow as de-
scribed in our Natural Disaster Management application. Each component,
either human-based or software-based, is described as a service. Functional
properties of those services are defined in a Web service description docu-
ment, such as using WSDL, and the NFPs are defined in SLA specification,
such as in WSLA. The service functionalities are orchestrated using BPMN
tool. Furthermore, there are some service providers offering same service for
each functionalities with different QoS. The SBS Data Analyzers service is
provided by some SaaS providers. The HBS Analysis service is provided by a
pool of human analysts, and so on. The next question is, how would we select
which particular service providers to use in the application? This QoS-aware
composition problem is an optimization problem; i.e. which service providers
should be invoked so that we get an optimized (or satisfied) solution without
violating the constraints.

Finding an optimized QoS-aware composition of services is known as NP-
hard problem [56]. Some approaches based on integer programming [57],
heuristics [58], and genetic algorithm [59] [60] [60] have been proposed. These
approaches can be applied during design-time, to help the developer choosing
appropriate services for the application. They can also be used during run-
time to allow late-binding of services. Optimizing service composition during
run-time is more challenging. It requires an acceptable performance so that
the optimization can be done in real-time. It should also consider interdepen-
dencies between services and how changes on one service may affect others or
even stop the entire process instance. These approaches are currently avail-
able only for SBS. Addressing this composition service issues for HBS presents
interesting open challenges for the service computing community.



14 Authors Suppressed Due to Excessive Length

1.4.1.3 Services Matching and Discovery

On the famed SOA triangle, a service-based system not only consists of ser-
vice providers and service clients, but also service discovery agents. Theoreti-
cally, the discovery agent functions as a bridge so that providers may publish
their offered services and clients may find suitable services. Service discov-
ery is done through a matching algorithm to find services with appropriate
functional and non-functional properties.

The simplest service matching algorithm is keyword based searching. Other
advance matching approaches were also proposed. Semantic, ontology, and
similarity based matching have been employed to enhance the service match-
ing [61] [62] [63]. Those matching algorithms focus on service functionality
matching. To take NFPs into account, many works have been done for obtain-
ing QoS-aware service discovery [64] [65] [66]. The aforementioned techniques
for service discovery are designed for SBS. Service discovery for HBS is a new
and challenging area for research. Human factors, such as skills, expertise,
and reputations should be taken into account for effective discovery of HBSs.
Several works, such as [67] and [68], have been done to address those issues.
Trust network such as friend-of-a-friend (FOAF) network also provides im-
portant information about the HBS providers. In [69], a Broker Query and
Discovery Language (BQDL) is proposed to discover suitable brokers who
connect independent subgroups in professional virtual communities, such as
normally found in social networks.

Although some standards for service registry exists, many providers prefer
to use ad-hoc mechanisms for informing clients about their services. The sit-
uation is similar in the case of HBS. Currently there are no formal registries
used for HBS discovery. We can consider task-based crowdsourcing market-
places such as Amazon Mechanical Turk [19] as ad-hoc HBS registries. These
crowdsourcing marketplaces have been flourishing dramatically in the recent
years. However, the lack of formal service publications in these registries has
been hindering automatic services matching and discovery for HBS.

1.4.2 Virtualization Techniques

1.4.2.1 Communication Interface to HCEs

The communication layer is responsible for delivering tasks and retrieving
results from external service and handling other types of communication in
a transparent way for the rest of the system. This part is already well-known
for SBS, but for HBS it is only developing. For example, Amazon Mechani-
cal Turk [19] provides a web-site with available jobs for a registered workers
where they can select jobs they like from the set of available tasks (named
HIT, Human Intelligence Task). But the set of operations available to the



1 Virtualizing Software and Human for Elastic Hybrid Services 15

workers is limited: they are only allowed to select HITs and submit results,
what often satisfies neither workers nor the creators of the task. To solve
these problems, different companies presented their own solutions that ex-
tend Amazon Mechanical Turk functionality and provide additional features
required by participants. For example, Scalable Workforce [32] allows workers
to subscribe on some subset of the HITs, extend worker’s profile and allows
workers to deliver feedback or clarification requests [70]. But the web-site
is not the best way to communicate with the human workers. For exam-
ple, Aardvark [67] tried to use existing human communication channels like
Instant Messaging (IM), e-mail, SMS, Twitter or others. Furthermore, this
allowed asking additional questions or forward request to another person in
case worker cannot solve the task.

1.4.2.2 Task Assignment

Several systems provides SOAP or RESTful APIs for task assignment. For ex-
ample, Amazon Mechanical Turk provides a SOAP or RESTful web-service,
what makes it easy to integrate in the system that needs some work to be
performed by the human. Furthermore, to simplify understanding and in-
teraction with corresponding web-service, Amazon also provides set of API
libraries for popular programming languages. Similar APIs are provided by
other platforms, such as CrowdFlower [71] or CloudCrowd. However, Web
service interface is not the only interface for creating and assigning a task.
Some systems have provided few different interfaces to interact with differ-
ent customers. For example, search engine and question answering service
ChaCha [72] additionally provides ability to state tasks for a people through
web-site, SMS or phone applications. In most systems, it is the worker who
selects tasks: if the required parameters are met, the worker is allowed to
take any task, assuming that the worker takes only interesting and feasible
task. However, this approach oversimplifies task assignment. It introduces
situations when some tasks are not handled by anyone or handled with a
huge delay. Instead, to guarantee fast and still correct response, some sys-
tems (e.g., Aardvark) try to assign task themselves. With this way, systems
have to know workers’ profiles, current load and availability.

Besides the capabilities of APIs, by relying on specific APIs of particular
crowdsourcing platforms, such as Amazon Mechanical Turk or CrowdFlower,
for utilizing human capabilities, we cannot easily program and scale in/out
human capabilities from different platforms, as the API provided by different
platforms is usually completely incompatible and often crowd workers do not
know anything about the task source company. Therefore, the standardiza-
tion and unification of the APIs for acquiring and invoking human capabilities
is important, which would allow customers to select crowdsourcing platforms
without carrying about future changes or even to use more than one platform
to diverse risks and improve results speed and quality.



16 Authors Suppressed Due to Excessive Length

1.4.2.3 Service Description

Service description models, which allows collecting, generation and repre-
sentation of available information about the underlying service, are not well
studied for HBS. Amazon Mechanical Turk stores information about worker’s
qualifications and result acceptance rate. Scalable Workforce proposes to cre-
ate full worker profile with photo, areas of expertise, interests and last ac-
tivity and efficiency [70]. Such description system is usually good enough,
but it hardly allows comparing different human-based services to detect who
could do the specific task better. To allow this, service description models
should analyze which similar tasks were already assigned to workers and how
they managed to solve these tasks. Also it might be good to know the cur-
rent load, non-functional properties of the workers and current interest in
this type of tasks, as these factors can influence results quality and service
selection strategy.

1.4.2.4 Registry

Registry systems for SBS have been well developed. For example, Amazon
AWS Marketplace1 allows to find different virtual machines and software,
while Microsoft Azure Marketplace2 enables the search for data assets. For
HBS, Registry is usually implemented by the database of registered users
and their last activity information. In the systems where tasks are selected
by workers, the role of the Registry is not large: usually it is just statistical
information. Aardvark used to store and regularly verify a lot of additional
information about users (e.g., last activities, last response time, and current
task load). To allow fast service searching and query processing, access to
such registry has to be optimized and important fields have to be indexed.
Additionally, such systems require more information from users during the
registration and often might have difficulties in assigning tasks to the new
human-based services, as information about them is not known yet and they
are least preferable than older ones. This issue can be partially solved with
the help of qualification tests or assigning previously solved tasks, but still
this is an open challenge.

1.4.2.5 Monitoring

Monitoring service is responsible for gathering statistical information and
verification of the task solution. As the tasks for human-based services are
challenging, often it is hard to validate results’ quality and speed. For ex-

1 https://aws.amazon.com/marketplace/
2 https://datamarket.azure.com/

https://aws.amazon.com/marketplace/
https://datamarket.azure.com/


1 Virtualizing Software and Human for Elastic Hybrid Services 17

ample, Amazon Mechanical Turk leaves this for requesting companies, which
usually try to either estimate efforts or compare results to another worker.
To introduce more intellectuality to this process, some companies invented
algorithms that could be used to validate how fast and carefully workers
were performing the task. For instance, CrowdControl proposed few interest-
ing techniques that dramatically rise quality of results [73]: it proposed more
than 15000 rules to determine when the solution is correct and worker per-
formed job carefully and when it is better to check solution again. Based on
task validation results, CrowdControl changes the rating of the workers, what
also influences on how much they will be paid now and how often validated
in future. In Yahoo! Answers tasks and solutions are usually unstructured,
but readers rate the answers and select the best result. Another approach
to solve the tasks with the appropriate quality of results is that tasks are
usually split on the small slices that are sent to the few people to compare
their results to each other [73]. But this approach also does not work well
due to the fact that there are quite a few tasks that can be divided and re-
sults merged automatically. Correct results for several types of tasks, such as
translation, pattern recognition or content generation, often are impossible
without knowledge of the whole goal.

1.5 Programming Elastic Composite Applications in the

Vienna Elastic Computing Model

The complexity of executing and managing elastic applications becomes even
higher when we have to deal with clouds containing SBS and HBS. In this
section, we outline steps in designing, deploying and executing composite
applications consisting of HBS and SBS in our Vienna Elastic Comput-
ing Model (VieCOM), which offers techniques and frameworks to support
multi-dimensional elastic processes of hybrid services represented under pro-
grammable units. Our approach addresses issues related during design, de-
ployment, and runtime stage of composite applications. Figure 1.4 depicts
the overall flow of our steps.

1.5.1 Multi-Dimensional Elastic Application

An elastic application should be able to address issues from two stand-
points: it should consider resource provisioning constraints from its resource
providers, and it must satisfy its own customers’ demand at the same time.
Therefore, it is important for an application designer to consider not only
the resources but also the trade-off between cost and quality. Consider, for
example, a Software as a Service (SaaS) which consists of many application



18 Authors Suppressed Due to Excessive Length

Elasticity Tradeoff Profile

Workflow /

Composite Apps

attach

Elastic Reasoning Engine

Workflow Engine /

Execution Platform

compile

deploy

measured values

actions

E
la

st
ic

 R
u

n
ti

m
e

 

P
la

tf
o

rm

Reasoning

Interface

Set of APIs

Communication

invoke

HCEs MCEs

Design Deployment Runtime

Programming Directives

Fig. 1.4 Steps in programming and executing hybrid services in VieCOM

components; each component with its own quality metrics such as perfor-
mance, availability, throughput, and so on. These quality metrics may be
dynamically specified by the customers and affect the SaaS provider’s deci-
sion to scale-up or down resources. These changes will eventually affect cost
needed for resource provisioning and cost charged to customers.

Traditionally, we have seen this elastic computing model being applied to
cloud of SBS. However, the concept of elasticity can also be applied to hy-
brid cloud consisting of SBS and HBS. The principles of elastic processes [74]
define various facets of elasticity that capture process dynamics. The elas-
tic properties of applications are multi-dimensional. Figure 1.5 depicts our
concept of multi-dimensional elasticity, classified into resource, quality, and
cost and benefits. In these classes, several subclasses exist. During run-time,
these elastic metrics are measured. The measured metrics can then be used to
reason about adaptive actions needed to achieve a certain degree of required
elasticity. A typical example for scaling Infrastructure-as-a-Service (IaaS) can
be used to explain this reasoning process: when average utilization of running
machines exceeds certain threshold, then start another machine.

1.5.2 Modeling Process Elasticity

In our framework, elasticity is modeled by the notion of Elasticity Profiles
which can be attached to workflows or distributed applications. An elasticity
profile contain constructs to define elastic objects, metrics, and rules. The
objective of modeling elastic processes is essentially to define the behavior of
the process in response to the changing properties of the process’ objects.



1 Virtualizing Software and Human for Elastic Hybrid Services 19

Elasticity

Resource

Human-based Services

Software-based Services

Individual Compute Unit

Social Compute Unit

Platform Unit

Compute Unit

Network Unit

Software Unit

Data Unit

Quality

Quality of Data

Quality of Service

Completeness

Accuracy

Performance Realibility

Throughput

Bandwidth

Availibility

Response Time

Costs and Benefits

Incentive

Payment

Return on Opportunity

Reward

Taxation

Price

Resource Elasticity

Quality Elasticity

Costs and Benefits Elasticity

Fig. 1.5 Multi-dimensional Elasticity

In an elastic process, we deal with objects and manipulation of the ob-
jects. These elastic objects are tasks (such as in workflows/processes), or
software components (such as in distributed applications) that can be elastic
by utilizing software-based or human-based cloud resources. Elastic objects
of processes can be either individual tasks or process fragments. In order to
make process’ objects become elastic objects, two steps are needed: first, elas-
tic properties must be associated with the objects during the modeling phase;
and second, at runtime, the elastic reasoning engine decides elastic strategies
for these objects based on their properties and runtime information.

Our framework uses a collection of rules describing the elastic aspects
of the system. A process designer specifies these rules to model the dynamic
changes of resources, quality, and cost of the system. Below are some examples
of rules for expressing dynamic behavior of resources:

• When the average utilization of the human workers on the active pool is
above 8 hours per day then add additional workers to the pool.

• A human-task requester wants to pay a cheaper price if the worker takes
more than 1 hour to finish the task.

An elasticity profile will be deployed to our Elastic Reasoning Engine
(ERE) and the application deployed to an execution engine. The elasticity



20 Authors Suppressed Due to Excessive Length

profiles deployed to the ERE contain all definitions required to achieve the
desired elasticity. The ERE is a production rule system which consists primar-
ily of a set of rules about elastic behavior. The core element of this engine is a
forward-chaining inference engine used to reason about adaptability actions
required to achieve the desired elasticity.

The Elastic Runtime Platform (ERP) manages resources required for pro-
cess executions. This underlying runtime layer provides the execution plat-
form and resource management for elastic processes. This platform can be in
the form of a cloud infrastructure, a scientific or business workflow engine,
or it can also be a crowdsourcing platform as a human task execution en-
vironment. The monitor component of the ERP is responsible for capturing
events of elastic objects and monitors their data. When a task is created,
its corresponding elastic object is asserted to the ERE. Using the deployed
set of rules, ERE decides which actions are necessary to obtain the desired
behavior.

1.5.3 Executing Hybrid Services on The Cloud

Existing approaches exploiting human capabilities via crowds do not support
well on-demand, proactive, team-based human computation. In VieCOM,
we have proposed a novel method for invoking HBS in a similar manner
as invoking SBS [75]. In our model, we present common APIs, similar to
APIs for software services, to access individual and team-based compute units
in clouds of human-based services. For example, Table 1.1 presents some
APIs for provisioning HBS. Such APIs are provided at the cloud service
level by HBS cloud providers. Therefore, they can be utilized by workflow
engines and any application. The key idea is that based on elastic profiles,
the ERE can utilize the APIs to find suitable HBS and depending on the
elasticity constraints/rules, the ERE can invoke suitable HBS using these
APIs. Furthermore, the ERE can use similar APIs for SBS, e.g., based on
JCloud3, to invoke corresponding SBS.

1.6 Conclusions and Future Work

In this paper, we discussed the challenges of programming human capabilities
as programmable compute units. We have studied techniques for virtualizing
human capabilities and how to incorporate humans into program paradigms.
As we show in the paper, several techniques developed for crowdsourcing
platforms and people workflows are not flexible enough to support the concept

3 http://www.jclouds.org/

http://www.jclouds.org/


1 Virtualizing Software and Human for Elastic Hybrid Services 21

APIs Description

listSkills ();listSkillLevels() list all pre-defined skills and skill levels of clouds

listICU();listSCU() list all ICU and SCU instances that can be used.

negotiateHBS() negotiate service contract with an HBS

startHBS() start an HBS

suspendHBS () suspend the operation of an HBS

resumeHBS () resume the work of an HBS

stopHBS() stop the operation of an HBS

reduceHBS() reduce the capabilities of HBS

expandHBS() expand the capabilities of HBS

runRequestOnHBS() execute a request on an HBS

receiveResultFromHBS() receive the result from an HBS

sendMessageToHBS() send (support) messages to HBS

receiveMessageFromHBS() receive messages from HBS

Table 1.1 Main APIs for provisioning HBS [75]

of program “humans” in complex, elastic applications. We have discussed
our approach in virtualizing human capabilities as programmable compute
units, realized and provisioned under the service model, to allow seamless
integration between humans and software.

We have presented steps in designing, deploying and executing elastic com-
posite applications in our Vienna Elastic Computing Model. We are currently
prototyping an integrated development environment to support these steps,
thus we will concentrate on integration aspects of HBS modeling, reasoning
and execution by exploiting proposed APIs for clouds of HBS. Furthermore,
our future work will focus on intelligent task assignment based on elasticity
trade-offs in hybrid systems of software and humans.

References

1. : The blind watchmaker. Website http://en.wikipedia.org/wiki/The_Blind_Watchmaker.
2. Johnston, V., Caldwell, C.: Tracking a criminal suspect through face space with a

genetic algorithm. Handbook of Evolutionary Computation (1997) G8
3. Quinn, A., Bederson, B.: Human computation: a survey and taxonomy of a growing

field. In: Proceedings of the 2011 annual conference on Human factors in computing

systems, ACM (2011) 1403–1412
4. Howe, J.: The rise of crowdsourcing. Wired magazine 14(6) (2006) 1–4
5. Leuf, B., Cunningham, W.: The wiki way: quick collaboration on the web. (2001)
6. : recaptcha: Stop spam, read books. Website (2012) http://recaptcha.net/.
7. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha: Human-

based character recognition via web security measures. Science 321(5895) (2008)
1465–1468

8. Howe, J.: The rise of crowdsourcing. Website

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html.
9. Reiter, M., Breitenbücher, U., Dustdar, S., Karastoyanova, D., Leymann, F., Truong,

H.L.: A novel framework for monitoring and analyzing quality of data in simulation
workflows. In: eScience, IEEE Computer Society (2011) 105–112

http://en.wikipedia.org/wiki/The_Blind_Watchmaker
http://recaptcha.net/
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html


22 Authors Suppressed Due to Excessive Length

10. Kloppmann, M., et al.: WS-BPEL extension for people–bpel4people. Joint white
paper, IBM and SAP (2005)

11. Agrawal, A., et al.: Web Services Human Task (WS-HumanTask), version 1.0. (2007)
12. : Home — innocentive. Website (2012) http://www.innocentive.com/.
13. Amatriain, X., Lathia, N., Pujol, J., Kwak, H., Oliver, N.: The wisdom of the few: a

collaborative filtering approach based on expert opinions from the web. In: Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, ACM (2009) 532–539

14. Tai, S., Leitner, P., Dustdar, S.: Design by units - abstractions for human and compute

resources for elastic systems. IEEE Internet Computing (2012)
15. La Vecchia, G., Cisternino, A.: Collaborative workforce, business process crowdsourc-

ing as an alternative of bpo. Current Trends in Web Engineering (2010) 425–430
16. Vukovic, M.: Crowdsourcing for enterprises. In: Services-I, 2009 World Conference on,

Ieee (2009) 686–692
17. : Logo design, web design and more. design done differently — 99designs. Website

(2012) http://www.99designs.com/.
18. : Threadless graphic t-shirt designs: cool funny t-shirts weekly! tees designed by the

community. Website (2012) http://www.threadless.com/.
19. : Amazon mechanical turk. Website (2012) http://www.mturk.com/.
20. : Work from home — cloudcrowd - we’re working on it. lots of us. Website (2012)

http://www.cloudcrowd.com/.
21. : Topcoder, inc. — home of the world’s largest development community. Website

(2012) http://www.topcoder.com.
22. Brabham, D.: Crowdsourcing as a model for problem solving. Convergence: The

International Journal of Research into New Media Technologies 14(1) (2008) 75
23. Vukovic, M., Bartolini, C.: Towards a research agenda for enterprise crowdsourcing.

Leveraging Applications of Formal Methods, Verification, and Validation (2010) 425–
434

24. Stewart, O., Huerta, J., Sader, M.: Designing crowdsourcing community for the en-
terprise. In: Proceedings of the ACM SIGKDD Workshop on Human Computation,

ACM (2009) 50–53
25. : Crowdengineering - crowdsourcing customer service. Website (2012)

http://www.crowdengineering.com/.
26. von Ahn, L.: Games with a purpose. Computer 39(6) (june 2006) 92 –94
27. : Solve puzzles for science — foldit. Website (2012) http://fold.it/.
28. : gwap.com - home. Website (2012) http://www.gwap.com.
29. : Phylo. Website (2012) http://phylo.cs.mcgill.ca.
30. Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: An

overview. European journal of operational research 134(3) (2001) 664–676
31. Jordan, D., et al.: Web Services business Process Execution Language (WS-BPEL)

2.0. OASIS Standard 11 (2007)
32. : Scalable workforce - mechanical turk software. Website (2012)

http://www.scalableworkforce.com/.
33. Milanovic, N., Malek, M.: Current solutions for web service composition. Internet

Computing, IEEE 8(6) (2004) 51–59
34. Barowy, D., Berger, E., McGregor, A.: Automan: A platform for integrating human-

based and digital computation. Technical report, Technical report, University of Mas-

sachusetts, Amherst (2012)
35. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming en-

vironment for structured social computing. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology, ACM (2011) 53–64

36. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1) (2008) 107–113

37. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-
scale collaborations. IEEE Internet Computing 12(3) (2008) 62–68

http://www.innocentive.com/
http://www.99designs.com/
http://www.threadless.com/
http://www.mturk.com/
http://www.cloudcrowd.com/
http://www.topcoder.com
http://www.crowdengineering.com/
http://fold.it/
http://www.gwap.com
http://phylo.cs.mcgill.ca
http://www.scalableworkforce.com/


1 Virtualizing Software and Human for Elastic Hybrid Services 23

38. Dustdar, S., Bhattacharya, K.: The social compute unit. Internet Computing, IEEE
15(3) (2011) 64–69

39. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes
in multiple clouds–a service management perspective. International Journal of Next-

Generation Computing (IJNGC) (2012)
40. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service

level agreements for web services. Journal of Network and Systems Management 11(1)
(2003) 57–81

41. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al.: Web Services
Description Language (wsdl) 1.1 (2001)

42. Andrieux, A., et al.: Web Services Agreement specification (WS-Agreement). In:

Global Grid Forum. Number GFD. 107 (2004) 1–47
43. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T.,

Yalçınalp, U.: Web Services Policy framework 1.5. W3C Recommendation (September
2007)

44. Schall, D., Truong, H., Dustdar, S.: The human-provided services framework. In: 10th
IEEE Conference on E-Commerce Technology, IEEE (2008) 149–156

45. Benatallah, B., Sheng, Q., Dumas, M.: The self-serv environment for web services
composition. Internet Computing, IEEE 7(1) (2003) 40–48

46. Ponnekanti, S., Fox, A.: Sword: A developer toolkit for web service composition. In:
Proc. of the Eleventh International World Wide Web Conference, Honolulu, HI. (2002)

47. Chen, Q., Hsu, M.: Inter-enterprise collaborative business process management. In:

Data Engineering, 2001. Proceedings. 17th International Conference on, IEEE (2001)
253–260

48. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., Weikum, G.: From centralized
workflow specification to distributed workflow execution. Journal of Intelligent Infor-

mation Systems 10(2) (1998) 159–184
49. Schuler, C., Weber, R., Schuldt, H., Schek, H.: Peer–to–peer process execution with

osiris. Service-Oriented Computing-ICSOC 2003 (2003) 483–498

50. Heinis, T., Pautasso, C., Alonso, G.: Design and evaluation of an autonomic workflow
engine. In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second Interna-
tional Conference on, IEEE (2005) 27–38

51. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From people to ser-

vices to ui: distributed orchestration of user interfaces. Business Process Management
(2010) 310–326

52. White, S.: Introduction to BPMN. (2004)

53. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: Proceedings of the 14th Australasian database conference-Volume 17, Australian
Computer Society, Inc. (2003) 191–200

54. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data & Knowledge

Engineering 24(3) (1998) 211–238
55. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information

systems. Transactions on Petri Nets and Other Models of Concurrency II (2009) 115–
135

56. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for qos-aware service
composition based on genetic algorithms. In: Proceedings of the 2005 conference on
Genetic and evolutionary computation, ACM (2005) 1069–1075

57. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware
middleware for web services composition. Software Engineering, IEEE Transactions
on 30(5) (2004) 311–327

58. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for qos-

aware web service composition. In: Web Services, 2006. ICWS’06. International Con-
ference on, IEEE (2006) 72–82



24 Authors Suppressed Due to Excessive Length

59. Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective optimization of sla-
aware service composition. In: Services-Part I, 2008. IEEE Congress on, Ieee (2008)
368–375

60. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A lightweight approach for qos-

aware service composition. In: Proceedings of 2nd international conference on service
oriented computing (ICSOC04). (2004)

61. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating web
services discovery. The VLDB Journal 14(1) (2005) 84–96

62. Wu, J., Wu, Z., Li, Y., Deng, S.: Web service discovery based on ontology and similarity
of words. Jisuanji Xuebao(Chin. J. Comput.) 28(4) (2005) 595–602

63. Pathak, J., Koul, N., Caragea, D., Honavar, V.: A framework for semantic web services

discovery. In: Proceedings of the 7th annual ACM international workshop on Web
information and data management, ACM (2005) 45–50

64. Ran, S.: A model for web services discovery with qos. ACM Sigecom exchanges 4(1)
(2003) 1–10

65. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-enhanced qos-based web
services discovery. In: Web Services, 2007. ICWS 2007. IEEE International Conference
on, Ieee (2007) 249–256

66. Ali, R., Rana, O., Walker, D., Jha, S., Sohail, S.: G-qosm: Grid service discovery using
qos properties. Computing and Informatics 21(4) (2012) 363–382

67. Horowitz, D., Kamvar, S.: Searching the village: models and methods for social search.
Communications of the ACM 55(4) (2012) 111–118

68. Schall, D., Skopik, F., Dustdar, S.: Expert discovery and interactions in mixed service-
oriented systems. Services Computing, IEEE Transactions on (99) (2011) 1–1

69. Schall, D., Skopik, F., Psaier, H., Dustdar, S.: Bridging socially-enhanced virtual
communities. In: Proceedings of the 2011 ACM Symposium on Applied Computing,

ACM (2011) 792–799
70. : Turker communication. Website (2012) http://www.scalableworkforce.com/software-

features-and-benefits/turker-communication/.

71. : Crowdsourcing, labor on demand - crowdflower. Website (2012)
http://crowdflower.com/.

72. : Questions and answers chacha. Website (2012) http://www.chacha.com/.
73. Harris, D.: Exclusive: Crowdcontrol launches, brings ai to crowdsourcing. Website

(2011) http://gigaom.com/cloud/exclusive-crowdcontrol-launches-brings-ai-to-crowdsourcing/.
74. Dustdar, S., Guo, Y., Satzger, B., Truong, H.: Principles of elastic processes. Internet

Computing, IEEE 15(5) (2011) 66–71

75. Truong, H., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the
cloud. In: 10th International Conference on Service-oriented Computing (ICSOC
2012), Shanghai, China (Nov 12–16 2012)

http://crowdflower.com/
http://www.chacha.com/
http://gigaom.com/cloud/exclusive-crowdcontrol-launches-brings-ai-to-crowdsourcing/

	Virtualizing Software and Human for Elastic Hybrid Services
	Muhammad Z.C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong, and Schahram Dustdar
	Introduction
	Overview of Human Computation Approaches
	Crowdsourcing Platforms and Techniques
	People-centric Business Processes
	Humans as Programmable Units

	Incorporating Humans into Program Paradigms
	Challenges
	Virtualizing Humans as Programmable Compute Units

	State of The Art
	Composition Techniques
	Virtualization Techniques

	Programming Elastic Composite Applications in the Vienna Elastic Computing Model
	Multi-Dimensional Elastic Application
	Modeling Process Elasticity
	Executing Hybrid Services on The Cloud

	Conclusions and Future Work
	References



