
SPOTLIGHT

Principles for Engineering
IoT Cloud Systems

Hong-Linh Truong and Schahram Dustdar, Vienna University of Technology

This invited article explores how Internet of Things (IoT) cloud systems
could provide a coherent software layer for continuous deployment,
provisioning, and execution of applications for various domains.

ecently, we’ve seen a wide adoption
and deployment of Internet of Things
(IoT) infrastructures and systems
for various crucial applications,1

such as logistics, smart cities,2 and
healthcare. This has led to high de-

mands on data storage, processing, and management
services in cloud-based datacenters, engendering
strong integration needs between IoT and cloud
services. Cloud services are mature and provide ex-
cellent elastic computation and data management
capabilities for IoT. In addition, as IoT systems be-
come complex, cloud management techniques are
increasingly employed to manage IoT components.
Thus, cloud services now act as computational and
data processing platforms as well as management
platforms for IoT. From a high-level view, IoT ap-
pears to be well-integrated with cloud datacenters
to establish a uniform infrastructure for IoT cloud
applications. However, the software layers on top of
such integrated infrastructures are still fragmented,
and therefore far from a uniform software layer to
support a coherent execution environment for com-
plex applications.

IoT elements (sensors, actuators, gateways, light-
weight applications, and so on) are developed, de-
ployed, and operated separately from cloud services
(such as storage and data processing). Because of
the complexity of software ecosystems, IoT providers
are increasingly different from cloud providers with
regard to communication protocols, software layers,
and provisioning models, to name just a few. In addi-
tion, although cloud services, such as load balancers,
message-oriented middleware, NoSQL storage, and
streaming data processing frameworks, are designed
to accept workloads and data from IoT, they lack
capabilities to be coordinated with IoT operations.
For example, most cloud services reactively monitor
the load from IoT and adjust their performance be-
havior, but rarely communicate back to the IoT ele-
ments to steer the load generated by the IoT.

There are various reasons for these issues. Cloud
services and IoT are created separately by cloud pro-
viders and IoT providers. In addition, the complex-
ity of the IoT and cloud ecosystems prevents a single
stakeholder from offering software that works well
in IoT cloud systems. These issues prevent us from
developing and operating IoT cloud systems in a co-

68 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y 2 3 2 5 - 6 0 9 5/ 1 5 /$ 31 . 0 0 © 2 0 1 5 I EEE

M A R CH/A P R I L 2 0 1 5 I EEE CLO U D CO M P U T I N G 69

herent manner on top of infrastructures that blend
various types of resources. Thus, it’s hard to control
and manage both IoT and cloud services as a uniform
software layer (see the “IoT Cloud Systems: Some En-
gineering Principles” sidebar for further discussion).

However, further integration between IoT and
cloud services as well as emerging complex applica-
tions require a uniform software layer view on top
of these blended IoT elements and cloud services.

A tight integration between IoT and cloud services
allows coordination among IoT and cloud services.
That is, a cloud service could ask an IoT service,
which includes several IoT elements, to reduce the
amount of sensing data or the IoT service could ask
cloud services to prepare more resources for future
incoming data. Consider the example of a sensor
data as a service consisting of several hundred sen-
sors monitoring building chillers.3 We deploy such a

IOT CLOUD SYSTEMS: SOME ENGINEERING
PRINCIPLES

here are various ways to integrate Internet of
Things (IoT) elements (such as sensors, actuators,

and gateways) and cloud services in datacenters,1

in which several “things” are connected to these
services using software and layered protocols.2,3

Several IoT platforms, such as Pacifi c Controls Galaxy
(http://pacifi ccontrols.net/products/galaxy.html) and
xively (https://xively.com), have also been developed.4

In these IoT platforms, sensors and actuators are
connected to and/or accessible from datacenters via
gateways or intermediate nodes.

Ivana Podnar Zarko and her colleagues describe a
middleware for dynamically adding and removing sen-
sors to and from an IoT platform spanning mobile net-
works and cloud infrastructures.5 In general, most work
supports the development of either the IoT elements
or the cloud services for IoT; uniform IoT cloud systems
blending IoT and cloud services to provide a coherent
execution environment for complex applications are still
far from mature.

Although several principles have been studied for
cloud computing elasticity,6 cloud software engi-
neering,7 and cyber-physical systems,8 we haven’t
seen such principles for engineering software layers
on top of IoT cloud systems that off er a uniform view
on development, deployment, provisioning, and
operation of IoT cloud applications.

References

1. R. Petrolo, V. Loscrí, and N. Mitton, “Towards a

Smart City Based on Cloud of Things,” Proc. ACM

Int’ l Workshop Wireless and Mobile Technologies

for Smart Cities (WiMobCity 14), 2014, pp. 61–66.

2. P.P. Pereira et al., “Enabling Cloud Connectivity for

Mobile Internet of Things Applications,” Proc. IEEE

7th Int’ l Symp. Service-Oriented System Eng. (SOSE

13), 2013, pp. 518–526.

3. F. Bonomi et al., “Fog Computing and Its Role in

the Internet of Things,” Proc. 1st Edition of the MCC

Workshop on Mobile Cloud Computing (MCC 12),

2012, pp. 13–16.

4. H.-L. Truong and S. Dustdar, “Sustainability Data

and Analytics in Cloud-Based M2M Systems,” Big

Data and Internet of Things: A Roadmap for Smart

Environments, N. Bessis and C. Dobre, eds., Studies

in Computational Intelligence, vol. 546, Springer,

2014, pp. 343–365.

5. I. Zarko et al., “IoT Data Management Methods and

Optimization Algorithms for Mobile Publish/Sub-

scribe Services in Cloud Environments,” Proc. Eu-

ropean Conf. Networks and Comm. (EuCNC 14),

2014, pp. 1–5.

6. S. Dustdar et al., “Principles of Elastic Processes,”

IEEE Internet Computing, vol. 15, no. 5, 2011, pp.

66–71.

7. V.D. Cunsolo et al., “Applying Software Engineering

Principles for Designing Cloud@Home,” Proc. 10th

IEEE/ACM Int’ l Conf. Cluster, Cloud, and Grid Com-

puting (CCGrid 10), 2010, pp. 618–624.

8. M. Broy and A. Schmidt, “Challenges in Engineering

Cyber-Physical Systems,” Computer, vol. 47, no. 2,

2014, pp. 70–72.

70 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SPOTLIGHT

service in the IoT part, which includes infrastruc-
tures and IoT elements deployed next to the “things”
(at the edge of but not in the datacenter), by precon-
figuring the sensors’ data read rates and activating
only a subset of sensors. The activated sensors send
monitoring data to the cloud services, which pro-
cess the streaming data to check chiller behaviors.
Such data analytics might provide adequate out-
come to signal some abnormal behavior. To achieve
high-accuracy analytics, from the cloud side we
could activate more sensors and increase the read
rates of sensors on the fly. But, if this action isn’t
coordinated with the control of cloud services,
these services might not react quickly to deal with
a sudden voluminous amount of incoming data. For
example, it might take several minutes to acquire
and instantiate new computing resources for cloud
services; in other words, elasticity support in clouds
might not meet our needs.4 From this perspective,
we need a different way to program, control, and
manage both IoT and cloud services in a dynamic
and flexible way.

Lifting the IoT Software Stack for IoT
Cloud Systems
To date, certain parts of the IoT cloud system, such
as networks and cloud services, can be fairly well
controlled, but IoT elements can’t. Analogous to
cloud services in datacenters, which we can easily
select, combine, and deploy to provide a platform
suitable for a particular application or domain, the
software stack for IoT services should support virtual-
ization and composition. The key principle we want to
support here is continuous, end-to-end engineering
and elasticity. To lift the IoT software stack to a suit-
able abstraction, we could build a software-defined
machine (SDM) by composing different IoT units. In
this context, a SDM is similar to a small cloud infra-
structure in which we deploy different IoT units and
perform dynamic configuration and control of these
units at runtime.

As Figure 1 shows, the SDM for IoT has three
layers of software and hardware. At the bottom of
the SDM are flexible and rich configurations of
hardware to support (cloud) networking, enabling

Vertical
domain
application and
middleware

General-purpose
operating
systems

Sensors/actuators

Hardware Network and storage

3GEthernet

Cloud
systems

Software-defined
machines

Field
devices

OEM field
module…

Virtual machine/
OS container

Storage
management

Cloud
connectivity
management

Application
execution

management

Data point
management

Control point
management

OS common
building block

OS common
building block

OS common
building block

Virtual machine/OS container

(Partial) IoT cloud applications

Vertical domain middleware
i

Software-defined environment
for vertical domain

Vertical domain
middleware

i

Networking driver Storage driver Field device
driver

Field device
driver

Field device
driver

Field
devices

OEM field
module

Field
devices

OEM field
module

FIGURE 1. Software-defined machine (SDM) for the Internet of Things (IoT) part, which includes infrastructures and IoT elements

deployed next to the “things” (at the edge of but not in the datacenter).

M A R CH/A P R I L 2 0 1 5 I EEE CLO U D CO M P U T I N G 71

IoT services to switch between communication
hardware devices that support software-defined
networking (SDN) for different loads. The storage
should allow us to plug in different storage devices.
Finally, OEM field device modules let us easily in-
tegrate different field devices (such as sensors and
actuators) that have different device interfaces and
communication protocols.

In the middle layer, general-purpose operating
systems with virtualization capabilities include both
common building blocks for the operating system
and new building blocks.

Network drivers interface to networking hard-
ware and can be used to control and manage the
cloud network at runtime. Network drivers togeth-
er with the cloud networking hardware act like a
software-defined router,5 which can be programmed
to control communication protocols, interfaces, and
so on. The data routed from this hardware can go to
another SDM or to cloud services.

Storage drivers and the underlying storage
would allow us to store data in an SDM locally or di-
rectly to the cloud storage. The important issue here
is that by storing data into the SDM storage using
software-defined APIs, we could configure wheth-
er to store the data locally or forward it to another
SDM or cloud service.

The software-defined environment for a virtual
domain allows us to create and launch vertical do-
main middleware and its services and applications.
A virtual domain middleware would include a light-
weight virtual machine/operating system container
plus many components customized to the applica-
tion domain.

In the top layer, the focus of our work, the ver-
tical domain middleware is a software system that
includes several components running on top of a vir-
tual machine or operating system container. It con-
sists of five main building blocks:

• Cloud connectivity management provides APIs
that the application uses to exploit features of
SDN in the application logic. For example, the
application can decide to switch from broad-
band to mobile communication within its appli-
cation logic at runtime.

• Storage management lets applications store data
locally or remotely in a simple, unified way.
Configuration of where the data is stored should
be done via software-defined APIs.

• The application execution environment runs and
manages specific applications on top of an SDM.
Applications can be deployed, executed, stopped,
and so on at runtime based on software-defined

APIs. Applications will exploit all other features
of the vertical domain.

• Datapoint management lets applications create,
merge, read, and write the datastreams they need.
Datastreams are based on data from field device
drivers. From a programming perspective, a data-
point is an abstraction with software-defined APIs
to support datastream operations (such as reduc-
ing or increasing the data read rate).

• Control point management lets us exploit
software-defined capabilities to control field
devices and their connections to the SDM. For
example, the application can use control point
management to disconnect a field device from
the SDM or to increase a field device’s read rate
at runtime.

From the middleware, several vertical domains can
be deployed and provisioned in an SDM using a
software-defined environment for the vertical do-
main. When an SDM is realized with virtualization
and composition capabilities such as cloud services,
we can focus on engineering issues for coherent IoT
cloud systems.

Engineering Perspectives for Coherent IoT Cloud
Systems
By lifting the IoT software stack (for example, us-
ing the SDM concept), we could glue various IoT
and cloud infrastructures and software to create
IoT cloud systems. Table 1 shows possible hardware,
software services, and protocols we could use to
build an IoT cloud system.

Although IoT cloud systems consist of different
types of infrastructures, software developers and
service providers would expect to see uniform engi-
neering techniques because they would develop and
operate their software in a uniform software layer.
An IoT cloud system that enables a software layer
across both cloud and IoT infrastructures for cus-
tomers must support the following functions.

End-to-end engineering and optimization. Develop-
ers must be able to develop and optimize code in an
end-to-end view, and providers must consider end-
to-end properties. For example, when composing
components to design an IoT cloud application, we
should be able to select sensors, gateways, message-
oriented middleware (MOM), load balancers, and
so on. We also need to create suitable topologies
of these components and deploy them in the same
manner, although the components would be execut-
ed in different parts of the IoT cloud systems, and
we’d need various underlying techniques to support

72 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SPOTLIGHT

this. Even though we provision these components at
different places, the operator of such applications
would focus on end-to-end service objectives, rather
than just local properties of particular components
or parts of the applications in the cloud or in the IoT
infrastructure.

Development and production symbiosis. IoT cloud
systems are complex. After deploying such systems,
we could change the configuration but a reconfigu-
ration must not stop all running components in the
system. Thus, we must develop, deploy, and operate
IoT cloud systems while continuing to add and test
emulated or simulated IoT parts or cloud services
together with the running (production) IoT cloud
systems. For this purpose, engineering techniques
must support possibilities for deploying and con-
necting emulated and simulated IoT and cloud ser-
vice parts in a running system.

Elasticity coherence. Resources blended into an
IoT cloud system and runtime demands for the IoT
cloud system are both highly dynamic. Principles of
elasticity will be applied in different parts of the IoT
cloud system, but the elasticity must be coordinated
among IoT and cloud services to ensure coherence.1

For example, when increasing the number of sensors
(elasticity of sensors as data resources), we should
similarly increase the computing resources for cloud
services, which process and store sensor data.

Engineering Principles for IoT Cloud Systems
Engineering principles for IoT cloud systems should
support the functions we’ve described throughout the
different phases of the IoT cloud system lifecycle:

• The development phase includes techniques for
selecting, composing, and integrating compo-
nents across the IoT cloud system for specifying
and developing possible governance and control
operations.

• The deployment and provisioning phase includes
techniques for deploying various types of soft-
ware components in the IoT cloud system at dif-
ferent levels of abstractions; and capabilities to
configure and connect deployments and allow
continuous provisioning.

• The operation phase includes capabilities to
monitor end-to-end metrics, perform governance
processes across the systems, and control coordi-
nated elasticity processes.

Next, we describe the seven main principles for
engineering IoT cloud systems. Table 2 summarizes
how these principles support phases in the system
lifecycle.

Principle 1: Enable virtualization and composition

of IoT components as units. This principle relates to
the development phase. Because of the IoT’s diver-
sity and complexity, we need powerful abstractions
to simplify the integration and configuration of IoT
components. We must enable selection and compo-
sition of software elements for the IoT services from
multiple providers, similar to the manner in which
we do so for cloud services. Thus, we apply the
mature concept of virtualization and service com-
position in the cloud to IoT infrastructures and plat-
forms, enabling the applicability of virtualization
and composition techniques and tools throughout
the IoT cloud systems. This calls for new develop-

Table 1. Sample of infrastructure, protocols, and software platforms for establishing an Internet of Things (IoT) cloud
system.

Types IoT Clouds Purpose

Infrastructure
machines

Industrial and common gateways
(for example, Intel IoT Gateway) and
operating system containers (such as
Dockers)

Virtual machines and operating system
containers

Enable (virtual) machines
where software
components will be
executed

Connectivity
protocols

Message Queue Telemetry Transport
(MQTT), Constrained Application
Protocol (CoAP), HTTP, control area
network (CAN) bus

MQTT, Advanced Message Queuing
Protocol (AMQP), HTTP, and so on

Enable connectivity
among IoT elements
and between the IoT
part and cloud services

Platform
software
services

Lightweight data services (such
as NiagaraAX/Obix), lightweight
complex event processing (CEP) and
data fusion, topology description
and deployment service (such as
TOSCA), and lightweight application
containers (such as OSGI and Sedona)

Load balancers (such as HAProxy),
message-oriented middleware (MOM)
(such as ActiveMQ and Kafka), NoSQL,
stream/batch processing (such as Hadoop
and Spark), component repositories/
marketplaces, and deployment services
(such as TOSCA, HEAT, and Chef)

Enable core platform
services for IoT and
cloud tasks

M A R CH/A P R I L 2 0 1 5 I EEE CLO U D CO M P U T I N G 73

ment of the concept service units for the IoT, such
as software-defined IoT units.6 We need such units
for abstracting sensor data points, actuator control
points, cloud network connectivity, and IoT gate-
ways. Virtualization of IoT components also enables
elasticity and a pay-per-use model of diverse types of
IoT units for different vertical domains.

Principle 2: Enable emulated/simulated IoT parts

working with production cloud services. This prin-
ciple is related to both the development and opera-
tion phases. Although we can develop and deploy
cloud services in IoT cloud systems entirely in cloud
software infrastructures, we can’t do the same for
IoT parts in many cases. During the development
phase, it’s difficult to deploy real sensors, actuators,
and gateways in a large-scale setting to test if they’d
work. Therefore, engineering tools must support
emulated/simulated sensors, actuators, and gate-
ways, fostering symbiotic development and opera-
tion engineering actions. On the one hand, we need
to develop emulated/simulated sensors, actuators,
and gateways. Such emulated/simulated elements
are, in principle, real software, but they’re deployed
in emulated environments. For example, hundreds
of sensors can be deployed in a virtual machine.
However, these sensors should be able to produce
realistic sensor data and be controlled from cloud
services. The use of realistic data, high-level emulat-
ed sensors, and lightweight virtual machines would
be a good starting point.

Principle 3: Enable dynamic provisioning of IoT and

cloud service units through uniform marketplaces

and repositories for multiple stakeholders. This
principle is related to all phases of IoT cloud sys-
tems in which different stakeholders (developers, in-

frastructure providers, software providers, and end
users) will develop, sell, and operate IoT and cloud
units. Equipped with virtualization and composi-
tion tools, these stakeholders could develop and sell
different types of units, which can be easily offered
via mature data/software marketplaces and reposi-
tories.7 IoT cloud system engineering tools should
interface with existing dynamic marketplaces in an
integrated and uniform manner to enable pay per
use, compatibility checks, and dynamic software
packaging for the provisioning processes.8

Principle 4: Provide multilevel software stack de-

ployment and configuration. This principle is relat-
ed to the deployment and provisioning and operation
phases. With capabilities supported from principles
1–3, both the IoT cloud system and the applications
will require on-demand deployment and configura-
tion of diverse types of software units. Obviously,
these units range from virtual machines, operating
system containers, network connectivity components,
and sensors, to lightweight application and heavy-
weight cloud services. Any deployment and configu-
ration tool for the IoT cloud system must deal with
different software stack layers. Contemporary de-
ployment and configuration tools, on the other hand,
mainly work with a single software stack, such as
static deployment at the virtual machine level or dy-
namic deployment at the application container level.
This principle forces us to combine different deploy-
ment and configuration techniques to provide a cross-
software stack and a cross-infrastructure deployment.

Principle 5: Provide software-defined elasticity and

primitive governance functions for all IoT and cloud

service units. This principle is related to the devel-
opment of IoT cloud systems and is also strongly

Table 2. Summary of highlighted principles for engineering IoT cloud systems.

Principle Development
phase

Deployment
and

provisioning
phase

Operation
phase

End-to-end
engineering

and
optimization

Development
and production

symbiosis

Elasticity
coherence

1 + + + + + +

2 + + +

3 + + + +

4 + + + + + +

5 + + + +

6 + + +

7 + + +

Note: A “+” indicates that the principle supports the listed perspective and phase.

74 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SPOTLIGHT

related to other principles for the operation phase.
Software-defined elasticity and primitive gover-
nance functions let us control units individually at
runtime. Having these functions would let us de-
velop complex governance and elasticity control pro-
cesses by composing the primitive functions from
different units. This will also let us support end-to-
end coordinated elasticity control across the entire
IoT cloud system.

Principle 6: Provide monitoring and analysis for an

end-to-end view on elasticity and dependability

properties. This principle is related to the operation
and development phases. Clearly, various existing
monitoring and analysis tools will allow us to moni-
tor and understand different behaviors of IoT units,
cloud services, and networks. But what’s important
to the developer and the operator is to have a clear
end-to-end view of software behavior so they can op-
timize the development and operation. For end-to-
end elasticity metrics that characterize the behavior
of IoT cloud systems,9 we need complex composable
methods to evaluate them by leveraging different
types of monitoring data vertically and horizontally
correlated across the whole IoT cloud system. Thus,
we must focus on connecting different types of
monitoring systems and present new metrics charac-
terizing the end-to-end behavior.

Principle 7: Coordinate elasticity to enable a co-

herent elastic execution throughout the whole

IoT cloud system. This principle is related to the
operation phase. Elasticity will be seen at differ-
ent parts of the IoT cloud system. We could have
typical elasticity with regard to resources and qual-
ity in the cloud services. But we can also carry out
different types of elasticity at the IoT part, such as
provisioning and activating many more sensors to
increase the quality of sensing data for data analyt-
ics. However, we need a closer loop among different
parts of the IoT cloud system to optimize system
operation. Therefore, we must support elasticity at
various parts in a coherent way—for example, an
elasticity strategy in the IoT part should be commu-
nicated to the cloud service part to prevent unex-
pected behaviors. One possibility is to examine the
relationship between coordination and elasticity.10

Another possibility is to extend current elasticity
control algorithms in the cloud for IoT11 by com-
bining IoT governance processes.12 Furthermore,
we can also learn concepts for resource elasticity in
federated clouds.13,14 However, most of these tech-
niques must be reworked to support end-to-end
metrics. From the system perspective, IoT units

and cloud services must support primitive actions
so one can perform elasticity actions at runtime.
This is highly related to issues in deployment, pro-
visioning, and runtime governance.

Example Implementations
The principles we’ve described are based on our re-
search and experience in developing various tools
for IoT cloud systems. Two implementations demon-
strate how we can apply these principles in software
frameworks.

Software-Defined Machines
Principle 1 (on virtualization and composition of IoT
components) is crucial to enabling the three func-
tions discussed earlier. However, supporting virtual-
ization and composition at the IoT part is challenging.
By designing SDM concepts and tools,6,8,12 we aim
to support principle 1 and other related principles to
make sure that IoT components can be easily com-
posed, deployed, and controlled. Engineering such
SDMs and other components in their ecosystems
for coherent IoT cloud systems is challenging. Fortu-
nately, several parts of the system can be leveraged
by utilizing cloud services for the datacenter part
and for IoT marketplaces. Over the past two years,
we’ve concentrated on four aspects of SDMs: tools
for building IoT units, governance of IoT units, mar-
ketplaces and provisioning units, and dynamic data
and control points for sensors and actuators. At the
moment, prototypes of governance, provisioning and
marketplaces, and dynamic data and control points
are available under open source licenses.

iCOMOT Toolset
As noted earlier, during the development and opera-
tion of the software layer of IoT cloud systems, we
need different tools to enable different goals, such as
deployment, provisioning, control, and monitoring.
Our prototype, iCOMOT (http://tuwiendsg.github.io/
iCOMOT), supports the seven principles and includes
the tools shown in the bottom layer of Figure 215:

• Salsa (Setting and Launching Service Applica-
tions) enables multilevel software stack deploy-
ment across IoT and cloud infrastructures.16

• GovOps (Governance and Operations) supports
runtime governance management for IoT units
and gateways.

• Mela (Monitoring Elasticity) enables elastic-
ity monitoring and analytics across IoT cloud
systems.

• rSYBL (runtime Simple Yet Beautiful Language)
supports elasticity controls by invoking different

M A R CH/A P R I L 2 0 1 5 I EEE CLO U D CO M P U T I N G 75

strategies for cost, performance, and resources
in a coordinated manner across IoT and cloud
services.

Except for GovOps, which is designed for IoT units,
many of iCOMOT’s features are based on cloud ser-
vice elasticity features extended for IoT units and
SDMs.

As an example, consider the case of a predictive
maintenance company that’s interested only in man-
aging sensors, actuators, and data processing and
storage to support its maintenance analytics. The
analytics includes lightweight analytics and control
and data analytics, as shown in the top layer of Fig-
ure 2. The company requires a software layer as an
IoT cloud system built on top of several rented IoT
and cloud infrastructures, shown in the middle layer
of Figure 2. Using deployment tools, iCOMOT could
support the developer and the provider in joining
different configurations of an IoT cloud system. For
example, a sensor-data-as-a-service configuration
could include several sensors to be deployed and
controlled at runtime (activate, deactivate, change
read rate, and so on). Such a configuration could be
used to both deploy emulated sensors and control
real sensors. This configuration could be connected
to a configuration of real production cloud services
and gateways. Using iCOMOT, one could perform
some principles on dynamic elasticity configura-
tion and control. Furthermore, sensors and services

come from different providers and are hosted in dif-
ferent marketplaces or repositories. To deploy such
very different configurations, our software must
deal with multilevel software stack configuration
and control.

Users can also observe and analyze high-level
elasticity properties in an end-to-end view: from the
entire IoT cloud system, to specific topologies of ser-
vice units, to individual units. For example, costs for
the software layer can be determined on the fly from
costs for various gateways, data services, load bal-
ancers, and so on, based on their complex dependen-
cies and sensor data rates. Such costs and data rates
are fed to an elasticity controller that can enable
flexible elasticity strategies at the IoT part or cloud
services. For example, it can stop changing the sen-
sor’s read rate when the cost for the whole system
violates user expectations.

ur current work has focused on the realization
of the seven principles described here. As our

initial results show, once we can provide such tools,
we’ll release the developer and provider from several
obstacles to enable a smooth software layer on top of
complex, hybrid, and blended IoT and cloud services.
However, we haven’t discussed other important prin-
ciples related to security, privacy, and compliance in
IoT cloud systems. We aim to study such principles
in future work.

Sensors Gateways

Invoke

Sensor
data

Metrics

Lightweight analytics
and control

Edge: IoT units Cloud:
Cloud services

Large-scale
data analytics

IoT cloud applications

IoT cloud systems: Software layer

IoT governance
(GovOps)

Deployment and configuration
(Salsa)

Deploy, configure, govern, and control

Monitoring and analytics
(Mela)

iCOMOT services and tools

Elasticity control
(rSYBL)

Load
balancer

EventHandling
Web service NoSQL

big data

Near-real-time data
processing

Message-oriented
middleware

FIGURE 2. iCOMOT for IoT cloud systems.15 The top layer represents typical IoT applications executed across IoT and clouds. The

middle layer represents the software layer as an IoT cloud system built on top of various types of cloud services and IoT elements.

The bottom layer shows different tools and services from iCOMOT that can be used to monitor, control, and configure the

software layer.

76 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SPOTLIGHT

Acknowledgments
For their fruitful discussions and contributions to-
ward realizing some of the principles presented in
this article, we thank our PhD students and col-
leagues, especially Georgiana Copil, Alessio Gambi,
Christian Inzinger, Duc-Hung Le, Daniel Moldovan,
Stefan Nastic, Sanjin Sehic, and Michael Vögler.
The work mentioned in this article is partially sup-
ported by the European Commission through the
CELAR FP7 project (FP7-ICT-2011-8 #317790), the
H2020 LEIT U-test, and the Pacific Controls Cloud
Computing Lab (pc3l.infosys.tuwien.ac.at).

References
1. A. Botta et al., “On the Integration of Cloud

Computing and Internet of Things,” Proc. Int’l
Conf. Future Internet of Things and Cloud (Fi-
Cloud 14), 2014, pp. 23–30.

2. J.M. Hernández-Muñoz et al., “Smart Cities at
the Forefront of the Future Internet,” The Fu-
ture Internet, J. Domingue et al., eds., Springer,
2011, pp. 447–462.

3. H.-L. Truong and S. Dustdar, “Programming
Elasticity in the Cloud,” Computer, vol. 48, no.
3, 2015, pp. 87–90.

4. P.C. Brebner, “Is Your Cloud Elastic Enough?
Performance Modelling the Elasticity of Infra-
structure as a Service (IaaS) Cloud Applica-
tions,” Proc. 3rd ACM/SPEC Int’l Conf. Perfor-
mance Eng. (ICPE 12), 2012, pp. 263–266.

5. K. Kirkpatrick, “Software-Defined Networking,”
Comm. ACM, vol. 56, no. 9, 2013, pp. 16–19.

6. S. Nastic et al., “Provisioning Software-Defined
IoT Cloud Systems,” Proc. 2nd Int’l Conf. Future
Internet of Things and Cloud (FiCloud 14), 2014,
pp. 288–295.

7. O. Krieger, P. McGachey, and A. Kanevsky,
“Enabling a Marketplace of Clouds: VMware’s
vCloud Director,” Operating Systems Rev., vol.
44, no. 4, 2010, pp. 103–114.

8. M. Vögler et al., “LEONORE—Large-Scale
Provisioning of Resource-Constrained IoT De-
ployments,” Proc. 9th IEEE Int’l Symp. Service-
Oriented System Eng. (SOSE 15), 2015, pp. 78–87.

9. D. Moldovan et al., “MELA: Elasticity Analytics
for Cloud Services,” Int’l J. Big Data Intelligence,
vol. 2, no. 1, 2015, pp. 45–62.

10. S. Mariani et al., “Coordination-Aware Elastic-
ity,” Proc. 7th IEEE/ACM Int’l Conf. Utility and
Cloud Computing, 2014, pp. 465–472.

11. G. Copil et al., “On Controlling Cloud Services
Elasticity in Heterogeneous Clouds,” Proc. 7th
IEEE/ACM Int’l Conf. Utility and Cloud Com-
puting, 2014, pp. 573–578.

12. S. Nastic et al., “rtGovOps: A Runtime Frame-
work for Governance in Large-scale Software-
defined IoT Cloud Systems,” Proc. 3rd IEEE Int’l
Conf. Mobile Cloud Computing, Services, and
Eng., 2015, pp. 24–33.

13. F. Paraiso, P. Merle, and L. Seinturier, “Manag-
ing Elasticity across Multiple Cloud Providers,”
Proc. Int’l Workshop Multi-cloud Applications
and Federated Clouds (MultiCloud 13), 2013, pp.
53–60; doi:10.1145/2462326.2462338.

14. R.N. Calheiros et al., “A Coordinator for Scal-
ing Elastic Applications across Multiple Clouds,”
Future Generation Computer Systems, vol. 28,
no. 8, 2012, pp. 1350–1362.

15. H.-L. Truong et al., “iCOMOT: Toolset for Man-
aging IoT Cloud Systems,” demo, 16th IEEE Int’l
Conf. Mobile Data Management, 2015.

16. D.-H. Le et al., “SALSA: A Framework for Dy-
namic Configuration of Cloud Services,” Proc.
6th Int’l Conf. Cloud Computing Technology and
Science, 2014, pp. 146–153.

HONG-LINH TRUONG is an assistant profes-
sor in the Distributed Systems Group at the Vienna
University of Technology. His work focuses on service
engineering analytics—in particular, for cloud com-
puting; service-oriented architectures and comput-
ing; distributed and parallel computing; Internet of
Things; complex and elastic distributed systems; and
context-aware computing. Truong has a PhD and
Habilitation in computer science from the Vienna
University of Technology. Contact him at truong@dsg.
tuwien.ac.at.

SCHAHRAM DUSTDAR is a full professor of com-
puter science (informatics) and heads the Distributed
Systems Group at the Vienna University of Technol-
ogy. His work focuses on Internet technologies. Dust-
dar is a member of the Academy Europeana, an ACM
Distinguished Scientist, and recipient of the IBM
Faculty Award 2012. Contact him at dustdar@dsg.
tuwien.ac.at.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

