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This invited article explores how Internet of Things (IoT) cloud systems 
could provide a coherent software layer for continuous deployment, 
provisioning, and execution of applications for various domains. 

ecently, we’ve seen a wide adoption 
and deployment of Internet of Things 
(IoT) infrastructures and systems 
for various crucial applications,1

such as logistics, smart cities,2 and 
healthcare. This has led to high de-

mands on data storage, processing, and management 
services in cloud-based datacenters, engendering 
strong integration needs between IoT and cloud 
services. Cloud services are mature and provide ex-
cellent elastic computation and data management 
capabilities for IoT. In addition, as IoT systems be-
come complex, cloud management techniques are 
increasingly employed to manage IoT components. 
Thus, cloud services now act as computational and 
data processing platforms as well as management 
platforms for IoT. From a high-level view, IoT ap-
pears to be well-integrated with cloud datacenters 
to establish a uniform infrastructure for IoT cloud 
applications. However, the software layers on top of 
such integrated infrastructures are still fragmented, 
and therefore far from a uniform software layer to 
support a coherent execution environment for com-
plex applications. 

IoT elements (sensors, actuators, gateways, light-
weight applications, and so on) are developed, de-
ployed, and operated separately from cloud services 
(such as storage and data processing). Because of 
the complexity of software ecosystems, IoT providers 
are increasingly different from cloud providers with 
regard to communication protocols, software layers, 
and provisioning models, to name just a few. In addi-
tion, although cloud services, such as load balancers, 
message-oriented middleware, NoSQL storage, and 
streaming data processing frameworks, are designed 
to accept workloads and data from IoT, they lack 
capabilities to be coordinated with IoT operations. 
For example, most cloud services reactively monitor 
the load from IoT and adjust their performance be-
havior, but rarely communicate back to the IoT ele-
ments to steer the load generated by the IoT. 

There are various reasons for these issues. Cloud 
services and IoT are created separately by cloud pro-
viders and IoT providers. In addition, the complex-
ity of the IoT and cloud ecosystems prevents a single 
stakeholder from offering software that works well 
in IoT cloud systems. These issues prevent us from 
developing and operating IoT cloud systems in a co-
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herent manner on top of infrastructures that blend 
various types of resources. Thus, it’s hard to control 
and manage both IoT and cloud services as a uniform 
software layer (see the “IoT Cloud Systems: Some En-
gineering Principles” sidebar for further discussion). 

However, further integration between IoT and 
cloud services as well as emerging complex applica-
tions require a uniform software layer view on top 
of these blended IoT elements and cloud services. 

A tight integration between IoT and cloud services 
allows coordination among IoT and cloud services. 
That is, a cloud service could ask an IoT service, 
which includes several IoT elements, to reduce the 
amount of sensing data or the IoT service could ask 
cloud services to prepare more resources for future 
incoming data. Consider the example of a sensor 
data as a service consisting of several hundred sen-
sors monitoring building chillers.3 We deploy such a 

IOT CLOUD SYSTEMS: SOME ENGINEERING 
PRINCIPLES

here are various ways to integrate Internet of 
Things (IoT) elements (such as sensors, actuators, 

and gateways) and cloud services in datacenters,1

in which several “things” are connected to these 
services using software and layered protocols.2,3 

Several IoT platforms, such as Pacifi c Controls Galaxy 
(http://pacifi ccontrols.net/products/galaxy.html) and 
xively (https://xively.com), have also been developed.4

In these IoT platforms, sensors and actuators are 
connected to and/or accessible from datacenters via 
gateways or intermediate nodes. 

Ivana Podnar Zarko and her colleagues describe a 
middleware for dynamically adding and removing sen-
sors to and from an IoT platform spanning mobile net-
works and cloud infrastructures.5 In general, most work 
supports the development of either the IoT elements 
or the cloud services for IoT; uniform IoT cloud systems 
blending IoT and cloud services to provide a coherent 
execution environment for complex applications are still 
far from mature. 

Although several principles have been studied for 
cloud computing elasticity,6 cloud software engi-
neering,7 and cyber-physical systems,8 we haven’t 
seen such principles for engineering software layers 
on top of IoT cloud systems that off er a uniform view 
on development, deployment, provisioning, and 
operation of IoT cloud applications. 
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service in the IoT part, which includes infrastruc-
tures and IoT elements deployed next to the “things” 
(at the edge of but not in the datacenter), by precon-
figuring the sensors’ data read rates and activating 
only a subset of sensors. The activated sensors send 
monitoring data to the cloud services, which pro-
cess the streaming data to check chiller behaviors. 
Such data analytics might provide adequate out-
come to signal some abnormal behavior. To achieve 
high-accuracy analytics, from the cloud side we 
could activate more sensors and increase the read 
rates of sensors on the fly. But, if this action isn’t 
coordinated with the control of cloud services, 
these services might not react quickly to deal with 
a sudden voluminous amount of incoming data. For 
example, it might take several minutes to acquire 
and instantiate new computing resources for cloud 
services; in other words, elasticity support in clouds 
might not meet our needs.4 From this perspective, 
we need a different way to program, control, and 
manage both IoT and cloud services in a dynamic 
and flexible way.

Lifting the IoT Software Stack for IoT 
Cloud Systems
To date, certain parts of the IoT cloud system, such 
as networks and cloud services, can be fairly well 
controlled, but IoT elements can’t. Analogous to 
cloud services in datacenters, which we can easily 
select, combine, and deploy to provide a platform 
suitable for a particular application or domain, the 
software stack for IoT services should support virtual-
ization and composition. The key principle we want to 
support here is continuous, end-to-end engineering 
and elasticity. To lift the IoT software stack to a suit-
able abstraction, we could build a software-defined 
machine (SDM) by composing different IoT units. In 
this context, a SDM is similar to a small cloud infra-
structure in which we deploy different IoT units and 
perform dynamic configuration and control of these 
units at runtime. 

As Figure 1 shows, the SDM for IoT has three 
layers of software and hardware. At the bottom of 
the SDM are flexible and rich configurations of 
hardware to support (cloud) networking, enabling 
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FIGURE 1. Software-defined machine (SDM) for the Internet of Things (IoT) part, which includes infrastructures and IoT elements 

deployed next to the “things” (at the edge of but not in the datacenter).
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IoT services to switch between communication 
hardware devices that support software-defined 
networking (SDN) for different loads. The storage 
should allow us to plug in different storage devices. 
Finally, OEM field device modules let us easily in-
tegrate different field devices (such as sensors and 
actuators) that have different device interfaces and 
communication protocols.

In the middle layer, general-purpose operating 
systems with virtualization capabilities include both 
common building blocks for the operating system 
and new building blocks. 

Network drivers interface to networking hard-
ware and can be used to control and manage the 
cloud network at runtime. Network drivers togeth-
er with the cloud networking hardware act like a 
software-defined router,5 which can be programmed 
to control communication protocols, interfaces, and 
so on. The data routed from this hardware can go to 
another SDM or to cloud services.

Storage drivers and the underlying storage 
would allow us to store data in an SDM locally or di-
rectly to the cloud storage. The important issue here 
is that by storing data into the SDM storage using 
software-defined APIs, we could configure wheth-
er to store the data locally or forward it to another 
SDM or cloud service.

The software-defined environment for a virtual 
domain allows us to create and launch vertical do-
main middleware and its services and applications. 
A virtual domain middleware would include a light-
weight virtual machine/operating system container 
plus many components customized to the applica-
tion domain.

In the top layer, the focus of our work, the ver-
tical domain middleware is a software system that 
includes several components running on top of a vir-
tual machine or operating system container. It con-
sists of five main building blocks:

• Cloud connectivity management provides APIs 
that the application uses to exploit features of 
SDN in the application logic. For example, the 
application can decide to switch from broad-
band to mobile communication within its appli-
cation logic at runtime.

• Storage management lets applications store data 
locally or remotely in a simple, unified way. 
Configuration of where the data is stored should 
be done via software-defined APIs.

• The application execution environment runs and 
manages specific applications on top of an SDM. 
Applications can be deployed, executed, stopped, 
and so on at runtime based on software-defined 

APIs. Applications will exploit all other features 
of the vertical domain.

• Datapoint management lets applications create, 
merge, read, and write the datastreams they need. 
Datastreams are based on data from field device 
drivers. From a programming perspective, a data-
point is an abstraction with software-defined APIs 
to support datastream operations (such as reduc-
ing or increasing the data read rate).

• Control point management lets us exploit 
software-defined capabilities to control field 
devices and their connections to the SDM. For 
example, the application can use control point 
management to disconnect a field device from 
the SDM or to increase a field device’s read rate 
at runtime.

From the middleware, several vertical domains can 
be deployed and provisioned in an SDM using a 
software-defined environment for the vertical do-
main. When an SDM is realized with virtualization 
and composition capabilities such as cloud services, 
we can focus on engineering issues for coherent IoT 
cloud systems. 

Engineering Perspectives for Coherent IoT Cloud 
Systems
By lifting the IoT software stack (for example, us-
ing the SDM concept), we could glue various IoT 
and cloud infrastructures and software to create 
IoT cloud systems. Table 1 shows possible hardware, 
software services, and protocols we could use to 
build an IoT cloud system.

Although IoT cloud systems consist of different 
types of infrastructures, software developers and 
service providers would expect to see uniform engi-
neering techniques because they would develop and 
operate their software in a uniform software layer. 
An IoT cloud system that enables a software layer 
across both cloud and IoT infrastructures for cus-
tomers must support the following functions.

End-to-end engineering and optimization. Develop-
ers must be able to develop and optimize code in an 
end-to-end view, and providers must consider end-
to-end properties. For example, when composing 
components to design an IoT cloud application, we 
should be able to select sensors, gateways, message-
oriented middleware (MOM), load balancers, and 
so on. We also need to create suitable topologies 
of these components and deploy them in the same 
manner, although the components would be execut-
ed in different parts of the IoT cloud systems, and 
we’d need various underlying techniques to support 
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this. Even though we provision these components at 
different places, the operator of such applications 
would focus on end-to-end service objectives, rather 
than just local properties of particular components 
or parts of the applications in the cloud or in the IoT 
infrastructure. 

Development and production symbiosis. IoT cloud 
systems are complex. After deploying such systems, 
we could change the configuration but a reconfigu-
ration must not stop all running components in the 
system. Thus, we must develop, deploy, and operate 
IoT cloud systems while continuing to add and test 
emulated or simulated IoT parts or cloud services 
together with the running (production) IoT cloud 
systems. For this purpose, engineering techniques 
must support possibilities for deploying and con-
necting emulated and simulated IoT and cloud ser-
vice parts in a running system. 

Elasticity coherence. Resources blended into an 
IoT cloud system and runtime demands for the IoT 
cloud system are both highly dynamic. Principles of 
elasticity will be applied in different parts of the IoT 
cloud system, but the elasticity must be coordinated 
among IoT and cloud services to ensure coherence.1

For example, when increasing the number of sensors 
(elasticity of sensors as data resources), we should 
similarly increase the computing resources for cloud 
services, which process and store sensor data. 

Engineering Principles for IoT Cloud Systems
Engineering principles for IoT cloud systems should 
support the functions we’ve described throughout the 
different phases of the IoT cloud system lifecycle:

• The development phase includes techniques for 
selecting, composing, and integrating compo-
nents across the IoT cloud system for specifying 
and developing possible governance and control 
operations.

• The deployment and provisioning phase includes 
techniques for deploying various types of soft-
ware components in the IoT cloud system at dif-
ferent levels of abstractions; and capabilities to 
configure and connect deployments and allow 
continuous provisioning.

• The operation phase includes capabilities to 
monitor end-to-end metrics, perform governance 
processes across the systems, and control coordi-
nated elasticity processes. 

Next, we describe the seven main principles for 
engineering IoT cloud systems. Table 2 summarizes 
how these principles support phases in the system 
lifecycle. 

Principle 1: Enable virtualization and composition 

of IoT components as units. This principle relates to 
the development phase. Because of the IoT’s diver-
sity and complexity, we need powerful abstractions 
to simplify the integration and configuration of IoT 
components. We must enable selection and compo-
sition of software elements for the IoT services from 
multiple providers, similar to the manner in which 
we do so for cloud services. Thus, we apply the 
mature concept of virtualization and service com-
position in the cloud to IoT infrastructures and plat-
forms, enabling the applicability of virtualization 
and composition techniques and tools throughout 
the IoT cloud systems. This calls for new develop-

Table 1. Sample of infrastructure, protocols, and software platforms for establishing an Internet of Things (IoT) cloud 
system.

Types IoT Clouds Purpose

Infrastructure 
machines

Industrial and common gateways 
(for example, Intel IoT Gateway) and 
operating system containers (such as 
Dockers)

Virtual machines and operating system 
containers

Enable (virtual) machines 
where software 
components will be 
executed

Connectivity 
protocols

Message Queue Telemetry Transport 
(MQTT), Constrained Application 
Protocol (CoAP),  HTTP, control area 
network (CAN) bus

MQTT, Advanced Message Queuing 
Protocol (AMQP), HTTP, and so on 

Enable connectivity 
among  IoT elements 
and between the IoT 
part and cloud services

Platform 
software 
services

Lightweight data services (such 
as NiagaraAX/Obix), lightweight 
complex event processing (CEP) and 
data fusion, topology description 
and deployment service (such as 
TOSCA), and lightweight application 
containers (such as OSGI and Sedona)

Load balancers (such as HAProxy), 
message-oriented middleware (MOM)
(such as ActiveMQ and Kafka), NoSQL, 
stream/batch processing (such as Hadoop 
and Spark), component repositories/
marketplaces, and deployment services 
(such as TOSCA, HEAT, and Chef)

Enable core platform 
services for IoT and 
cloud tasks 
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ment of the concept service units for the IoT, such 
as software-defined IoT units.6 We need such units 
for abstracting sensor data points, actuator control 
points, cloud network connectivity, and IoT gate-
ways. Virtualization of IoT components also enables 
elasticity and a pay-per-use model of diverse types of 
IoT units for different vertical domains. 

Principle 2: Enable emulated/simulated IoT parts 

working with production cloud services. This prin-
ciple is related to both the development and opera-
tion phases. Although we can develop and deploy 
cloud services in IoT cloud systems entirely in cloud 
software infrastructures, we can’t do the same for 
IoT parts in many cases. During the development 
phase, it’s difficult to deploy real sensors, actuators, 
and gateways in a large-scale setting to test if they’d 
work. Therefore, engineering tools must support 
emulated/simulated sensors, actuators, and gate-
ways, fostering symbiotic development and opera-
tion engineering actions. On the one hand, we need 
to develop emulated/simulated sensors, actuators, 
and gateways. Such emulated/simulated elements 
are, in principle, real software, but they’re deployed 
in emulated environments. For example, hundreds 
of sensors can be deployed in a virtual machine. 
However, these sensors should be able to produce 
realistic sensor data and be controlled from cloud 
services. The use of realistic data, high-level emulat-
ed sensors, and lightweight virtual machines would 
be a good starting point.

Principle 3: Enable dynamic provisioning of IoT and 

cloud service units through uniform marketplaces 

and repositories for multiple stakeholders. This 
principle is related to all phases of IoT cloud sys-
tems in which different stakeholders (developers, in-

frastructure providers, software providers, and end 
users) will develop, sell, and operate IoT and cloud 
units. Equipped with virtualization and composi-
tion tools, these stakeholders could develop and sell 
different types of units, which can be easily offered 
via mature data/software marketplaces and reposi-
tories.7 IoT cloud system engineering tools should 
interface with existing dynamic marketplaces in an 
integrated and uniform manner to enable pay per 
use, compatibility checks, and dynamic software 
packaging for the provisioning processes.8

Principle 4: Provide multilevel software stack de-

ployment and configuration. This principle is relat-
ed to the deployment and provisioning and operation 
phases. With capabilities supported from principles 
1–3, both the IoT cloud system and the applications 
will require on-demand deployment and configura-
tion of diverse types of software units. Obviously, 
these units range from virtual machines, operating 
system containers, network connectivity components, 
and sensors, to lightweight application and heavy-
weight cloud services. Any deployment and configu-
ration tool for the IoT cloud system must deal with 
different software stack layers. Contemporary de-
ployment and configuration tools, on the other hand, 
mainly work with a single software stack, such as 
static deployment at the virtual machine level or dy-
namic deployment at the application container level. 
This principle forces us to combine different deploy-
ment and configuration techniques to provide a cross-
software stack and a cross-infrastructure deployment. 

Principle 5: Provide software-defined elasticity and 

primitive governance functions for all IoT and cloud 

service units. This principle is related to the devel-
opment of IoT cloud systems and is also strongly 

Table 2. Summary of highlighted principles for engineering IoT cloud systems. 

Principle Development 
phase

Deployment 
and 

provisioning 
phase

Operation
phase

End-to-end
engineering 

and 
optimization

Development 
and production 

symbiosis

Elasticity
coherence

1 + + + + + +

2 + + +

3 + + + +

4 + + + + + +

5 + + + +

6 + + +

7 + + +

Note: A “+” indicates that the principle supports the listed perspective and phase.
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related to other principles for the operation phase. 
Software-defined elasticity and primitive gover-
nance functions let us control units individually at 
runtime. Having these functions would let us de-
velop complex governance and elasticity control pro-
cesses by composing the primitive functions from 
different units. This will also let us support end-to-
end coordinated elasticity control across the entire 
IoT cloud system. 

Principle 6: Provide monitoring and analysis for an 

end-to-end view on elasticity and dependability 

properties. This principle is related to the operation 
and development phases. Clearly, various existing 
monitoring and analysis tools will allow us to moni-
tor and understand different behaviors of IoT units, 
cloud services, and networks. But what’s important 
to the developer and the operator is to have a clear 
end-to-end view of software behavior so they can op-
timize the development and operation. For end-to-
end elasticity metrics that characterize the behavior 
of IoT cloud systems,9 we need complex composable 
methods to evaluate them by leveraging different 
types of monitoring data vertically and horizontally 
correlated across the whole IoT cloud system. Thus, 
we must focus on connecting different types of 
monitoring systems and present new metrics charac-
terizing the end-to-end behavior. 

Principle 7: Coordinate elasticity to enable a co-

herent elastic execution throughout the whole 

IoT cloud system. This principle is related to the 
operation phase. Elasticity will be seen at differ-
ent parts of the IoT cloud system. We could have 
typical elasticity with regard to resources and qual-
ity in the cloud services. But we can also carry out 
different types of elasticity at the IoT part, such as 
provisioning and activating many more sensors to 
increase the quality of sensing data for data analyt-
ics. However, we need a closer loop among different 
parts of the IoT cloud system to optimize system 
operation. Therefore, we must support elasticity at 
various parts in a coherent way—for example, an 
elasticity strategy in the IoT part should be commu-
nicated to the cloud service part to prevent unex-
pected behaviors. One possibility is to examine the 
relationship between coordination and elasticity.10

Another possibility is to extend current elasticity 
control algorithms in the cloud for IoT11 by com-
bining IoT governance processes.12 Furthermore, 
we can also learn concepts for resource elasticity in 
federated clouds.13,14 However, most of these tech-
niques must be reworked to support end-to-end 
metrics. From the system perspective, IoT units 

and cloud services must support primitive actions 
so one can perform elasticity actions at runtime. 
This is highly related to issues in deployment, pro-
visioning, and runtime governance.

Example Implementations
The principles we’ve described are based on our re-
search and experience in developing various tools 
for IoT cloud systems. Two implementations demon-
strate how we can apply these principles in software 
frameworks. 

Software-Defined Machines
Principle 1 (on virtualization and composition of IoT 
components) is crucial to enabling the three func-
tions discussed earlier. However, supporting virtual-
ization and composition at the IoT part is challenging. 
By designing SDM concepts and tools,6,8,12 we aim 
to support principle 1 and other related principles to 
make sure that IoT components can be easily com-
posed, deployed, and controlled. Engineering such 
SDMs and other components in their ecosystems 
for coherent IoT cloud systems is challenging. Fortu-
nately, several parts of the system can be leveraged 
by utilizing cloud services for the datacenter part 
and for IoT marketplaces. Over the past two years, 
we’ve concentrated on four aspects of SDMs: tools 
for building IoT units, governance of IoT units, mar-
ketplaces and provisioning units, and dynamic data 
and control points for sensors and actuators. At the 
moment, prototypes of governance, provisioning and 
marketplaces, and dynamic data and control points 
are available under open source licenses. 

iCOMOT Toolset
As noted earlier, during the development and opera-
tion of the software layer of IoT cloud systems, we 
need different tools to enable different goals, such as 
deployment, provisioning, control, and monitoring. 
Our prototype, iCOMOT (http://tuwiendsg.github.io/
iCOMOT), supports the seven principles and includes 
the tools shown in the bottom layer of Figure 215:

• Salsa (Setting and Launching Service Applica-
tions) enables multilevel software stack deploy-
ment across IoT and cloud infrastructures.16

• GovOps (Governance and Operations) supports 
runtime governance management for IoT units 
and gateways.

• Mela (Monitoring Elasticity) enables elastic-
ity monitoring and analytics across IoT cloud 
systems.

• rSYBL (runtime Simple Yet Beautiful Language) 
supports elasticity controls by invoking different 
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strategies for cost, performance, and resources 
in a coordinated manner across IoT and cloud 
services.

Except for GovOps, which is designed for IoT units, 
many of iCOMOT’s features are based on cloud ser-
vice elasticity features extended for IoT units and 
SDMs. 

As an example, consider the case of a predictive 
maintenance company that’s interested only in man-
aging sensors, actuators, and data processing and 
storage to support its maintenance analytics. The 
analytics includes lightweight analytics and control 
and data analytics, as shown in the top layer of Fig-
ure 2. The company requires a software layer as an 
IoT cloud system built on top of several rented IoT 
and cloud infrastructures, shown in the middle layer 
of Figure 2. Using deployment tools, iCOMOT could 
support the developer and the provider in joining 
different configurations of an IoT cloud system. For 
example, a sensor-data-as-a-service configuration 
could include several sensors to be deployed and 
controlled at runtime (activate, deactivate, change 
read rate, and so on). Such a configuration could be 
used to both deploy emulated sensors and control 
real sensors. This configuration could be connected 
to a configuration of real production cloud services 
and gateways. Using iCOMOT, one could perform 
some principles on dynamic elasticity configura-
tion and control. Furthermore, sensors and services 

come from different providers and are hosted in dif-
ferent marketplaces or repositories. To deploy such 
very different configurations, our software must 
deal with multilevel software stack configuration 
and control.

Users can also observe and analyze high-level 
elasticity properties in an end-to-end view: from the 
entire IoT cloud system, to specific topologies of ser-
vice units, to individual units. For example, costs for 
the software layer can be determined on the fly from 
costs for various gateways, data services, load bal-
ancers, and so on, based on their complex dependen-
cies and sensor data rates. Such costs and data rates 
are fed to an elasticity controller that can enable 
flexible elasticity strategies at the IoT part or cloud 
services. For example, it can stop changing the sen-
sor’s read rate when the cost for the whole system 
violates user expectations.

ur current work has focused on the realization 
of the seven principles described here. As our 

initial results show, once we can provide such tools, 
we’ll release the developer and provider from several 
obstacles to enable a smooth software layer on top of 
complex, hybrid, and blended IoT and cloud services. 
However, we haven’t discussed other important prin-
ciples related to security, privacy, and compliance in 
IoT cloud systems. We aim to study such principles 
in future work.
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middle layer represents the software layer as an IoT cloud system built on top of various types of cloud services and IoT elements. 

The bottom layer shows different tools and services from iCOMOT that can be used to monitor, control, and configure the 

software layer.
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