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Abstract. To date, on-demand provisioning models of human-based
services in the cloud are mainly used to deal with simple human tasks
solvable by individual compute units (ICU). In this paper, we propose a
framework allowing the provisioning of a group of people as an execution
service unit, a so-called Social Compute Unit (SCU), by utilizing clouds
of ICUs. Our model allows service consumers to specify quality require-
ments, which contain constraints and objectives with respect to skills,
connectedness, response time, and cost. We propose a solution model
for tackling the problem in quality-aware SCUs provisioning and employ
some metaheuristic techniques to solve the problem. A prototype of the
framework is implemented, and experiments using data from simulated
clouds and consumers are conducted to evaluate the model.

Keywords: human-based service, social compute unit, quality of ser-
vice, service cloud management.

1 Introduction

Recently, we have been seeing on-demand online resource provisioning models
being applied not only to hardware- and software-based computing elements but
also to human-based counterpart. To date, the provisioning of human-based ser-
vices (HBS) in the cloud is traditionally used to provision an individual compute
unit (ICU) suitable for solving simple and self-contained human tasks. However,
for solving more complex tasks, we often require a group of people working in
a collaboration. We advocate the notion of a Social Compute Unit (SCU) as
a construct for loosely coupled, and nimble team of individual compute units,
which can be composed, deployed, and dissolved on demand.

In provisioning an SCU, quality control remains a major issue. Existing qual-
ity control approaches are traditionally relies on primitives and hard-wired tech-
niques, which do not allow consumers to customize based on their specific
requirements [1]. Still we lack effective HBS management frameworks to man-
age the socially connected human-based resources for fulfulling the consumers’
requests.

In this work, we present a framework that focuses on the provisioning of SCUs
containing socially connected ICUs obtained from the cloud, such as crowdsourc-
ing marketplaces. We posit that provisioning SCUs using the underlying ICU
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clouds could enhance the on-demand provisioning model of human-based ser-
vices so that it can be utilized for solving more complex tasks. Our contribution
in this paper is to provide a flexible quality-aware SCU provisioning framework,
which is based on consumer-defined quality requirements, using ICUs obtained
from the cloud. In particular, our framework provides

– an architecture for quality aware SCU provisioning, which allows different
quality control mechanisms to be plugged in using provisioning APIs,

– a tool for modeling quality requirements using fuzzy concepts, and
– solution models which exemplify the quality control strategies for the frame-

work. Specifically, we develop some algorithms, one of them based on the Ant
Colony Optimization (ACO) approach, for dealing with the multiobjective
quality-aware SCU formation problem.

The proposed framework is particularly useful for, e.g., (i) providing a tool for
the human-based services management, which integrates the involved parties in
the human-based services ecosystem, and (ii) providing a simulation testbed for
studying various quality control technique for human-based services. To illus-
trate the usefulness of our framework, we study the feasibility of the results and
compare with other simpler and common approaches using simulations.

The rest of the paper is organized as follows. Section 2 provides some back-
ground for our work. Section 3 discusses the details of our proposed framework.
In Section 4, we present a provisioning solution model and describe some al-
gorithms for dealing with the SCU formation problem. Section 5 presents our
experiments to study our model. Some related works are presented in Section 6.
Finally, Section 7 concludes the paper and outlines our future work.

2 Background

2.1 Human-Based Compute Unit

We define two types of compute units, which are capable of delivering HBS: an
individual person, i.e., Individual Compute Unit (ICU), and a composition of
socially connected individuals, i.e., Social Compute Unit (SCU). These individ-
uals can be obtained on-demand from ICU clouds. Some examples of ICU clouds
include task-based crowdsourcing platforms (e.g., in [2]), collections of experts
on social networks (e.g., in [3]), and enterprise ICU pools (e.g., in [4]).

The execution of human tasks may employ different patterns depending on the
problem domain and on the runtime systems. Some examples of such patterns
include (i) single unit, where ICUs works individually on different tasks, (ii)
pipeline, where the assigned SCU members execute the task sequentially one
after another, (iii) parallel, where the task is split into subtasks, assigned to
SCU members, and the results are merged back after they finish (e.g., in [5]), (iv)
fault-tolerant, where the task execution is made redundant and the best result is
selected from the aggregation of the results (e.g., in [6]), and (iv) shared artifacts,
where the SCU members works collaboratively over some objects shared among
all SCU members (e.g., in [7]).
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The effect of these patterns to the SCU provisioning is that each pattern may
require different ways to measure the SCU properties. For example, given a task
t, and an SCU V = {v1, v2, ..., vn}, the response time of the pipeline pattern may
be defined as

∑
v∈V time(v, t), while the response time of the parallel pattern

may be defined as maxv∈V time(v, t), where time(v, t) is the time required by
the ICU v to execute the task t.

2.2 ICU Properties

We define the following generally common ICU properties: skill sets, response
time, and cost.

Skill Set. A skill of an ICU represents a qualification that the ICU has. An
ICU, v, has a set of skills, Skv = {(s1, x1), (s2, x2), ..., (sn, xn}, where n =| Skv |.
The skill type, si, of a skill defines the kind of competency that the ICU is
endowed with. The skill level xi may be defined based on different measurement
techniques. For example, the skill level can be calculated based on a qualification
test or based on a stastical measurement such as the acceptance rate [2].

Response Time. For any ICU v for executing a task t, an estimated response
time can be provided, i.e., time : (v, t) �→ R>0. This response time is also affected
by the job queueing and assignment model, such as based on a maximum number
of concurrent job (e.g., [2]), using a work queue approach commonly found in
WfMS (e.g., [8]), or using a project scheduling approach considering the time
availability of the candidates (e.g., [9]).

Cost. An ICU v may specify its expected cost to perform a task t, which is
modeled as a function of the task parameters cost : (v, t) �→ R>0. This function,
for example, can be simply based on the estimated duration and the hourly cost.

2.3 Social Connectedness

The success of an SCU depends highly on its social connectedness [4]. We define
a connectedness graph as an ordered pair G = (V , E), where V represents an
SCU obtained from ICU clouds, and E represents a set of weighted undirected
edges between two different ICUs in V . We define an edge e = {v1, v2} ∈ E as an
indication that v1 and v2 have worked together in the past. The weight of the
edge, w(e), is an integer number that represents the number of successful task
completions substracted by the number of unsuccesful task completions. This
weighting approach allows us to give penalty to, for example, malicious workers.

An SCU and its connectedness can be represented as a graph G′ = (V ′, E ′),
where V ′ ⊂ V , E ′ ⊂ E , so that E ′ is the maximum subset of E that connects all
ICUs in V ′. We measure the connectedness of G′ as the average weighted degree
of all nodes:

conn(G′) =

∑

e∈E′
2 · weight(e)

|V ′| (1)
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3 Quality-Aware SCU Provisioning Framework

3.1 Framework Overview

The core of our framework is the Provisioning Middleware, which coordinates
interactions among the ICU Cloud Manager, the Provisioning Engine, and the
Runtime Engine, as depicted in Figure 1. A scenario for an SCU provisioning
starts when a consumer submits a task request to the Runtime Engine. This
request contains the consumer-defined quality requirements for the task. This
quality requirements consists of required skill levels of the SCU members, as
well as their connectedness, maximum response time, and total cost. For exe-
cuting this task, the Runtime Engine sends an SCU provisioning request to the
Provisioning Middleware using the hybrid service programming API [10].

The Provisioning Middleware retrieves ICUs’ properties from the ICU Cloud
Manager, which maintains the functional and non-functional properties of the
ICUs, as well as tracking the previous interactions between ICUs, from various
ICU clouds. This ICU Cloud Manager encapsulates different APIs provided by
different ICU clouds into a unified API. This ICU Cloud Manager also allows
the formation of an SCU using many ICUs from different clouds.

The Provisioning Engine is responsible for controlling the quality of the SCU
provisioning. A quality control strategy for an SCU provisioning is a strategy
to control the formation and execution of an SCU, which takes the consumer
requirements and the properties of ICUs on the cloud into consideration. There
are two types of SCU quality control strategies covering two phases of the task life
cycle: pre-runtime and runtime. At pre-runtime, an SCU quality control strategy
governs the SCU formation. During runtime, a dynamic adaptation technique
is employed to guarantee the required quality. Here we focus on pre-runtime
quality control strategies (Section 4), and leave the latter issue for future work.

A pre-runtime quality control strategy is implemented using an algorithm
and executed by the Provisioning Engine. To process a task in the queue, the
Provisioning Middleware requests the Provisioning Engine to form the SCU.
Then, the Provisioning Engine invokes the algorithm to create the formation.
Upon receiving this formation, the Provisioning Middleware instructs the ICU
CloudManager to instantiate this SCU and deploy it to the Runtime Engine. The
SCU then executes the tasks using human interfaces provided by the Runtime
Engine. When the task finished, the result is returned back to the consumer.

3.2 Consumer Requirements

In our framework, we allow consumers (e.g., human-based application own-
ers, crowdsourcing requesters) to specify their requirements that represent con-
straints and objectives for the SCU formation and task execution. Our model
defines the consumer requirements along four dimensions: job descriptions, con-
nectedness, response time, and cost.

Due to imprecise nature of human work, defining a precise constraint can
be troublesome for consumers. Here, we propose to model quality requirements



Provisioning Quality-Aware Social Compute Units in the Cloud 317

...

ICU Cloud - 2 ICU Cloud - nICU Cloud - 1

ICU Manager

Consumer

request

Runtime Engine

SCU Provisioning
Middleware

Quality-Aware
ProvisioningEngine

(task spec,
consumer requirements)

hy
br
id
se
rv
ic
e

pr
og
ra
m
m
in
g

AP
Is

Algorithms

pr
ov
is
io
ni
n g

AP
Is

ICUmanagement APIs

deploy SCU

ICU
Properties

SCU Provisioning
Framework

Fig. 1. SCU Provisioning Framework

using fuzzy concept [11,12]. For example, instead of saying “I need an ICU with
a translation qualification ≥ 0.75”, the consumer could say “I need an ICU
with a good translation skill”. For a given fuzzy quality q (e.g., good), we could
measure the grade of membership of an ICU using the function μq : R≥0 → [0..1].
We apply this fuzzy concept to model the consumer requirements with respect
to job descriptions and connectedness.

Job Description. A task request contains a set of job descriptions, or jobs for
short. For each job, the consumer defines the meta-information (e.g., title, de-
scription, and presentation) and the required skill set. Our framework provisions
an SCU for the task, where each SCU member with the required skill set fulfills
a job in the task. Table 1 depicts an example of job requirements for a task,
which requires two SCU members: one translator and one reviewer.

Given a task with a set of jobs J = {j1, j2, ..., jn} for an SCU with size n, the
Provisioning Engine attempts to find a set of ICUs V ′ = {v1, v2, ..., vn}, which
maximizes μji(vi) ∀i ∈ [1..n]. μji represents the aggregated grade of membership
on the intersection of the fuzzy sets of all required fuzzy qualities in the job, i.e.,
given ji = {(t1, q1), (t2, q2), ..., (tm, qm)}, μji(v) = ∧(tk,qk)∈ji{μqk(x

v
k)}, where

xv
k is the numerical skill level of ICU v for skill type tk. Here, we use the min

operation as the interpretation of fuzzy set intersection [12].

Connectedness. The required connectedness of the SCU being formed is calcu-
lated using Equation 1. This requirement is also defined using a liguistic variable,
e.g., the consumer may say “I want to have an SCU with fair connectedness”.
Given a connectedness requirement qconn (e.g., fair), the Provisioning Engine
composes an SCU V ′ = {v1, v2, ..., vn} with a connectedness graph G′ = (V ′, E ′),
which maximizes μqconn(conn(G

′)).
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Table 1. An example of job requirements for an SCU

Jobs
Required Skill Sets

Skill Types
Fuzzy
SkillLevels

Job #1
– Translating DE to EN Good
– Acceptance Rate Fair

Job #2
– Reviewing Translation Good
– Acceptance Rate Very Good

Maximum Response Time. The maximum response time of the task t, maxRT ∈
R>0, is the time limit specified by the consumer within which the task execution
by the SCU must finish. For example, given a task t with parallel subtasks
and the maximum response time maxRT , the Provisioning Engine selects SCU
members V ′ = {v1, v2, ..., vn}, which satisfies maxni=1 time(vi, t) ≤ maxRT .

Cost Limit. The consumer defines cost limit of the task t, costLimit ∈ R>0 which
represents the maximum total cost payable to the SCU members, i.e., give a task
t with cost limit costLimit, the composed SCU members V ′ = {v1, v2, ..., vn},
must satisfy

∑n
i=1 cost(vi, t) ≤ costLimit.

Objectives. Furthermore, consumers may also define the objective of the SCU
formation. We support the following four goals:maximizing skill levels, maximiz-
ing connectedness,minimizing maximum response time, and minimizing cost. An
objective is an ordered 4-tuple, O = (ws, wcn, wt, wc), each respectively represent
the weights of skill levels, connectedness, response time, and cost for measuring
the objective value of a provisioning solution, where ws + wcn + wt + wc > 0.

Given the aforementioned constructs, we define a task request as a 3-tuple,
t = (J , C,O), where J = {j1, j2, ..., jn}, ji = {(t1, q1), (t2, q2), ..., (tm, qm)},
C = (qconn,maxRT, costLimit), and O = (ws, wcn, wt, wc).

4 Quality Control Strategies

Here we focus on pre-runtime quality control strategies, which deal with the
formation of SCU prior to runtime. We formulate the SCU formation problem,
which takes the quality requirements from the consumer into consideration, and
propose some algorithms to solve it.

Given an SCU V socially connected in a graph G = (V , E), and a task request
t = (J , C,O), we define the SCU formation problem as a problem of finding
V ′ ⊂ V as members of SCU for executing task t which minimizes O subject to C
and skill set requirements in J . In the following we discuss some building blocks
required to solve the SCU formation problem.
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4.1 Assignments

The ICU Cloud Manager maintains a socially connected ICUs G = (V , E) ob-
tained from various ICU clouds. Given a task t with a set of jobs J , our goal is
to create assignments A = {(j1, v1), (j2, v2), ..., (jn, vn)}, ∀ji ∈ J , vi ∈ V .

The goal of an algorithm for solving the quality-aware SCU formation problem
is to find A in the search space J × V . Due to the size of V obtained from
ICU clouds, this search space can be extremely huge. Therefore, we filter out
non-feasible assignments based on the feasibility of competency, deadline, and
cost. Formally, for each job j, we search only in V ′ ⊂ V , where μj(v) > 0 and
time(v, t) ≤ maxRT and cost(v, t) ≤ costLimit, ∀v ∈ V ′.

However, this filtering does not guarantee a full feasibility of complete assign-
ments on all jobs. To guide our heuristic algorithms for selecting assignments
towards a feasible solution while minimizing the objective, we define two algo-
rithm control mechanisms: the local fitness which represents the fitness of an
assignment relative to other possible assignments for the same job, and the ob-
jective value of a solution which represents the fitness of a complete solution.
The formulation of these mechanisms is stimulated by the necessity to measure
the heuristic factors and solution quality in ACO approaches[13]. However, as
we show in Section 4.4, these mechanisms can also be used by other heuristics.

4.2 Local Fitness

The local fitness of an assignment is defined based on a partially selected assign-
ments, starting form an empty set of assignments when the algorithm begins.
Given a task t with the objective weighting factors O = (ws, wcn, wt, wc), a set of
selected partial assignments up to job number i− 1, Ai−1, that already contains
a set of ICUs Vi−1, and a set of possible assignments for the subsequent job ji,
AP

i , the local fitness λ for an assignment ai,j = (ji, vj), ai,j ∈ AP
i , is defined as

λ(ai,j ∪ Ai−1) =
λs · ws + λcn · wcn + λt · wt + λc · wc

ws + wcn + wt + wc
(2)

where

λs(ai,j ∪ Ai−1) = μji(vj),

λcn(ai,j ∪ Ai−1) =
conn(vj ∪ Vi−1)− conn(Vi−1)

γconn + conn(vj ∪ Vi−1)− conn(Vi−1)
,

λt(ai,j ∪ Ai−1) =
γtime

γtime + time(vj ∪ Vi−1, t)− time(Vi−1, t)
,

λc(ai,j ∪ Ai−1) =
γcost

γcost + cost(vj , t)
.

where γ is an adjustable parameter, e.g., we can use the consumer-defined
costLimit as γcost. Note that these local fitness values are normalized, i.e.,
λ : AP �→ [0..1]. The elements in AP

i can be defined based on the ICUs fil-
tering described in Section 4.1.
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4.3 Objective Value of Solution

For each solution, i.e., a complete set of assignments A for all jobs in J , we
could measure the normalized objective value returned by the function f :
AD �→ [0..1], AD = J × V . Given a task t with the objective weighting factors
O = (ws, wcn, wt, wc), the objective function f(A) for A = {(j1, v1), (j2, v2), ...,
(jn, vn)}, is defined as follows:

f(A) = 1− fs(A) · ws + fcn(A) · wcn + ft(A) · wt + fc(A) · wc

ws + wcn + wt + wc
, (3)

where
fs(A) = ∧(ji,vi)∈A{μji(vi)},
fcn(A) = μconn(VA),

ft(A) =
γtime

γtime + SCURT (VA, t)
, and

fc(A) =
γcost

γcost +
∑

(ji,vi)∈A cost(vi, t)
.

VA is the set of ICUs in assignments A, i.e., for any A = {(j1, v1), (j2, v2), ...,
(jn, vn)}, VA = {v1, v2, ..., vn}. For fs(A), we again apply min function as the
interpretation of intersection operation ∧. The function SCURT (VA, t) returns
the aggregated response time of all ICUs in VA, which determined by, e.g., the
response time of each ICU and the SCU pattern employed (see Section 2.1). The
goal of an SCU formation algorithm is to minimize f(A).

4.4 Algorithms

We have established the building blocks required for solving the SCU formation
problem. Here, we present some algorithms to solve the SCU formation problem.

Simple Algorithms. We present two simple algorithms that can be used to find
a solution of the SCU formation problem based on the first come first selected
(FCFS) and the greedy approach.

FCFS Approach. This approach resembles the approach traditionally used in
task-based crowdsourcing model: the first ICU who ’bids’ wins the task. Assum-
ing that a standby ICU is interested in taking a task, we select the first earliest
available ICU for each job. In the case where there are some ICUs with the same
earliest availability, we pick one randomly.

Greedy Approach. Initially we construct a solution by selecting assignments for
each job that has the highest local fitness value. Afterwards, we gradually im-
prove the solution by changing an assignment at a time. Improvement is done
by randomly selecting a job, and randomly selecting another ICU for that job. If
the new assignment improve the objective value of the solution, we replace the
associated old assignment with this new better one. This procedure is repeated
until a certain number of maximum cycle is reached. The greedy approach makes
a locally optimized choice for each job at a time with a hope to approximate the
global optimal solution.
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Ant Colony Optimization. Ant Colony Optimization (ACO) is a metaheuris-
tic inspired by the foraging behavior of some ant species[13]. In the ACO tech-
nique, artificial ants tour from one node to another node in the solution space
until a certain goal is achieved. The tour is guided by the pheromone trails,
which are deposited by the ants to mark the favorable path. The nodes visited
in a complete tour represent a solution. Once all ants have finished a tour, the
process is repeated for a specified number of cycles or until a certain condition
is met. The best solution of all cycles is selected as the solution of the problem.

In our SCU formation problem, given a requested task with a set of ordered
jobs J , a node is a tuple (j, v), where j ∈ J and v ∈ V . An ant starts a tour by
selecting an initial node (j1, v1) and travels to the next nodes (j2, v2), ... (jn, vn)
until all jobs ji ∈ J are assigned. Each node has a probability to be selected
determined by the pheromone trail and heuristic factor of the node.

Several variants of ACO algorithms have been proposed. Here, we develop our
algorithm based on three variants: the original Ant System (AS) [14], MAX -
MIN Ant System (MMAS) [15], and Ant Colony System (ACS) [16]. Generally,
the ACO approach is depicted in Algorithm 1.

When traveling through the nodes, at each move i, an ant k constructs a
partial solution Ak

i consisting all visited nodes for job 1 to i. When ant k has
moved i − 1 times, the probability it moves to another node (ji, vj) is given by

pki,j =

⎧
⎪⎨

⎪⎩

(τi,j)
α · (ηi,j)β

∑
(ji,vw)∈AP ′

i

(
(τi,w)α · (ηi,w)β

) if (ji, vj) ∈ AP ′
i ,

0 otherwise,

(4)

where AP ′
i = AP

i −Ak
i−1, i.e. the set of possible assignments for job ji containing

only ICUs that are not yet included in Ak
i−1; τi,j is the pheromone value of the

node (ji, vj) at current cycle; and the heuristic factor ηi,j = λ(ai,j ∪ Ak
i−1) as

defined in Equation 2. The relative importance of pheromone and heuristic factor
are determined by parameter α and β. ACS variant uses a modified transition
rule, so-called pseudorandom proportional rule as shown in [16].

At the end of each cycles, pheromone trails on all nodes are updated. At each
cycle t, given the number of ants nAnts, the basic pheromone update formula
for a node (ji, vj), which is proposed by the original AS variant [14], is given by

τi,j(t) = (1− ρ) · τi,j(t− 1) +

nAnts∑

k=1

Δτki,j (5)

where ρ ∈ (0..1] is the pheromone evaporation coefficient, and Δτki,j is the quan-
tity of pheromone laid by ant k on the node (ji, vj), which is given by

Δτki,j =

{
Q/f(Ak) if (ji, vj) ∈ Ak ∧ Ak is feasible,
0 otherwise,

(6)

where Ak is the solution found by ant k and Q is an adjustable parameter. Ak is
feasible if it does not violate any constraints C. We exclude solutions that violate
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one or more constraints so that only feasible solutions are promoted by the ants.
The pheromone update for MMAS and ACS variant has the same principle but
different formula as presented in [15] and [16].

Algorithm 1. Ant-based Solver Algorithm

initialize graph and pheromone trails
repeat
Aants ← ∅

for i = 0 to nAnts do
A ← find a tour for anti
Aants ← Aants ∪ A

update pheromone trails
until ∃A ∈ Aants f(A) = 0 or is stagnant or max cycles reached

5 Evaluation

5.1 Implementation

We have implemented a prototype of our proposed provisioning framework as de-
picted in Figure 1. The implementation contains three independent components,
namely Provisioning Middleware, Provisioning Engine, and ICU Cloud Manager.
The Provisioning Engine is implemented using the quality control strategies dis-
cussed in Section 4. For simulation purpose, we populate the ICU cloud with
a simulated pool of ICUs. Furthermore, we have also develop a prototype con-
sumer application which capable to submit SCUs provisioning requests to the
Provisioning Middleware. These components are loosely-coupled and talk to each
other through specified APIs implemented using SOAP-based Web services.

In our experiments, we focus on the following aspects of the SCU provisioning:
(i) we study our pre-runtime quality control strategy based on the three afore-
mentioned algorithms and analyze the perfomance and result, and (ii) we study
the ACO approach to have an insight of (a) the effect of different algorithm
parameters (b) the performance and result of the three different ACO variants.

5.2 Experiment Setup

Our prototype ICU manager maintains a work queue for each ICU. Each ICU
can only execute a single job at a particular time. We experiment with parallel
pattern (see Section 2.1), where subtasks, i.e., jobs, are assigned to the SCU
members and executed in parallel. We generate 500 ICUs on our simulated cloud.
We define 10 types of skills, and each ICU is randomly endowed with these skill
types. The consumer application generates task request with random parameters.
Each job in a task has some skills set requirements with the required fuzzy quality
uniformly distributed over four fuzzy quality levels: poor, fair, good, and very
good. In this experiment, we use the trapezoidal membership functions adopted
from [17], which support over-qualification when assigning SCU members.
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5.3 Experiment Result

To study our pre-runtime quality control strategy, we configure our consumer
application to randomly generate and submit 100 task requests. The requests are
queued by the Provisioning Middleware in first-in-first-out manner. The Provi-
sioning Middleware then requests the Provisioning Engine to form an SCU for
each task request. We repeat the same setup three times to test the Provisioning
Engine configured using the three implemented algorithms: the FCFS algorithm,
the greedy algorithm, and the original variant of Ant System (AS) algorithm.

Table 2 shows a comparison of average results from all task requests. The
AS algorithm outperforms the others with respect to the aggregated objective,
i.e., minimizing f(A). The AS algorithm also provides SCU team formation
with better skill levels. However, as expected, the FCFS algorithm gives the
fastest running time. But considering the nature of human tasks, few seconds
running times of the AS algorithm and the greedy algorithm are reasonable.
This fast performance is not without cost, since the FCFS algorithm concludes a
solution too fast considering the response time only, it results in some constraint
violations. Fortunately, due the filtering of the search space (see Section 4.1),
violations on skill level constraints do not occur.

Table 2. Results and performance comparison

Algo
Objective
Values

f

Skill
Levels
fs

Response
Times

SCURT
Violation

Algo
Time

FCFS 0.4501 0.0810 6.06 4% 0.9117 ms

Greedy 0.3468 0.2130 11.87 0% 0.1219 s

AS 0.3147 0.3228 10.90 0% 6.6565 s

Furthermore, we are also interested in studying the quality control behavior
with respect to the objective weightings, O = (ws, wcn, wt, wc), as defined by
the consumer. Figure 2 shows results of our experiment using task requests with
varying objective weightings and SCU size. On each experiment shown on the
subfigures, we vary one weight from 0.5 to 8 and fix the others. The results show
that the AS algorithm honors the consumer defined weights better compared to
the other two. The sensitivity of the FCFS algorithm is flat on all cases, because it
does not consider the objective weightings during the formation. The sensitivity
levels of the cost weight wc of the greedy algorithm and the AS algorithm are
similar, due to the fact that the local fitness value for cost λc contributes linearly
to the objective value of the cost fc. For the connectedness sensitivity, the AS
algorithm cannot be seen clearly outperforms the greedy algorithm, because the
formed SCU almost reach the upper limit of fcn, i.e., 1.

Knowing that the AS algorithm provides better results in many aspects, we
carry out further experiments to understand the behavior of our ACO approach.
First, we study the effect of the ACO parameters to the perfomance and to the
quality of the resulted SCU formation. In our experiment, we use the AS variant
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(a) Skill levels (fs vs ws) (b) Connectedness (fcn vs wcn)

(c) Cost (fc vs wc) (d) Response time (ft vs wt)

Fig. 2. Sensitivity on objective weightings

and fix the pheromone evaporation factor low, ρ = 0.01. If ρ is set too high, it will
cause the pheromone trails to be negligible too fast. Then, we vary the relative
importance of pheromone and heuristic factor, α and β. Figure 3a shows how
different α and β yield different results with respect to the average aggregated
objective value of the best SCUs formed. Furthermore, we run the experiments
for 8 ants in 2000 cycles and see whether a stagnant behavior occurs as shown
in Figure 3b. A cycle is said to be stagnant when all ants result in the same
SCU formation; hence, causing the exploration of the search space to stop. Our
experiments show that the combination of α = 0.2 and β = 1 gives best results.

Furthermore, we extend the experiment further using the same α and β pa-
rameters to the other two ACO variants. We are interested in finding out which
ACO variants give faster conclusion to a good SCU formation. We run the ex-
periment using 8 ants and 10000 cycles as shown in Figure 4. The result shows

(a) Objective values average (b) Stagnant behavior

Fig. 3. Influence of α and β
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Fig. 4. Comparison on results of ACO variants

that the MMAS variant gives better SCU formations (less objective values) in
less number of cycles than the others.

Different quality control strategies implemented by different algorithms cater
different needs. Here we show an ACO based algorithm provides better results
in some aspects. However, there is no “one size fits all” strategy. For exam-
ple, the FCFS approach may be preferable in some circumstances where the
response time is the most important factor and the consumer only cares about
skill constraints, which happens in typical microtask crowdsourcing systems. The
usefulness of our framework is therefore also to support multiple strategies.

6 Related Work

HBS Management Framework. Recently, the issue of quality management in
human-based services has attracted many researchers. The issue becomes even
more crucial when we deal with online and open labor markets such as crowd-
sourcing marketplaces [1,18]. Several works have also been introduced to deliver
managed human-based services frameworks such as [19,20].

Many techniques have also been introduced for executing human tasks in a
workflow management system using organizational human-based services, such
as [21,22]. Some works such as [23] goes further to allow the execution of work-
flows or business processes using the cloud of human-based services.

Our work endorses the notion of Social Compute Unit (SCU), which allows
the execution of human tasks not only by a single human-based service but
also by a composition of socially connected human-based services. Furthermore,
we abstract open (e.g., crowdsourcing) and organizational pool of human-based
services as ICU clouds, and therefore, we envision the execution of organizational
human-based workflow using open ICU clouds such as crowdsourcing platforms.

Formation Techniques. One of the main focus of our work is in the domain of
team formation optimization. Some approaches for team formation based on the
fuzzy concept have been proposed, e.g., [9,17]. Other works, such as [24,25,26,27],
also take the social network of the team member candidates into consideration.
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Our work differs from the aforementioned works in the following aspects: (i) we
model constraints and objectives in four dimensions: skills, social connectedness,
response time, and cost, (ii) we utilize the fuzzy concept not only to model skills
but also to model the social connectedness, and (iii) we employ Ant Colony
Optimization to compose the team members.

7 Conclusions and Future Work

In this paper we present our framework for the quality-aware provisioning of
SCU using ICU clouds. Our framework contains the Provisioning Engine which
executes quality control strategies. We propose some algorithms for pre-runtime
quality control strategies, which deals with the SCU formation request consider-
ing the consumer-defined quality requirements and the ICUs properties obtained
from the cloud. We conduct experiments to study the characteristics of the al-
gorithms, which could be utilized to cater different system needs.

Our work presented in this paper is part of our ongoing research in the field
of human-based service. We plan to develop other quality control strategies such
as runtime adaptation techniques to govern the human-based services during
runtime. Furthermore, we are also interested in investigating quality control
strategies for human-based tasks on busines processes using the ICU clouds.
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