
End-to-End Support for QoS-Aware Service
Selection, Binding, and Mediation in VRESCo

Anton Michlmayr, Student Member, IEEE, Florian Rosenberg, Member, IEEE,

Philipp Leitner, Student Member, IEEE, and Schahram Dustdar, Senior Member, IEEE

Abstract—Service-Oriented Computing has recently received a lot of attention from both academia and industry. However, current

service-oriented solutions are often not as dynamic and adaptable as intended because the publish-find-bind-execute cycle of the

Service-Oriented Architecture triangle is not entirely realized. In this paper, we highlight some issues of current web service

technologies, with a special emphasis on service metadata, Quality of Service, service querying, dynamic binding, and service

mediation. Then, we present the Vienna Runtime Environment for Service-Oriented Computing (VRESCo) that addresses these

issues. We give a detailed description of the different aspects by focusing on service querying and service mediation. Finally, we

present a performance evaluation of the different components, together with an end-to-end evaluation to show the applicability and

usefulness of our system.

Index Terms—Web services publishing and discovery, metadata of services interfaces, advanced services invocation framework.

Ç

1 INTRODUCTION

DURING the last few years, Service-Oriented Architecture
(SOA) and Service-Oriented Computing (SOC) [1]

have gained acceptance as a paradigm for addressing the
complexity that distributed computing generally involves.
In theory, the basic SOA model consists of three actors that
communicate in a loosely coupled way as shown in Fig. 1a.
Service providers implement services and make them avail-
able in service registries. Service consumers (also called service
requesters) query service information from the registry, bind
to the corresponding service provider, and finally, execute
the service. Due to platform-independent service descrip-
tions, one can implement flexible applications with respect
to manageability and adaptivity. For instance, services can
easily be exchanged at runtime and service consumers can
switch to alternative services seamlessly, which increases
organizational agility. Web services [2] represent the most
common realization of SOA, building on the standards
SOAP [3] for communication, WSDL [4] for service interface
descriptions, and UDDI [5] for registries.

However, practice has shown that SOA solutions are

often not as flexible and adaptable as claimed. We argue

that there are some issues in current implementations of

the SOA model. First and foremost, service registries such

as UDDI and ebXML [6] did not succeed. We think this is

partly due to their limited querying support that only

provides keyword-based matching of registry content, and
insufficient support for metadata and nonfunctional prop-
erties of services. This is also highlighted by the fact that
Microsoft, SAP, and IBM have finally shut down their
public UDDI registries in 2005. As a result, service registries
are often missing in service-centric systems (i.e., no publish
and find primitives). This leads to point-to-point solutions,
where service endpoints are exchanged at design time (e.g.,
using e-mail) and service consumers statically bind to them
(see Fig. 1b).

Besides that, support for dynamic binding and invoca-
tion of services is often restricted to services having the
same technical interface. In this regard, the lack of service
metadata makes it difficult for service consumers to know if
two services actually perform the same task. Furthermore,
support for Quality of Service (QoS) is necessary to enable
service selection based on nonfunctional QoS attributes
such as response time (in addition to functional attributes).

In this paper, we discuss the issues we see in current
SOC research and practice by describing the problems that
arise when building SOC applications with current tools
and frameworks. The main contribution is the presentation
of the VRESCo service runtime environment that aims at
solving some of these issues. To be more specific, the
present paper focuses on service metadata, QoS, and service
querying, plus dynamic binding, invocation, and mediation
of services. Additionally, we provide an extensive perfor-
mance evaluation of the different components and an end-
to-end evaluation of the overall runtime, which shows the
applicability of our approach.

The remainder of the paper is organized as follows:
Section 2 presents an illustrative example and summarizes
some issues of SOC research and practice. Section 3 describes
the details of the VRESCo runtime environment, while
Section 4 gives a thorough evaluation of our work. Section 5
introduces related approaches and Section 6 finally con-
cludes the paper.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010 193

. A. Michlmayr, P. Leitner, and S. Dustdar are with the Distributed Systems
Group, Vienna University of Technology, Argentinierstrasse 8, 1040
Vienna, Austria.
E-mail: {michlmayr, leitner, dustdar}@infosys.tuwien.ac.at.

. F. Rosenberg is with Commonwealth Scientific and Industrial Research
Organisation (CSIRO), GPO Box 664, Canberra ACT 2601, Australia.
E-mail: florian.rosenberg@csiro.au.

Manuscript received 26 May 2009; revised 26 Nov. 2009; accepted 20 Dec.
2009; published online 28 Apr. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSCSI-2009-05-0146.
Digital Object Identifier no. 10.1109/TSC.2010.20.

1939-1374/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

2 MOTIVATION AND PROBLEM STATEMENT

This section first introduces a motivating example, which

is used throughout the paper. Then, we derive the problems

developers face when engineering service-centric systems

with current tools and frameworks.

2.1 Motivating Example

Fig. 2 shows a typical enterprise application scenario from
the telecommunications domain. The overview of this case
study is depicted in Fig. 2a.

Cell phone operator CPO1 provides different kinds of
services: Public Services (e.g., Rate Information Service) can
be used by everyone. Customer Services (e.g., SMS Service)
are used by customers of CPO1, whereas In-house Services
(e.g., CRM Services) represent internal services that should
only be accessed by the different departments of CPO1.
Besides that, CPO1 consumes services from its partners
(e.g., cell phone manufacturers and suppliers) and compe-
titors (e.g., CPO2 and CPO3). As discussed later, this
scenario bears several challenges that are typical in service-
centric software engineering.

According to European law, consumers can keep their
mobile phone number when switching to another CPO.
Fig. 2b shows a simplified number porting process
(depicted as oval boxes). This process is interesting
because it contains both internal and external services
(depicted as rectangles), and multiple service candidates.
After the customer has been looked up using the CRM
Service, the external Number Porting Service of the old
CPO has to be invoked. If the number is portable, the
porting is executed by the old CPO. If this step was
successful, the new CPO is informed, which activates the
new number using the Mobile Operation Service. Finally, a
notification is sent to the customer using the preferred
notification mechanism (e.g., SMS, e-mail, etc.).

2.2 SOC Challenges

Adaptive service-oriented systems bring along several
distinct requirements, leading to a number of challenges
that have to be addressed. In this section, we summarize the
current challenges that we see most important. The
contribution of VRESCo is to address these challenges in a
comprehensive service runtime environment.

. Service Metadata. Service interface description lan-
guages such as WSDL focus on the interface needed
to invoke a service. However, from this interface, it
is often not clear what a service actually does, and if
it performs the same task as another service. Service

metadata [8] can give additional information about
the purpose of a service and its interface (e.g., pre
and postconditions). For instance, in the CPO case
study without service metadata, it is not clear if
the number porting services of CPO2 and CPO3
actually perform the same task.

. Service Querying. Once services and associated
metadata are defined, this information should be
discovered and queried by the service consumers.
This is the focus of service registry standards such as
UDDI [5] and ebXML [6]. In practice, the service
registry is often missing since there are no public
registries and service providers often do not want to
maintain their own registry [7]. Besides service
discovery, another issue is how to select a service
from a pool of service candidates [9] by means of a
querying language. For instance, CPO1 may want to
select the SMS Service with the highest availability.

. QoS. In enterprise scenarios, QoS plays a crucial role
[10]. This includes both network-level attributes
(e.g., latency and availability) and application-level
attributes (e.g., response time and throughput). The
QoS model should be extensible to allow service
providers to adapt it for their needs. Furthermore,
QoS must be monitored accordingly so that users
can be notified when the measured values violate
Service Level Agreements (SLAs).

. Dynamic Binding and Invocation. One of the main
advantages of service-centric systems has always
been the claim that service consumers can dynami-
cally bind and invoke services from a pool of
candidate services. However, in practice, this re-
quires identical service interfaces, which is often not
the case. Therefore, we argue that the bind and
execute primitives of SOA are not solved sufficiently.
This raises the need for mechanisms that mediate
between alternative services possibly having differ-
ent interfaces. Considering the CPO case study, the
interfaces of CPO2’s and CPO3’s number porting
service might differ, but the number porting process
of CPO1 should still be able to seamlessly switch
between them at runtime.

Besides these core challenges, other aspects such as

service versioning [11] or event processing [12] are of crucial

194 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Service
Contract

Service
Registry

Service
Provider

Service
Consumer Bind/Execute

PublishFind

Service
Contract

Service
Provider

Service
Consumer Bind/Execute

Fig. 1. SOA theory versus practice (adapted from [7]). (a) SOA model.
(b) SOA practice.

(a) (b)

Fig. 2. CPO case study. (a) Overview. (b) Number porting process.

importance for SOC. However, a detailed description is out
of the scope of this paper, and the interested reader is
referred to our previous work.

3 SYSTEM DESCRIPTION

This section describes in detail the VRESCo runtime,

which was first sketched in [7]. Besides an architectural

overview, we discuss service metadata and querying, as

well as dynamic binding together with our service

mediation approach.

3.1 Overview

The architectural overview of VRESCo is shown in Fig. 3,

which is adapted from [13]. The VRESCo core services are

provided as web services that can be accessed either

directly using SOAP or by using the Client Library that

provides a simple API. Furthermore, the DAIOS framework

[14] has been integrated into the Client Library, and

provides stubless, protocol-independent, and message-

driven invocation of services. The Access Control Layer

guarantees that only authorized clients can access the core

services, which is handled using claim-based access control

and certificates [13]. Services and associated metadata are

stored in the Registry Database, which is accessed using the

Object-Relational Mapping (ORM) Layer. Finally, the QoS

Monitor is responsible for regularly measuring the current

QoS values. The overall system is implemented in C# using

the Windows Communication Foundation [15]. Due to the

platform-independent architecture, the Client Library can

be provided for different platforms (e.g., C# and Java).

There are several core services. The Publishing/Metadata

Service is used to publish services and metadata into the

Registry Database. Furthermore, the Management Service is

responsible for managing user information (e.g., name,

password, etc.), whereas the Query Engine is used to query

the Registry Database. The Notification Engine informs users

when certain events of interest occur inside the runtime,

while the Composition Engine [16] provides mechanisms to

compose services by specifying hard and soft constraints on

QoS attributes. In this paper, we focus on the main

requirements for our client-side mediation approach, which

are the Metadata Service (including the models for metadata,

services, and QoS), the Query Engine, and the dynamic

binding, invocation, and mediation mechanisms.

3.2 Service Metadata

The VRESCo runtime provides a service metadata model
capable of storing information about services. This is
needed to capture the purpose of services, which enables
mediation between services that perform the same task. In
this section, we describe service metadata and give
examples from the CPO case study.

3.2.1 Metadata Model

The VRESCo metadata model introduced in [17] is depicted
in Fig. 4. The main building blocks of this model are
concepts, which represent the definition of entities in the
domain model. We distinguish among three different types
of concepts:

. Features represent concrete actions in the domain

that implement the same functionality (e.g., Check_

Status and Port_Number). Features are associated

with categories, which express the purpose of services

(e.g., PhoneNumberPorting).
. Data concepts represent concrete entities in the

domain (e.g., customer or phone_number), which

are defined using other data concepts and atomic

elements such as strings or numbers.
. Predicates represent domain-specific statements that

are either true or false. Each predicate can have a number
of arguments (e.g., for featurePort_Number, a predicate

Portability_Status_Ok(Number) expresses

the portability status of a given argument Number).

Furthermore, features can have pre and postconditions

expressing logical statements that have to hold before and
after the execution of the feature. Both types of conditions are
composed of multiple predicates, each having a number of
optional arguments. These arguments refer to a concept in the
domain model. There are two different types of predicates:

. Flow predicates describe the data flow required or

produced by a feature. For instance, the feature-

Check_Status from our CPO case study could

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 195

Fig. 3. VRESCo overview architecture.

Fig. 4. Service metadata model [17].

have the flow predicate requires(Customer) as pre-

condition and produces(PortabilityStatus) as

postcondition.
. State predicates express global states that are valid

before or after invoking a feature. For instance, state

predicate notified(Customer) can be added as
postcondition to feature Notify_Customer.

3.2.2 Service Model

The VRESCo service model constitutes the basic informa-
tion of concrete services that are managed by VRESCo. The
service model depicted on the lower half of Fig. 5 basically
follows the web service notation as introduced by WSDL
with extensions to enable service versioning and represent
QoS on a service runtime level.

A concrete service (e.g., Number Porting Service of CPO1)
defines the basic information of a service (e.g., name,
description, owner, etc.) and consists of a least one service
revision. A service revision (e.g., the most recent version, or a
stable one) contains all technical information that is
necessary to invoke the service (e.g., a reference to the
WSDL file) and represents a collection of operations (e.g.,
Check_Status). Every operation may have a number of
input parameters (e.g., Customer), and may return one or
more output parameters (e.g., PortabilityStatus). Revi-
sions can have parent and child revisions that represent a
complete versioning graph of a concrete service [11]. Both
revisions and operations can have a number of QoS
attributes (e.g., response time is 1,200 ms) representing all
service-level attributes as described below. The distinction
in revision and operation-specific QoS is necessary because
attributes such as response time depend on the execution
duration of an operation, whereas availability is typically
given for the revision (if a service is not available, all
operations are generally also unavailable). In Section 3.5, we
show how concrete services are mapped to the metadata
and service model in order to perform service mediation.

3.2.3 QoS Model

Besides functional attributes described in the metadata
model, nonfunctional attributes are also important. For
instance, in our case study, CPO1 may want to always bind
to the Notification Service having the lowest response time.
Therefore, QoS attributes can be associated with each
service revision and operation in VRESCo. These QoS
attributes can be either specified manually using the
Management Service or measured automatically (e.g., using
the QoS Monitor introduced in [18]).

Table 1 briefly summarizes the QoS attributes that are
currently considered in VRESCo. Latency represents the
time a request needs on the wire. It is calculated as
the average value of n individual measuring points.
Response time consists of the latency for request and
response plus the execution time of the service. Avail-
ability represents the probability a service is up and
running (t0, t1 are time stamps, td is the total time the
service was down). Accuracy is the probability of a service
to produce correct results, where rf denotes the number of
failed requests and rt denotes the total number of requests.
Finally, throughput represents the maximum number of
requests a service can process within a certain period
of time (denoted by t1 � t0), where r is the total number of
requests during that time. In addition to these predefined
QoS attributes, users can define additional QoS properties
for service revisions or operations.

3.3 Querying Approach

The VRESCo Query Language (VQL) provides a means to
query all information stored in the registry (i.e., services
and service metadata including QoS). In this section, we
discuss the architecture of VQL followed by query
specification and query processing.

3.3.1 Architecture

The VQL architecture was driven by the following require-
ments: First of all, declarative query languages such as SQL
refer to database tables and columns, which makes queries
invalid as soon as the database schema changes. Following
the Query Object Pattern [19], queries can be built program-
matically using query criteria that refer to classes and fields
instead. These queries are finally translated into SQL
statements, which makes them independent of the database
schema. In this regard, VQL should provide such object-
oriented querying interface and corresponding query ex-
pression library (similar to the Hibernate Criteria API [20]).

Moreover, it should be possible to define both mandatory
and optional criteria by introducing different querying
strategies that enable fuzzy or priority-based querying
(e.g., services must have a response time below 500 ms

196 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 5. Service model to metadata model mapping.

TABLE 1
QoS Attributes

and should be provided by company X). Finally, VQL
queries should be type-safe (i.e., the query requester
specifies the expected type of the query results) and secure
(i.e., queries are protected against well-known security
issues such as SQL injection).

The architecture of the VQL framework is shown in
Fig. 6. In general, the Client Library is used to invoke
VRESCo core services (e.g., Publishing Service). Since these
invocations represent remote method invocations, the Data
Transfer Object pattern [19] is used to reduce the informa-
tion sent from clients to the core services. Therefore, the
VRESCo runtime operates on the core model (which
represents the service metadata model introduced in
Section 3.2), while clients operate on the user model. The
task of the Data Access Layer (DAL) is to convert core objects
into user objects and vice versa. The corresponding mapping
between the two models is defined at design time using
.NET attributes [21].

The advantage of this architecture is that clients operate
on the user model, which represents a restricted view of the
core model. Therefore, some information can be hidden from
the clients (e.g., database IDs or versioning information for
optimistic locking). Consequently, the VQL framework has
to provide view-based querying, to be able to query on both
models (depending on whether the query is issued client or
server-side). The task of the ORM Layer is then to map the
entities of the core model to the database model (i.e., concrete
database tables and columns), which is realized by NHiber-
nate [20] using dedicated data access objects (DAOs).

According to this architecture, user queries are formu-
lated using the Client Library, which provides an object-
oriented querying interface to define query criteria, which is
discussed in the next section. The query is then sent to the
VRESCo runtime (step 1) and forwarded to the VQL Engine
(step 2). The details of query processing (steps 3-5) are
described in Section 3.3.3. Finally, the results are sent back
to the query requester (step 6).

3.3.2 Query Specification

After describing requirements and architecture of the
querying framework, we present how queries are specified.
In general, VQL queries consist of six elements as follows:

. Return Type R defines the expected data type of the
query results. The return type needs to be an
element of the VRESCo metadata model (e.g., a list
of Feature objects).

. Mandatory Criteria Cm describe constraints that have
to be fulfilled by the query (e.g., response time must
be less than 500 ms).

. Optional Criteria Co add constraints, which should
optimally be fulfilled but are not required (e.g.,
service provider should be company X).

. Ordering O can be used to specify the ordering of the
query results (e.g., sort ascending by ID).

. Querying Strategy S finally defines how the query
should be executed (e.g., exact or fuzzy matches).

. Result Limit L can be used to restrict the number of
results (e.g., 10 or 0, which represents no limit).

The most important elements are criteria since they
actually represent the constraints of the query. Moreover,
criteria have different execution semantics depending on
the querying strategy, which is discussed in Section 3.3.4.
However, the main motivation is to allow the specification
of mandatory and optional criteria.

In general, criteria consist of a set of expressions E that is
used to define common constraints such as comparison
(e.g., smaller, greater, equal, etc.) and logical operators (e.g.,
AND, OR, NOT, etc.). Table 2 shows criteria (C), expres-
sions (E), and orderings (O), which are currently provided
by VQL. Furthermore, the table indicates how each of these
elements is translated into SQL, which is described in more
detail later. It should be noted that VQL is extensible in that
further expressions can be added easily.

Listing 1 shows an example query for finding services
that implement the Notify_Customer feature in our
CPO case study. As described above, queries are para-
meterized using the expected return type. In this case, the
type ServiceRevision (line 2) expresses that the result
of the query is a list of service revisions. In our example,
two Add criteria (lines 5-7) are used to state that services
have to be active and that each service has to implement
the Notify_Customer feature (by using the Eq expres-
sion). The first parameter of expressions is usually a string
representing a path in the user or core model (e.g.,
Service.Owner.Company describes the company prop-
erty of the service owner). These strings are central to
VQL and are referred to as property paths. Additionally,
three Match criteria are added in the example (lines 8-14).

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 197

Fig. 6. VQL architecture.

TABLE 2
VQL/SQL Translation

The first criterion expresses that services provided by
CompanyX are preferred, while the second criterion defines
that revisions should have tags starting with “STABLE”
(Like expression). The third criterion specifies an optional
QoS constraint on response time, which should be less
than 1,000 ms. The operator “&” in line 13 represents a
shortcut for an And expression. All three Match criteria
use priority values as third parameter to define the
importance of a criterion.

Listing 1. VQL sample query:

The query is finally executed (lines 17-20) by instantiat-
ing a querier object using the Client Factory, and
invoking the FindByQuery method using the desired
querying strategy (e.g., QueryMode.Priority). Further-
more, the result limit of the query is set in order to return
only 10 results.

3.3.3 Query Processing

Query processing is illustrated in Fig. 6. When the query is
sent to the VQL Engine, the specified querying strategy is
executed, which is implemented using the strategy design
pattern [22]. The query is forwarded to the Preprocessor
component (step 3), which is responsible for analyzing the
VQL query and generating the corresponding SQL query.
Next, an NHibernate session is created to execute the
generated SQL query on the database (step 4). After
execution, the ResultBuilder component takes the results
from the NHibernate session context. Since these results
represent core objects, they may have to be converted back
into the corresponding user objects (i.e., if the return type
refers to the user model). This is done dynamically by
invoking the constructor of the corresponding object using
reflection. For both models, however, the ResultBuilder
guarantees type safety of the results, which are finally sent
back to the client (step 5).

Algorithm 1 depicts the pseudocode of the Preprocessor. If
the query refers to the user model, it is first transformed to the
core model (lines 1-3). The Preprocessor then iterates over all
criteria and expressions (lines 5-10). The ResolveAssoc
function recursively analyzes the property paths of each
expression to determine the necessary table joins. Similarly,
the ResolveProp function extracts the property values of each
expression. To give an example, reconsider line 8 of Listing 1:
The property path Service.Owner.Company represents
two associations Service and Owner that will be resolved
using joins, and one property Company that will be
compared with the expression’s property value CompanyX.
The concrete association/table and property/column names

are retrieved using the ORM Layer. The collected informa-
tion is finally used to build FROM, WHERE, and ORDER

clauses of the SQL query (lines 11-13), according to the VQL/
SQL translation shown in Table 2.

Algorithm 1. processQueryðR;C; S;OÞ
1: if (isUserObject(R)) then

2: R MapUserToCoreObject(R)

3: end if

4: assocInfo R

5: for all (crit 2 C) do

6: for all (expr 2 GetExpressions(crit)) do

7: assocInfo assocInfo [ResolveAssoc(expr)

8: propInfo params [ResolveProp(expr)

9: end for

10: end for

11: query BuildFrom(assocInfo, propInfo, S)

12: query BuildWhere(query, assocInfo, propInfo, S)

13: query BuildOrder(query, O)

14: return query

3.3.4 Querying Strategies

The querying strategy influences how queries are executed.
More precisely, it defines the Preprocessor’s behavior during
SQL generation. The basic transformation process can be
summarized as follows: Add criteria are transformed into
predicates within the SQL WHERE clause, whereas Match

criteria are handled as SQL subselects (IN or JOIN, see
Table 2).

The exact querying strategy forces all criteria to be
fulfilled, irrespective of whether this is Add or Match.
However, there are scenarios where Match has to be used
instead of Add in order to get the desired results (i.e., by
enforcing subselects using IN instead of WHERE predicates).
In particular, when mapping N:1 and N:M associations (i.e.,
collection mappings in Hibernate terminology), a query
cannot have the same collection more than once in the
WHERE predicate. The use of subselects eliminates this effect
in VQL; otherwise, such queries would result in null since
the associated tables are joined more than once. As an
example, reconsider the query in Listing 1 using the exact
strategy. When having only one criterion with respect to
QoS, Add can be used. However, if there would be a second
QoS criterion, Match is required.

The priority querying strategy uses priority values for
each criterion in order to accomplish a weighted matching
of results. Therefore, each Match criterion allows to append
a weight to specify its priority, which is internally added if
the criterion is fulfilled. The query finally returns the results
sorted by the sum of priority values. To give an example,
the query in Listing 1 uses the priority values “1,” “3,” and
“5.” This means that the constraint on response time is more
important than the constraint on revision tags. More
precisely, queries that fulfill only the third Match criterion
are preferred over queries that fulfill the first and second
Match criteria (since 5 > 3þ 1).

The relaxed querying strategy represents a special variant
of priority querying, where each Match criterion has
priority 1. Thus, this strategy simply distinguishes be-
tween optional and mandatory criteria. Results are then

198 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

sorted based on the number of fulfilled Match criteria.
This allows to define fuzzy queries by relaxing the criteria,
which can be useful when no exact match can be found for
a query. To achieve the necessary behavior, relaxed and
priority querying both translate Match criteria into sub-
selects using JOIN predicates.

3.4 Dynamic Binding

Dynamic binding is claimed to be one of the main
advantages of SOA. In practice, however, services are often
bound using pregenerated stubs that do not provide
support for dynamic binding. Similar to querying strategies,
we use the strategy pattern to implement a number of
different rebinding strategies. We summarize all available
strategies in Table 3.

All rebinding strategies have their advantages and
disadvantages. Fixed proxies are used in scenarios where
rebinding is not needed (e.g., because of existing contrac-
tual obligations). Periodic rebinding causes background
queries on a regular basis, which is inefficient if invocations
happen infrequently. OnDemand rebinding results in low
overhead but has the drawback that the binding is not
always up-to-date. In contrast to this, OnInvocation rebind-
ing guarantees accurate bindings but seriously degrades the
service invocation time since service bindings are checked
before every invocation. Finally, OnEvent rebinding uses the
VRESCo Event Notification Engine [12] to combine the
advantages of all strategies. Therefore, clients use subscrip-
tions for defining in which situations to rebind, which is
then triggered by events.

3.5 Service Mediation

Dynamic binding as described above naturally brings up
the problem of how differences in service interfaces can
be resolved at runtime. In this section, we introduce the
VRESCo Mapping Framework (VMF) that handles the
mapping from abstract features to concrete service opera-
tions (as described in Section 3.2), and perform mediation
between different services that implement the same feature.
The elements of the service model are mapped to our
service metadata model as follows (see Fig. 5): Services are
grouped into categories, where every service may belong to
several categories at the same time. Services within the
same category provide at least one feature of this category.
Service operations are mapped to features, where every
operation implements exactly one feature. However, we
plan to provide support for more complex mappings using
the VRESCo Composition Engine [16] (i.e., features will be
represented as compositions of several service operations).
The input and output parameters of service operations map
to data concepts. Every parameter is represented by one or
more concepts in the domain model. This means that all

data that a service accepts as input or passes as output are
well defined using data concepts and annotated with the
flow predicates requires (for input) and produces (for
output). The concrete mapping of service parameters to
concepts is described using mapping scripts, which will be
discussed extensively below.

In general, the mediation approach follows the “feature-
driven” metadata model. Therefore, a client that wants to
invoke a service does not provide the input of the concrete
service directly but in the conceptual high-level representa-
tion (i.e., the feature input in VRESCo terminology). The
runtime takes care of lowering and lifting the feature input
and output, respectively. Lowering represents the transfor-
mation from high-level concepts into a low-level format
(i.e., feature input to SOAP input) whereas lifting is the
inverse operation (i.e., SOAP output to feature output).

Fig. 7 shows an overview of the VMF architecture.
Generally, VMF comprises two main components. First, at
mapping time, the Mapper component is used to create
lifting and lowering scripts for each service. This informa-
tion is stored in the VRESCo Registry Database using the
Metadata Service. Second, at execution time, DAIOS is used
as a dynamic service invocation framework. The Mediator
component is used as an interceptor in DAIOS following the
ideas presented in [23]. This mediator retrieves the lifting
and lowering scripts from the VRESCo Metadata Service at
runtime, and executes the corresponding mapping. This is
done by applying all mapping functions sequentially, in the
order they have been specified. In that sense, VMF
implements an imperative, interpreted domain-specific
language. In its current form, VMF does not optimize
mapping scripts in any way.

Mapping scripts are defined using the Mapping Library,
which includes a number of Mapping Functions. Mapping
functions are the atomic building blocks from which all
mapping scripts are constructed. We have summarized the
provided mapping functions in Table 4 (grouped into seven

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 199

TABLE 3
Rebinding Strategies

Fig. 7. VMF architecture.

TABLE 4
VMF Mapping Functions

categories). Probably, the most important function is
Assign, which is used to map one input parameter or
intermediary result to an output parameter (i.e., a web
service operation parameter in case of a lowering script, a
feature output parameter in case of a lifting script).
Functions from the Constants group are used to create
new data directly in the mapping. All remaining mapping
functions are used to transform parameters in various ways,
e.g., from one data type to another, using string manipula-
tion, or using mathematical and logical operations. Further-
more, more complex mappings can be defined in the CS-
Script language [24]. Essentially, this allows to deploy
custom mapping functions by using the full power of the C#
programming language. For instance, this can be used to
invoke external web services at mediation time.

We give a concrete mapping example in Fig. 8. In this
example, the abstract feature Notify_Customer from the
CPO case study (see Section 2) is mapped to the concrete
operation SendSMS1. The feature provides three input
parameters and produces one output parameter. The
parameter Message is identical in both interfaces, and can
therefore be mapped directly (using only Assign). Note
that for the Assign function to work, both sides need to be
represented using the same data concept (in this case string).
The parameter SenderNr is split into the area code and the
actual number. This is done using the string operation
SubString, which takes the start index of the string and the
length of the substring as parameters. Afterward, both
substrings are converted into integers using the Convert-
ToInt function. This is necessary since assigning a string to
an integer is not possible. The ReceiverNr is handled
similarly. So far, only input parameters have been mapped
(i.e., all informations given so far form the lowering script for
this service). The lifting script, which defines how the service
output is mapped to the feature output, consists only of a
ConvertToBoolean and another Assign function.

Listing 2 illustrates the first two mappings (Message
and SenderNr) in C# code. Lines 4 and 5 show how the
Mapper is created for feature Notify_Customer and
operation SendSMS1. Both objects have to be queried
beforehand (not shown in Listing 2 for brevity). The
Assign function is again used as a connector to link
the Message from the feature to the Message of the
operation, whereas mapper.AddMappingFunction()

adds the function to the mapping. Lines 14-21 get the
area code from the feature’s SenderNr as substring and

convert it with the ConvertToInt function to an integer
which is finally assigned to operation’s input parameter
AreaCodeSender. All further mappings from Fig. 8 are
implemented analogously.

Listing 2. VMF mapping example code:

4 EVALUATION

In this section, we give an evaluation of the VRESCo
runtime focusing on the topics covered in this paper. The
purpose of this evaluation is twofold: First, we show the
runtime performance regarding service querying, rebind-
ing, and mediation by using synthetic data. The main goal
of this evaluation is to analyze the performance impact of
each aspect in isolation. Second, we combine these aspects
into a coherent end-to-end evaluation using an order
processing workflow. The main goal is to understand the
influence of each aspect with regard to the overall process
duration in a realistic setting. Additionally, we show how
the individual results of the first part interrelate in an end-
to-end setting. All experiments have been executed on an
Intel Xeon Dual CPU X5450 with 3.0 GHz and 32 GB RAM
running under Windows Server 2007 SP1. Moreover, we
use .NET v3.5 and MySQL Server v5.1.

For mediation, rebinding, and end-to-end evaluation, we
have created different sets of test services and QoS
configurations (with varying response times) using the
web service generation tool GENESIS [25]. These testbeds are
described in detail in the corresponding sections.

4.1 Querying Performance

First of all, we show the performance of the VQL Engine,
which has been measured using the query shown in Listing 1.
The test data are generated automatically: In every step, five
categories are inserted, each having five alternative services
with 10 revisions, while every revision has one tag and 11 QoS
attributes with random values. It should be noted that in
every step, 20 percent of all services match the queried feature
Notify_Customer and service owner CompanyX, while
only 2 percent of all service revisions match all query criteria.
To eliminate outliers, the results represent the median of
10 runs, while the database and Hibernate session cache are
cleared after each run.

Fig. 9 compares the performance of the queries gener-
ated by SQL, HQL, and VQL. Therefore, the query from
Listing 1 was manually translated into HQL and SQL, while
the VQL query is executed on core objects using the exact
strategy without result limit (NL). The queries return only

200 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 8. VMF mapping example.

the IDs of the matching revisions. Therefore, this table
shows the performance of the native queries and does not
include the time needed for converting the results back into
ServiceRevision objects. The results indicate that the
queries generated by all three approaches perform equally.
In this regard, all approaches exhibit the same peaks, which
are due to the internal processing of the database.

Fig. 10 compares the querying strategies using the same
query on user objects and limited to 10 results (L10). The limit
was chosen since relaxed and priority return more revisions
than exact (which influences the results). It can be seen that
exact is much faster than relaxed, while relaxed and priority
have similar performance. The reason for the significant
difference is that relaxed and priority use different table joins,
and need to sum up and order by the total sum of priority
values, while the query in exact mode can be optimized by
the database.

Finally, Table 5 depicts the duration of the individual
steps during VQL query processing. Therefore, the previous
query is executed on both core and user objects using the exact
strategy. Generation (G) indicates how long the Preprocessor
needs to analyze and generate the query. Execution (E)
depicts the actual query execution time, while Conversion
(C) represents the time needed by the ResultBuilder to convert
the query results.

The results show that G is almost constant for core/user

objects, while the latter is slightly slower since queries have to
be translated to refer to core objects. Obviously, E is almost
equal for both approaches. Finally, the table indicates that C

is fast for core objects, while it takes some time for user objects.
The main reason is that queries actually return IDs, while the
corresponding entities are loaded from the NHibernate
session context. Furthermore, revision objects have a number
of collections (e.g., tags, QoS, etc.) that have to be converted
by the ResultBuilder using reflection, which internally leads
to a number of additional queries (since most collections are
lazy-loaded [19]). In this setting, the time for C is constant for
all revisions due to the result limit of 10.

4.2 Rebinding Performance

In the following section, we give an evaluation of the
different rebinding strategies introduced in Section 3.4. For
measuring the rebinding performance, we used GENESIS to
simulate 10 services that implement the same feature. Then,
we leveraged the QoS plug-in to continuously modify the
response time of all services using a Gaussian distribution,
and we additionally increased the variance after each step
in order to simulate an environment where the QoS of
services is subject to significant change. Finally, we
implemented one client for each rebinding strategy and
measured the average response time when invoking the
service. As a result, we can see the impact of the different
rebinding strategies for each client.

The results of this experiment are depicted in Fig. 11. It
should be noted that the response time of the best service is
decreasing since we increase the variance. All services start
with a (server-side) execution time of 2,000 ms. The (client-
side) response time differs about 400 ms, which is caused by
the network latency and the time needed for wrapping
SOAP messages.

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 201

Fig. 9. Query performance (NL).

Fig. 10. Querying strategies (user, L10).

TABLE 5
VQL Query Processing (in Milliseconds, User/Core, L10)

Fig. 11. Rebinding strategies performance.

Obviously, clients with fixed binding usually perceive the
worst response time because they are always bound to
the same service. Clients using periodic rebinding mostly use
services with good response time. However, since rebinding
is done in predefined intervals, the bindings are not always
up-to-date (e.g., steps 17 and 18, 24 and 25, and 27 and 28
represent such situations). In contrast to that, clients with
OnInvocation rebinding always invoke the best service since
the rebinding is reconsidered just before the service is
invoked. However, this leads to a constant overhead of
about 400 ms, which is needed to check the binding and
update if necessary. Finally, clients with OnEvent rebinding
always bind to the best service without invocation overhead
because the clients are notified asynchronously when the
QoS changes and better services get available. However, the
(optional) VRESCo eventing support must be turned on and
the client needs a listener web service. It should be noted
that the performance of the Event Engine is sufficient,
which is detailed in [12]. Thus, all rebinding strategies have
their strengths and weaknesses, and it depends on the
specific situation which strategy to use.

4.3 Mediation Performance

Besides rebinding, we have also evaluated the overhead
introduced by the VRESCo mediation facilities. We have
again used the GENESIS tool for these tests.

Fig. 12 depicts the response time of a single web service

invocation depending on the size of the message sent to the
service. We have evaluated five different scenarios:

1. no mediation,
2. mediation using only constant mapping functions

(replacing an input parameter with a constant string),
3. using mathematical functions (replacing a parameter

with a calculated value),
4. using string modification functions (adding a con-

stant string to a string parameter), and, finally,
5. using CS-Script (a simple script which exchanges the

order of two parameters).

Unsurprisingly, unmediated invocations are generally
faster than any type of mediation. The performance of

mediated invocations is similar no matter what type of
mapping functions have been applied. However, in our
experiments, mediation using string operations introduces
slightly more overhead than the other types. This is due to

the fact that string operations naturally become more
expensive when the strings become bigger.

In Fig. 13, we have studied the overhead introduced by
different mapping functions in more detail. We have
evaluated how the overhead introduced by mediation
depends on the amount of mediation necessary (measured
in the number of mapping functions applied). We have
evaluated the same scenarios as before, but omitted the
tests using unmediated invocations. Generally, the addi-
tional overhead introduced by a larger number of mapping
functions is rather small: The difference between 1 and 100
mapping functions varies between 5 and 20 ms, which
seems acceptable. As before, the overhead introduced by
string operations heavily depends on the size of the strings
to modify. Our experimentation string was rather sizable at
73 Kbytes, which explains the comparatively big overhead
incurred by this type of mapping function. Note that the
overhead of CS-Script mappings is constantly around 10 ms
since the main overhead is the initialization of the scripting
engine, while the execution of the actual script is negligible
(as long as the script does not do any heavy computation,
which would not be typical for mapping scenarios).

4.4 End-to-End Evaluation and Discussion

The end-to-end scenario combines all aforementioned
aspects (i.e., querying, rebinding, mediation, and invoca-
tion) into a larger order processing case study with the goal
of ordering new cell phone contracts online (including
mobile phone and SIM card). We implemented this work-
flow in C#. It consists of 19 overall activities split into four
subprocesses. Basically, the process starts upon receiving an
order via the company website. Afterward, the internal
stock is checked for the availability of the phone and the
SIM card. If one of those components is missing, it is
ordered by using one of the internal or external suppliers,
which is followed by a contracting subprocess. This
subprocess creates a new contract, and if necessary, it adds
a new customer to the CRM system. If the customer wants
to transfer her old number, the number porting subprocess
as depicted in Fig. 2b is executed. Finally, the payment and
shipping subprocesses are enacted and the cell phone
number is activated in the GSM network.

The services used in the case study have been deployed on
a different machine using GENESIS [25]. For each internal
service (e.g., CRM, contracting), we have deployed only one
alternative, whereas for each external service (e.g., Credit
Card Service), multiple alternatives are available (between 60

202 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 12. Mediation performance (message size). Fig. 13. Mediation performance (mediation steps).

and 250). For the internal notification service which is used to
notify customers of their order status (using SMS, e-mail,
mail, etc.), 30 alternatives are provided. This service is the
only one that requires significant mediation. We use GENESIS

to simulate a response time of 30-100 ms for each service.
In Fig. 14, we show the average process duration in this

case study based on 40 concurrent clients running on one
host that is also hosting the VRESCo environment. Each
client continuously executes the process over an experiment
time of 16 min. We have chosen the Periodic rebinding
strategy for this scenario, to accommodate for our highly
dynamic scenario with many alternatives for each external
service. In order to get a big number of rebindings during
our experiment time, we have chosen a rebinding interval
of 5 sec. The x-axis of the figure shows the experiment time
(in minutes) and the y-axis depicts the averaged process
durations of the currently executing process instances.
Right after bootstrapping the system, there is a steep incline
in the overall duration because each client performs some
initialization. This includes querying the available services
(red part), as well as creating proxies and binding to one
service candidate (blue part). Additionally, the services are
invoked (green part) and a certain amount of mediation
occurs (black part). After the initialization phase, the system
stabilizes and the response times and mediation time are
constant. The mediation overhead reflects our detailed
mediation results from Fig. 12. Together, service response
times and mediation account for about 92 percent of the
average process duration after the initialization phase. The
remaining 8 percent (blue part) represents other factors

such as thread handling or the workflow business logics.
Note that querying and an occasional rebinding still
happens after the initialization phase, but it is no longer
part of the average process execution times (on the y-axis).
This is because the rebinding clients perform querying and
rebinding asynchronously in a separate thread. Therefore, it
solely depends on the rebinding strategy whether querying
and rebinding is part of the process execution time or just
part of the initialization phase (as shown in Fig. 14). In case
of the OnInvocation rebinding strategy, there would be
querying and rebinding overhead in the overall process
execution time, whereas for OnDemand and OnEvent, the
behavior would be similar as shown above.

Generally, the decision which rebinding strategy to use
depends on the particular domain and the requirements. For
example, for the Number Porting Service, fixed binding is not
a reasonable choice because even simple changes of the
partner CPO’s services (e.g., a different endpoint) would
break the process. OnDemand is only reasonable if changes
happen infrequently, and adaptation to changes is not time
critical. Periodic rebinding, on the other hand, is only adequate
when services change frequently enough to warrant perma-
nent polling for updates. Since number porting is not time
critical, we could have also used the OnInvocation rebinding
strategy, which has a constant invocation overhead but
always finds the best available service, or even better
OnEvent, which also eliminates this invocation overhead.

5 RELATED WORK

In this section, we review related work concerning service
repositories and service metadata, as well as service
selection, invocation, and mediation.

Currently, several approaches and standards for service
registries exist. We have compared some existing solutions
with the VRESCo runtime, considering a carefully selected
range of established standards, mature open-source frame-
works, and commercial tools. We consider the standards
UDDI [5] and ebXML [6] (with special emphasis on the
registry), Mule ESB and Galaxy repository [26], WSO2 ESB
and registry [27], and IBM WebSphere [28] (including ESB,
service registry, and repository). Our comparison in Table 6
is structured according to the challenges introduced in
Section 2.

Generally, all systems allow to store service metadata.
Mostly, this is done in an unstructured way (e.g., using
tModels in UDDI). There is only limited support for

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 203

Fig. 14. End-to-end performance.

TABLE 6
Related Enterprise Registry Approaches

structured metadata in most approaches, whereas Web-
Sphere provides an extensive structured metadata model
(e.g., supporting OWL). To access data and metadata within
the registry, a query language or API is needed, which is
provided by all approaches (WSO2 supports querying only
based on Atom [29]). In contrast to VRESCo, type-safe
queries are not supported by most approaches since
querying is usually done on the unstructured service
metadata model using languages such as SQL. Only Web-
Sphere provides partial support by using XPath expressions
for querying. Currently, explicit support for QoS attributes is
not widely available. It is to some extent possible in WSO2
and WebSphere, and fully supported by VRESCo. WSO2
supports QoS only in terms of WS-Security and WS-
ReliableMessaging. However, none of these frameworks
except VRESCo provide QoS monitoring. Integration of
dynamic binding, invocation, and mediation of services is
obviously not supported by pure registries such as UDDI or
the ebXML registry. The other systems provide support in
this respect due to their integrated ESBs. All systems except
UDDI and VRESCo allow to store multiple versions of
service metadata in the registry. However, only VRESCo
provides end-to-end versioning support, which enables to
seamlessly rebind and invoke different service revisions at
runtime [11]. Finally, all approaches provide basic event
notifications (e.g., if services are published) using e-mail,
web service notifications, or Atom. Only WebSphere and
VRESCo allow clients to subscribe to more complex events
and event patterns using a rich subscription language.

Besides UDDI and ebXML, there are other standards for
describing service metadata [8]. Some of them are used by
semantic web service approaches [30] (such as OWL-S [31],
WSML [32], and SAWSDL [33]). It should be noted, however,
that the VRESCo service metadata model introduced in
Section 3.2 is not intended to compete with these approaches.
We aim at enterprise development, where metadata are an
important business asset which should not be accessible for
everyone, as opposed to the semantic web service commu-
nity where domain ontologies should be public to facilitate
integration among different providers and consumers.

In general, several standards and research approaches
have emerged that address the complexities of managing
and deploying web services [34]. In these approaches,
service querying and selection play a crucial role, especially
regarding service composition (e.g., [10], [35], [16]). How-
ever, the query models of current registries and web service
search engines [36] mainly focus on keyword-based match-
ing of service properties, which often do not cover the rich
semantics of service metadata.

Yu and Bouguettaya [37] introduce a web service query
algebra and optimization framework. This framework is
based on a formal model using service and operation graphs
that define a high-level abstraction of web services, and also
includes a QoS model. Service queries are specified as
algebraic operators on functionality, quality and composi-
tion of services, and finally, result in service execution plans.
Optimization techniques are then applied to select the best
service execution plan according to user-defined QoS
properties. This work is complementary to ours: While the
authors focus on their formal service model and introduce a
query algebra for this model, we present a service runtime
that provides end-to-end support for service management
and querying functionality. Furthermore, we address dy-
namic binding and service mediation since service interfaces

of different service providers are not always identical in
practice. Dynamic binding of services has been addressed by
other approaches (e.g., [38], [39]).

Pautasso and Alonso [38] discuss various binding models
for services, together with different points in time when
bindings are evaluated. They present a flexible binding
model in the JOpera system, where binding is done using
reflection and does not require a specific language construct.
Di Penta et al. [39] present the WS-Binder framework for
enabling dynamic binding within WS-BPEL processes. Their
approach uses proxies to separate abstract services from
concrete service instances. Both approaches have in common
that they rather focus on dynamic binding with respect to
composition environments whereas VRESCo addresses
binding at the core SOA level.

6 CONCLUSION

One of the main promises of SOC is the provisioning of
loosely coupled applications based on the publish-find-bind-
execute cycle. In practice, however, these promises can often
not be kept due to the lack of expressive service metadata and
type-safe querying facilities, explicit support for QoS, as well
as support for dynamic binding and mediation. In this paper,
we have proposed the QoS-aware VRESCo runtime environ-
ment, which has been designed with these requirements in
mind. VRESCo offers an extensive structured metadata
model and VQL as type-safe query language. Furthermore,
we provide dynamic binding and mediation mechanisms
that use predefined service mappings. We have evaluated
our work regarding performance and discussed the results
together with the experience gained in the CPO case study.
The results show that the VRESCo runtime is applicable to
large-scale adaptive service-centric systems.

As part of our ongoing and future work, we want to link
the VRESCo eventing [12] and composition [16] mechan-
isms. Furthermore, we envision to integrate SLA enforce-
ment capabilities on top of VRESCo.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement
215483 (S-Cube). Additionally, the authors would like to
thank Lukasz Juszczyk for providing the web service
testbed GENESIS, and their master students Andreas Huber
and Thomas Laner for their contribution to VRESCo.

REFERENCES

[1] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.F.
Ferguson, Web Services Platform Architecture: SOAP, WSDL, WS-
Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Prentice Hall PTR, 2005.

[3] SOAP Version 1.2, World Wide Web Consortium (W3C), http://
www.w3.org/TR/soap, 2003.

[4] Web Services Description Language (WSDL) 1.1, World Wide Web
Consortium (W3C), http://www.w3.org/TR/wsdl, 2001.

[5] Universal Description, Discovery and Integration (UDDI), Organiza-
tion for the Advancement of Structured Information Standards
(OASIS), http://oasis-open.org/committees/uddi-spec, 2005.

204 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

[6] ebXML Registry Services and Protocols, Organization for the
Advancement of Structured Information Standards (OASIS),
http://oasis-open.org/committees/regrep, 2005.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S.
Dustdar, “Towards Recovering the Broken SOA Triangle—A
Software Engineering Perspective,” Proc. Second Int’l Workshop
Service Oriented Software Eng. (IW-SOSWE ’07), 2007.

[8] D. Bodoff, M. Ben-Menachem, and P.C. Hung, “Web Metadata
Standards: Observations and Prescriptions,” IEEE Software,
vol. 22, no. 1, pp. 78-85, Jan./Feb. 2005.

[9] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans.
Web, vol. 1, no. 6, p. 6, 2007.

[10] L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composi-
tion,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-327, May
2004.

[11] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” Proc. Int’l Conf.
Services Computing (SCC ’08), 2008.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Advanced Event Processing and Notifications in Service Run-
time Environments,” Proc. Second Int’l Conf. Distributed Event-Based
Systems (DEBS ’08), 2008.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Service
Provenance in QoS-Aware Web Service Runtimes,” Proc. Seventh
Int’l Conf. Web Services (ICWS ’09), 2009.

[14] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios—Efficient
Dynamic Web Service Invocation,” IEEE Internet Computing,
vol. 13, no. 3, pp. 72-80, May/June 2009.

[15] J. Löwy, Programming WCF Services. O’Reilly, 2007.
[16] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S.

Dustdar, “An End-to-End Approach for QoS-Aware Service
Composition,” Proc. 13th Int’l Enterprise Computing Conf.
(EDOC ’09), 2009.

[17] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar,
“Integrated Metadata Support for Web Service Runtimes,” Proc.
Middleware for Web Services Workshop (MWS ’08), 2008.

[18] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
Performance and Dependability Attributes of Web Services,”
Proc. IEEE Int’l Conf. Web Services (ICWS ’06), 2006.

[19] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[20] Hibernate Reference Documentation v3.3.1, Red Hat, Inc., http://
www.hibernate.org, 2008.

[21] J. Liberty and D. Xie, Programming C# 3.0. O’Reilly Media, Inc.,
2007.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[23] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards Flexible
Interface Mediation for Dynamic Service Invocations,” Proc. Third
Workshop Emerging Web Services Technology (WEWST ’08), 2008.

[24] O. Shilo, “CS-Script—the C# Script Engine,” http://www.
csscript.net, 2009.

[25] L. Juszczyk, H.-L. Truong, and S. Dustdar, “GENESIS—a Frame-
work for Automatic Generation and Steering of Testbeds of
Complex Web Services,” Proc. 13th IEEE Int’l Conf. Eng. of Complex
Computer Systems (ICECCS ’08), 2008.

[26] Mule Galaxy, v1.5.1, MuleSoft, Inc., http://www.mulesoft.org/
display/GALAXY/Home, Nov. 2009.

[27] WSO2 Registry, v2.0, WSO2, Inc., http://wso2.org/projects/
registry, Feb. 2009.

[28] WebSphere Service Registry and Repository, v6.2, IBM, Inc., http://
www.ibm.com/software/integration/wsrr, July 2008.

[29] R. Sayre, “Atom: The Standard in Syndication,” IEEE Internet
Computing, vol. 9, no. 4, pp. 71-78, July/Aug. 2005.

[30] S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53, Mar. 2001.

[31] OWL-S: Semantic Markup for Web Services, World Wide Web
Consortium (W3C), http://www.w3.org/Submission/OWL-S,
2004.

[32] Web Service Modeling Language (WSML), ESSI WSMO Working
Group, http://www.wsmo.org/wsml/wsml-syntax, 2008.

[33] Semantic Annotations for WSDL and XML Schema, World Wide Web
Consortium (W3C), http://www.w3.org/TR/sawsdl, 2007.

[34] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” The
VLDB J., vol. 17, no. 3, pp. 537-572, 2008.

[35] J. Harney and P. Doshi, “Selective Querying for Adapting Web
Service Compositions Using the Value of Changed Information,”
IEEE Trans. Services Computing, vol. 1, no. 3, pp. 169-185, July 2008.

[36] C. Platzer and S. Dustdar, “A Vector Space Search Engine for
Web Services,” Proc. Third European IEEE Conf. Web Services
(ECOWS ’05), 2005.

[37] Q. Yu and A. Bouguettaya, “Framework for Web Service Query
Algebra and Optimization,” ACM Trans. Web, vol. 2, no. 1, pp. 1-
35, 2008.

[38] C. Pautasso and G. Alonso, “Flexible Binding for Reusable
Composition of Web Services,” Proc. Fourth Int’l Workshop Software
Composition (SC ’05), 2005.

[39] M. Di Penta, R. Esposito, M.L. Villani, R. Codato, M. Colombo,
and E. Di Nitto, “WS Binder: A Framework to Enable Dynamic
Binding of Composite Web Services,” Proc. Int’l Workshop Service-
Oriented Software Eng. (SOSE ’06), 2006.

Anton Michlmayr received the MSc degree in
computer science from the Vienna University of
Technology in 2005. He is currently working
toward the PhD degree in the Distributed
Systems Group at the Vienna University of
Technology, where he is a university assistant.
His research interests include software archi-
tectures for distributed systems with an empha-
sis on distributed event-based systems and
service-oriented computing. He is a student

member of the IEEE. More information about his research can be found
at http://www.infosys.tuwien.ac.at/Staff/michlmayr.

Florian Rosenberg received the PhD degree in
June 2009 for his thesis on “QoS-Aware
Composition of Adaptive Service-Oriented Sys-
tems” while working as a research assistant at
the Distributed Systems Group, Vienna Univer-
sity of Technology. He is currently a research
scientist at the CSIRO ICT Centre in Australia.
His general research interests include service-
oriented computing and software engineering.
He is particularly interested in all aspects

related to QoS-aware service composition and adaptation. He is a
member of the IEEE. More information about his research can be found
at http://www.florianrosenberg.com.

Philipp Leitner received the BSc and MSc
degrees in business informatics from Vienna
University of Technology. He is currently work-
ing toward the PhD degree in the Distributed
Systems Group at Vienna University of Technol-
ogy, where he is a university assistant. His
research is focused on middleware for distrib-
uted systems, especially for SOAP-based and
RESTful web services. He is a student member
of the IEEE. More information about his

research can be found at http://www.infosys.tuwien.ac.at/Staff/leitner.

Schahram Dustdar is a full professor of com-
puter science with a focus on Internet Technol-
ogies heading the Distributed Systems Group,
Vienna University of Technology (TU Wien). He
is also an honorary professor of information
systems in the Department of Computing
Science at the University of Groningen (RuG),
The Netherlands. Since 2009, he has been an
ACM distinguished scientist. He is a senior
member of the IEEE. More information about

his research can be found at http://www.infosys.tuwien.ac.at/Staff/sd.

MICHLMAYR ET AL.: END-TO-END SUPPORT FOR QOS-AWARE SERVICE SELECTION, BINDING, AND MEDIATION IN VRESCO 205

