
Publish/Subscribe in the VRESCo SOA Runtime

Anton Michlmayr, Philipp Leitner, Florian Rosenberg, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Wien, Austria
lastname@infosys.tuwien.ac.at

ABSTRACT
Event-based systems and the publish/subscribe style are
widely used to notify subscribers when certain events of in-
terest occur. In the context of Service-oriented Architecture
(SOA) and Web services, event notifications can be used to
address one issue inherent to the SOA paradigm: Services
and Quality of Service attributes are changing regularly but
service consumers cannot react automatically. In current
service registry standards, notifications are mainly used to
inform about changes in the registry data, which does not in-
clude service runtime information. In this paper, we present
a SOA runtime environment that leverages event processing
for Web services to support the full service lifecycle, includ-
ing runtime information concerning service discovery and
invocation, as well as Quality of Service attributes.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems — Distributed Applications

Keywords
Service-oriented Architecture, Publish/Subscribe, Event Pro-
cessing

1. INTRODUCTION
Following the Service-oriented architecture (SOA) para-

digm, service providers register services and corresponding
descriptions in registries. Service consumers can then find
services in a registry, bind to the services which best fit their
needs, and finally execute them. Web services are one widely
adopted realization of SOA and build upon the main stan-
dards SOAP, WSDL and UDDI. Over the years, a complete
Web service stack has emerged that provides rich support
for multiple higher level functionality (e.g., business process
execution, transactions, metadata exchange, etc.).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’08, July 1-4, 2008, Rome, Italy
Copyright 2008 ACM ISBN ...$5.00.

One of the issues inherent to the SOA paradigm is repre-
sented by the fact that services and associated metadata and
Quality of Service (QoS) attributes change regularly. How-
ever, service consumers are not aware of these changes. In
this regard, the lack of appropriate event notification mech-
anisms limits flexibility because service consumers cannot
automatically react to service and environment changes.

Current service registry standards such as UDDI [9] and
ebXML [8] introduce limited support for event notifications.
Both standards have in common that users are enabled to
track created, updated and deleted entries in the registry.
However, additional runtime information concerning service
binding and invocation, as well as QoS attributes are not
taken into consideration by these standards. We argue that
receiving notifications about such runtime information is
equally important and should, therefore, be provided by
SOA runtime environments. Furthermore, complex event
processing mechanisms supporting event patterns, and search
in historical event data are needed for keeping track of vast
numbers of events.

In this paper, we present an approach that addresses such
runtime event notification support which was integrated into
the VRESCo runtime [2, 7]. The remainder of this paper
is organized as follows. Section 2 briefly mentions related
work in this area. Section 3 gives an architectural overview
of the VRESCo event notification engine whereas Section 4
demonstrates how this software is used in practice.

2. RELATED WORK
Event-based systems in general, and the publish/subscribe

style in particular have been the focus of research within
the last years. This research has led to different event-based
architecture definition languages (e.g., Rapide [4]) and QoS-
aware event dissemination middleware prototypes [5].

Cugola and Di Nitto [1] give a detailed overview of re-
search approaches combining SOA and publish/subscribe.
The most popular examples are WS-Notification [10] and
WS-Eventing [12]. While WS-Eventing uses content-based
publish/subscribe, WS-Notification provides topics accord-
ing to WS-Topics as a means to classify events.

There are several approaches that address search in his-
torical events [3, 11]. Rozsnyai et al. [11] introduce the Event
Cloud system which aims at searching for business events.
Their approach uses indexing and correlation of events by
using different ranking algorithms. In contrast to our ap-
proach, the focus is on building an efficient index for search-
ing in vast numbers of events whereas subscribing to events
and getting notified about their occurrence is not addressed.

VRESCo Runtime Environment

Registry
Database

Publishing
Interface

Metadata
Interface

Composition
Interface

Notification
Interface

ORM
Layer

Client
Program

SOAP

Composition
Engine

Notification
Engine

SOAP

SOAP

SOAPQoS
Monitor

Query
Interface

Query
Engine

Daios Client
Library

Publishing
Engine

Figure 1: VRESCo Overview

Li et al. [3] present a data access method which is inte-
grated into the distributed content-based publish/subscribe
system PADRES. The system enables to subscribe to events
published in both the future and the past. In contrast to our
work, the focus is on building a large-scale distributed pub-
lish/subscribe system that provides routing of subscriptions
and queries.

3. SYSTEM DESCRIPTION
The approach presented in this paper was implemented

as part of the VRESCo (Vienna Runtime Environment for
Service-Oriented Computing) project [2, 7].

3.1 Overview
The basic architecture of VRESCo is shown in Figure 1.

To be platform-independent, the VRESCo services are pro-
vided as Web services which can be accessed either directly
using the SOAP protocol, or via the client library that pro-
vides a simple API for accessing these services.

Services and associated metadata are stored in the registry
database that is accessed using the object-relational map-
ping (ORM) layer. The services are published and found
in the registry using the publishing and querying engine, re-
spectively. The VRESCo runtime uses a QoS monitor which
continuously monitors the QoS values of services and keeps
the QoS information up to date. Furthermore, the compo-
sition engine aims at providing support for QoS-aware ser-
vice composition which is part of our ongoing work. Finally,
the event notification engine is responsible for notifying sub-
scribers when events of interest occur.

To carry out Web service invocations the Daios frame-
work integrated in the VRESCo client library decouples
clients from the services to be invoked by abstracting from
service implementation issues such as encoding styles, opera-
tions or endpoints. Therefore, clients only need to know the
WSDL interface of the target service, and the corresponding
input message; all other implementation details are handled
transparently.

Web services evolve over time, which raises the need to
maintain multiple service revisions concurrently. VRESCo
supports service versioning by introducing the notion of ser-
vice revision graphs that define successor-predecessor rela-
tionships between different revisions of a service and support
multiple branches. Revision tags are thereby used to distin-
guish the different service revisions. Service consumers are
then enabled to decide which service to use (e.g., invoke
specific revisions, or always invoke the latest revision).

Query Engine

Notification Engine

Querying
Service

Subscription
Manager

Events

Subscriptions

Queries

Results

Event
Adapters

Eventing
Service

Notifications Notification
Manager

Storage

Event
Database

Es
pe

r E
ng

in
e

Subscription
Interface

Event Search
Interface

Figure 2: VRESCo Eventing Architecture

3.2 VRESCo Eventing
This section gives a high-level overview of the VRESCo

notification support while the details are described in a com-
panion paper [6]. The basic idea can be summarized as
follows: Notifications are published within the runtime if
certain events occur (e.g., service is added, user is deleted,
etc.). In contrast to current Web service registries, this also
includes events concerning service binding and invocation,
changing QoS attributes, and runtime information. Clients
can then subscribe to get notified about the occurrence of
these events using different notification mechanisms (e.g.,
email, listener Web service, etc.)

Figure 2 depicts the architecture of the notification en-
gine which is part of the VRESCo runtime in Figure 1
and, therefore, also implemented in C# on the .NET plat-
form. The event processing functionality is based on NEs-
per, which is a port of the event processing engine Esper1.

Event Types and Representation. The events supported
by VRESCo are represented by C# classes that form a type
hierarchy where events inherit the properties of the parent
type. All events inherit from the base type VRESCoEvent
which contains a unique event sequence number and a times-
tamp measured during event publication.

The VRESCo runtime provides several event types. First
of all, service management events are triggered when ser-
vices or service revisions and their associated metadata or
QoS values change. Other event types include runtime infor-
mation concerning binding and invocation (e.g., ServiceIn-
vokedEvent), querying information (e.g., RegistryQueriedE-
vent) and user information (e.g., UserAddedEvent).

Event Publication. Within the notification engine, events
are published using the eventing service. We distinguish be-
tween internal events which are produced within the SOA
runtime and external events which are published from com-
ponents outside the runtime. Internal events are directly
produced by the corresponding VRESCo services (e.g., ser-
vice management events are fired by the publishing service

1http://esper.codehaus.org

while querying events are fired by the querying service). In
contrast to this, external events related to binding and in-
vocation are produced by the service proxies located in the
client library, whereas QoS events are regularly fired by the
QoS montitor to publish the current QoS values. External
events are fired using the notification interface where event
adapters are used to transform incoming events into the in-
ternal event format which can be processed efficiently. The
eventing service then forwards both internal and external
events to the event persistence component that is respon-
sible for storing events in the event database by using the
ORM layer. Finally, the eventing service feeds all incoming
events into the Esper engine.

Subscriptions. Similar to event producers, we distinguish
between internal and external subscribers. Internal sub-
scribers reside within the VRESCo runtime and register
listeners at the Esper engine which are invoked when sub-
scriptions match incoming events. External subscribers out-
side the runtime are notified depending on the notification
delivery mechanism defined in the subscription request.

The external subscription interface is used for subscrib-
ing to events of interest according to the methods proposed
in the WS-Eventing specification. The subscription man-
ager is responsible for managing subscriptions which are put
into the subscription storage. In addition, subscriptions are
translated for further processing. This is done by converting
the WS-Eventing subscriptions into Esper listeners which
are attached to the Esper engine.

In both cases, the Esper Query Language (EQL) [13] is
used as subscription language. The structure of EQL is
similar to SQL but EQL is formulated on event streams
whereas SQL uses database tables. Therefore, EQL also
supports aggregate functions, grouping functions, ordering
structures, and joining of event streams. Furthermore, EQL
provides a powerful mechanism to integrate temporal rela-
tions of events using sliding event windows, supports statis-
tical functions over event properties and enables to define
event patterns.

Event Notifications. The Esper engine performs the actual
event processing and is, therefore, responsible for matching
incoming events received from the eventing service to listen-
ers attached by the subscription manager. On a successful
match, the registered listener informs the notification man-
ager that is responsible for notifying interested subscribers.
Depending on the listener type, the notification manager
knows which notification type to use (e.g., email, listener
Web service).

Event Search. Event notifications are often used when sub-
scribers want to quickly react on state changes. Addition-
ally, in many situations it is also important to search in
historical event data. To support such functionality, the
VRESCo notification engine persists all events in an event
database. The events can be queried using the event search
interface which is part of the querying interface. The query-
ing service then returns a list of events that match the given
query. Since we use NHibernate2 for implementing the ORM
layer, our query language is based on the Hibernate Query
Language (HQL).

2http://www.nhibernate.org

4. SOFTWARE DEMONSTRATION
In this section we demonstrate the VRESCo runtime us-

ing a case study from the telecommunications domain. Con-
sider a telecommunications company (TELCO) hosts sev-
eral services, and consumes services from competitor TEL-
COs (e.g., number porting service) and other partners (e.g.,
credit card payment service, shipping service, etc.).

Figure 3 shows this case study in the VRESCo Runtime
Manager GUI. In VRESCo, services are grouped into cat-
egories of services that perform the same task (e.g., Pho-
neNumberPorting). These categories and services are illus-
trated in the left part of the GUI which also provides a search
interface for querying services within the registry database.
The service revision graph of the selected service is depicted
in the middle, showing Id and tags (e.g., INITIAL, STA-
BLE, etc.) of all service revisions. The initial revision is
always placed on the top of the graph and the edges define
the predecessor-successor relationship. The details of the se-
lected service revision are shown in the right part including
revision tags, URL of the WSDL document, current QoS
parameters, and all events related to this revision.� �

1 IVRESCoSubscriber sub s c r i b e r =
2 VRESCoClientFactory . CreateSubscr iber (
3 ”rome . v i t a l ab . tuwien . ac . at ” , 11111) ;
4
5 // subscr i be using email n o t i f i c a t i on s
6 I d e n t i f i e r s i d = sub s c r i b e r . Subscr ibePerEmail (
7 ” s e l e c t ∗ from Revis ionPubl ishedEvent ” +
8 ”where Se rv i c e . Id = 11 ” ,
9 ”anton@infosys . tuwien . ac . at ” ,

10 60∗10
11) ;
12
13 // subscr i be using Web serv i ce no t i f i c a t i on s
14 s i d = sub s c r i b e r . SubscribePerWS (
15 ” s e l e c t ∗ from QoSEvent ”+
16 ”where Revis ion . Id = 17 ”+
17 ”and ResponseTime > 500 ” ,
18 ”net . tcp :// l o c a l h o s t :8005/ SubscriptionEndTo ” ,
19 ”net . tcp :// l o c a l h o s t :8006/OnVRESCoEvents” ,
20 24∗60∗60
21) ;
22
23 // use s l i d i n g window and s t a t i s t i c s
24 s i d = sub s c r i b e r . Subscr ibePerEmail (
25 ” s e l e c t ∗ from QoSEvent (Revi s ion . Id=47) ”+
26 ”win : time (6 hours) . s t a t : uni (’QoS . Latency ’) ”+
27 ”where average > 200 ” ,
28 ”anton@infosys . tuwien . ac . at ” ,
29 30∗24∗60∗60
30) ;� �

Listing 1: Subscription examples

The TELCO case study has several scenarios where noti-
fications are useful. Listing 1 gives some examples and il-
lustrates how subscriptions are defined using the VRESCo
client library. First of all, a subscriber proxy is generated by
the client factory which takes server name and port number
of the VRESCo subscription manager service (Line 1–3).

The first example shown in Line 6–11 represents an email
notification. The first parameter defines the subscription in
EQL which in this example means that notifications should
be sent every time a new revision of service 11 is published
(Line 7–8). The second paramter specifies the email address
the notification manager should use for the notifications,
while the third parameter defines the duration of the sub-
scription in seconds. The subscription manager returns a
unique subscription identifier sid which can be used to un-
subscribe or renew the subscription.

Figure 3: VRESCo Runtime Manager

The second example declares interest in QoSEvents where
the ResponseT ime of revision 17 is greater than 500 ms
(Line 14–21) since this might violate the Service Level Agree-
ment. This time the notification should be sent using Web
service notifications following the WS-Eventing specifica-
tion. The second parameter defines where the subscription-
End messages should be sent, while the third parameter
specifies the destination of the actual notification messages.

Finally, the third example shows the use of the sliding win-
dow operator and statistical functions over multiple events.
More precisely, it defines that notifications should be sent
per email if the average Latency of QoSEvents concerning
service revision 47 that occurred within the last six hours is
greater than 200 ms (Line 24–30).

The performance evaluation of our first prototype has
shown that the throughput of internal events is several hun-
dreds of events per second (depending on the number of
subscribers), while the throughput of external events is be-
tween 50 and 200 (depending on the binding). A detailed
evaluation of our work, including the expressiveness of the
subscription language, performance evaluation and possible
application scenarios can be found in [6].

5. REFERENCES
[1] G. Cugola and E. Di Nitto. On adopting content-based

routing in service-oriented architectures. Information
and Software Technology, 50(1–2):22–35, Jan. 2008.

[2] P. Leitner, A. Michlmayr, F. Rosenberg, and
S. Dustdar. End-to-End Versioning Support for Web
Services. In Proceedings of the International
Conference on Services Computing (SCC 2008). IEEE
Computer Society, July 2008.

[3] G. Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy,
R. Sherafat, A. Wun, H.-A. Jacobsen, and
S. Manovski. Historic Data Access in
Publish/Subscribe. In Proceedings of the Inaugural
International Conference on Distributed Event-Based
Systems (DEBS’07), pages 80–84. ACM, 2007.

[4] D. C. Luckham and J. Vera. An Event-Based
Architecture Definition Language. IEEE Transactions
on Software Engineering, 21(9):717–734, 1995.

[5] S. P. Mahambre, M. K. S.D, and U. Bellur. A
Taxonomy of QoS-Aware, Adaptive
Event-Dissemination Middleware. IEEE Internet
Computing, 11(4):35–44, 2007.

[6] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments. In
Proceedings of the 2nd International Conference on
Distributed Event-Based Systems (DEBS’08). ACM,
2008.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber,
and S. Dustdar. Towards Recovering the Broken SOA
Trianlge – A Software Engineering Perspective. In
Proceedings of the Second International Workshop on
Service Oriented Software Engineering
(IW-SOSWE’07), pages 22–28, Sept. 2007.

[8] OASIS International Standards Consortium. ebXML
Registry Services and Protocols, 2005.

[9] OASIS International Standards Consortium. Universal
Description, Discovery and Integration (UDDI), 2005.

[10] OASIS International Standards Consortium. Web
Services Notification (WS-Notification), 2006.

[11] S. Rozsnyai, R. Vecera, J. Schiefer, and A. Schatten.
Event Cloud - Searching for Correlated Business
Events. In Proceedings of the 9th IEEE International
Conference on E-Commerce Technology and The 4th
IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (CEC-EEE
2007), pages 409–420. IEEE Computer Society, 2007.

[12] World Wide Web Consortium. Web Services Eventing
(WS-Eventing), 2006.

[13] Esper Reference Documentation, 2008.
http://esper.codehaus.org/.

