
The Human-provided Services Framework ∗

Daniel Schall, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Austria

schall|truong|dustdar@infosys.tuwien.ac.at

Abstract

The collaboration landscape evolves rapidly by allowing
people to participate in ad-hoc and process-centric collab-
orations. Thus, it is important to support humans in man-
aging highly dynamic and complex interactions. The prob-
lem currently with managing interactions is that humans are
unable to specify different interaction interfaces for vari-
ous collaborations, nor able to indicate their availability
to participate in collaborations. This paper introduces the
Human-provided Services (HpS) framework, which allows
users to provide services based on their skills and expertise.
Such services can be used by human actors and software
services in both ad-hoc and process-centric collaborations.
With the HpS framework, people can offer multiple services
and manage complex interactions, while requesters can find
the right experts and available users for performing specific
tasks. In this paper, we present the HpS middleware, which
is the core of the HpS framework. We show how HpS ser-
vices can be used in Web-scale ad-hoc collaboration sce-
narios.

1 Introduction

Today’s collaboration landscape has changed by allow-
ing a large number of users to communicate and collabo-
rate using Web-based platforms and messaging tools. Users
collaborate with each other by sharing content that is made
available on the Web. Also, collaborations within organiza-
tions are no longer closed ecosystems as collaborations and
interactions span multiple organizations or business units
that are scattered around the globe. However, it becomes
increasingly challenging to manage collaborations that in-
volve a number of people and comprise a large set of ex-
changed messages. In addition, users demand access to col-
laboration resources using pervasive devices in an always-
on fashion.

To address these challenges, collaboration platforms
must support the user in managing complex interactions that
∗This work has been partially supported by inContext (FP6-034718).

span multiple organizations, and hide the complexity due to
different message formats and divers types of collaboration
resources, and furthermore be able to support different de-
vices. This paper introduces the Human-provided Services
(HpS) framework that lets users publish their capabilities
and skills as services. Using the HpS framework, users are
able to define and provide services for different collabora-
tions. HpS allows users to control their interactions beyond
the simple exchange of messages by defining multiple ser-
vice interfaces and interaction rules to manage complex in-
teractions. The novelty of HpS is that collaborations take
place in a service-oriented framework, thus enabling a dy-
namic mix of human- and software services. User- and ser-
vice related information are maintained in a service registry,
which allows HpSs to be discovered by both human col-
laborators and software (processes) services. Thus, HpS
allows business processes, that require human input or in-
tervention, to interact with humans using standardized Web
services protocols, making the HpS framework a versatile
collaboration and interaction framework.

1.1 Approach

Our approach is to build an HpS middleware platform
that integrates Web technologies and Web services with the
goal of providing a framework to enable humans to pub-
lish services, thereby allowing humans and software to find
and interact with HpS users. Figure 1 shows our approach,
which comprises the specification and deployment of ser-
vices and service discovery and interactions with HpS ser-
vices. To this end, the features supported by the HpS frame-
work must be:

Ability to define services.Anyone has to be able to define
services and corresponding interfaces, or simply reference
or copy an existing interface and reuse or modify it. In step
1 users specify profile information and define service inter-
faces.

Specification of interactions.Users must be able to spec-
ify their interaction protocols. Customized protocols allow
interactions to be managed in a given context, that is in a
collaboration through services.

User-centric service publishing/provisioning. Encom-
passes the ability to easily publish and interact with ser-
vices. In step 2 users deploy and register personal services.

Discovery and interactions with users/processes.Pro-
cesses and humans actors must be able to discover HpSs.
HpS simplifies interactions with user-provided services by
abstracting from service location and deployment. In step 3
requesters discover humans and services and interact with
the selected human and services through the HpS middle-
ware.

Figure 1. The HpS approach.

1.2 Contributions

Our contributions center around the definition of a novel
framework that uses Web services in interactions and col-
laborations between people or people and software services.
This paper discusses the design, implementation, and eval-
uation of the HpS middleware platform. The goal of this
paper is to provide an insight on the various components
and services provided by the middleware. Out-of-scope are
legal or privacy issues as well as security issues.

Structure of the Paper: Interactions models applicable
to human collaboration, ranging from ad-hoc to process-
cenctric, are presented in Section 3. The HpS system ar-
chitecture is detailed in Section 4, followed by a discussion
on implementation aspects in Section 5. Section 6 describes
how to use the HpS framework in ad-hoc collaboration sce-
narios.

2 Related Work

The work in this paper tackles several issues related to
services on the Web and human computation. In the fol-
lowing we discuss significant related work in those areas.

Human computationis a technique to let humans solve
tasks, which cannot be solved by computers (see [4] for an
overview). An application of genetic algorithms has been
presented in [6]. The computer asks a person or a large
number of people to solve a problem and then collects their
solutions (e.g., see games that matter [11]). Human compu-
tation applications can be realized in the HpS framework as
people are able to provide user-defined services. Addition-
ally, the HpS framework allows users to manage their inter-
actions. Web-based platforms inspired by human computa-
tion include for example Yahoo! Answers1 [9] and Ama-
zon Mechanical Turk2, which employhuman tasksthat are
claimed and processed by users. There are several limita-
tions which cannot be addressed by these platforms, but by
HpS: (1) how to manage interactions, (2) how to find the
right person (expert), (3) how can users define their avail-
ability to participate in collaborations. Recently, specifica-
tions have been released which allow processes (i.e., BPEL)
to be extended with human interactions, defined inWS-
HumanTaskspecification [1]. Additionally, work presented
in [10] aimed at integrating humans into processes. The
HpS framework can be used in such process-centric collab-
orations as well (e.g.,human taskin process). However,
the HpS framework allows user-define services for ad-hoc
and process-centric collaborations, and also allows humans
(services) to be discovered.Expert-findersystems [2] com-
monly utilize semantic technologies to express users’ ex-
pertise and skills as ontologies. In the HpS framework, we
focus on interactions between humans and software using
Web services technologies. However, the HpS framework
can be extended by using semantic technologies, for exam-
ple, to express skills and social relations using ontologies.

3 Interaction Models

The interaction models in collaboration range from ad-
hoc (informal) to predefined formalized process models (see
[3], [8]). Table 1 gives an overview of these different mod-
els. In the following we discuss concepts used to control
interactions.

In this paper we show how the HpS framework can be
used inad-hoccollaboration scenarios. The only require-
ment for users is to definehuman activities(at design time),
which can be automatically mapped to specific Web ser-
vices andactions. During the actual collaboration (run-
time), requests to perform certain activities are being sent to
HpSs as XML documents that parameterize the request. In
contrast to workflow-based systems, interactions need not
comprise predefined process models. In HpS, there is dis-
tinction between a task announcement and aninteraction
control task, both using theHuman Task structure.

1http://answers.yahoo.com/
2http://www.mturk.com/

���� ������	
�� ��� ����������������� ���
����������� !"#$ %&�'(���)�� *��) ���� !"#$ %������+,-./01-23, +,-./401.5678 9:;<=>?;@A:BC D ���EEEFGH
I JKL MNOPQRST URVWRXYJKL Z[\\]O^_PO`abc dcefcghijjkl mnhcoaphqrndfkcgsRY tu URVWRXYXvwXY tu URXxwSXRywYz{u |xT}YR ~}X� QY}YWXsRY ~}X� QY}YWXsRY URXxwSXR

JKL �O��ON�OPL���^_PO
(a) (b)

Figure 2. (a) Conceptual model HpS interactions. (b) Example interaction flow.

Ad-hoc Interactions are ad-hoc if there is no predefined control flowassociated with an interaction. For exam-
ple, interactions between requesters and HpS users simply take place by exchanging messages.

State-awareness Tasks can be used to control the status of an interaction. Requesters have the ability to impose cer-
tain constraints on tasks such as start-time (when should users start processing tasks) or deadlines
(maximum time when tasks have to be finished).

Process-centric Process-centric collaboration can be established by defining interaction rules. Tasks can be split into
sub-tasks and forwarded to other people. Multiple HpSs could be potentially involved in interactions
to solve complex problems.

Table 1. Interaction models in human collaboration.

Task announcements. Requesters have the ability to
create aHuman Task and to specify the number of avail-
able tasks. Tasks can be linked to HpS service-categories
to express which service (i.e., which expert) is needed to
process the given task. This case is indicated by the link be-
tweenHuman Task and theInteraction Interfacesin Figure
2 (a) (Listing 1 shows an actual XML example of task an-
nouncements). Linking tasks announcements to services is
accomplished bytagging task descriptions with keywords.
Tasks can be linked to a logicalPeople Group to specify
conditions associated with the users that should be able to
claim and process the task (e.g., user groups in an organiza-
tion’s human resources directory).

Interaction control tasks. If tasks are used in interac-
tions, defined by usingHuman Tasks in Figure 2 (a), re-
questers are aware of the state of a given request (e.g.,ac-
cepted, inprogress, or completed). Task-state information
can be retrieved via pull mechanisms or, alternatively, vari-
ous actions can be automatically triggered such as sending
Notifications upon state changes.

Interactions. HpS interactions comprise a multitude of
Messages in different formats (e.g., indicated asEmail or
SOAP messages in Figure 2 (a)). In addition, interactions
generally comprise notifications, tasks, and people/services
that are involved in an interaction. Discussions on complex
interaction flows are not in the scope of this paper.

3.1 HpS Interactions

In HpS, Web services are used to define interaction in-
terfaces to humans. Typical interaction patterns found in
the Web services domain such as the synchronous exchange
of messages are not sufficient for modeling human inter-
actions. Therefore, we introduce a new human-based ser-
vice interaction model, allowing users to deal with requests
in, for example, offline mode or using different devices to
process requests. Since today’s collaboration landscape in-
creasingly shifts toward pervasive collaboration and inter-
actions, a system supporting HpS services must give users
the flexibility to deploy user-defined services on a variety
of devices (e.g., mobiles). Such devices are not always on-
line or connected to the network. Thus, the HpS frame-
work allows requests to be saved and retrieved whenever the
users are available. An exemplary interaction flow is shown
in Figure 2 (b). Indeed, the number of actors involved in
an interaction can be greater than two and multiple tasks
can be defined. As mentioned before and like in most col-
laboration systems, interactions encompass a large number
of messages in various formats (seeHpS FSin Section 4,
an XML-based file system, which has been designed to ac-
commodate those messages). Requests are sent toward the
HpS middleware, which allows messages to be exchanged
either synchronously or asynchronously. Requests can be
forwarded to the corresponding user instantaneously (e.g.,
users is available) or saved in an XML-based repository.

4 HpS Framework

4.1 Middleware Platform

HpS allows a seamless integration of human actors in
service-oriented systems and collaborations that may re-
quire human input in process-centric collaborations. How-
ever, in contrast to existing work and specifications as WS-
HumanTask [1], people have the ability to define a set of
user-provided services that can be used in ad-hoc collabo-
rations and interactions between humans. Figure 3 depicts
the HpS middleware platform.

HpS Middleware
Database

User

Profiles

Service

Registry

Task

Registry

Message

Repository

Collections

Ranking

Algorithms

Interaction

Analysis

3

Protocol

Handler

HpS Invocation

Message

Router
Rules Engine

HpS Interaction

User Tools

Browser

interfaces,

XForms

User Interfaces

(Clients, …)

Management Tools

HpS Service

Designer

Interaction Rules

Designer

1

Extensions

(BPEL4People,

. . .)

2

hal http soap atom rest

HpS Feed

Processor

HpS FS

Feed

Modules

Document Querying and

Retrieval

Rewarding

Figure 3. HpS middleware platform and archi-
tecture.

HpS Middleware Interfaces.The middleware offers in-
terfaces for discovery of services and interactions with HpS
users. Thehal interface (HpS AccessLayer) is a REST
interface that routes requests in various formats to the cor-
responding user/service. Anatom interface can be used to
discover services by retrieving Atom feeds3 that contain ser-
vice related information. Additionally, the service lookup
can be performed using thesoap interface, facilitating the
integration of the HpS framework with other Web services-
based platforms.

HpS Invocation.Processes requests and sends messages
in the appropriate format toward the HpS user. By speci-
fying user or group identifiers (e.g., email address or dis-
tribution lists) and service name, HpSs can be located and
and an interaction initiated by directing the request toward
the access layer (hal). Every request is then passed through
the validation phase in which an authorization check is per-
formed. The user can specify white/black lists and routing
and interaction rules. White/black lists are used, for exam-
ple, to prevent certain users from interacting with HpS ser-
vices. Thehal interface routes service requests to the de-

3Atom Syndication Format - RFC 4287.

sired service, thereby abstracting from actual service end-
points and service location. Requests can be delivered to
the corresponding service immediately, or through an of-
fline interaction as illustrated in Figure 2 (b). In the latter
case, requests are saved in theMessage Repository.

HpS FS.Manages a set of collections of diverse type of
XML-based information. Collections in HpS are conceptu-
ally designed as a native XML-based file system that allows
artifacts, messages, tasks, user and service related informa-
tion to be managed and retrieved. An XML database stores
and manages XML collections. XML documents can be re-
trieved by using XQuery to filter and aggregate information.

HpS Interaction Component.HpS users may define a set
of interaction rules to manage their collaborations (basedon
a set of provided services). The HpS framework does not
mandate which rules users can specify. The framework al-
lows users to specify rule languages, which can be mapped
into theRules Engine. Therefore, rules can be tailored to the
needs of specific domains by creating Domain Specific Lan-
guages (DSL) to describe interaction models. For example,
see [7] for related work in domain interaction models.

Interaction Analysis.Human and service interactions are
recorded, archived, and analyzed. This information is used
for ranking services based on a set of human-metrics such
as task processing performance, availability, or expertise-
rank based on the interaction network structure. Ranking
algorithm help to recommend the most relevant HpS and
the right expert to perform a given task/request.

4.2 Data Collections

Collectionsare managed by theHpS FSas XML docu-
ments. These collections can be manipulated by using the
Atom Publishing Protocol, e.g., the standard protocol model
includesget, post, put, delete, head, to allow re-
sources/messages to be retrieved and updated.

User Profile and Metrics.Profiles are used to manage
and store user related information, described in XML. HpS
users can specify basic information or simply import per-
sonal data that is already available (e.g., vCard format). We
categorizeUser Profileinformation inhard-factsandsoft-
facts. Hard-facts comprise information typically found in
resumes such as education, employment history including
organizational information and position held by the user,
and professional activities. Soft-facts are represented as
competencies. A competency comprisesweights(skill level
of a user),classification(description of area or link to tax-
onomy), andevidence(external sources acting as references
or recommendations). Soft-facts can be automatically gen-
erated by the HpS middleware based on users’ activities to
indicate a user’s expertise or skill level.

Service Registry.The registry maintains a number of
XML documents describing services and allowing human

and software services to be discovered. This information
includes a set of service definitions, the list of available ser-
vices, and information regarding a specific service provided
by a user. A detailed discussion on these XML collections
is given in Section 6.

Task Registry.ManagesHuman Tasks that can be either
public tasks, used to advertise the need for HpS users to
work on tasks, or private tasks that are added to interactions
as control elements. Public tasks are associated with an in-
teraction upon claiming and processing tasks. In addition,
tasks can be added to an interaction without defining public
tasks beforehand.

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:ht="http://www.myhps.org/schemas/task.xsd">

<title>HpS Tasks</title>

<updated >2007-09-24T18:30:02Z</updated>

<id>urn:uuid:63a99c80-d399-12d9-b93C -0003939e0a</id>

<entry>

<title>HpS Public Tasks</title>

<updated >2007-09-19T18:30:02Z</updated>

<id>urn:uuid:1223c696-cfb8-4ebb-aaaa-80da344ea6 </id>

<link href=".../atom?tasks" rel="self"

type="application/atom+xml"/>

<category term="humanrevieweddata"

label="documentreview"/>

<!-- tags applied to tasks -->

<link rel="alternate" type="application/atom+xml"

href="/services/reviewservice.xml"/>

<description >

<![CDATA[basic task rendering definitions]]>

</description >

<ht:task>

<!-- task instance data -->

</ht:task>

</entry>

</feed>

Listing 1. Human task-to-service mapping.

Listing 1 shows an example of a task announcement. The
announcement contains a list of public tasks that reference
the type of HpS service that should process available tasks.
In this example, task related information is encapsulated as
<ht:task> elements in Atom feed entries. Thecategory
element can be used to add tags toHuman Tasks.

5 Implementation

The HpS middleware comprises the implementation of
the XML based file system (HpS FS) and XQuery-based fil-
tering and retrieval of XML documents through the imple-
mentation of the XQuery API for Java (XQJ). Furthermore,
theatom interface, that supports the Atom Protocol Model
to manipulate resources, and thehal interface to support
complex interactions with HpSs and dispatching of mes-
sages are implemented. TheHpS Interactioncomponent is
currently under development. We utilize the JBoss Drools4

system which supports graphical Web-based editing tools
based on which HpS users can define interaction rules. User

4http://labs.jboss.com/drools/

interfaces (e.g., Web browser clients) allow services to be
discovered and enable service requesters to interact with
HpS users. At the implementation level, we use a set of
state-of-the-art Web 2.0 technologies such as AJAX to en-
able asynchronous interactions between the client and the
middleware. In addition, context information can be used
in the service discovery process, for example, by filtering
XML documents based on users’ availability.

Service Deployment. Services are deployed in the host-
ing environment, for example PCs, Smartphones or PDAs.
This deployment strategy allows the HpS framework to
scale to a large audience without being restricted to any
specific technology. The framework supports the option to
deploy services in aplatform independentmanner.

In our experiments, we have used an Apache Axis2 Web
services environment embedded in an Equinox OSGi5 con-
tainer. This solution is well suited for PCs, but not for mo-
bile devices such as Smartphones. For resource constraint
devices, a combination of OSGi technology and SOAP
servers with small footprint can be used. Specifically for the
Windows platform, the Windows Communication Founda-
tion (WCF) can be used to develop Web services for Win-
dows XP and Vista. We have developed SOAP and REST
(XML and JSON) based services using the API provided by
WCF.

User Interface Aspects. In the service discovery phase,
the requester (client) receives an XML document from the
middleware (registry). In Listing 2 and Listing 3 we see
an example where user interfaces are represented using
XForms technologies6. XForms are automatically gener-
ated by the HpS framework based on WSDL descriptions
(see Listing 3categoryandtermspecification).

Listing 2 shows the model specifying SOAP as the in-
teraction message format and the HpS middleware access
layer as the submission target.

<xforms:model id="model-envelope">

<xforms:instance id="instance -envelope" src="review.xml"/>

<xforms:submission id="submit-envelope"

action="{HPS Access Layer}" method="post"

mediatype="text/xml" replace="instance">

<xforms:toggle ev:event="xforms-submit-done"

case="response"/>

</xforms:submission >

</xforms:model>

Listing 2. SOAP interaction model.

Listing 3 shows the actual interface representation that
allows human requesters insert the request parameters and
also request messages to be rendered on various devices.
The switch/case construct defines the behavior of the
form – requestand responserepresentation. These forms
are platform and device independent and can be displayed

5http://www.osgi.org/osgi technology/
6http://www.w3.org/MarkUp/Forms/

on, for example, mobile devices or in standard Web browser
using a suitable forms plugin.

<entry>

<category term="/services/reviewservice#WSDL" />

<content type="xhtml">

<xforms:switch>

<xforms:case id="request" selected="true">

<xforms:label>Input definitions </xforms:label >...

<xforms:submit submission="submit-envelope">

<xforms:message ev:event="xforms-submit-done"

ev:observer="submit-envelope" >...

</xforms:message>

</xforms:submit>

</xforms:case>

<xforms:case id="response" />

<xforms:output ref="..." model="model-envelope">

<xforms:label>Submission output.</xforms:label>

</xforms:output>

</xforms:switch>

</content>

</entry>

Listing 3. Snippet request input form.

The actual instance model – i.e., the request message
– is an XML document (SOAP envelope) as defined in
Listing 2, which is dispatched byhal upon submission
(submit-envelope).

6 Using the HpS Framework in Ad-hoc Col-
laborations

We discuss the required steps to publish HpSs and show
how requesters discover and interact with personal services
using middleware interfaces for HpS interactions. However,
due to space limits, process-centric collaboration scenarios
and interactions with (business) processes are not addressed
in this paper. There are three phases in ad-hoc based collab-
orations:

Service Definition.The user specifies messages and col-
laborative activities (at a high level) using theManagement
Toolsprovided by the middleware (see Figure 3). Based on
messages and activities, the middleware automatically gen-
erates low-level HpS interfaces using interface description
languages such as WSDL or WADL. These descriptions are
deployed as XML documents in theService Registry.

Service Discovery.Requesters discover human and soft-
ware services by browsing/filtering XML documents that
contain the relevant users/services.

HpS Interaction.Requesters interact with services by is-
suing requests toward the middleware. Requests can be con-
verted by theProtocol Handlerto match different service
interface types. For example, messages that are encoded
in JSON notation can be converted to XML messages, and
back. However, theProtocol Handlerdoes not support mes-
sage conversion from, for example, SOAP/XML to REST/J-
SON notation. Messages are being routed by theMessage
Routerto the corresponding user-provided service or saved
in the XML Message Repository. The actual interaction

with the HpS – receiving and processing the request – can
take place depending on the user’s context (e.g., availability
or also specified interaction rules).

6.1 Defining Service Interfaces

A HpS interface definition is an XML document that
contains four entries (see Figure 4).

Addressing informationof personal services to describe
how to interact with a particular user providing the service.
This information is used by requesters to locate and inter-
act with personal services using thehal interface. Figure
4 (3) shows the addressing information entry. The Web
Services Resource Catalog (WS-RC) meta endpoint defini-
tion7 is used to express addressing information of personal
services. WS-RC endpoint descriptions can be annotated
usingmex elements to describe meta data, for example, tax-
onomies, that are applicable to all personal services of the
same service type; regardless of the specific underlying pro-
tocol (SOAP or REST). TheParameterMap element de-
fines tokens in the service address, for example, auri that
is replaced at run-time by HpS user information (e.g., user
id or Email address). The entry in Figure 4 (1.a) shows an
excerpt of the WSDL definition of a HpS, which contains a
link to the WSDL file and a meta data section defining the
service interface (i.e., availablehuman activities).

Service interfacedefinitions shown in Figure 4 (1.a),
(1.b), and (1.c). Entry (1.a) shows a WSDL interface defi-
nition encapsulated in an Atom feed entry. Entry (1.b) and
(1.c) show REST interface definitions using the Web Appli-
cation Description Language (WADL) [5]. (1.b) denotes the
interface that defines messages in XML format (full entry
has been omitted) and (1.c) shows an entry as REST/JSON
service entry defined in WADL.

The technology choice depends on the specific applica-
tion domain of user-provided services. At this point, the
HpS middleware supports formats including SOAP/XML or
REST/XML and the corresponding interface descriptions,
which can be annotated with human-related information.
As an example, Figure 4 (1.b) shows the definition of a
REST HpS interface that defines the usage of JSON as the
message format. This technology choice facilitates HpS
service-interactions in Web browser-based client environ-
ments. A request can be created by using Javascript to issue
JSON-requests toward the HpS middleware.

6.2 XML Collections of Services

In this particular scenario, shown in Figure 4, requesters
are able to retrieve a list of services encoded as Atom feeds.
Feeds have been designed for access of (and subscriptions

7Namespaces have been abbreviated for readability.

Figure 4. HpS discovery and interaction.

to) content, which is frequently being updated. Thus, re-
questers can subscribe to different categories of HpSs; con-
tent which changes frequently as HpSs rely upon the avail-
ability of human actors.Category elements describe the
type of available service interaction models (see Figure 4
(2)). Note that, for scalability reasons, XML collections of
services can be created for specific categories, which can be
distributed and hosted by differentService Registries. In ad-
dition, multiple copies of service collections can be stored
on different servers and replicated.

6.3 Personal Services

Personal servicesare user-defined services that can be
provided by designing different services suitable for vari-

ous collaborative activities. Example services are“docu-
ment review”service,“expert opinion” service, or“news
reporter” service, just to name a few. These services can
be used in various collaboration scenarios and for complex
problems, services can be composed by defining processes
that span multiple users. However, the actors that should ex-
ecute activities/tasks do not need to be determined before-
hand as personal services can be discovered on demand and
thereby following a service-oriented approach to collabo-
ration. Given a requester’s (consumer) query to discover
services, the framework helps to find and select the most
relevant personal services by (1) matching services that sat-
isfy a given query, (2) filter services based on context (e.g.,
availability, workload, etc.) and (3) ranking each service
based on a set of metrics.

An example description of a personal service is given in
Listing 4. The XML description includesuser relatedinfor-
mation such as name, address, and additional contact infor-
mation, which can be specified by the user and/or selected
from the user’s profile. Theservice modeldefines how to
contact the user. In the given example, thecategory el-
ement contains information regarding the supported mod-
els. Note, thecategory element references elements in
the Service Definitionsdocument (e.g., a user-definedRe-
viewservice whose service interface is defined in WSDL).
Since interactions with services travers the middleware plat-
form, theendpoint information, encoded asdescription
element, is used to forward requests to a service endpoint.
However, this information is only used within the middle-
ware platform and not exposed to potential service con-
sumers.

<entry>

<title>My HpS Review Service </title>

<author>

<name>Daniel Schall </name>

<email>d.schall@infosys.tuwien.ac.at</email>

</author>

<updated >2007-09-24T18:30:02Z</updated>

<id>urn:uuid:1223c696-cfb8-4ebb-aaaa-80da34efa6a </id>

<link rel="alternate" title="EndpointReference"

href="http://myHost/ReviewService"/>

<category term="/services/reviewservice#WSDL"

schema="http://schemas.xmlsoap.org/soap/http"/>

<category term="/services/reviewservice#WADL"

label="json"/>

<description ><![CDATA[

<EndpointReference xmlns="..."></EndpointReference >]]>

</description >

<content type="xhtml"><!-- Classification -->

</content>

<geo:lat>48.19766</geo:lat>

<geo:long >16.37146</geo:long>

</entry>

Listing 4. Personal service.

Personal services can be annotated withexpertiseinfor-
mation using various taxonomies. This information is en-
capsulated incontent elements, which is valid for apar-
ticular personal service. Note, a user may want to provide
different services and associate with each service a differ-
ent set of skills or expertise. Nonetheless, expertise infor-
mation can be specified in the user’s profile, thereby being
applicable to all personal services defined by a user.Con-
text informationsuch as location (e.g.,geo tags) and user’s
availability status can be used to find and filter services in
the discovery phase.

7 Conclusion and Future Work

The convergence of human- and software services in a
single framework requires novel tools and platforms. By
utilizing the HpS framework, users can manage their (com-
plex) interactions, while requesters are able to find (dis-
cover) the right service. In this paper we focused on the

architectural aspects of the HpS framework and implemen-
tation details of the middleware platform. However, we
have not yet addressed legal or privacy issues, which are
important to open the HpS framework to a larger audience.
The next steps include a detailed performance and scala-
bility analysis of the HpS framework. By gaining insights
in performance aspects, the HpS framework will be able to
accommodate a large number of users by federating multi-
ple middleware platforms. We will conduct a more detailed
user validation considering different ad-hoc and process-
centric interaction models. Another important aspect of the
HpS framework is ranking and recommending services. We
are currently defining a set of HpS related metrics and algo-
rithm to determine the most relevant service.

References

[1] M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann,
D. Knig, F. Leymann, R. Mller, G. Pfau, K. Plsser, R. Ran-
gaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trick-
ovic, A. Yiu, and M. Zeller. Web Services Human Task
(WS-HumanTask), Version 1.0., 2007.

[2] I. Becerra-Fernandez. Searching for experts on the Web:
A review of contemporary expertise locator systems.ACM
Trans. Inter. Tech., 6(4):333–355, 2006.

[3] S. Dustdar. Caramba a process-aware collaboration sys-
tem supporting ad hoc and collaborative processes in virtual
teams.Distrib. Parallel Databases, 15(1):45–66, 2004.

[4] C. Gentry, Z. Ramzan, and S. Stubblebine. Secure dis-
tributed human computation. InEC ’05: Proc. of the 6th
ACM conference on Electronic commerce, pages 155–164,
New York, NY, USA, 2005. ACM.

[5] M. Hadley. Web Application Description Language
(WADL). Technical report, Sun Microsystems, April 2006.

[6] A. Kosorukoff and D. E. Goldberg. Genetic Algorithms for
Social Innovation and Creativity. Technical report, Univer-
sity of Illinois at Urbana-Champaign, 2001.

[7] M. Nussbaumer, P. Freudenstein, and M. Gaedke. Stake-
holder Collaboration: From Conversation to Contribution.
In ICWE ’06: Proc. of the 6th int. conference on Web engi-
neering, pages 117–118, New York, NY, USA, 2006. ACM
Press.

[8] D. Schall, H.-L. Truong, and S. Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations.IEEE
Internet Computing, 12(3):62–68, 2008.

[9] Q. Su, D. Pavlov, J.-H. Chow, and W. C. Baker. Internet-
scale collection of human-reviewed data. InWWW ’07:
Proc. of the 16th int. conference on World Wide Web, pages
231–240, New York, NY, USA, 2007. ACM Press.

[10] J. Thomas, F. Paci, E. Bertino, and P. Eugster. User Tasks
and Access Control over Web Services. InInt. conf. on
Web Services (ICWS’07), pages 60–69, Salt Lake City, USA,
2007. IEEE Computer Society.

[11] L. von Ahn. Games with a Purpose.IEEE Computer,
39(6):92–94, 2006.

