
temporal coherence of video data, not
only to attain compression, but also to
make searching fast and efficient.
Attaining both goals simultaneously is
challenging.

Future activities will involve setting up
a complete network-aware software/
hardware/conceptual architecture able
to cope with high throughput demands
in a P2P style of computation, taking
advantage of IOF architectural designs.
Awareness of network capabilities,
which change over time, is particularly
important for use on, for example, wire-
less hand-held devices.

The VISTO project started in 2007 at
IIT-CNR as a collaboration between
researchers of the Institute for Informat-
ics and Telematics, CNR, Pisa, the Uni-
versity of Modena and Reggio Emilia,
and the University of Piemonte Orien-
tale.

Link:

http://visto.iit.cnr.it/

Please contact:

Marco Pellegrini
IIT – CNR, Italy
E-mail: marco.pellegrini@iit.cnr.it

ERCIM NEWS 77 April 200938

Special Theme: Future Internet Technology

larity metric, the dynamic (motion-flow)
content and other features. Moreover,
use of personalized criteria is made pos-
sible by the fact that very little pre-com-
putation is needed. Preliminary objec-
tive and subjective evaluations of basic
principles show that storyboards pro-
duced on the fly can be of high quality.

Searching activity: the user may
encounter a frame/scene during video-
browsing that is of particular interest
(eg a city skyline) and be curious as to
whether other videos contain a similar
scene/frame (eg a different take of the
same city skyline). At this point the
user could extract new and unexpected
knowledge from a comparison of differ-
ent videos having this key common
scene/frame.

Personalization of browsing and search-
ing: given a video that is of interest for
a user, browsing involves being able to
quickly assess the most interesting (rel-
evant, typical or unusual) frames/scenes
in the video in order to decide whether
it is worth watching in its entirety (or
which portions are worth viewing).
Users should be allowed to select at
view-time basic parameters such as sto-
ryboard length and waiting time. How-

ever more advanced summarization cri-
teria need to be supported. For example
users must be allowed to specify the
dynamic (motion-flow) content they are
interested in (eg a moving car is differ-
ent from a parked one). Further, the
underlying similarity metric used for
selecting the representative frames
should be biased using implicit or
explicit user requirements.

Videos can be considered to be
sequences of still images (with sound),
and techniques for handling large col-
lections of still images (pictures) might
be the first line of attack. However, we
do not consider this approach to be suit-
able. A single video corresponds to
thousands/millions of frames (depend-
ing on its duration) that, with the excep-
tion of scene changes, are locally highly
similar to one another. Thus the sheer
volume of data poses scalability prob-
lems to approaches based on indexing
single frames (or a dense blind sample
of them) as single still images. Instead,
in the VISTO project, we intend to
develop video representations and
indexing techniques that take dynamic
components of the video data as promi-
nent in the representation. The aim is to
simultaneously exploit the spatial and

Service-oriented Architectures (SOA)
are typically comprised of software
services. Many collaboration and com-
position scenarios involve interaction
between human actors as well as soft-
ware services. Current tools and plat-
forms offer limited support for human
interactions in SOA: we therefore
present Human-Provided Services
(HPS) and the HPS framework. In par-
ticular, the aim of the HPS framework
is to:
• offer a service registry maintaining

information related to human and
software services

• enhance service-related information
by describing human characteristics
and capabilities

• define interaction patterns using Web
services technology so that human
actors can efficiently deal with inter-
actions.

HPSs are offered by human actors. Web
services technology is used to describe
HPSs and to enable interaction with
real people. The advantage of HPS is
that these services can be used in dif-
ferent compositions and Web-based
collaborations.

A possible scenario of human and soft-
ware services is shown in Figure 1a. A
human can define an activity, eg
‘review document activity’, which is
transformed into a Web service inter-

face. Such interfaces are typically
described using the Web Services
Description Language (WSDL). The
same standards can be used to describe
HPSs and software (Web) services.

Via a graphical user interface - a Web
2.0 portal hosted by the HPS frame-
work - the end user can create HPSs
without having to understand XML or
Web services technology.

The role of humans in the future Inter-
net and SOA is thus not limited to con-
suming services (Figure 1b); services
can also be provided by human actors.
HPS unifies humans and services,
because a service can be provided by a

The New Role of Humans in the Future Internet
by Daniel Schall and Schahram Dustdar

In most cases, service-oriented architecture is realized using Web services technology. At the Vienna
University of Technology, we have implemented a platform enabling humans to provide services. We
foresee important applications that will be based on Human-Provided Services and software services.

human actor or implemented as a soft-
ware service. Three steps are performed
when using HPS:

1)Publish: the user can create an HPS
and publish the service on the Web
using a registry. Publishing a service
is as simple as posting a blog entry on
the Web. It is the association of the
user’s profile with an activity depict-
ed as a service.

2)Search: the requester can perform a
keyword-based search to find HPSs.
Ranking is performed to find the
most relevant HPS based on, for
example, the expertise of the user
providing the service.

3)Interact: the framework supports
automatic user interface generation.
HPS can be used in interactions
between humans and in interactions
between software services and HPSs.

The HPS framework is comprised of
three layers (Figure 2). The first layer
contains data collections to maintain
user profile information, service
descriptions (WSDL and related infor-
mation) and interaction rules. These
rules can be created by the user to
define event-condition-action patterns
such as pre-filtering of interactions,
messages etc.

The second layer contains user tools
including a graphical user interface for
designing services (a simple tool to cre-
ate HPSs without programming code),
the activity management to organize
and structure activities, interactions and
related messages. The service manage-
ment allows the user to modify his/her
HPSs.

The third layer enables interaction
between requesters and HPSs. The
lookup is used to find suitable services,

ERCIM NEWS 77 April 2009 39

… Human-Provided Service

Human and Software

Services

HPS

WS … Software (Web) Service

… Human Activity

Service

Provider

Internet

WS

HPS

Requester

WS

(1) publish(2) search

(3) interact

Registry

A) B)

WS

WS

WS
HPS

HPS HPS

HPS

HPS

Figure 1: Unified view of human and software services.

Data Collections

HPS Framework

User Profiles Services
Interaction

Rules

User Tools

Design
Activity

Management

Service

Management

Middleware Services

Lookup
Service

Ranking
Access Layer In

te
ra

c
ti

o
n

s
 a

n
d

 C
o

m
p

o
s
it

io
n

s

Human-Provided Services

Document Review/Translation

J2EE Consultant

Java Expert

Lawyer

Compositions Human and

Software Services:

Task Force

Expert Team

Service/Social Community

Human Computation

Figure 2: HPS framework.

with matching HPSs being ranked and
returned (comparable to using search
engines on the Web). The access layer is
a proxy service dispatching messages
that are exchanged in HPS-based inter-
actions.

The middleware services are imple-
mented in Java/J2EE and data collec-
tions are managed with XML databases
(to manage WSDL- and XML-type def-
initions) and MySQL to manage inter-
actions and related messages.

The user tools are mainly implemented
in C# and ASP.NET with the support of
automatic user interface generation
using XForm (XML forms) technology.
These forms are generated based on
XML descriptions (eg WSDL).

The framework offers APIs (lookup,
registry), enabling integration with
other platforms.

Link:

http://vitalab.tuwien.ac.at/autocompwi
ki/index.php/Human-
provided_Services

Please contact:

Daniel Schall
Vienna University of Technology /
AARIT, Austria
Tel: +43 1 58801 18453
E-mail: schall@infosys.tuwien.ac.at
Schahram Dustdar
Vienna University of Technology /
AARIT, Austria
Tel: +43 1 58801 18414
E-mail: dustdar@infosys.tuwien.ac.at

