Towards Efficient Cross-Blockchain Token Transfers

Philipp Frauenthaler®, Marten Sigwart*, Michael Borkowski*, Taneli Hukkinen*, Stefan Schulte*

* Distributed Systems Group
TU Wien, Vienna, Austria
{p.frauenthaler, m.sigwart, m.borkowski,
s.schulte} @infosys.tuwien.ac.at

Abstract—Interoperability between blockchains remains an
open problem, with current interoperability approaches provid-
ing very limited means of cross-blockchain interaction, mostly in
the form of atomic swaps. More general means of blockchain in-
teroperability such as cross-blockchain data exchange, including
cross-blockchain token transfer would contribute to dissolving
today’s fragmentation of the research and development field of
blockchains. To address this issue, within the TAST research
project, a cross-blockchain token was developed. However, the
developed solution suffers from high synchronization cost.

In this paper, we discuss requirements for more efficient cross-
blockchain token transfers, describe open research challenges,
and give an outlook on two approaches aiming to overcome these
challenges.

I. INTRODUCTION

Since the presentation of Bitcoin [9], the first implementa-
tion of a blockchain protocol in widespread use, the utility and
feasibility of decentralized ledgers has been demonstrated for
various use cases and fields [6]. As discussed in our previous
work [1, 2, 3, 4], research activities related to blockchains
cover, among others, the addition of new layers to Bitcoin
itself [12], improvements to the Bitcoin codebase [8], and the
development of entirely new blockchains [13]. The diversity
and richness of this research field comes with an increasing
number of technologies and implementations [7], causing
structural problems within the blockchain community. The
vast amount of blockchains and other projects in existence
causes severe fragmentation of the research and development
field. Interoperability is mostly not foreseen, with blockchains
instead competing for users and developers [2].

Therefore, in the Token Atomic Swap Technology (TAST)
research project', we aim to create a platform for cross-
blockchain interoperability. The overarching goal is to connect
the fragmented fields of research and development by investi-
gating possible means of interconnecting various blockchain-
related projects. For instance, this can be done by devel-
oping currencies and tokens usable on more than just one
blockchain (cross-blockchain tokens), investigating the trans-
fer of data across blockchains (cross-blockchain data storage),
or by enabling more complex interactions such as calling
smart contract functions from different blockchains (cross-
blockchain smart contract invocations).

White Paper, TU Wien; May 2019, version 1.0.
Uhttp://www.infosys.tuwien.ac.at/tast/

 Pantos GmbH
Vienna, Austria
contact@pantos.io

As a first step towards more general blockchain interoper-
ability, we aim to create a cross-blockchain token. Earlier in
the TAST project, we developed a protocol enabling a first kind
of such tokens [4]. The protocol enables a token to exist on
multiple blockchains at the same time. However, the designed
protocol suffers from a couple of limitations, e.g., very high
synchronization cost. Therefore, in the work at hand, we revisit
the original vision of a cross-blockchain token and introduce
two approaches currently being worked on within the TAST
project that aim to overcome the current limitations.

To this end, Section II defines concrete requirements for
realizing our original vision of a cross-blockchain token, and
Section III discusses the limitations of the current protocol.
In Sections IV and V, we introduce two approaches for
overcoming these limitations. Finally, Section VI concludes
the paper.

II. REQUIREMENTS FOR CROSS-BLOCKCHAIN
TOKEN TRANSFERS

The TAST project aims to enable a cross-blockchain to-
ken. Ideally, such a token enables users to freely choose on
which blockchain they want to hold their assets, i.e., users
are not tied to particular blockchains and are able to hold
different denominations of the token on multiple blockchains
at the same time. This would have the further advantage that
the distribution of assets across the participating blockchains
could give an indication about the significance of a particular
blockchain.

If a new blockchain technology emerges and offers novel
features, users should be able to transfer their assets to this new
blockchain taking advantage of the novel capabilities. Finally,
different blockchains employ different consensus mechanisms,
block sizes, confirmation times, hashing algorithms, network
models, and scripting capabilities. A cross-blockchain token
should take into account this diversity by enabling cross-
blockchain token transfers across a wide variety of different
blockchains. That is, in contrast to developing new blockchains
offering the capabilities for a cross-blockchain token, we aim
to enable a cross-blockchain token for existing blockchains.
Ideally, blockchains which already have many users are able
to participate in the envisioned cross-blockchain token.

Let us assume there exists a token that can be transferred
between multiple blockchains. That is, holders of the token
are free to choose on which blockchain they keep their
assets. Further, participants can transfer amounts of the token


http://www.infosys.tuwien.ac.at/tast/

from one “source” blockchain to an arbitrary “destination”
blockchain. Such transfers should only be successful, i.e., the
specified amount of tokens is created on the destination chain,
if the same amount of tokens has been burned (i.e., destroyed)
on the source chain. If this was not the case, tokens could
effectively be created out of nothing since there is no assurance
that tokens that are being created on the destination chain
have actually been burned on the source chain. The ability to
create tokens out of nothing would subsequently deflate the
value of the token. Therefore, before tokens are created on
the destination chain, the destination chain needs some kind
of proof that the same amount of tokens has been burned on
the source chain.

Now assume it is possible to create such proofs guaranteeing
that a certain amount of some token 7 has been burned on
some source blockchain C, and that these proofs can be used to
create the same amount of 7 on some destination blockchain
Cq4. Two further requirements emerge. First, faking a proof
needs to be prevented at all cost. Participants should not be
able to counterfeit a proof certifying that some amount of 7
has been destroyed on Cs without it actually having occurred.
Second, if a proof is correct (i.e., it has not been faked), it
should only be usable once to create the same amount of 7 on
a different blockchain, i.e., on chain C4. Hence, a single proof
cannot be used multiple times to re-create tokens. Essentially,
disregard of both these requirements would enable participants
to illegally create tokens out of nothing—again deflating the
value of the tokens.

To sum up, we define the general requirements for a cross-
blockchain token transfer as follows.

(1) It should not be possible to create tokens on the destina-
tion blockchain Cg4, without first burning the same amount
of tokens on the source blockchain C,.

(2) When transferring some amount of tokens from C, to Cg,
the amount should only be created on Cg4, if it can be
proven that the same amount has been burned on Cj.

(3) It should not be possible to fake the burning of tokens.

(4) Every token that was burned on one blockchain can only
be (re-)created once on another blockchain.

(5) It should not be possible to destroy tokens on one chain
without recreating them on another.

III. PROGRESS WITHIN TAST

The TAST research project has resulted in numerous con-
tributions throughout its progress to date. One of these con-
tributions is a research prototype’> demonstrating the use of
the concepts discussed in previous publications using Solid-
ity. This prototype already provides the means for realizing
cross-blockchain token transfers. In the following, we briefly
summarize the main concepts implemented by this prototype.
Furthermore, we discuss limitations of the current approach.

As outlined in Section II, the creation of a certain amount
of assets on some blockchain C; requires the same amount to
be destroyed on another blockchain Cs, ensuring that assets

Zhttps://github.com/pantos-io/dextt- prototype

cannot be created out of nothing. Blockchains cannot natively
verify events taken place on other blockchains, e.g., a smart
contract running on blockchain Cy cannot natively access data
located on blockchain C, [1]. Hence, to enable a blockchain
Cq to check whether a user holds enough assets on some other
blockchain Cg, updates of balances need to be synchronized
across all blockchains, i.e., each wallet balance is stored on
each participating blockchain. To synchronize balances of
all participating blockchains, the research prototype leverages
so-called deterministic witnesses [2]. The idea is to give
observing parties (witnesses) sufficient incentive to propagate
information of a transfer (e.g., which user wallet is supposed to
receive the transfer amount) to the other blockchains. Through
the propagation of transfer information to each participating
blockchain, balances are synchronized on all blockchains.
Thus, each wallet has the same balance on each blockchain.
A transfer of some amount of assets from a wallet YW, to
a wallet Wp eventually leads to the reduction of W4 on all
blockchains and to the increase of Vg on all blockchains. This
synchronization happens through the aforementioned deter-
ministic witnesses and ensures eventual consistency between
the balances stored on different blockchains.

In order to incentivize witnesses to propagate informa-
tion across blockchains, witnesses receive a reward for their
services. Since the reward consists of some amount of the
cross-blockchain token, the reward itself leads to a balance
change, which again has to be propagated to all participat-
ing blockchains. Hence, despite the involvement of many
witnesses, only one witness will receive a reward on all
blockchains. To determine the witness receiving the reward, a
contest takes place which leverages the determinism prevalent
in blockchain technologies. In this contest, not the timing of
a witness decides on the reward decision, but a hash value
generated from the witness address together with the Proof
of Intent (Pol), which is provided in the transaction that aims
to (re-)create assets. This means that the contest winner is
determined from the Pol data together with a pool of potential
witnesses. Thus, the outcome (the answer to the question of
who receives the witness reward) is deterministic and therefore
identical across all blockchains for each individual transfer.
However, for different transfers, different witnesses may be
chosen to receive the reward.

Despite enabling cross-blockchain token transfers, this ap-
proach poses significant challenges. First, the synchronization
of any balance change across all blockchains leads to excessive
synchronization cost. The more blockchains are supported by
the protocol, i.e., the more blockchains participate in cross-
blockchain token transfers, the higher the synchronization cost
becomes. Second, the devised approach provides no means
of adding a new blockchain later on. Since every blockchain
stores the current balance of each wallet, these balances
must also be synchronized with a new blockchain. This leads
inevitably to the open question how all existing balances
can be transferred to a new blockchain without relying on a
trusted third party. Third, in order to verify digital signatures,
all blockchains must support the same implementations of


https://github.com/pantos-io/dextt-prototype

 —1

H(p)

Data of block k+1 Data of black k+2.

Data of block k

Figure 1: A blockchain is a linked list that utilizes hash pointers
instead of regular pointers [10].

the required cryptographic primitives. Fourth, the proposed
approach does not allow to determine the significance of
individual blockchains (e.g., how much assets are stored on
each blockchain), since each blockchain stores the same wallet
balances. Finally, it is not possible for users to hold different
denominations of an asset on different blockchains at the same
time.

In the next step, we aim to restrict the required interaction
of a cross-blockchain token transfer to the two blockchains
directly involved in the transfer avoiding the need for synchro-
nization across all participating blockchain, i.e., balances are
only changed on the two blockchains directly involved in the
transfer. Assuming a certain amount of assets are transferred
from blockchain Cg to blockchain C4, then the balance of
the sender should be decreased on C, and the balance of
the receiver should be increased on Cy, without changing
balances on any other participating blockchain. In order to
restrict the required synchronization to the two blockchains
directly involved in the transfer, we aim to make use of the
concepts developed within TAST as well as new techniques.
In Sections IV and V, we introduce two possible approaches
suitable for reducing the synchronization cost.

IV. APPROACH 1: SPV-BASED CROSS-BLOCKCHAIN
TOKEN TRANSFER

The basic idea of approach 1 is to enable users to construct
a cryptographic proof certifying that a particular amount of
assets has been burned on some blockchain Cs. By submitting
this proof to another blockchain Cg4, users can prove to Cg4
that the specified amount of assets has been destroyed on
C,. After a successful verification of this proof, the claimed
tokens are (re-)created on Cy4. In the following, we elaborate
on this approach in more detail. Furthermore, we outline some
challenges that have to be solved in order to make the proposed
approach feasible in practice.

A. Preliminaries

Basically, a blockchain is a linked list that is composed of
a sequence of blocks [10]. As shown in Fig. 1, each block
contains a pointer to the preceding block. Instead of regular
pointers, blockchains utilize hash pointers. Hash pointers not
only hold a reference to the location of some data, but are
composed of the hash value of the referenced data. In case the
referenced data is altered, the hash pointer does not match the
data anymore since an alteration also changes the hash of the
data. Thus, hash pointers provide integrity guarantees. There-
fore, by connecting blocks with hash pointers, a blockchain
represents a tamper-evident data structure [10].

H(p) H(p)
H( ) H(|) H()) H(p)
Lop wp | [ wp | [ oy | [ap wp |
[ [ [ [
Data Data Data Data Data Data Data Data

Figure 2: A Merkle tree is a tree that is built with hash pointers
instead of regular pointers [10].

In blockchain networks such as Bitcoin and Ethereum,
blocks do not directly store transactions, they only contain
some kind of metadata such as block number, difficulty and
the hash pointer to the previous block [10, 5]. Thus, in
the following we refer to these lightweight blocks as block
headers. We use the term block to denote both the block header
containing the metadata and the set of transactions belonging
to the block, i.e., a block is made up of a block header and a
set of transactions.

The transactions of a block are stored in another data
structure, the so-called Merkle Tree [10, 5, 11]. A Merkle
tree is a tree structure in which each node uses hash pointers
to reference its child nodes. The leaf nodes of the tree contain
the data blocks (e.g., in case of Bitcoin the transactions). An
example of a Merkle tree is depicted in Fig. 2. Analogous to
the blockchain, in case any node is changed the hash pointer
stored in the node’s parent is not going to match up. As
long as the hash pointer referencing the root node (the so-
called Merkle root hash) cannot be altered, any alteration is
evident. Another useful feature of a Merkle tree is the ability
to construct a concise proof of memberships showing that
a particular data block is included in the tree. To prove to
someone the inclusion of a certain data block, it is sufficient
to show the nodes of the path from that data block up to the
root node of the Merkle tree. Everyone that is in possession of
the hash pointer to the root node of the Merkle tree can verify
a provided proof of membership by simply recalculating the
hashes of all nodes along the path from the data block up to
the root node. If the calculated root hash matches the root hash
that is in possession of the verifier, the membership has been
successfully proven [10].

Blockchains like Bitcoin or Ethereum combine the two data
structures (blockchain and Merkle tree) by storing the hash
pointer referencing the root node of a Merkle tree in the block
header, together with other metadata such as block number and
difficulty. The concrete structure of a block header (e.g., which
fields are stored in a block header) depends on the system that
is used. For instance, a block header of the Bitcoin blockchain
contains only one Merkle root hash, whereas in Ethereum,
a block header contains the root hashes of multiple Merkle
trees [10, 5]. In Fig. 3, a simplified structure of the Bitcoin
blockchain illustrating the combination of the chain of blocks



Blockchain

| prevBlockHeaderHash: H(

| prevBlockHeaderHash: H(

| prevBlockHeaderHash: H(

version

time

version

version

time time

| nBits | nonce

| nBits |

nonce | nBits | nonce

| merkleRootHash: H( ) |

| merkleRootHash: H(

| merkleRootHash: H( ) |

-

Hy)

H(\) H(/)

H(\)

/

Vo

transaction

transaction transaction transaction

Merkle tree of transactions in each block

Figure 3: A simplified structure of the Bitcoin blockchain [10, 11].

and Merkle trees is shown.

A major advantage of this combination is the ability to
verify the inclusion of a transaction in a blockchain without
the need to download the full blockchain. In order to verify
that a particular transaction is included in a certain block, it
is sufficient to have access to the block headers, e.g., in case
of Bitcoin and Ethereum to a copy of the block headers of
the longest Proof of Work (PoW) chain. Storing only these
headers requires less space than storing the complete blocks.
If someone wants to prove that a particular transaction is
included in some block, they have to provide the Merkle proof
of membership containing the transaction to a verifier. The
verifier simply checks the proof by recalculating the hashes
of the nodes along the path constituting the proof. If the
calculated root hash matches with the Merkle root hash stored
in the corresponding block header, the verifier knowns that the
provided transaction is part of the block without having access
to the transactions. However, Merkle proofs of membership do
not prove that a certain block is included in the blockchain.
Thus, in addition to the verification of the Merkle proof of
membership, it is necessary to check whether the block is
included in the longest proof-of-work chain. This kind of
verification is called Simplified Payment Verification (SPV) and
was first introduced by Satoshi Nakamoto [5, 9, 10].

B. The Protocol

In approach 1, we aim to leverage SPVs to enable users to
prove to some blockchain C4 that a certain amount of assets
has been destroyed on another chain Cj, i.e., to show that a
particular DESTROY transaction is included in some block of

blockchain C;. Hence, when attempting to create tokens on
C4 via a CREATE transaction, a user has to provide a Merkle
proof of membership to C; and C; must have access to the
block headers of Cs (i.e., C4 has to be continuously updated
with new block headers of C;). An important aspect of this
approach is that only the balances of the two blockchains
directly involved in the transfer are changed, thus eliminating
the excessive synchronization cost entailed by the current
prototype. However, utilizing SPVs poses some challenges that
have to be solved in order to make the approach viable in
practice. Next, we elaborate on these challenges.

C. Challenges

To realize secure cross-blockchain token transfers using
SPV proofs, several challenges have to be solved. Below
we describe these challenges and briefly explain possible
approaches to solve them.

1) Efficiency of Proofs: While SPV proofs can crypto-
graphically verify whether or not a certain transaction has
been included within a certain blockchain, they require the
validation of all block headers from the genesis block up to the
block where the transaction is included. For each block header,
the prior block as well as the POW needs to verified. Hence,
when submitting a transaction to the destination blockchain
containing an SPV about a transaction included in the source
blockchain, the destination blockchain either needs to know
about all block headers of the source blockchain or they have
to be provided by the user submitting the SPV. However,
storage as well as computation are expensive operations in
blockchain systems, since state and state transitions are repli-



cated across all nodes of a blockchain [11]. Therefore storing
and verifying all block headers in order to verify an SPV
proof could easily become too expensive. To tackle this issue,
a solution is needed that can reliably verify SPV proofs while
keeping storage and computation requirements to a minimum.
In the TAST project, we are currently developing solutions
where block headers only need to be verified once and where
not all information of block headers need to be stored. As
long as block headers of the source blockchain are regularly
propagated to the destination blockchain, the cost for verifying
SPV proofs remains reasonable.

2) Propagation of Block Headers: As stated above, in the
TAST project, we are currently developing solutions for keep-
ing cost of an SPV proof verification low, under the assump-
tion that the recent block headers of the source blockchain are
regularly propagated to the destination blockchain. However,
therein lies another challenge. How do we ensure that block
headers are regularly propagated to the destination blockchain?
A potential solution to this is to incentivize participants to
regularly submit new block headers of the source chain to the
destination chain, that is, participants can gain a reward if they
propagate new block headers.

3) Blockchain Forks: As described above, SPV proofs
prove that a certain transaction is included in some block
which is included in a valid branch of a blockchain. However,
multiple valid branches of the same blockchain may exist
in parallel (i.e., blockchain forks). Hence, it is not enough
to verify an SPV proof in order to be certain that a cross-
blockchain token transfer is valid, it also needs to be ensured
that the corresponding DESTROY transaction was included
in the branch of the source blockchain that represents the
longest PoW chain (i.e., the branch of the blockchain that
has been accepted by the majority of the chain validators
as the true state of the blockchain). For this reason, PoW
blockchains such as Bitcoin and Ethereum use the concept
of confirmed blocks. Once a block is followed by a certain
number of valid succeeding blocks, the block can be seen as
confirmed and the contained transactions as finalized. Hence,
in order to account for the possibility of blockchain forks,
within approach 1, we plan to incorporate a concept similar
to that of confirmed blocks to ensure the validity of cross-
blockchain token transfers.

In summary, approach 1 aims to leverage SPV proofs to
verify the inclusion of a DESTROY transaction within the
source blockchain in order to accept a CREATE transaction on
the destination blockchain. To make SPVs work in practice,
solutions are being developed that minimize the storage and
computational requirements for verifying such proofs.

V. APPROACH 2: INCENTIVIZED MAJORITY VOTING

Instead of relying on cryptographic proofs as in approach 1,
approach 2 relies on observing parties (witnesses) to deter-
mine whether or not tokens can be created on the destina-
tion blockchain. We define witnesses as participants of the
blockchain ecosystem which do not partake directly in the
token transfer, but rather observe transfers and verify that

the correct amount of tokens has actually been destroyed
on the source blockchain before new tokens are created on
the destination blockchain. Imagine, Alice wants to transfer
4 tokens from her account on blockchain C, to her account
on blockchain C4. She creates a DESTROY transaction on
blockchain Cg, and a CREATE transaction on blockchain Cy.
However, before the CREATE transaction can be finalized, it
has to be verified that the DESTROY transaction has actually
taken place. For that, witness Walter can send a WITNESS
transaction to blockchain C; saying he has witnessed the
DESTROY transaction on blockchain C,. With the confirmation
from Walter, the 4 tokens can be created on blockchain Cg,.
Several problems come to mind: First, what motivates
Walter to send the WITNESS transaction? After all, it will
cost him transaction fees. Second, Alice and Walter might
be accomplices. Walter could say he witnessed the DESTROY
transaction without it actually taking place. This would effec-
tively create tokens for Alice out of nothing. We see, witnesses
should be incentivized to not only participate in the verification
process but to also post the correct validation results. For
that purpose, we suggest a majority vote contest incentivizing
witnesses to participate and to post correct validation results.

A. The Protocol

In the following, we describe the steps involved in the
proposed protocol. For this, we assume that two blockchains
Cs and C, are involved. Furthermore, we assume Alice wants
to move 4 tokens from blockchain C, to blockchain Cg .

1) In a first step, Alice creates and signs a CREATE transaction
containing data such as source and destination blockchains
and the amount of tokens to be transferred.

2) Alice submits this CREATE transaction to blockchain Cg.

3) Cq4 starts a voting contest for witnesses to vote on the
validity of the transfer. A witness has two voting options.

a) The first option is to vote valid, indicating the transfer
is valid, i.e., the correct amount of tokens has been
destroyed on chain C,.

b) The second option is to vote invalid indicating at least
one condition is violated, e.g., Alice has not enough
tokens on blockchain Cs or Alice has not submitted a
DESTROY transaction to blockchain Cj.

During the contest, witnesses cannot see the votes of others,
i.e., they do not know for what others have voted. Further,
due to network latencies, participants cannot reliably know
how many votes have already been submitted. After the
contest expires, the votes are uncovered, revealing the
option the majority has voted for. In order to participate,
witnesses are required to provide a stake. Witnesses that
are among the minority lose their stake, whereas witnesses
that are among the majority keep their stake. If the majority
votes valid, the reward consists of a transfer fee (e.g., a
fraction of the transferred value) and the collected stakes
of the witnesses that are among the minority. If the majority
votes invalid, the reward consists of a penalty for the sender
and the collected stakes of the witnesses that are among
the minority.



Table 1: Voter preference depending on the size of the transfer fee
with respect to the penalty and the actual validity of the transfer

Transfer is valid Transfer is invalid

Transfer fee > penalty Vote valid Vote valid

Transfer fee < penalty Vote invalid Vote invalid

4) Based on the result of the contest, the transfer is either
accepted (i.e., the majority votes valid) or rejected (i.e.,
the majority votes invalid). In case the transfer is valid,
the tokens are created and added to Alice’ balance on
blockchain C,4. In case the transfer is invalid, Alice gets
penalized (e.g., by deducting a certain amount of Alice’
balance on blockchain Cy).

Witnesses are only eligible for a reward if they are part of the
majority. Additionally, if they are part of the minority, they
will lose their stake. Hence, a witness is always motivated to
be part of the majority. Therefore, under the assumption that
the majority of the witnesses participating in the vote is honest,
an individual witness is incentivized to vote honestly, too. On
the other hand, under the assumption that the majority of the
witnesses participating in the vote is dishonest, an individual
witness is motivated to vote dishonestly, too.

Under the assumption that witnesses are trying to maximize
their profits, whether to vote honestly or not, depends on the
financial reward of the vote:

o If the majority votes valid, and the transfer is valid, the
reward consists of a transfer fee and the stake of the
minority.

« If the majority votes valid, and the transfer is invalid, the
reward consists of the transfer fee and the stake of the
minority (however, tokens get created out of thin air).

o Similarly, if the majority votes invalid, the reward consists
of the penalty and the stake of the minority, regardless of
whether the transfer is actually valid or not.

Since the potential reward for the majority coming from the
minority’s stake is uncertain (it could be zero in case everyone
votes the same), and assuming witnesses aim to maximize
rewards, voting preference becomes a simple consideration as
seen in Table 1:

« If transfer fee is bigger than the penalty and the transfer

is valid, then vote valid.

« If transfer fee is bigger than the penalty and the transfer
is invalid, then vote valid.

o If transfer fee is smaller than the penalty and the transfer
is valid, then vote invalid.

o If transfer fee is smaller than the penalty and the transfer
is invalid, then vote invalid.

Hence, to prevent voters from having an optimal voting
strategy, the reward should be equal regardless of whether
witnesses vote valid or invalid (i.e., the transfer fee should
be equal to the penalty). If the transfer fee is the same as
the penalty, the majority has no financial preference of voting
valid or invalid, since both yield the same financial rewards.

Therefore, the question is: Under what circumstances can we
assume that the majority will behave honestly? Our hypothesis
is that, as long as the pay-off for voting honestly or dishonestly
is equal, voting honestly is the preferred option for the majority
since dishonest activity could potentially lead to tokens being
created out of nothing which could eventually lead to a loss
of value of the token. Next, we explore some of the specific
challenges of approach 2.

B. Challenges

For approach 2 to realize cross-blockchain token transfers,
several challenges need to be tackled. Among them are the
prevention of double spending and 51% attacks as well as a
potential nothing-at-stake problem.

1) Double Spending: Double spending can occur, for in-
stance, if Alice submits a valid DESTROY transaction on
blockchain C,, and then submits CREATE transactions on
two blockchains, blockchain C; and blockchain C., at the
same time. Witnesses on both chains would see the CREATE
transactions and examine blockchain C, for a valid DESTROY
transaction. Since a valid DESTROY transaction exists on
chain Cg, witnesses are likely to vote valid on both chains
Cq and C., effectively double spending the tokens that were
destroyed on chain Cs. As such it needs to be ensured that
one DESTROY transaction can only be used once to recreate
the destroyed tokens on one other blockchain (see Section II,
Requirement 4). Possible solutions are the concepts of “veto”
transactions and validity periods as used in the prototypes of
the TAST project.

2) 51% Attacks: A further challenge lies in possible 51%
attacks. In the described approach, transfers get accepted
depending on a majority vote. As such, the majority has
complete power over the approval of transfers. Naturally, the
system fails if the majority decides to vote dishonestly. Hence,
it needs to be prevented that a majority of participants can
organize and coordinate their votes to vote dishonestly. To
solve this problem, incentives have to be carefully aligned in
such a way that behaving honestly is always more rewarding
than behaving dishonestly. The risk for participating in a 51%
attack has to be high. A further challenge is to get as many
users as possible to participate in the voting contest in the first
place. If only a few users participate, successful coordination
among participants is more likely, i.e., the probability of a
51% attack succeeding increases.

3) Nothing-at-Stake Problem: If a transfer is deemed in-
valid by the majority vote, the payoff for the majority consists
of the stake of the minority as well as a penalty from the user
who initiated the transfer. The protocol intends to deduct the
penalty from the funds of the user initiating the transfer on
the destination blockchain since this is where the vote takes
place. However, what happens if that user does not have any
existing funds on the destination blockchain? The user would
have nothing to lose, since no funds could be deducted as a
penalty. To combat such scenarios, one possible solution would
be the employment of a kind of bail system. Users intending
to transfer funds to a blockchain where they currently hold no



assets would have to find someone with sufficient funds on
that blockchain that provides the penalty for the user in case
the transfer is deemed invalid. Of course, it is unlikely that
users provide bail for users if there is no kind of reward for
them as well. The reward could consist of a percentage of the
transferred amount of tokens if the transfer is successful. In
case the transfer is declined, it is unlikely that the user who
initiated the transfer will find users which will bail them out
again in the future. A further challenge in that regard would
be adding completely new blockchains to the ecosystem. A
bail system as described above does not work, since no user
would own any funds on the new blockchain.

Summarizing, approach 2 declines or accepts token transfers
between blockchains based on the outcome of a validity vote
by witnesses. The main challenge consists of building an
incentive structure which (a) motivates as many witnesses as
possible to participate in the vote, and that (b) distributes
rewards and penalties in such a way that witnesses are always
inclined to vote honestly rather than dishonestly.

VI. CONCLUSION

In this paper, we revisited the original vision of the TAST
project and defined requirements for efficient cross-blockchain
token transfers. We summarized our previous work and ex-
plained the limitations of the developed prototypes. We then
introduced two approaches that are currently being explored
for overcoming the described limitations. One approach uses
cryptographic proofs while the other one relies on reward-
incentivized voting contests to determine the validity of trans-
fers. While both approaches come with their own set of
challenges, both ultimately aim to restrict the interaction of a
cross-blockchain token transfer to the two blockchains directly
involved.

DISCLAIMER

Information provided in this paper is the result of research,
partly based on publicly available resources of varying qual-
ity. Popular use of cryptocurrencies includes investment and
speculation on price developments of currencies and assets.
The goal of this paper is to describe technical aspects relevant
for the TAST research project. Economic considerations or
future price developments are therefore not discussed. Tech-
nologies are described from a purely technical point of view.
Therefore, the information in this paper is provided for general
information purposes only and is not intended to provide
advice, information, predictions, or recommendations for any
investment. We do not accept any responsibility and expressly

disclaim liability with respect to reliance on information or
opinions published in this paper and from actions taken or not
taken on the basis of its contents.

ACKNOWLEDGMENT

The work presented in this paper has received funding from
Pantos GmbH within the TAST research project.

REFERENCES

[1] M. Borkowski et al. Caught in Chains: Claim-First Transac-
tions for Cross-Blockchain Asset Transfers. 2018. URL: http:
/ldsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast- white- paper-
2.pdf. White Paper, Technische Universitit Wien. Version 1.1.
Accessed 2019-05-20.

[2] M. Borkowski et al. Deterministic Witnesses for Claim-First
Transactions. 2018. URL: http://dsg.tuwien . ac . at/ staff /
mborkowski/pub/tast/tast- white - paper-3.pdf. White Paper,
Technische Universitdt Wien. Version 1.0. Accessed 2019-05-
20.

[3] M. Borkowski et al. Towards Atomic Cross-Chain Token
Transfers: State of the Art and Open Questions within TAST.
2018. URL: http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/
tast- white- paper- 1.pdf. White Paper, Technische Universitit
Wien. Version 1.2. Accessed 2019-05-20.

[4] M. Borkowski et al. Cross Blockchain Technologies: Review,
State of the Art, and Outlook. 2019. URL: http://dsg.tuwien.
ac.at/staff/mborkowski/pub/tast/tast- white- paper-4.pdf. White
Paper, Technische Universitit Wien. Version 1.0. Accessed
2019-05-20.

[5] V. Buterin. Merkling in Ethereum. URL: https://blog.ethereum.
org/2015/11/15/merkling-in-ethereum/. Accessed 2019-05-20.

[6] T. M. Fernandez-Caramés et al. “A Review on the Use of
Blockchain for the Internet of Things”. In: IEEE Access 6
(2018), pp. 32979-33001.

[7]1 I Konstantinidis et al. “Blockchain for Business Applications:
A Systematic Literature Review”. In: Business Information
Systems. Ed. by W. Abramowicz et al. Springer, 2018, pp. 384—
399.

[8] Litecoin. URL: https://litecoin.org/. Website. Accessed 2019-
02-14.

[9] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

2008. White Paper.

A. Narayanan et al. Bitcoin and cryptocurrency technologies:

A comprehensive introduction. Princeton University Press,

2016.

F. Tschorsch et al. “Bitcoin and Beyond: A Technical Survey

on Decentralized Digital Currencies”. In: IEEE Communica-

tions Surveys & Tutorials 18 (2016), pp. 2084-2123.

J. Willett et al. Omni Protocol Specification. 2017. URL: https:

//github.com/OmniLayer/spec. Version 0.5 (Git: 2017-01-23).

Accessed 2019-02-14.

G. Wood. Ethereum: A Secure Decentralised Generalised

Transaction Ledger. 2018. URL: https://ethereum.github.io/

yellowpaper/paper.pdf. White Paper. Version 69351d5, 2018-

12-10. Accessed 2019-02-14.

(10]

(11]

(12]

(13]


http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-2.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-2.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-2.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-3.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-3.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-1.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-1.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-4.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-4.pdf
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://litecoin.org/
https://github.com/OmniLayer/spec
https://github.com/OmniLayer/spec
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Requirements for Cross-Blockchain  Token Transfers
	Progress within TAST
	Approach 1: SPV-Based Cross-Blockchain  Token Transfer
	Preliminaries
	The Protocol
	Challenges
	Efficiency of Proofs
	Propagation of Block Headers
	Blockchain Forks


	Approach 2: Incentivized Majority Voting
	The Protocol
	Challenges
	Double Spending
	51% Attacks
	Nothing-at-Stake Problem


	Conclusion

